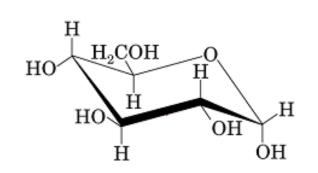
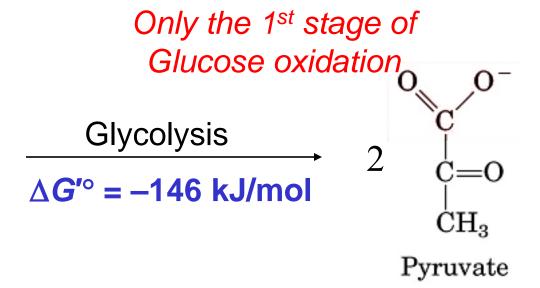
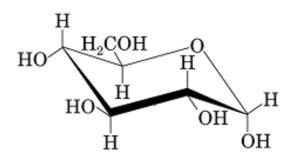

16 | The Citric Acid Cycle

© 2017 W. H. Freeman and Company



CHAPTER 16:The Citric Acid Cycle


Learning goals:


- Cellular respiration
- Conversion of pyruvate to activated acetate
- Reactions of the citric acid cycle
- Regulation of the citric acid cycle
- Amphibolic nature of citric acid cycle intermediates
- Mechanisms of replenishing citric acid cycle intermediates

Only a small amount of energy available in glucose is captured in glycolysis

Glucose

Full oxidation (+ 6
$$O_2$$
)
 $\Delta G'^{\circ} = -2,840 \text{ kJ/mol}$

$$6 \text{ CO}_2 + 6 \text{ H}_2\text{O}$$

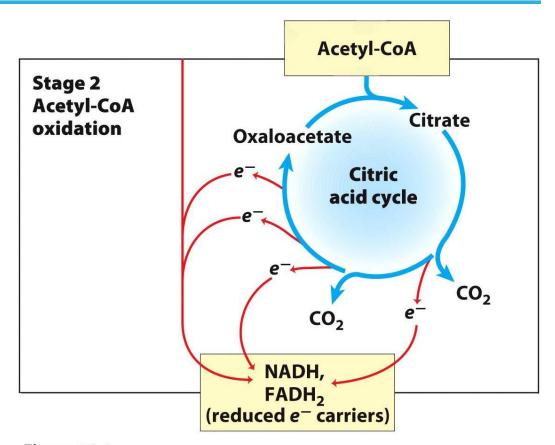
Cellular Respiration

- Process in which <u>cells</u> consume O₂ and produce CO₂
- Provides more energy (ATP) from glucose than glycolysis
- Also captures energy stored in lipids and amino acids
- Used by animals, plants, and many microorganisms
- Occurs in three major stages:
 - acetyl CoA production (from organic fuel molecules)
 - acetyl CoA oxidation (in the CAC to produce CO₂)
 - electron transfer and oxidative phosphorylation (reduced coenzymes from CAC give their e^{-2} s to O_2 forming ATP in the process)

Respiration: Stage 1 Acetyl-CoA Production

- Activated form of acetate
- C-skeleton of sugars and fatty acids are converted to acetyl-CoA before entering the CAC

some a.a. enter CAC via other intermediates


Pyruvate dehydrogenase complex (PDH)

- Multiple copies of 3 enzymes
- 5 reactions by 3 enzymes, whereby the intermediates remain bound to the enzyme molecule until forming the final product
- 5 cofactors (4 derived from vitamins)

Respiration: Stage 2 Acetyl-CoA oxidation

Generates NADH, FADH₂, and one GTP

Figure 16-1 *Lehninger Principles of Biochemistry,* Sixth Edition © 2013 W. H. Freeman and Company

Respiration: Stage 3 Oxidative Phosphorylation

Generates a lot of ATP

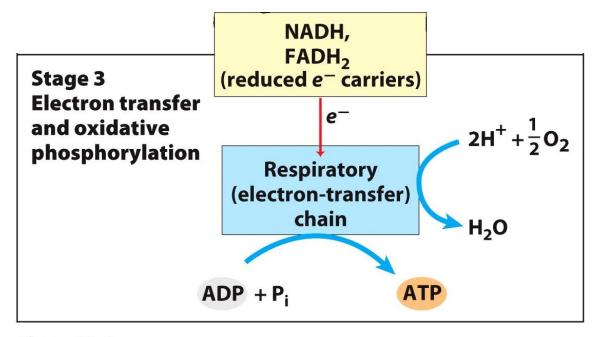


Figure 16-1
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company

In eukaryotes, citric acid cycle occurs in mitochondria

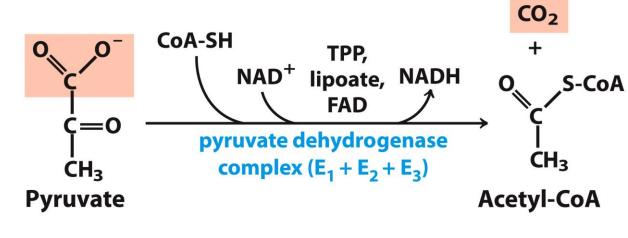
- Glycolysis occurs in the cytoplasm
- Citric acid cycle occurs in the mitochondrial matrix[†]
- Oxidative phosphorylation occurs on and in the inner membrane

[†]Except succinate dehydrogenase, which is located in the mitochondrial inner membrane

Conversion of Pyruvate to Acetyl-CoA

Net Reaction:

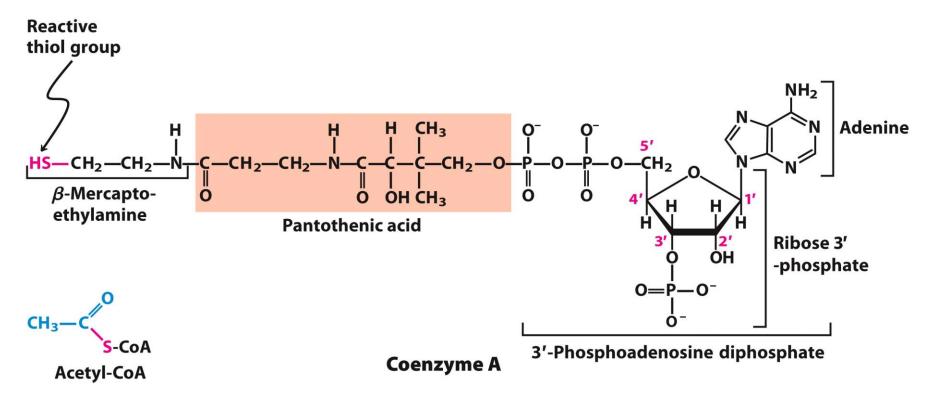
- Oxidative decarboxylation of pyruvate
- First carbons of glucose to be fully oxidized (remember: 2 pyr/glc)
- Catalyzed by PDH
 - Requires 5 coenzymes
 - TPP, lipoate, and FAD are prosthetic groups
 - NAD⁺ and CoA-SH are co-substrates


Derived from:

TPP – thiamine (B1)

FAD - riboflavin (B2)

NAD - niacin (B3)


CoA – panthothenic acid (B5)

 $\Delta G^{\prime \circ} = -33.4 \text{ kJ/mol}$

Structure of Coenzyme A

- Coenzymes are not a permanent part of the enzymes' structure.
 - They associate, fulfill a function, and dissociate
- The function of CoA is to accept and carry acetyl groups

Thioesters have a high acyl group transfer potential (donate their acyl groups to different groups)

Structure of Lipoyllysine

Prosthetic groups are strongly bound to the protein

The lipoic acid is covalently linked to the enzyme via a lysine residue

(lipoyllysine)

 Undergo reversible redox reactions between thiols and disulfides; hence can serve as an electron (Hydrogen) carrier and an acyl carrier

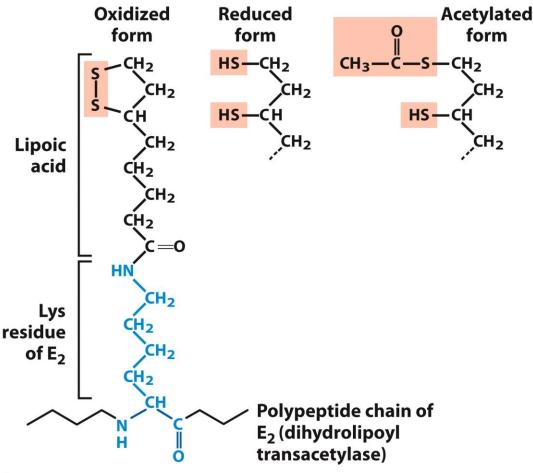
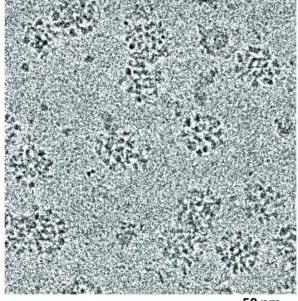
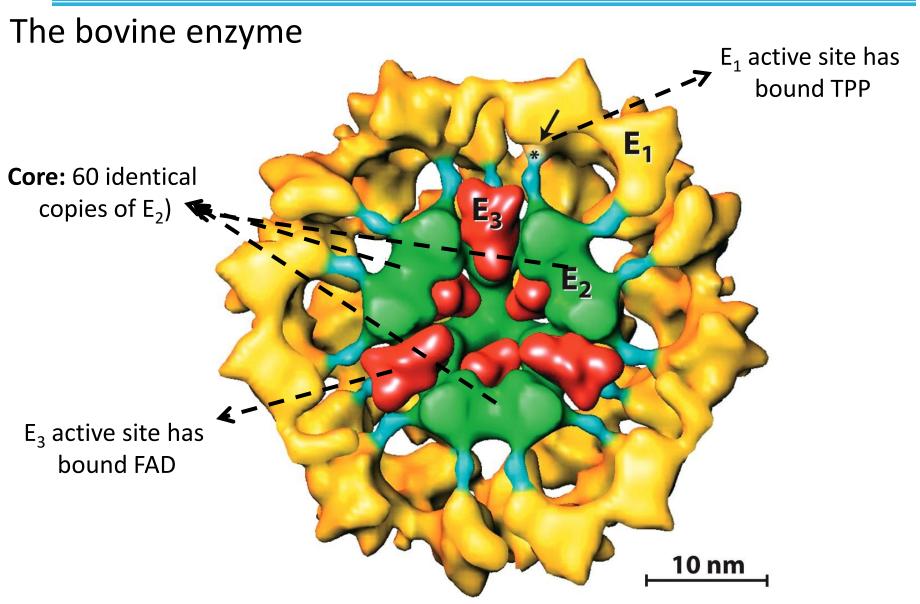



Figure 16-4
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company

Pyruvate Dehydrogenase Complex (PDC)


- Large (up to 10 MDa) multienzyme complex
 - large enough to be seen with cryoEM
 - pyruvate dehydrogenase (E₁)
 - dihydrolipoyl transacetylase (E₂)
 - dihydrolipoyl dehydrogenase (E₃)
 - each present in multiple copies
- Advantages of multienzyme complexes:
 - -short distance between catalytic sites allows channeling of substrates from one catalytic site to another
 - -channeling minimizes side reactions
 - regulation of activity of one subunit affects the entire complex

50 nm

Figure 16-5a
Lehninger Principles of Biochemistry, Sixth Edition
2013 W.H. Freeman and Company

3D Reconstruction from Cryo-EM data

Protein kinase and phosphoprotein phosphatase are part of the complex

Overall Reaction of PDC

- Step 1: Decarboxylation of pyruvate to an aldehyde forming CO₂
 (product 1)
 - Step 2: Oxidation of aldehyde to a carboxylic acid
 - Electrons reduce lipoamide and form a thioester

 E_2

• Step 3:

Formatic of acetyl (product

 E_3

• Step 4:

Reoxidat

cotactoro; ---

• Step 5:

Regeneration of the oxidized FAD cofactor

Forming NADH (product 3)

Dihydrolipoyl transacetylase,

Dihydrolipoyl dehydrogenase, E₃

0

STUDENTS-HUB.com

Overall Reaction of PDC

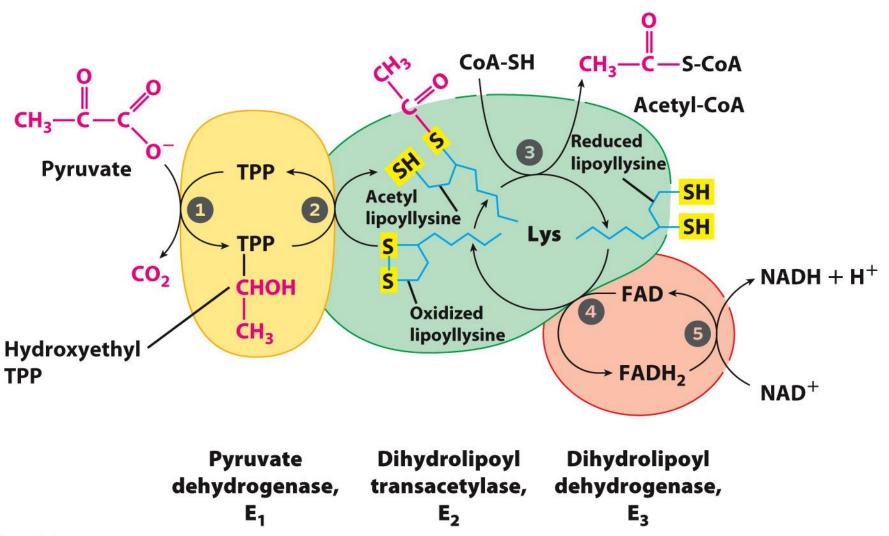


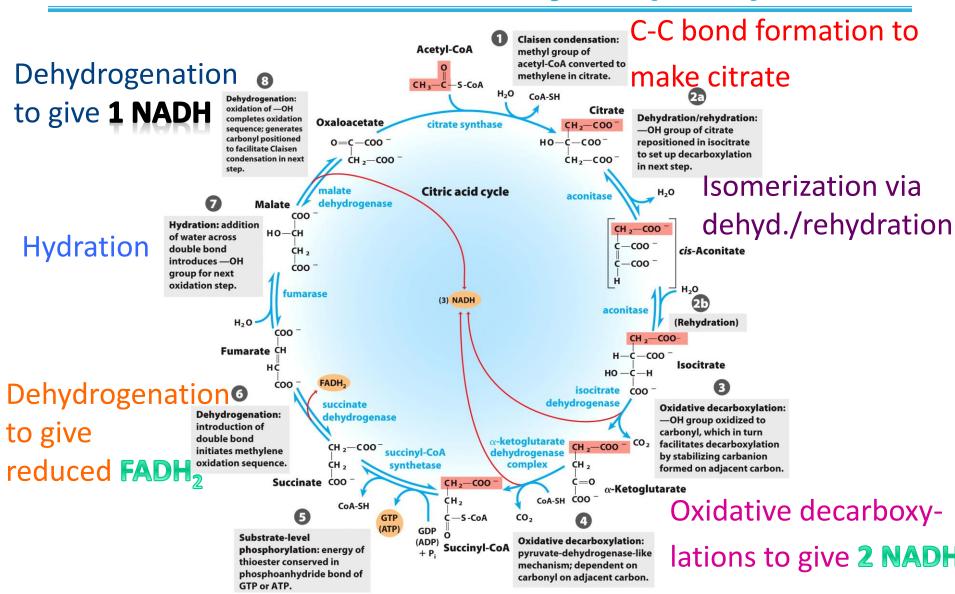
Figure 16-6

Lehninger Principles of Biochemistry, Seventh Edition
© 2017 W. H. Freeman and Company

Sequence of Events in Oxidative Decarboxylation of Pyruvate

Enzyme 1

- Step 1: Decarboxylation of pyruvate to an aldehyde forming CO₂ (product 1)
- Step 2: Oxidation of aldehyde to a carboxylic acid
 - Electrons reduce lipoamide and form a thioester.


Enzyme 2

Step 3: Formation of acetyl-CoA (product 2)

Enzyme 3

- Step 4: Reoxidation of the lipoamide cofactor
- Step 5: Regeneration of the oxidized FAD cofactor
 - forming NADH (product 3)

The Citric Acid Cycle (CAC)

Substrate-level phosphorylation to give 1 GTP (= 1ATP)

Sequence of Events in the Citric Acid Cycle

- Step 1: C-C bond formation between acetate (2C) and oxaloacetate (4C) to make citrate (6C)
- Step 2: Isomerization via dehydration/rehydration
- Steps 3–4: Oxidative decarboxylations to give 2 NADH
- Step 5: Substrate-level phosphorylation to give GTP
- Step 6: Dehydrogenation to give FADH₂
- Step 7: Hydration
- Step 8: Dehydrogenation to give NADH

The Citric Acid Cycle

Per each turn of the cycle:

- -One acetyl group enters (2 C) and 2 CO₂ leave
- One molecule of oxaloacetate is used to make citrate and one molecule is regenerated (no net change in OA concentration; which is very low)
- 4 of the 8 steps are oxidations (the energy of oxidation is conserved in NADH and FADH₂)

Not limited to energy production

- 4- and 5-C intermediates serve as precursors for different products
- To replace these intermediates, cells use anaplerotic (replenishing) reactions

C-C Bond Formation by Condensation of Acetyl-CoA and Oxaloacetate (step 1)

Oxaloacetate

- Condensation of acetyl-CoA снз—с
 and oxaloacetate
- The only reaction with C-C bond formation
- Uses Acid/Base Catalysis
 - Carbonyl of oxaloacetate
 is a good electrophile (stabilization of carbanions)
 - Methyl of acetyl-CoA is not a good nucleophile unless activated by deprotonation
- Activity largely depends on [oxaloacetate]
- Highly thermodynamically favorable/irreversible
 - Regulated by substrate availability and product inhibition

Acetyl-CoA

Acetyl-CoA

H₂O CoA-SH

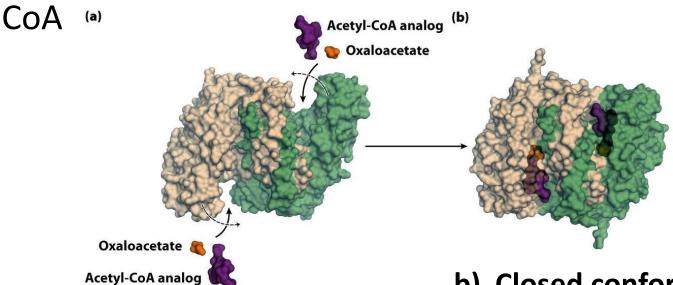
CH₂-COO

Citrate

synthase

CH₂-COO

Citrate

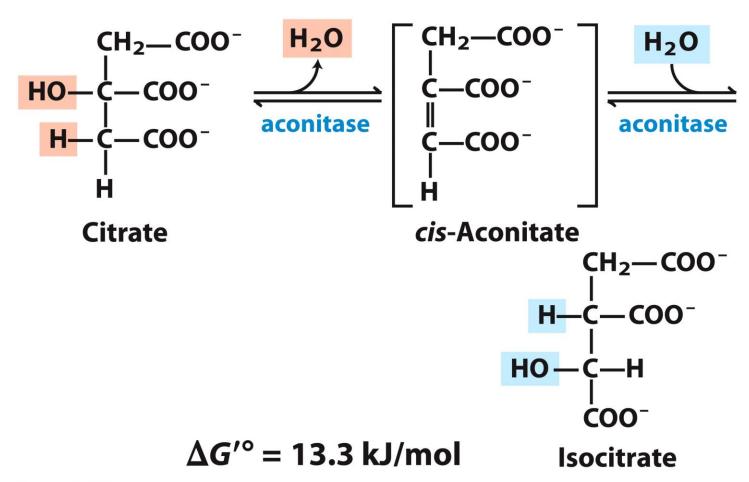

CH₂-COO

Citrate

 $\Delta G^{\prime \circ} = -32.2 \text{ kJ/mol}$

Induced Fit in the Citrate Synthase

Avoids unnecessary hydrolysis of thioester in acetyl-


a) Open conformation:

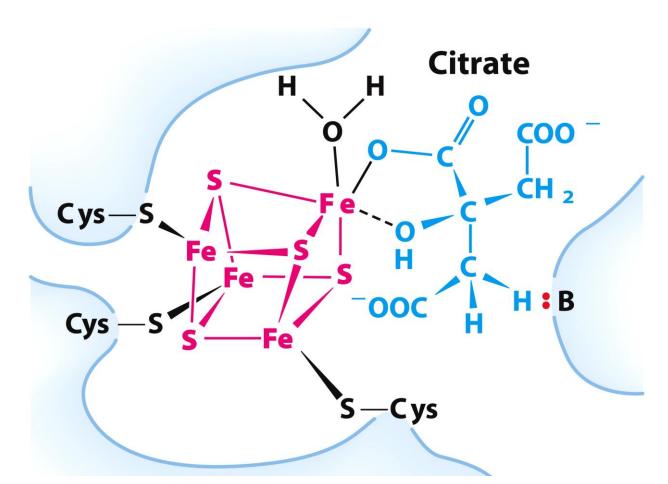
Free enzyme does not have a binding site for acetyl-CoA

b) Closed conformation:

Binding of OAA creates binding for acetyl-CoA Reactive carbanion is protected

Isomerization by Dehydration/Rehydration (step 2)

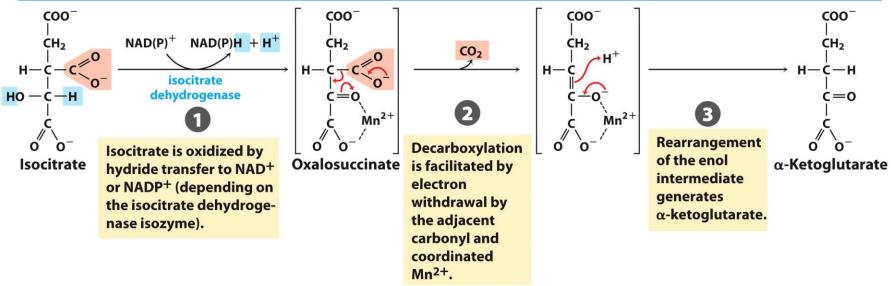
Unnumbered 16 p641


Lehninger Principles of Biochemistry, Sixth Edition © 2013 W. H. Freeman and Company

Aconitase

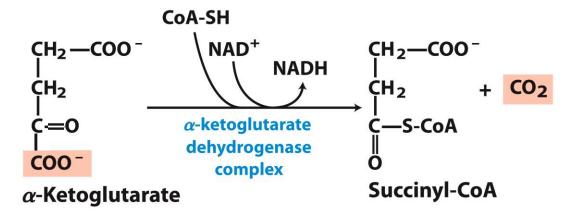
- Elimination of H₂O from citrate gives a cis C=C bond
 Lyase
- Citrate, a tertiary alcohol, is a poor substrate for oxidation
- Isocitrate, a secondary alcohol, is a good substrate for oxidation
- Addition of H₂O to cis-aconitate is stereospecific (either to form isocitrate or citrate)
- Cytosolic isozyme uses NADP⁺ as a cofactor
- Thermodynamically unfavorable/reversible
 - Product is consumed rapidly by the next step (concentration kept low) to pull reaction forward

Iron-Sulfur Center in Aconitase


- Water removal from citrate and subsequent addition to cisaconitate are catalyzed by the iron-sulfur center: sensitive to oxidative stress.
- The iron-sulfur center acts in both substrate binding and catalysis.

Aconitase is a "moonlighting" enzyme

- When Fe is deficient, aconitase loses its Fe-S center and acquires a <u>new role</u> in Fe homeostasis
- Cytosolic Aconitase is an enzyme (with Fe-S) and a regulator of protein synthesis (– Fe)
- In humans Fe levels must be regulated: too little → anemia; too much → liver damage
- Transferrin: carries Fe in the blood
- Transferrin receptor: receives and endocytoses Fe
- Ferritin: stores excess Fe inside the cells
- Apoaconitase (Fe) regulates protein levels by stabilizing or destabilizing the mRNA of transferrin receptor or ferritin


Oxidative Decarboxylation #2 (step 3)

- Carbon is lost as CO₂ and NADH is generated
 - Carbon lost as CO₂ did NOT come from acetyl-CoA
- Oxidation of the alcohol to a ketone
 - Transfers a hydride to NAD⁺
- Cytosolic isozyme uses NADP+ as a cofactor
- Highly thermodynamically favorable/irreversible
 - Regulated by product inhibition and ATP

Final Oxidative Decarboxylation (step 4)

- Last oxidative decarboxylation
 - Net full oxidation of all carbons of glucose

 $\Delta G^{\prime \circ} = -33.5 \text{ kJ/mol}$

- Succinyl-CoA is another higher-energy thioester bond
- Highly thermodynamically favorable/irreversible
 - Regulated by product inhibition

Origin of C-atoms in CO₂

$$H_2$$
C-COOH
 H_2

We have lost 2 CO₂ already, so we have a net complete oxidation of glucose after two pyruvates go through the CAC.

But its not the actual carbons from pyruvate (in red) in each cycle.

Both CO₂ carbon atoms are derived from oxaloacetate

α-Ketoglutarate Dehydrogenase

- Complex similar to pyruvate dehydrogenase
 - Same coenzymes, identical mechanisms
 - Active sites different to accommodate different-sized substrates

Acetyl-CoA

E₁ aa sequences differ (and specificity)
 E₂ are very similar
 E₃ are identical

Citric acid cycle

Pyruvate dehydrogenase complex

O
CH3 — C — COO — CH3 — C — COO — Pyruvate

S-CoA
NAD+
NADH

CO2
NADH

CO2
NADH

Succinyl-CoA

CH₃ O

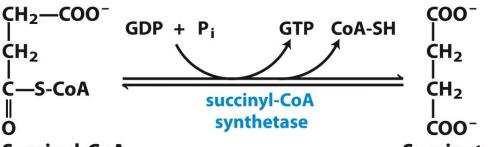
CH₃ -CH₂ -CH -C -COO

α-Keto acid from isoleucine

CO₂ NAD

CH₃ O

CH₃ CH₂ CH -C

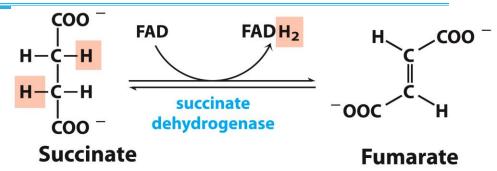

S-CoA

α-Methylbutyryl-CoA

Oxidation of isoleucine

Generation of GTP through Thioester (step 5)

 Substrate level phosphorylation

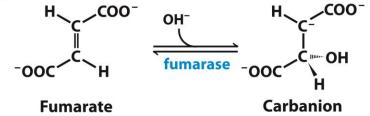


- Energy of thioester allows succinyl-CoA Succinate for incorporation of inorganic phosphate into $\Delta G'^{\circ} = -2.9 \text{ kJ/mol}$ ADP or GDP to make ATP or GTP
- Goes through a phospho-enzyme intermediate
- Produces GTP, which can be converted to ATP, or ATP directly (2 isozymes in animal cells, specific for GDP or ADP)

- Slightly thermodynamically favorable/reversible
 - Product concentration kept low to pull forward

Oxidation of an Alkane to Alkene (step 6)

- Bound to mitochondrial inner membrane
 - Complex II in the ETC


Oxidation of the alkane to alkene requires FAD

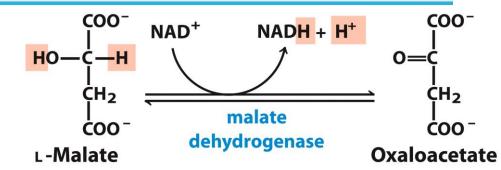
$$\Delta G^{\prime \circ} = 0 \text{ kJ/mol}$$

- FAD is covalently bound
- 3 Fe-S clusters
- Near equilibrium/reversible
 - Product concentration kept low to pull forward

Hydration Across a Double Bond (step 7)

- Highly stereospecific
 - Addition of water is always trans and forms L-malate

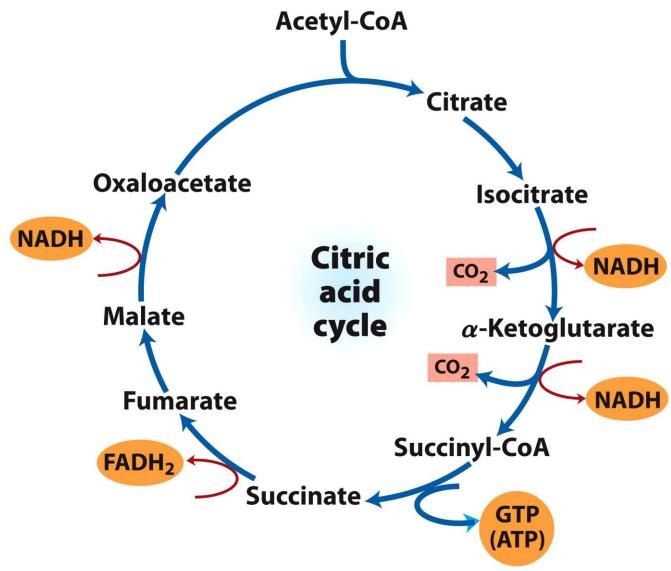
 $\Delta G^{\prime \circ} = -3.8 \text{ kJ/mol}$


- Cannot work on maleate (cis isomer of fumarate)
- OH- adds to fumarate... then H+ adds to the carbanion
- Cannot distinguish between inner carbons, so either can gain –OH

transition state

- Slightly thermodynamically favorable/reversible
 - Product concentration kept low to pull reaction forward

Oxidation of Alcohol to a Ketone (step 8)


- Final step of the cycle
- Regenerates oxaloacetate for citrate synthase

 $\Delta G^{\prime \circ} = 29.7 \text{ kJ/mol}$

- Highly thermodynamically UNfavorable/reversible
 - Oxaloacetate concentration kept VERY low by citrate synthase ($< 10^{-6} M$)
 - Pulls the reaction forward

One Turn of the Citric Acid Cycle

Net Result of the Citric Acid Cycle

Acetyl-CoA + 3NAD⁺ + FAD + GDP +
$$P_i$$
 + 2 $H_2O \rightarrow$
 $2CO_2$ + 3NADH + FAD H_2 + GTP + CoA + 3H⁺

- Net oxidation of two carbons to CO₂
 - Equivalent to two carbons of acetyl-CoA
 - but NOT the exact same carbons
- Energy captured by electron transfer to NADH and FADH₂
- Generates 1 GTP, which can be converted to ATP

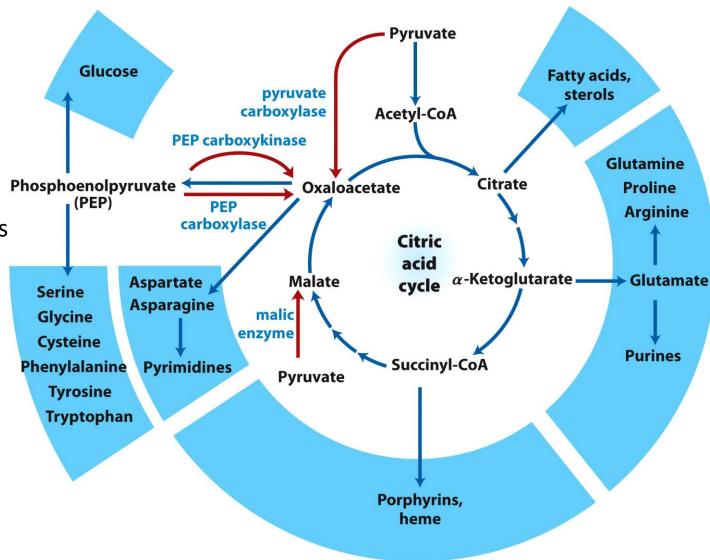
Direct and Indirect ATP Yield

TABLE 16-1

Stoichiometry of Coenzyme Reduction and ATP Formation in the Aerobic Oxidation of Glucose via Glycolysis, the Pyruvate Dehydrogenase Complex Reaction, the Citric Acid Cycle, and Oxidative Phosphorylation

Reaction	Number of ATP or reduced coenzyme directly formed	Number of ATP ultimately formed ^a
Glucose → glucose 6-phosphate	–1 ATP	–1
Fructose 6-phosphate → fructose 1,6-bisphosphate	–1 ATP	–1
2 Glyceraldehyde 3-phosphate → 2 1,3-bisphosphoglycerate	2 NADH	3 or 5 ^b
2 1,3-Bisphosphoglycerate → 2 3-phosphoglycerate	2 ATP	2
2 Phosphoenolpyruvate → 2 pyruvate	2 ATP	2
2 Pyruvate → 2 acetyl-CoA	2 NADH	5
2 Isocitrate → 2 α-ketoglutarate	2 NADH	5
2 α-Ketoglutarate -> 2 succinyl-CoA	2 NADH	5
2 Succinyl-CoA → 2 succinate	2 ATP (or 2 GTP)	2
2 Succinate → 2 fumarate	2 FADH ₂	3
2 Malate → 2 oxaloacetate	2 NADH	5
Total		30-32

^aThis is calculated as 2.5 ATP per NADH and 1.5 ATP per FADH₂. A negative value indicates consumption.

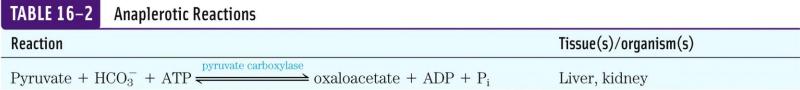

^bThis number is either 3 or 5, depending on the mechanism used to shuttle NADH equivalents from the cytosol to the mitochondrial matrix; see Figures 19-30 and 19-31.

CAC is an amphibolic pathway

 Amphibolicserves in both catabolism and anabolism

 Precursors for many molecules

 Needs to be replenished (by anaplerotic reactions)
 Red arrows


Anaplerotic Reactions

- Must replenish the intermediates in order for the cycle and central metabolic pathway to continue
- 4-carbon intermediates are formed by carboxylation of 3-carbon precursors
- The replenishing and consuming reactions are in dynamic balance ([CAC intermediates] is ~ constant)

TABLE 16-2 Anaplerotic Reactions	
Reaction	Tissue(s)/organism(s)
Pyruvate $+ HCO_3^- + ATP \xrightarrow{pyruvate carboxylase}$ oxaloacetate $+ ADP + P_i$	Liver, kidney
Phosphoenolpyruvate $+ CO_2 + GDP \xrightarrow{PEP carboxykinase}$ oxaloacetate $+ GTP$	Heart, skeletal muscle
Phosphoenolpyruvate $+ HCO_3^- \xrightarrow{\text{PEP carboxylase}} \text{oxaloacetate } + P_i$	Higher plants, yeast, bacteria
Pyruvate $+ HCO_3^- + NAD(P)H \xrightarrow{\text{malic enzyme}} \text{malate } + NAD(P)^+$	Widely distributed in eukaryotes and bacteria

Anaplerotic Reactions

- Must replenish the intermediates in order for the cycle and central metabolic pathway to continue
- 4-carbon intermediates are formed by carboxylation of 3-carbon precursors
- The replenishing and consuming reactions are in dynamic balance ([CAC intermediates] is ~ constant)

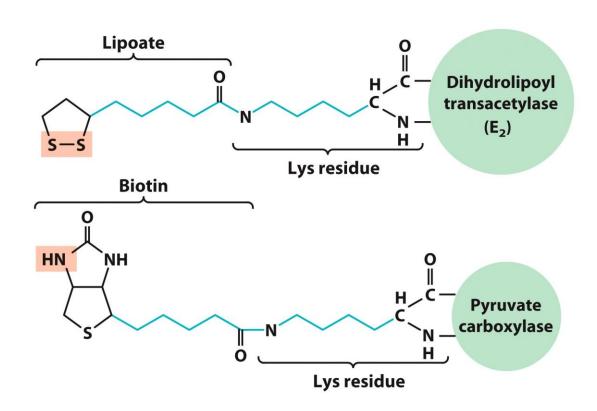
- Regulatory enzyme *inactive* in the absence of acetyl-CoA
- More acetyl-CoA, more activity → more OAA to react with acetyl-CoA to start the cycle

Biotin is a CO₂ carrier

NH

Pvruvate

carboxylase


HN

- Vitamin B7 (biotin) is required in our food
- It is a cofactor (prosthetic group) in carboxylases
- Biotin is a specialized carrier of 1-C groups in their \searrow_s most OXIDIZED state (CO₂)

 Biotinyllysine
- Pyruvate carboxylase has 4 identical subunits each carrying a molecule of biotin
- It is present in many foods and intestinal bacteria are able to synthesize it, hence biotin deficiency is rare
- Consumption of raw eggs in large quantities leads to biotin deficiency since egg white have the protein **avidin** which binds biotin very tightly and prevents its absorption in the intestine

Biological tethers allow flexibility

- All enter the cells on the same transporter
- All are covalently attached to proteins
- All provide flexible arms on the enzymes to which they are covalently bound
- All act as tethers that move intermediates from one active site to the next

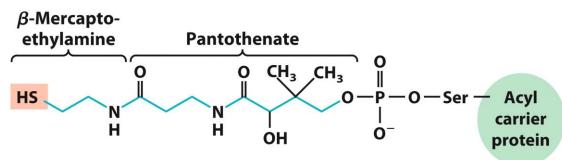


Figure 16-18
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company

Regulation of the Citric Acid Cycle

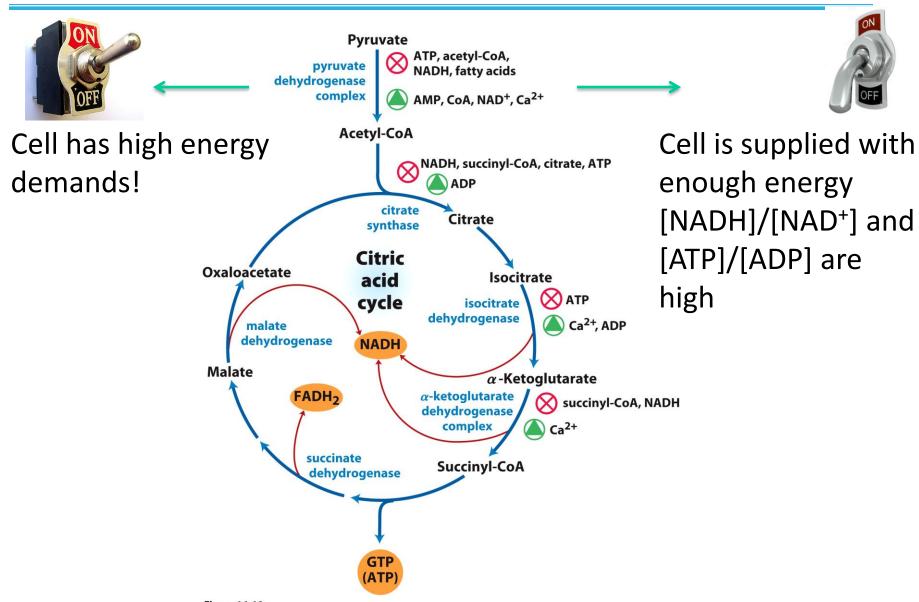


Figure 16-19
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company

Regulation of the Citric Acid Cycle

- Regulated at highly thermodynamically favorable and irreversible steps
 - PDH, citrate synthase, IDH, and α KDH

- General regulatory mechanism
 - Activated by substrate availability
 - Inhibited by product accumulation
 - Overall products of the pathway are NADH and ATP
 - Affect all regulated enzymes in the cycle
 - Inhibitors: NADH and ATP
 - Activators: NAD⁺ and AMP
 - Ca²⁺ in muscles activates the cycle (Ca²⁺ signals muscle contraction → need for energy)

Regulation of Pyruvate Dehydrogenase

- Also regulated by reversible phosphorylation of E1
 - Phosphorylation: inactive
 - Dephosphorylation: active
- PDH kinase and PDH phosphatase are part of mammalian PDH complex
 - Kinase is activated by ATP
 - High ATP → phosphorylated PDH → less acetyl-CoA
 - Low ATP → kinase is less active and phosphatase removes phosphate from PDH → more acetyl-CoA
 - Phosphatase is activated by insulin, PEP, and
 AMP, and inhibited by ATP, NADH, and Acetyl-CoA

Additional Regulatory Mechanisms

- Citrate synthase is also inhibited by succinyl-CoA
 - α-ketoglutarate is an important branch point for amino acid metabolism
 - Succinyl-CoA communicates flow at this branch point to the start of the cycle
- Regulation of isocitrate dehydrogenase controls citrate levels
 - Aconitase is reversible
 - Inhibition of IDH leads to accumulation of isocitrate and reverses aconitase
 - Accumulated citrate leaves mitochondria and inhibits PFK-1 in glycolysis

CAC mutations lead to cancer

- Mutations in CAC enzymes are very rare in man
- Genetic defects in fumarase

 smooth

 muscle and kidney cancer
- Mutations in succinate DH

 tumors of the adrenal glands
- Both enzymes are defined as tumor suppressor genes
- IDH mutation leads to a new function of the enzyme the net result of which is the development of glial cell tumors in the brain

Question 5 (Take home exam) Due: NEXT WEEK (jstiban@birzeit.edu)

- Please solve questions:
- 1. 5 (NAD redox carriers)
- 2. 10 (OAA in mito)
- 3. 18 (14C-glucose)
- 4. 19 (Beriberi)

For written answers, I prefer to have them typed in Word. I can accept the assignment in one file sent to my email. For answers that require solving mathematically, you can either type them or write them down and scan them.