Computer Architecture

Unit 7: Superscalar Pipelines

Slides developed by Milo Martin & Amir Roth at the University of Pennsylvania
with sources that included University of Wisconsin slides
by Mark Hill, Guri Sohi, Jim Smith, and David Wood

Computer Architecture | Prof. Milo Martin | Superscalar 1

A Key Theme: Parallelism

e Previously: pipeline-level parallelism
e Work on execute of one instruction in parallel with decode of next

e Next: instruction-level parallelism (ILP)
e Execute multiple independent instructions fully in parallel

e Then:
¢ Static & dynamic scheduling
e Extract much more ILP
e Data-level parallelism (DLP)
e Single-instruction, multiple data (one insn., four 64-bit adds)
e Thread-level parallelism (TLP)
e Multiple software threads running on multiple cores

Computer Architecture | Prof. Milo Martin | Superscalar 2

STUDENTS-HUB.com

https://students-hub.com

STUDENTS-HUB.com

“Scalar” Pipeline & the Flynn Bottleneck

A

regdfile

D$

i

e So far we have looked at scalar pipelines
¢ One instruction per stage
e With control speculation, bypassing, etc.
— Performance limit (aka “Flynn Bottleneck”) is CPI = IPC = 1
— Limit is never even achieved (hazards)
— Diminishing returns from “super-pipelining” (hazards + overhead)

Computer Architecture | Prof. Milo Martin | Superscalar 3

An Opportunity...

e But consider:

ADD
ADD

rl, r2 -> r3
rd, r5 -> r6

¢ Why not execute them at the same time? (We can!)

e \What about:

ADD
ADD
e In

rl, r2 —>(:>

r4, -> ré6
this case, dependences prevent parallel execution

e What about three instructions at a time?
e Or four instructions at a time?

Computer Architecture | Prof. Milo Martin | Superscalar 4

https://students-hub.com

STUDENTS-HUB.com

What Checking Is Required?

e For two instructions: 2 checks

ADD srcl,, src2; -> dest,

ADD srcl,, src2, -> dest, (2 checks)
e For three instructions: 6 checks

ADD srcl,, src2; -> dest;

ADD srcl,, src2, -> dest, (2 checks)

ADD srcl,;, src2; -> dest, (4 checks)
e For four instructions: 12 checks

ADD srcl,, src2; -> dest,

ADD srcl,, src2, -> dest, (2 checks)

ADD srcl;, src2; -> dest, (4 checks)

ADD srcl,, src2, -> dest, (6 checks)

e Plus checking for load-to-use stalls from prior n loads

Computer Architecture | Prof. Milo Martin | Superscalar

What Checking Is Required?

e For two instructions: 2 checks
ADD srcl,, src2, ->
14/—]_7

ADD @ ~> dest, (2 checks)
e For three instructions: 6 checks

ADD srcl1 , src2

2 checks)
-> dest3 4 checks)
. For four |nstruct|ons 12 checks
ADD SrC11r<ﬁ_C£1__/
ADD @ @ %/ (2 checks)
ADD ' (4 checks)
ADD (6 checks)

e Plus checking for load-to-use stalls from prior n loads

Computer Architecture | Prof. Milo Martin | Superscalar

https://students-hub.com

How do we build such
“superscalar” hardware?

Computer Architecture | Prof. Milo Martin | Superscalar 7

Multiple-Issue or “Superscalar” Pipeline

redfile |

al

e Qvercome this limit using multiple issue
¢ Also called superscalar
e Two instructions per stage at once, or three, or four, or eight...
e “Instruction-Level Parallelism (ILP)” [Fisher, IEEE TC'81]

e Today, typically "4-wide” (Intel Core i7, AMD Opteron)
e Some more (Power5 is 5-issue; Itanium is 6-issue)
e Some less (dual-issue is common for simple cores)

Computer Architecture | Prof. Milo Martin | Superscalar 8

STUDENTS-HUB.com

https://students-hub.com

A Typical Dual-Issue Pipeline (1 of 2)

p 4

redfile

48
{ L
e Fetch an entire 16B or 32B cache block
¢ 4 to 8 instructions (assuming 4-byte average instruction length)
¢ Predict a single branch per cycle
¢ Parallel decode
¢ Need to check for conflicting instructions
 Is output register of I, is an input register to I,?
e Other stalls, too (for example, load-use delay)

Computer Architecture | Prof. Milo Martin | Superscalar 9

A Typical Dual-Issue Pipeline (2 of 2)

p 4

redfile

=l

e Multi-ported register file
e Larger area, latency, power, cost, complexity
e Multiple execution units
¢ Simple adders are easy, but bypass paths are expensive
e Memory unit
¢ Single load per cycle (stall at decode) probably okay for dual issue
¢ Alternative: add a read port to data cache
e Larger area, latency, power, cost, complexity

Computer Architecture | Prof. Milo Martin | Superscalar 10

STUDENTS-HUB.com

https://students-hub.com

STUDENTS-HUB.com

How Much ILP is There?

e The compiler tries to “schedule” code to avoid stalls
e Even for scalar machines (to fill load-use delay slot)
e Even harder to schedule multiple-issue (superscalar)

e How much ILP is common?
e Greatly depends on the application
¢ Consider memory copy
¢ Unroll loop, lots of independent operations
e Other programs, less so
e Even given unbounded ILP,
superscalar has implementation limits
e IPC (or CPI) vs clock frequency trade-off
¢ Given these challenges, what is reasonable today?
e ~4 instruction per cycle maximum

Computer Architecture | Prof. Milo Martin | Superscalar 11

Superscalar Implementation
Challenges

Computer Architecture | Prof. Milo Martin | Superscalar 12

https://students-hub.com

STUDENTS-HUB.com

Superscalar Challenges - Front End

e Superscalar instruction fetch
e Modest: fetch multiple instructions per cycle
e Aggressive: buffer instructions and/or predict multiple branches
e Superscalar instruction decode
e Replicate decoders
e Superscalar instruction issue
¢ Determine when instructions can proceed in parallel
e More complex stall logic - order N2 for N-wide machine
¢ Not all combinations of types of instructions possible
e Superscalar register read
e Port for each register read (4-wide superscalar =» 8 read “ports”)
e Each port needs its own set of address and data wires
e Latency & area « #ports?

Computer Architecture | Prof. Milo Martin | Superscalar 13

Superscalar Challenges - Back End

e Superscalar instruction execution

¢ Replicate arithmetic units (but not all, say, integer divider)

e Perhaps multiple cache ports (slower access, higher energy)

¢ Only for 4-wide or larger (why? only ~35% are load/store insn)

e Superscalar bypass paths

¢ More possible sources for data values

e Order (N2 * P) for N-wide machine with execute pipeline depth P
e Superscalar instruction register writeback

¢ One write port per instruction that writes a register

e Example, 4-wide superscalar = 4 write ports
e Fundamental challenge:

e Amount of ILP (instruction-level parallelism) in the program

e Compiler must schedule code and extract parallelism

Computer Architecture | Prof. Milo Martin | Superscalar 14

https://students-hub.com

STUDENTS-HUB.com

Superscalar Bypass

¢ N2 bypass network
— N+1 input muxes at each ALU input
versus — N2 point-to-point connections
— Routing lengthens wires
— Heavy capacitive load

And this is just one bypass stage (MX)!
* There is also WX bypassing
* Even more for deeper pipelines

¢ One of the big problems of superscalar

e Why? On the critical path of
single-cycle “bypass & execute”
loop

in | Superscalar 15

Not All N2 Created Equal

» N2 bypass vs. N2 stall logic & dependence cross-check
e Which is the bigger problem?

e N2 bypass ... by far
e 64- bit quantities (vs. 5-bit)
e Multiple levels (MX, WX) of bypass (vs. 1 level of stall logic)
e Must fit in one clock period with ALU (vs. not)

e Dependence cross-check not even 2nd biggest N? problem

¢ Redfile is also an N2 problem (think latency where N is #ports)
e And also more serious than cross-check

Computer Architecture | Prof. Milo Martin | Superscalar 16

https://students-hub.com

Mitigating N2 Bypass & Register File

e Clustering: mitigates N2 bypass
N e Group ALUs into K clusters
e Full bypassing within a cluster
e Limited bypassing between clusters
e With 1 or 2 cycle delay
e Can hurt IPC, but faster clock
e (N/K) + 1 inputs at each mux
e (N/K)2 bypass paths in each cluster
e Steering: key to performance
o Steer dependent insns to same cluster

= ¢ Cluster register file, too

e Replica a register file per cluster

o All register writes update all replicas
e Fewer read ports; only for cluster

Computer Architecture | Prof. Milo Martin | Superscalar 17

Mitigating N2 RegFile: Clustering++

cluster 1

o e W

DM

>

e Clustering: split N-wide execution pipeline into K clusters
¢ With centralized register file, 2N read ports and N write ports

e Clustered register file: extend clustering to register file
¢ Replicate the register file (one replica per cluster)
¢ Register file supplies register operands to just its cluster
¢ All register writes go to all register files (keep them in sync)
e Advantage: fewer read ports per register!
e K register files, each with 2N/K read ports and N write ports
Computer Architecture | Prof. Milo Martin | Superscalar 18

STUDENTS-HUB.com

https://students-hub.com

STUDENTS-HUB.com

Another Challenge: Superscalar Fetch

What is involved in fetching multiple instructions per cycle?

In same cache block? — no problem

e 64-byte cache block is 16 instructions (~4 bytes per instruction)

e Favors larger block size (independent of hit rate)
What if next instruction is last instruction in a block?

¢ Fetch only one instruction that cycle

¢ Or, some processors may allow fetching from 2 consecutive blocks
What about taken branches?

e How many instructions can be fetched on average?
e Average number of instructions per taken branch?
e Assume: 20% branches, 50% taken — ~10 instructions

Consider a 5-instruction loop with an 4-issue processor
e Without smarter fetch, ILP is limited to 2.5 (not 4, which is bad)

Computer Architecture | Prof. Milo Martin | Superscalar 19

Increasing Superscalar Fetch Rate

13 l insn queue
B also loop stream detector
= :I

e Option #1: over-fetch and buffer
e Add a queue between fetch and decode (18 entries in Intel Core2)
e Compensates for cycles that fetch less than maximum instructions
e “decouples” the “front end” (fetch) from the “back end” (execute)

e Option #2: “loop stream detector” (Core 2, Core i7)
e Put entire loop body into a small cache
e Core2: 18 macro-ops, up to four taken branches
e Core i7: 28 micro-ops (avoids re-decoding macro-ops!)
¢ Any branch mis-prediction requires normal re-fetch
e Other options: next-next-block prediction, “trace cache”

Computer Architecture | Prof. Milo Martin | Superscalar 20

https://students-hub.com

STUDENTS-HUB.com

Multiple-Issue Implementations

o Statically-scheduled (in-order) superscalar
e What we've talked about thus far
+ Executes unmodified sequential programs
— Hardware must figure out what can be done in parallel
e E.g., Pentium (2-wide), UltraSPARC (4-wide), Alpha 21164 (4-wide)
¢ Very Long Instruction Word (VLIW)
- Compiler identifies independent instructions, new ISA
+ Hardware can be simple and perhaps lower power
e E.g., TransMeta Crusoe (4-wide)
¢ Variant: Explicitly Parallel Instruction Computing (EPIC)
¢ A bit more flexible encoding & some hardware to help compiler
e E.g., Intel Itanium (6-wide)
 Dynamically-scheduled superscalar (next topic)
e Hardware extracts more ILP by on-the-fly reordering
e Core 2, Core i7 (4-wide), Alpha 21264 (4-wide)

Computer Architecture | Prof. Milo Martin | Superscalar 21

Multiple Issue Redux

e Multiple issue
e Exploits insn level parallelism (ILP) beyond pipelining
e Improves IPC, but perhaps at some clock & energy penalty
e 4-6 way issue is about the peak issue width currently justifiable
e Low-power implementations today typically 2-wide superscalar

e Problem spots
e N2 bypass & register file — clustering
e Fetch + branch prediction — buffering, loop streaming, trace cache
¢ N2 dependency check — VLIW/EPIC (but unclear how key this is)

e Implementations
e Superscalar vs. VLIW/EPIC

Computer Architecture | Prof. Milo Martin | Superscalar 22

https://students-hub.com

[spacer]

SSSSSSSSSSSSSSSS

https://students-hub.com

