chapter 1

& Lecture 1

- hosts: clients & servers
- transmission rate: bit per second
- Frequency Division multiplexing (FDM): different channels transmitted in different frequency bands.
- hybrid liber coak (HFC) 40 Mbps 1.2 Gbps downstream transmission rate, 30-100 Mbps Upstream trans, rate

cable. based access

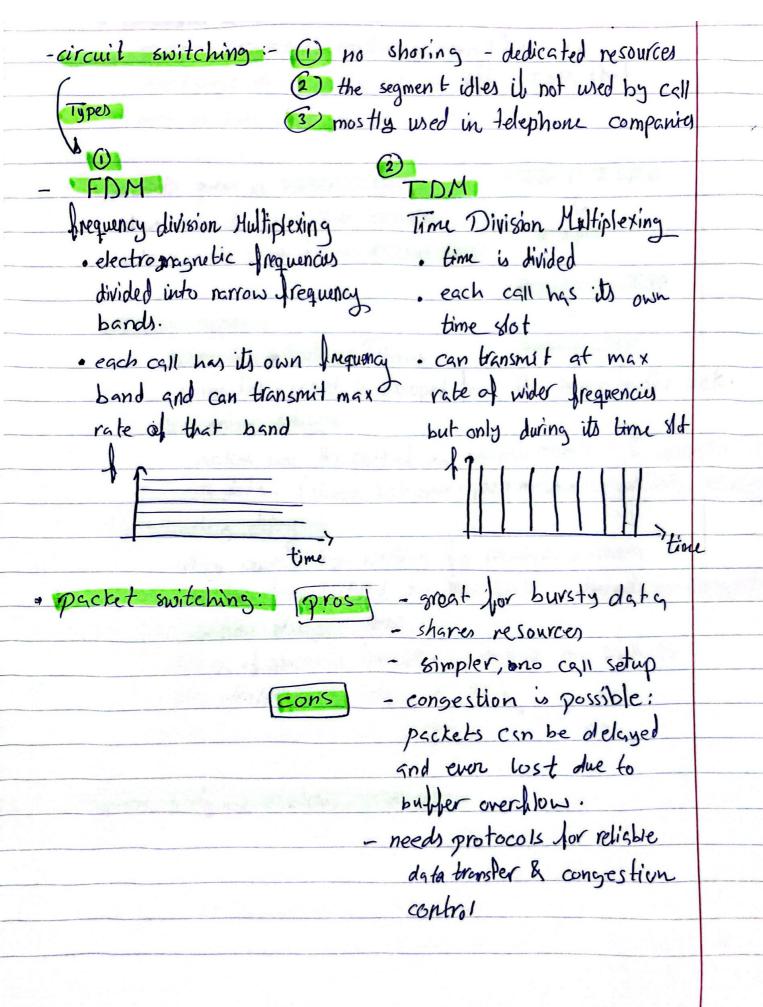
Lecture 2

Media,

- packets have length (L) of bits & transmission Rate (R),

link capacity /bandwidth

- packet transmission Delay (Drans) (bits/sec)
- bit propagates between transmitter/reciever pairs
- Physical link: What her between transmitter & reciever
- guided media: signals propagate in solid media (copper, fiber)
- unquided media: signal Propagate freely (radio)
- Twisted pair (TP): Two insulated copper wires
- Coaxial cable: 1) two concentric copper conductors.
 - (2) bidirectionals
 - 3 broadband : multiple frequency channels


on cable. 100's Abps chamel

- fiber optic cable: Oglass fiber arries light pulses
 - @ high speed operation point to point transmission (10's - 100's Mbps)
 - (3) low error rate
- @ wireless radio: Obignal carried in electromagnetic spectrum
 - (2) no physical connections, wires
 - 3 Propagation environment effects : reflection obstruction by objects

/interference & noise

@ - Radio link types: - wireless LAN (wifi): 105-100's Mbps 110's of meters - wide are (46 collular): 10's Hbps MOKm - bluetooth: cable replacement, short distances & limited rate - terrestrial microwave: - point to point, 45 Mbps channels - sattelite: 45 Mbps Per channel, 270 msec ond-end delay geosynchronous versus low earth orbit. or packet switching: hosts break application layer messages to packets and they get forwarded from one router to the next on path from source to destination & they get transmitted at full link capacity · Network core functions 1 torwarding (local) i moves arriving packets from current router to router appropriate output link. (the destination address arriver as the packets header) 2) Routing (Global): determinu source-destination paths taken by packets (routing abolithims) a entire packed should arrive a trouter to be transmitted on next link. or Packet queuing & los): - happens when arrival rate exceeds & transmission rate - packets start quening and wait to be transmitted to output links. - if memory (buffer) in routers Pillup Packets can be dropped

of internet structure

- there exists local & global transit ISP (Internet server providers)

- costumer & provider ISPS have an economic agreement

- IXP (Internet exchange point) is to exchange data between to diff. ISPs that are in two dill global ISPs.

- packets queue in router buffers.

Tier 1 ISPs

when rate of input link exceeds output link capacity -> packet loss

Regional ISP

- Delay types

(1) transmission Dulay: Ptrans

accell ISP

when the packet is dropped from the device to the link. (L/R)

(2) processing delay:

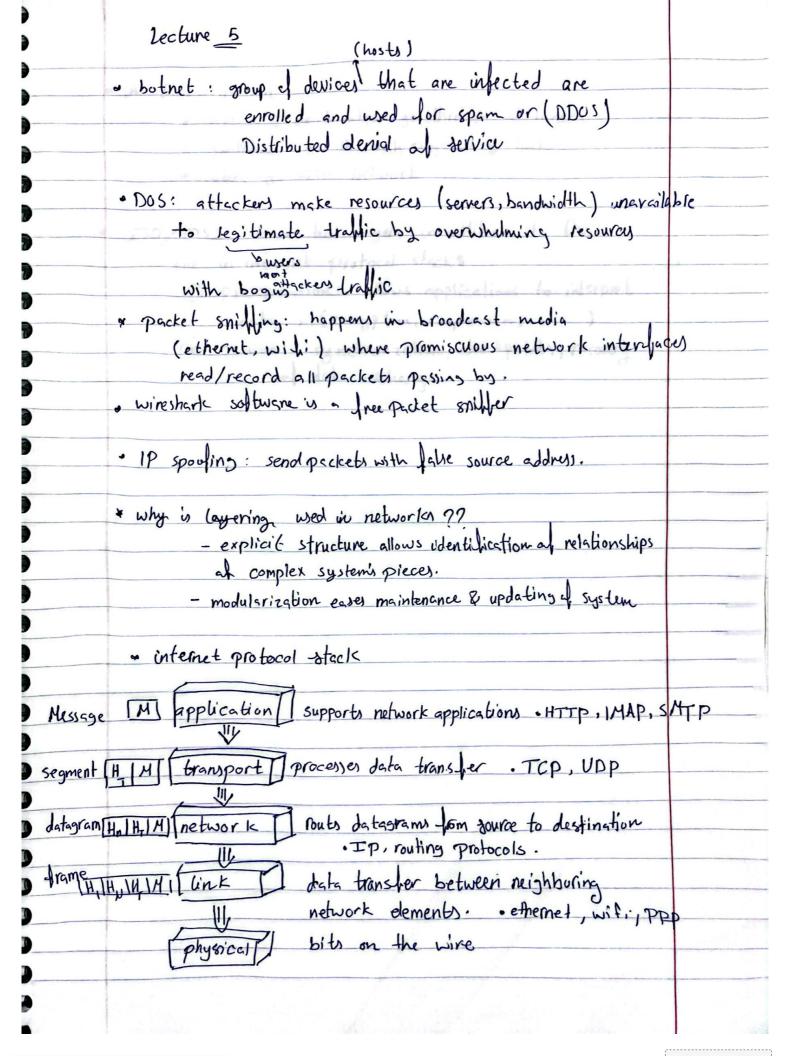
makes sure the packet has arrived complety & checks

its data. (check bit errors idetermines output link, < msec)

(3) queing delay:

delay caused by waiting for previous packets

to be transmitted to the link. (depends on congestion)


(4) propagation delay; dprop

delay of packets travelling through the link to the destination. dprop = d/5 2×108

Gnodal = Oprocess + dqueue + dtrans + dprop

becture 4	(hes (a)
a packet quening del	ayuncel that are interest to
A : 440	packet arrival rate
La/R ~> mo	samali queue delay
5-17-0	1 19194 11 11
7 7	1 large // // 1 out of fervice
- traceroute program:	measures delay from source to router
	to end internet path towards destination.
Late Line	
· Nobe: 560 W	by delays decrease ??
· in tracerouting	" " means no response & probe's lost & router
	ng: las control control
. the larger the pa	cket size is, the larger transmission
+ throughput: rate	of which bits are sent from sender
	ever me alouis idea interfrom any consequence
it can be ins	iti or avg
· ·	c on and-end path that constraints
end-end through	hput
· for that protection	·····································
· malware aw	
	uplicating infection by excuting
970 0	bject
· worm: self	replicating injection by passively
recleving	object that gets itself executed

spy ware malware: records tegstrakes, website history, uploaded into to collection site.

- un Encapsulation
 - · source & destination go through all layers
 - · switches go through Physical & link
 - routers go upto Network
- ISO/OSI have two layers in addition to the one in internet protocol stacks
 - 1) presentation: allows applications to interpret data, (encryption, compression,)
 - (2) session: synchronization, execkpoints, recovery of data exchange.