E Data Structure: Heaps 2016/2017 Prepared by: Dr. Mamoun Nawahdah

e ‘*‘%) X
BIRZEIT UNIVERSITY

COMP242
Data Structure

Lectures Note: Heaps

Prepared by: Dr. Mamoun Nawahdah
2016/2017

1

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Heaps 2016/2017 Prepared by: Dr. Mamoun Nawahdah
Priority Queues (Heaps)
A priority queue is a data structure that allows at least the following two operations:
e Insert: which does the obvious thing;

e deleteMin (or deleteMax): which finds, returns, and removes the minimum (or maximum) element in
the priority queue.
Simple Implementations:
e Unsorted Linked list, performing insertions at the front in O(1) and traversing the list, which
requires O(N) time, to delete the minimum/maximum.
e Sorted Linked list, performing insertions in O(N) and O(1) to delete the minimum/maximum.
e Binary search tree: this gives an O(log N) average running time for both operations.

Binary Heap

A heap is a binary tree that is completely filled, with the possible exception of the bottom level, which
is filled from left to right. = |

Such a tree is known as a complete binary tree.

A complete binary tree of height h has between
2" and 271 nodes.

Heap representations

As complete binary tree is so regular, therefore, it can be represented as an array:

i 0 1 2 3 4 5 6 7 8 91011
a[i] - T S R P N O A E I H G

- Parent of node at i is at i/2.

- Children of node at i are at 2i (left child) and 2i+1 (right child).

Heap-order property:

e Inamin heap, for every node X, the key in the parent of X is smaller than (or equal to) the key

in X, with the exception of the root (which has no parent). Therefore, the minimum element
can always be found at the root.

e Inamax heap, for every node X, the key in the parent of X is larger than (or equal to) the key

in X, with the exception of the root (which has no parent). Therefore, the maximum element
can always be found at the root.

2

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Heaps 2016/2017 Prepared by: Dr. Mamoun Nawahdah
Interface for the max-heap

public interface MaxHeapInterface<T extends Comparable<? super T>>

{
pubiic void add(T newEntry);
public T removeMax();
public T getMax();
public boolean isEmpty();
public 1int getSize();
public void clear();

}
An Array to Represent a Heap

90 | 80 § 60| 70 | 30 | 20

N
(=]

10 | 40

Promotion (&2.5) in a max heap

Scenario: Child's key becomes larger than its parent's key.
To eliminate the violation:
* Exchange key in child with key in parent.
* Repeat until heap order restored.
Example:

) © ®

violates hc‘:fp order
(larger key than parent)
Pls . .I 9

private void swim(int k)

{
while (k > 1 & less(k/2, k))
{
exch(k, k/2);
k = k/2;
} =
} parent of node at k is at k/2

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Heaps 2016/2017 Prepared by: Dr. Mamoun Nawahdah
Insertion in a max heap
Insert: Add node at end, then swim it up.
Cost: At most 1 +log N compares.
Example 1:insert S

add kt':l." to ."In!p
violates hmp order 9

public void insert(Key x)
{

pq[++N] = x;

swim(N) ;

Example 2: insert 85

Method 1: The steps in adding 85 to the previous max-heap

() (b) (©

(%) (%) (%0
(30) (60) © (60) (8 ()
@M O® ® m @O © @© 0 ©
OXOIO, (19 @) OXOIO

Method 2: A revision of the steps shown in the previous figure, to avoid swaps:

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Heaps 2016/2017 Prepared by: Dr. Mamoun Nawahdah

(d)
(%)

The following figures shows array representation of the steps in the previous figures:

(a)

| Joo[so|[e]70[3|20]so[w]awo] | [|s=>3

0 1 2 3 4 5 6 7 8 9 10 11 12
(10/2)
(b)
[[oo]s]e 7] [20[s0]w]4a]3] | | Moeso
o 1 2 3 4 5 6 7 8 9 1w u B
(c)

[Joo[s]e[7] J20]so[w]aw|[3] [|s=>s

0 1 2 3 4 5 6 7 8 9 10 11 12
(572)

| [90 | [60]70] 80]20[s0]10]40]30] | | Move 80
o 1 2 3 a4 5 6 7 8 9 10 1u 12

(e)

| || Je[7o]s0]2o[so[w]a]z] [|s<wn
0 1 2 3 B 5 6 7 8 9 10 11 12

(2/2)

(H

[[oo]|ss]eo[70]s |20]s0]1w]4[30] | | nsenss
o 1 2 3 4 5 6 7 8 9 10 1 12

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Heaps 2016/2017 Prepared by: Dr. Mamoun Nawahdah
Demotion (45, JI) in a max heap

Scenario: Parent's key becomes smaller than one (or both) of its children's.
To eliminate the violation:
* Exchange key in parent with key in larger child.
* Repeat until heap order restored.
Example 1:

l'i:uhfr'i.‘.\ JJ('HP ||f'(h'1" o
(s aller t} a child)
maiier than a chile 2 0
(py 2 @ ®
10
® O'® ©
G o > Top-down reheapify (sink)

private void sink(int k)

{

5 5 _ children of node at k
H‘E'h'!-fe @2*k <= N) are 2k and 2k+1

Nt i = 2tk / /

if (3 < N & less(j, j+1)) j++;
if (1less(k, j)) break;
exch(k, j);

k =3;

Delete the maximum in a max heap (Removing the root)
Delete max: Exchange root with node at end, and then sink it down.
Cost: At most 2 log N compares.
Example 1: delete T

remove the maximum
Ra\ to remove Y iolates

HJJP:’I'(!I;.’
e sink down
S
0 :'b (NJ (P) 0 ®
h k
S SO B i s

public Key delMax()
{
Key max = pq[1];
exch(l, N--);
sink(1);
pq[N+1] = null; «—f— prevent loitering
return max;
}

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Heaps 2016/2017 Prepared by: Dr. Mamoun Nawahdah
Example 2: delete root (max)

(85) (60)
O ONONNC)
19 @ @

(a) ‘ (b) @

(8) (60) (8) (60)
() @ @ @) @
OXOIO (19 ()

(d)

© ® ®

(30) (60) (80 (60
)) @ @ () O ® ©
(19 @ (1) ()

Creating a Heap

The steps in adding 20, 40, 30, 10, 90, and 70 to an initially empty heap
@) ® ®
ORC
@) @
@ W
@ @
®
@
@ ® @

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Heaps 2016/2017 Prepared by: Dr. Mamoun Nawahdah
Binary heap: Java implementation

public class MaxPQ<Key extends Comparable<Key>>
{
private Key[] pq;
private int N;
public MaxPQ(int capacity) «—4 fixed capacity
{ pq = (Key[]) new Comparable[capacity+1]; } OrSimpacey)
public boolean isEmpty() » L PQops
{ return N == 0; }
public void insert(Key key)
public Key delMax()
{ /* see previous code */ }
private void swim(int k)
private void sink(int k) «——+— heap helper functions
{ /* see previous code */ }
private boolean less(int i, int j)
{ return pq[i].compareTo(pq[j]) < 0; }
private void exch(int i, int j) <——F— array helper functions
{ Key t = pq[il; pqli]l = pq[jl; pqlj]l = t; }
}

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Heaps 2016/2017

Prepared by: Dr. Mamoun Nawahdah
HeapSort

Basic plan:

* Create max heap with all N keys.
* Repeatedly remove the maximum key.

Heapsort demo:

First pass. Build heap using bottom-up method:

Array in arbitrary (random) order
S (R |TI|E X A TM

PIIL ' E
1 2 3 4 5 6 7

8 9 10 11 N=11

for (int k = N/2; k >= 1; k--)
sink(a, k, N);

sink(5, 11)

starting point (arbitrary order)

> >
sink(4, 11) sink(3, 11)
® ® s
sink(2, 11)
(T)
& (L)
m @ e e > result (heap-ordered)

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Heaps 2016/2017 Prepared by: Dr. Mamoun Nawahdah
e Second pass:
o Remove the maximum, one at a time.
o Leave in array, instead of nulling out.

while (N > 1)

{
exch(a, 1, N--);
sink(a, 1, N);

}
exch(1l, 11) exch(l, 10)
sink(1, 10) sink(1, 9)
(S)
R) &
®® ® x
exch(1l, 9) exch(1l, 7)
sink(1, 8) Efﬁtﬁ ?% (P) O

sink(1, 6)
) E) () C;®
(M) L ©® ® (A) L P
R

exch(l, 6) exch(l, 5) exch(1, 4) e
sink(1, 5) 4 sink(1, 4) sink(1, 3) G

@/ 0 ®/ M L

1
A
h(l, 2 Q)
exch(l, 3) ® ket B

S"il'lk(l. 2)@/ EE 3E
E E

4L 5 M 6 7

BR 95 IDT 11x

result (sorted)

10

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Heaps 2016/2017 Prepared by: Dr. Mamoun Nawahdah
Heapsort: trace

ali]

N k 0 1 2 3 4 5 6 7 8 91011
initial values S O RTEXA AMUPL E
11 5 L E E
11 4 T M P

11 3 X R A

11 2 T P L M O

11 1 X T S R A
heap-ordered X T S P L RAMUOE E
10 1 T P S O L M E X
9 1 S P R E A 1]

8 1 R P E E A S

7 1 P O E M L R

6 1 O M E A L P

5 1 M L E A E O

4 1 L E E A M

3 1 E A E L

2 1 E. ‘A E

1 1 A E

sorted result A EELMOWPRISTX

Heapsort trace (array contents just after each sink)

Heapsort: mathematical analysis
e Heap construction uses £ 2 N compares and exchanges.
e Heapsort uses <2 N Ig N compares and exchanges.

Heapsort Significance: In-place sorting algorithm with N log N worst-case.
Heapsort is optimal for both time and space, but it makes poor use of cache memory and not stable.

11

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Heaps 2016/2017 Prepared by: Dr. Mamoun Nawahdah
Heapsort: Java implementation

int N = a.length-1;

for (int k = N/2; k >= 1; k-)
sink(a, k, N);

while (N > 1)

{
exch(a, 1, N);
sink(a, 1, --N);

}

12

STUDENTS-HUB.com Uploaded By: anonymous

E Data Structure: Heaps 2016/2017 Prepared by: Dr. Mamoun Nawahdah

FINISIIEII S'I'IIIIYING'"

13

STUDENTS-HUB.com Uploaded By: anonymous

