
5/28/2017

1

Sorting Algorithms

Compiled and Prepared by:
Dr. Majdi M. Mafarja

1

Sorting

• Sorting is a process that organizes a collection of data into either ascending or

descending order.

• An internal sort requires that the collection of data fit entirely in the

computer’s main memory.

• We can use an external sort when the collection of data cannot fit in the

computer’s main memory all at once but must reside in secondary storage such

as on a disk.

• We will analyze only internal sorting algorithms.

• Any significant amount of computer output is generally arranged in some

sorted order so that it can be interpreted.

• Sorting also has indirect uses. An initial sort of the data can significantly

enhance the performance of an algorithm.

• Majority of programming projects use a sort somewhere, and in many cases,

the sorting cost determines the running time.

• A comparison-based sorting algorithm makes ordering decisions only on the

basis of comparisons.

2

Uploaded By: anonymousSTUDENTS-HUB.com

5/28/2017

2

Sorting Algorithms

• There are many sorting algorithms, such as:

– Selection Sort

– Insertion Sort

– Bubble Sort

– Merge Sort

– Quick Sort

– Shell Srot

3

Selection Sort
• The list is divided into two sublists, sorted and unsorted,

which are divided by an imaginary wall.

• We find the smallest element from the unsorted sublist and
swap it with the element at the beginning of the unsorted
data.

• After each selection and swapping, the imaginary wall
between the two sublists move one element ahead,
increasing the number of sorted elements and decreasing
the number of unsorted ones.

• Each time we move one element from the unsorted sublist
to the sorted sublist, we say that we have completed a sort
pass.

• A list of n elements requires n-1 passes to completely
rearrange the data.

4

Uploaded By: anonymousSTUDENTS-HUB.com

5/28/2017

3

23 78 45 8 32 56

8 78 45 23 32 56

8 23 45 78 32 56

8 23 32 78 45 56

8 23 32 45 78 56

8 23 32 45 56 78

Original List

After pass 1

After pass 2

After pass 3

After pass 4

After pass 5

Sorted Unsorted

5

Example

1329648

8329641

8349621

8649321

8964321

8694321

9864321

9864321

6

Uploaded By: anonymousSTUDENTS-HUB.com

5/28/2017

4

Selection Sort (cont.)

template <class Item>

void selectionSort(Item a[], int n) {

for (int i = 0; i < n-1; i++) {

int min = i;

for (int j = i+1; j < n; j++)

if (a[j] < a[min]) min = j;

swap(a[i], a[min]);

}

}

template < class Object>
void swap(Object &lhs, Object &rhs)
{

Object tmp = lhs;
lhs = rhs;
rhs = tmp;

}

7

Selection Sort -- Analysis

• In general, we compare keys and move items (or exchange items)

in a sorting algorithm (which uses key comparisons).

 So, to analyze a sorting algorithm we should count the

number of key comparisons and the number of moves.

• Ignoring other operations does not affect our final result.

• In selectionSort function, the outer for loop executes n-1 times.

• We invoke swap function once at each iteration.

 Total Swaps: n-1

 Total Moves: 3*(n-1) (Each swap has three moves)

8

Uploaded By: anonymousSTUDENTS-HUB.com

5/28/2017

5

Selection Sort – Analysis (cont.)

• The inner for loop executes the size of the unsorted part minus 1

(from 1 to n-1), and in each iteration we make one key

comparison.

 # of key comparisons = 1+2+...+n-1 = n*(n-1)/2

 So, Selection sort is O(n2)

• The best case, the worst case, and the average case of the

selection sort algorithm are same.  all of them are O(n2)

– This means that the behavior of the selection sort algorithm does not depend on the

initial organization of data.

– Since O(n2) grows so rapidly, the selection sort algorithm is appropriate only for

small n.

– Although the selection sort algorithm requires O(n2) key comparisons, it only

requires O(n) moves.

– A selection sort could be a good choice if data moves are costly but key

comparisons are not costly (short keys, long records).

9

Comparison of N, logN and N2

N O(LogN) O(N2)

16 4 256

64 6 4K

256 8 64K

1,024 10 1M

16,384 14 256M

131,072 17 16G

262,144 18 6.87E+10

524,288 19 2.74E+11

1,048,576 20 1.09E+12

1,073,741,824 30 1.15E+18

10

Uploaded By: anonymousSTUDENTS-HUB.com

5/28/2017

6

Insertion Sort

• Insertion sort is a simple sorting algorithm that is
appropriate for small inputs.

– Most common sorting technique used by card players.

• The list is divided into two parts: sorted and
unsorted.

• In each pass, the first element of the unsorted part
is picked up, transferred to the sorted sublist, and
inserted at the appropriate place.

• A list of n elements will take at most n-1 passes to
sort the data.

11

Original List

After pass 1

After pass 2

After pass 3

After pass 4

After pass 5

23 78 45 8 32 56

23 78 45 8 32 56

23 45 78 8 32 56

8 23 45 78 32 56

8 23 32 45 78 56

8 23 32 45 56 78

Sorted Unsorted

12

Uploaded By: anonymousSTUDENTS-HUB.com

5/28/2017

7

Insertion Sort … Example

13

Insertion Sort

5 2 4 6 1 3

input array

left sub-array right sub-array

at each iteration, the array is divided in two sub-arrays:

sorted unsorted

14

Uploaded By: anonymousSTUDENTS-HUB.com

5/28/2017

8

Insertion Sort… Example

15

Insertion Sort Algorithm

void insertionSort(Item a[], int n)

{

for (int i = 1; i < n; i++)

{

Item tmp = a[i];

for (int j=i; j>0 && tmp < a[j-1]; j--)

a[j] = a[j-1];

a[j] = tmp;

}

}

16

Uploaded By: anonymousSTUDENTS-HUB.com

5/28/2017

9

Insertion Sort – Analysis

• Running time depends on not only the size of the array but also
the contents of the array.

• Best-case:  O(n)
– Array is already sorted in ascending order.

– Inner loop will not be executed.

– The number of moves: 2*(n-1)  O(n)

– The number of key comparisons: (n-1)  O(n)

• Worst-case:  O(n2)
– Array is in reverse order:

– Inner loop is executed i-1 times, for i = 2,3, …, n

– The number of moves: 2*(n-1)+(1+2+...+n-1)= 2*(n-1)+ n*(n-1)/2  O(n2)

– The number of key comparisons: (1+2+...+n-1)= n*(n-1)/2  O(n2)

• Average-case:  O(n2)
– We have to look at all possible initial data organizations.

• So, Insertion Sort is O(n2)

17

Analysis of insertion sort

• Which running time will be used to characterize this

algorithm?

– Best, worst or average?

• Worst:

– Longest running time (this is the upper limit for the algorithm)

– It is guaranteed that the algorithm will not be worse than this.

• Sometimes we are interested in average case. But there are

some problems with the average case.

– It is difficult to figure out the average case. i.e. what is average

input?

– Are we going to assume all possible inputs are equally likely?

– In fact for most algorithms average case is same as the worst case.

18

Uploaded By: anonymousSTUDENTS-HUB.com

5/28/2017

10

Bubble Sort
• The list is divided into two sublists: sorted and

unsorted.

• The smallest element is bubbled from the unsorted
list and moved to the sorted sublist.

• After that, the wall moves one element ahead,
increasing the number of sorted elements and
decreasing the number of unsorted ones.

• Each time an element moves from the unsorted
part to the sorted part one sort pass is completed.

• Given a list of n elements, bubble sort requires up
to n-1 passes to sort the data.

19

Bubble Sort

23 78 45 8 32 56

8 23 78 45 32 56

8 23 32 78 45 56

8 23 32 45 78 56

8 23 32 45 56 78

Original List

After pass 1

After pass 2

After pass 3

After pass 4

20

Uploaded By: anonymousSTUDENTS-HUB.com

5/28/2017

11

Bubble Sort Algorithm

template <class Item>

void bubleSort(Item a[], int n)

{

bool sorted = false;

int last = n-1;

for (int i = 0; (i < last) && !sorted; i++){

sorted = true;

for (int j=last; j > i; j--)

if (a[j-1] > a[j]{

swap(a[j],a[j-1]);

sorted = false; // signal exchange

}

}

}

21

Bubble Sort – Analysis

• Best-case:  O(n)

– Array is already sorted in ascending order.

– The number of moves: 0  O(1)

– The number of key comparisons: (n-1)  O(n)

• Worst-case:  O(n2)

– Array is in reverse order:

– Outer loop is executed n-1 times,

– The number of moves: 3*(1+2+...+n-1) = 3 * n*(n-1)/2  O(n2)

– The number of key comparisons: (1+2+...+n-1)= n*(n-1)/2  O(n2)

• Average-case:  O(n2)

– We have to look at all possible initial data organizations.

• So, Bubble Sort is O(n2)

22

Uploaded By: anonymousSTUDENTS-HUB.com

5/28/2017

12

Mergesort
• Mergesort algorithm is one of two important divide-and-conquer

sorting algorithms (the other one is quicksort).

• It is a recursive algorithm.

– Divides the list into halves,

– Sort each halve separately, and

– Then merge the sorted halves into one sorted array.

23

Mergesort - Example

24

Uploaded By: anonymousSTUDENTS-HUB.com

5/28/2017

13

Mergesort - Example

6 3 9 1 5 4 7 2

5 4 7 2
6 3 9 1

6 3 9 1 7 2

5 4

6 3 19 5 4 27

3 6 1 9 2 7

4 5

2 4 5 7
1 3 6 9

1 2 3 4 5 7 8 9

divide

dividedividedivide

dividedivide

divide

merge merge

merge

merge

merge merge

merge

25

Merge
const int MAX_SIZE = maximum-number-of-items-in-array;

void merge(DataType theArray[], int first, int mid, int last)

{

DataType tempArray[MAX_SIZE]; // temporary array

int first1 = first; // beginning of first subarray

int last1 = mid; // end of first subarray

int first2 = mid + 1; // beginning of second subarray

int last2 = last; // end of second subarray

int index = first1; // next available location in tempArray

for (; (first1 <= last1) && (first2 <= last2); ++index) {

if (theArray[first1] < theArray[first2]) {

tempArray[index] = theArray[first1];

++first1;

}

else {

tempArray[index] = theArray[first2];

++first2;

} }

26

Uploaded By: anonymousSTUDENTS-HUB.com

5/28/2017

14

Merge (cont.)

// finish off the first subarray, if necessary

for (; first1 <= last1; ++first1, ++index)

tempArray[index] = theArray[first1];

// finish off the second subarray, if necessary

for (; first2 <= last2; ++first2, ++index)

tempArray[index] = theArray[first2];

// copy the result back into the original array

for (index = first; index <= last; ++index)

theArray[index] = tempArray[index];

} // end merge

27

Mergesort

void mergesort(DataType theArray[], int first, int last) {

if (first < last) {

int mid = (first + last)/2; // index of midpoint

mergesort(theArray, first, mid);

mergesort(theArray, mid+1, last);

// merge the two halves

merge(theArray, first, mid, last);

}

} // end mergesort

28

Uploaded By: anonymousSTUDENTS-HUB.com

5/28/2017

15

Mergesort – Example2

29

Mergesort – Analysis of Merge

A worst-case instance of the merge step in mergesort

30

Uploaded By: anonymousSTUDENTS-HUB.com

5/28/2017

16

Mergesort – Analysis of Merge (cont.)

Merging two sorted arrays of size k

• Best-case:

– All the elements in the first array are smaller (or larger) than all the

elements in the second array.

– The number of moves: 2k + 2k

– The number of key comparisons: k

• Worst-case:

– The number of moves: 2k + 2k

– The number of key comparisons: 2k-1

......

......

0 k-1 0 k-1

0 2k-1

31

Mergesort - Analysis

Levels of recursive calls to mergesort, given an array of eight items

32

Uploaded By: anonymousSTUDENTS-HUB.com

5/28/2017

17

Mergesort - Analysis

.

.

.

.

.

.

.

2m

2m-1 2m-1

2m-2 2m-2 2m-2 2m-2

20 20

level 0 : 1 merge (size 2m-1)

level 1 : 2 merges (size 2m-2)

level 2 : 4 merges (size 2m-3)

level m

level m-1 : 2m-1 merges (size 20)

33

Mergesort - Analysis
• Worst-case –

The number of key comparisons:

= 20*(2*2m-1-1) + 21*(2*2m-2-1) + ... + 2m-1*(2*20-1)

= (2m - 1) + (2m - 2) + ... + (2m – 2m-1) (m terms)

= m*2m –

= m*2m – 2m – 1

Using m = log n

= n * log2n – n – 1

 O (n * log2n)






1

0

2
m

i

i

34

Uploaded By: anonymousSTUDENTS-HUB.com

5/28/2017

18

Mergesort – Analysis
• Mergesort is extremely efficient algorithm with respect

to time.
– Both worst case and average cases are O (n * log2n)

• But, mergesort requires an extra array whose size

equals to the size of the original array.

• If we use a linked list, we do not need an extra array
– But, we need space for the links

– And, it will be difficult to divide the list into half (O(n))

35

Shellsort Examples

Sort: 18 32 12 5 38 33 16 2

8 Numbers to be sorted, Shell’s increment will be floor(n/2)

* floor(8/2)  floor(4) = 4

increment 4: 1 2 3 4

18 32 12 5 38 33 16 2

(visualize underlining)

Step 1) Only look at 18 and 38 and sort in order ;

18 and 38 stays at its current position because they are in order.

Step 2) Only look at 32 and 33 and sort in order ;

32 and 33 stays at its current position because they are in order.

36

Uploaded By: anonymousSTUDENTS-HUB.com

5/28/2017

19

Shellsort Examples

Sort: 18 32 12 5 38 33 16 2

8 Numbers to be sorted, Shell’s increment will be floor(n/2)

* floor(8/2)  floor(4) = 4

increment 4: 1 2 3 4

18 32 12 5 38 33 16 2

(visualize underlining)

Step 3) Only look at 12 and 16 and sort in order ;

12 and 16 stays at its current position because they are in order.

Step 4) Only look at 5 and 2 and sort in order ;

2 and 5 need to be switched to be in order.

37

Shellsort Examples (con’t)

Sort: 18 32 12 5 38 33 16 2

Resulting numbers after increment 4 pass:

18 32 12 2 38 33 16 5
* floor(4/2)  floor(2) = 2

increment 2: 1 2

18 32 12 2 38 33 16 5

Step 1) Look at 18, 12, 38, 16 and sort them in their appropriate location:

12 32 16 2 18 33 38 5

Step 2) Look at 32, 2, 33, 5 and sort them in their appropriate location:

12 2 16 5 18 32 38 33
38

Uploaded By: anonymousSTUDENTS-HUB.com

5/28/2017

20

Shellsort Examples (con’t)

Sort: 18 32 12 5 38 33 16 2

* floor(2/2)  floor(1) = 1

increment 1: 1

12 2 16 5 18 32 38 33

2 5 12 16 18 32 33 38

The last increment or phase of Shellsort is basically an Insertion

Sort algorithm.
39

Shell Sort Code

int j, p, gap; comparable tmp;

for (gap = N/2; gap > 0; gap = gap/2)

for (p = gap; p < N ; p++)

{

tmp = a[p];

for (j = p; j>=gap && tmp<a[j-gap]; j=j-gap)

a[j] = a[j - gap];

a[j] = tmp;

}

40

Uploaded By: anonymousSTUDENTS-HUB.com

5/28/2017

21

Increment sequences (How to calculate The Gap)

1. Shell's original sequence:

N/2 , N/4 , ..., 1 (repeatedly divide by 2).

2. Hibbard's increments:

1, 3, 7, ..., 2k - 1 ; k = 1, 2, …

3. Knuth's increments:

1, 4, 13, ..., (3k - 1) / 2 ; k = 1, 2, …

4. Sedgewick's increments:

1, 5, 19, 41, 109, k = 0, 1, 2, …

Interleaving 9 (4k – 2k) + 1 and 2k+2 (2k+2 – 3) + 1.
41

Shell Sort Analysis

Shellsort's worst-case performance using Hibbard's increments is

Θ(n3/2).

The average performance is thought to be about O(n 5/4)

The exact complexity of this algorithm is still being debated

for mid-sized data : nearly as well if not better than the faster (n

log n) sorts.

Animations:

http://www.sorting-algorithms.com/shell-sort

http://www.cs.pitt.edu/~kirk/cs1501/animations/Sort2.html

42

Uploaded By: anonymousSTUDENTS-HUB.com

http://www.sorting-algorithms.com/shell-sort
http://www.cs.pitt.edu/~kirk/cs1501/animations/Sort2.html

5/28/2017

22

Comparison of Sorting Algorithms

43

Uploaded By: anonymousSTUDENTS-HUB.com

