[9.1] Developing Null and Alternative Hypotheses

· Null Hypotheses: Ho (Always contain equality)

· Alternative Hypotheses: Aa (what the test is attempting to establish)
"Research Hypotheses"

• Three forms of hypotheses tests used to test the population parameters \mathcal{M} and p:

Ho: M > Mo

Ho: M > Mo

Ho: M > Mo

Hower tail lest proper tail test

Ho: M = Mo
Ha: M = Mo
Two-tailed test

One-tailed tests

· In the three hypotheses lests above;

II If Ho can be rejected, then the research hypotheses Ha is supported.

If Ho can not be rejected, then there is no evidence that the research hypothesis Ha is supported.

In test @ this means accept to.

Example (Q2 page 336) The manager of an automobile dealership is considering a new plan designed to increase sales volume.

(a) Develop the null and alternative hypothesis?

Ho: M ≤ 14 Ha: M > 14

(b) Comment on the conclusion when Ho cannot be rejected.

STUDENTS-HUB.com There is no evidence that the new plan increases sales

(c) Comment on the conclusion when to can be rejected. The research hypotheses M>14 is supported.

"The new plan increases the sales volume"

· Null hypothoses (Ho): is the Hypotheses assumed to be true in the hypotheses testing procedure.

· Alternative hypotheses (Ha): is the Hypotheses concluded to be true if Ho is rejected.

[9.2] Type I and Type II Errors

(110

	Population Condition		
	Ho True	Ha True	
Accept Ho	Correct Conclusion	Type II Error	
Reject Ho	Type I Error	Conclusion	

· Type I error: The error of rejecting Ho when Ho is true . Type II error: The error of accepting Ho when Ho is false.

Example (Q6 page 338) The claim: the orange juice contains an average of 1 gm of fat or less.

Develop the null and alternative hypothesis? Ho: M = 1 [b] What is Type I error? Ha: M>1

Claiming M>1 when it is false.
" reject (M & 1) when it is true !

Claiming M<1 when it is false.

* level of significance (x): is the prob. of making a Type I error when Ho is true as an equality.

* usually & is 5% or 1%.

Conclusion

Ho: M=1 > two tail,

* Applications of hypotheses testing only control for type I error are called significant lests.

* If the sample data are consistent with Ho, to conclude we use "do not reject" Ho.

=> This conclusion is preferred over "accept Ho" if we use type I error

=> The conclusion "accept Ho" is preferred over "do not reject" Ho, if we control by type I error.

[9.3] Hypothesis Testing about the Population Mean (M) when 6 is known

Test statistics A statistic whose value helps to determine whether Ho should be rejected.

For example: the test statistic for hypothesis tests about population mean when 6 is known is

$$Z = \frac{\overline{X} - M_0}{6\overline{x}} = \frac{\overline{X} - M_0}{6\overline{y}}$$

There are two approaches in Hypothesis Testing:

II ρ-value approach: uses the value of the lest statistic Z to compute ρ-value.

P-value: is the prob. that provides a measure of the

the evidence against the provided by the sample.

"Smaller p-values indicate more evidence against the".

"Smaller p-values indicate more evidence against Ho".

(2x or 2x2)

[2] Critical value approach: uses a critical value 1 to compare with

the lest statistic 2 in order to determine

wheather Ho should be rejected.

0					
	Lower Tail Test	Upper Tail Test	Two Tailed Test		
Hypo theses	Ho: M≥Mo Ha: M < Mo	Ho: M ≤ Mo Ha: M > Mo	Ho: M = Mo Ha: M ≠ Mo		
stupents-HUB.com lest statistic	Z = X - Mo	2 = \(\frac{\times - Mo}{\sqrt{\times}}\)	$z = \frac{\bar{x} - Mo}{\sqrt{n}}$		
Rejection Rule vsin P-value approach		Reject Ho	" Reject Ho \$\frac{1}{2} \frac{1}{2} \fra		
Rejection Rule using Critical value approach		Reject Ho if x 2 > Zx	Reject Ho if the the ZS-Zy ov ZZ Zyz		
.1	p-value -Z		If the Confidence interval x + 26 contains Mo, do not reject to. Otherwise, reject to.		

Example (Qq page 350) Ho: M = 20 Consider the following Ha: M < 20 lower Tail Test A sample of 50 provided a sample mean of 19.4 hypothesis test: The population standard deviation is 2

1 Compute the value of the lest statistic? n=50, 6=2 X=19.4, No= 20 $Z = \frac{\overline{X} - M_0}{\frac{5}{V_0}} = \frac{19.4 - 20}{\frac{2}{V_{50}}} = \frac{-0.6}{0.283} = -2.12$

B what is the p-valve? From the Standard normal teable, we have p-value = 0.0170

[Using & = 0.05, what is your conclusion? Reject Ho since p-value = 0.0170 < a = 0.05

d what is the rejection rule using the critical value? what is your conclusion? Reject the if $2 \le -\frac{7}{2} = -1.645$ since $-2.12 \le -1.645$, we reject $\Rightarrow \frac{2-2}{2} = -1.645$

(Q 10 page 351) Consider the following hypothesis test Ho: M 25 Ha: M> 25 Pail A sample of 40 provided a sample mean of 26.4.

The population standard deviation is 6.

a Compute the value of the lest statistic.

 $Z = \frac{\overline{x} - M_0}{\frac{6}{\sqrt{n}}} = \frac{26.4 - 25}{\frac{6}{\sqrt{n}}} = \frac{1.4}{0.949} = 1.48$

(b) what is the p-value? from the standard normal table, we have p-value = 1 - 0.9306 = 0.0694

[At x = 0.01, what is your conclusion? Do not reject to since p-value > x i.e. 0.0694>0.01 a what is the rejection rule using the critical value? what is your conclusion? Reject to if $z \ge Z_u = 2.33$

since 1.48 < 2.33, do not reject H. from the standard normal table, we have Z = Z = 2.33

Example (Q11 page 351) Consider the following hypothesis test Ho: M=15 Ha: M +15 A sample of 50 provided a sample mean of 14.15 Two Tail Test The population standard deviation is 3.

n=50, 6=3 (a) Compute the value of the test statistic X=14.15, Mo=15

$$2 = \frac{\overline{X} - M_0}{\frac{6}{\sqrt{n}}} = \frac{14.15 - 15}{\frac{3}{\sqrt{50}}} = -2$$

[b] Compute the p-value? From the standard normal table, we have P-value = 0.0228 + 0.0228 = 0.0456

☐ At x = 0.05, what is your conclusion? Reject Ho since p-value = 0.0456 < 2 = 0.05.

a what is the rejection rule using the critical value? what is your

From the standard normal table, Fince $-2 \le -1.96$, we reject to we have -2z = -1.96

, If the sample size n > 30, then we can use hypothesis tests above . If the sample size n < 30 and the population is normally distribution, then we can use the hypothesis tests above. If the sample size n < 30 and = = = not = = but is symmetric, then sample size as small as 15 is good to be able to provid acceptable results.

9.4) Hypothesis Testing about the population Mean (M) when 6 is Unknown.

114

* When 6 is known, the sampling distribution of the test statistic z has a standard normal distribution. see pages 581-582

* when 6 is unknown, the sampling distribution of the test statistic t has a t distribution see pages 583-585

=> The test statistic for hypothesis tests about the population mean M when 6 is unknown is

	$t = \frac{\bar{x} - M_0}{\frac{5}{\sqrt{n}}}$		t-distribution
	lower Tail Test	Upper Pail Test	Two Tailed Test
Hypothesis	Ho: M > Mo Ha: M < Mo	Ho: M & Mo Ha: M > Mo	Ho: M = Mo Ha: M ≠ Mo
0	./	J- Mo	+= x-10

Test statistic $t = \frac{\overline{x} - M_0}{\frac{1}{\sqrt{n}}}$ $t = \frac{\overline{x} - M_0}{\frac{1}{\sqrt{n}}}$

Rejection Rule using Reject Ho if Evalue < X
p-value approach

-t

Reject to if f-value ≤ ∝

· Rejection Rule using critical value approach

Reject to if $t \leq -t_{\alpha}$

Reject to if t > tx

Reject Ho if t=-txz or + > txz

STUDENTS-HUB.com

-tax taxa

* If n >30, then the hypothesis tests provid a good results.

* If the population is approximately normal, then small sample sizes (n215) will provid acceptable results.

* If the population is highly skewed or contains outliers, then n > 50 is recommended.

Example (Q 23 page 357) Consider the following hypothesis Ho: M & 12 (15)
Ha: M > 12
A sample of 25 provided a sample mean 14 and a sample standard deviation s = 4.32. Test
sample standard deviation s = 4.32.
- compare the value of rest sparistics. X = 14, Mo = 12
Compute the value of test statistics. $X = 14$, $M_0 = 12$ $t = \frac{X - M_0}{\frac{S}{\sqrt{n}}} = \frac{14 - 12}{\frac{4.32}{\sqrt{25}}} = \frac{2}{0.864} = 2.31$ $S = 4.32, n = 25, d.f = 24$
(b) Compute the sample for the p-value (use table of f-distribution)
d.f=24 => from the t table, we have
P is between 0.01 and 0.025
C At x=0.05, what is your conclusion?
Reject Ho since p-value < x = 0.05
d what is the rejection rule using the critical value? what is your conclusion.
Reject Ho if $t \geq t_{\alpha} = t_{0.05} = 1.711$
From the ftable, we have t = 1.711
since 2.31 > 1.711, so we reject to.
Example (Q24 page 357) Consider the following hypothesis Ho: M=18
A sample of 48 provided a sample mean $x = 17$ and a sample standard deviation $s = 4.5$
deviation s= 4.5
(a) Compute the value of the test statistic. n=48, x=17, Ho=18, s=4.5
STUDENTS-HUB.com $t = \frac{\bar{x} - M_0}{\frac{s}{\sqrt{n}}} = \frac{17 - 18}{\frac{4.5}{\sqrt{48}}} = \frac{-1}{0.65} = -1.54$
b) Use the t dishibution table to compute a range for o-value?
from the t-table we have I is between 0.05 and 0.10
C At α=0.05, what is your conclusion?
To not reject Ito since p-value > x = 0.05
[d] what is the rejection rule using the critical value? with his your conduction?

From the table, we have t = t = 2.012

• Reject Ho if
$$t \le -\frac{t}{x_2} = -2.012$$
 or $t > t = 2.012$

· since t = -1.54>-2.012, we do not reject Ho.

Example (Q25 page 357) Consider the following hypothesis lest Ho: M = 45

A sample of 36 is used. Identify the p-value and state your conclusion for the following sample results: (Use & = 0.01) lower Tail Test

[a]
$$\bar{x} = 44$$
 and $s = 5.2$ $n = 36$, $d.f = 35$, $H_0 = 45$

$$t = \frac{\bar{x} - M_0}{\frac{5}{\sqrt{n}}} = \frac{44 - 45}{\frac{5 \cdot 2}{\sqrt{36}}} = \frac{-1}{0.87} = -1.15$$

From the +-table we have P is between 0.10 and 0.20 P2 0.1+0.2 = 0.15

pont reject to since p-value = 0.15 > 0.01

$$t - \frac{\bar{x} - H_0}{\frac{5}{\sqrt{n}}} = \frac{43 - 45}{\frac{4.6}{\sqrt{3}6}} = \frac{-2}{0.77} = -2.6$$

From the +-table, we have P is between 0.005 and 0.01 P= 0.0075

reject He since p-value = 0.0075 < 0.01

STUDENTS-HUBSOOM
$$\overline{x} = 46$$
 and $s = 5$

$$t = \frac{\bar{x} - M_0}{\frac{s}{\sqrt{n}}} = \frac{46 - 45}{\frac{5}{\sqrt{36}}} = \frac{1}{1.25} = 0.8$$

From the t-table, we have p is between 0.20 and more Pon't reject to since p-value > 0.01

9.5 Hypo thesis Testing about Proportion (P)

	lower Tail Test	Upper Tail Test 1	Two Tailed Test
Hypo Hhesis	Ho: P≥ Po Ha: P < Po	Ho: p ≤ Po Ha: p> Po	Ho: P= Po Ha: P≠ Po
Pest statistic	$Z = \frac{\overline{P} - Po}{\sqrt{\frac{Po(1-Po)}{n}}}$	$Z = \frac{\overline{p - p_0}}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$	Z= P-Po [611-Po)
· Rejection Rule using	Rejed Ho if Rvalue≤∝	Reject to if p-value < x	Rejoct to if P-value & a
2 value approach	Produc -5	p-value Z	-2 2 2)
· Rejection Rule using	Reject Ho if z <- Z	Reject to if z = Zx	Reject to if Z == 2 or 2) 2
ritical value approach	-Z _K	Z _Z X	- Radio 2007

* The proceclure used to construct hypothesis test about population proportion P is similar to the procedure used to construct hypothesis test about the population mean

* We assume $np \ge 5$ and $n(1-p) \ge 5$ so that the normal prob. dist. can be used to approximate the sampling distribution of \bar{p} "which is a discreat binominal dist."

The standard error of \bar{p} is $6\bar{p} = \sqrt{\frac{R_0(1-R_0)}{n}}$

Example (Q35 page $\frac{362}{}$) Consider the hypothesis lest Ho: P = 0.20 Ha: P \neq 0.20

A sample of 400 provided a sample proportion $\bar{p} = 0.175$ Two failed [a) Compute the value of the test statistic? $p_0 = 0.175$, $p_0 = 0.175$

$$2 = \frac{\overline{P - P_0}}{\sqrt{\frac{P_0(1 - P_0)}{N}}} = \frac{0.175 - 0.20}{\sqrt{\frac{0.2(0.8)}{y_{00}}}} = \frac{-0.025}{0.02} = -1.25$$

15 What is the p-value?

From the standard normal table, we have P-value = 0.1056 + 0.1056 = 0.2112

(C) At x = 0.05, what is your conclusion?

Po not reject to since p-value =0.2112>0.05=2

duhat is the rejection rule using the critical value? what is your conclusion?

Reject Ho if
$$2 < -\frac{7}{2} = -\frac{7}{0.025} = -1.96$$
 or if $2 > \frac{7}{2} = \frac{2}{0.025} = 1.96$

0.026 = 2 from the

5 tander nome table.

Since 2 = -1.25 > -1.96, we do not reject to.

Example Q36 page 362 Consider the hypothesis test Ho: P 20.75 Ha: P< 0.75

A sample of 300 items was selected. Compute p-value and state your conclusion for each of the following results (use x=0.05). lover 1

a
$$\bar{p} = 0.68$$
 $z = \frac{\bar{p} - p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}} = \frac{0.68 - 0.75}{\sqrt{\frac{0.75(0.25)}{300}}} = -2.80$

From the standard normal table, we have p-value = 0.0026 Reject Ho since produe =0.0026 < x =0.05.

From the standard normal table, we have p-value = 0.1151 Ponot reject Ho since p-value = 0.1151 > 0.05

From the standard normal table, we have p-value = 0.0228 Reject to since p-value < 0.05

$$\boxed{d} \ \vec{p} = 0.77 \quad 2 = \frac{0.77 - 0.75}{\sqrt{\frac{0.75(0.25)}{3.00}}} = 0.8$$

From the standard normal table, we have p-value = 0.7881 Po not reject to since p-value ≥ 0.05.