
Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 11
Text and Binary
File Processing

Loading…

Chapter Objectives:

1. Learn about streams in C and their relationship to files and standard input and output
devices.

2. Review how scanf , fscanf and printf , fprintf are used to read and write data.

3. Review escape sequences and their use in format strings.

4. Review file pointer variables and learn how to use functions that process them to

make a backup copy of a text file.

5. Learn about binary files and understand the differences between binary and text files.

● A text file is a named collection of characters saved in secondary storage (e.g.,
on a disk).

● A text file has no fixed size.

● To mark the end of a text file, the computer places a special end-of-file

character, which we will denote <eof>, after the last character in the file.

● As you create a text file using an editor program, pressing the <return> or
<enter> key causes the newline character (represented by C as '\n') to be placed
in the file.

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

Loading…

 (1)

➢ The disk file consists of a sequence of characters occupying consecutive storage
locations on a track of the disk, as shown here:
 (2)

➢ We sometimes refer to a data source or destination as an input stream or an

output stream. (3)

➢ These general terms can be applied to files, to the terminal keyboard and
screen, and to any other sources of input data or destinations of output data.

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

● The Keyboard and Screen as Text Streams
➢ The name stdin represents the keyboard’s input stream.
➢ Two system streams are associated with the screen:

1. The “normal” output stream stdout
2. The “error” output stream stderr. (1)

➢ Normally at the keyboard, we enter one line of data at a time, pressing <return> or <enter> to

indicate the end of a data line. Pressing one of these keys inserts the newline character in system
stream stdin .

➢ The eof character could be used to indicate the end of data (2).

➢ Writing characters to the streams stdout and stderr causes a display on the screen in an

interactive program (i.e. Printf) (3)

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

● Newline and EOF

➢ The <newline> can be processed like any other character: It can be input using scanf with the
%c specifier, it can be compared to '\n' for equality, and it can be output using printf .

➢ Input of the special eof character is regarded as a failed operation, (1)

➢ The C run-time support system is under no obligation to provide an error message if the

program ignores the warning value and continues to attempt to get input from the stream in
question.

● Escape Sequences: p.626 (review)

● Formatting Output with printf: p.626 (review)

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

● File Pointer Variables: p. 627 (review):

• A pointer whose value equals NULL is called a null pointer (1)
• Using fopen with mode "w" to open for output a file that already exists usually causes loss of the

contents of the existing file. (2)

● Functions That Take File Pointer Arguments: p.629 (review)

● Closing a File: p.630 (review):
• Function fclose disposes of the structure that was created to store file access information and

carries out other “cleanup” operations.

● EXAMPLE 11.1, Figure 11.1

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

➢ When we use text files for storage of data, a program must expend a significant
amount of effort to convert the stream of characters from an input file into the
binary integers, type double mantissas and exponents, and character strings that
are the representation in main memory of the same data.

➢ The program must again expend time in converting the internal data format back

into a stream of characters for storage in an output file of text.

11.2 BINARY FILES

➢ We can avoid the unnecessary translation by using a binary file rather than a
text file. (1)

➢ A binary file is created by executing a program that stores directly in the file the
computer’s internal representation of each file component. (2)

11.2 BINARY FILES

Loading…

➢ the second argument to fopen is either "wb" (write binary) for output files
or "rb" (read binary) for input files.

➢ However, a different stdio library function is used for copying values into the

file: function fwrite , which has four input parameters.

1. The first parameter is the address of the first memory cell whose contents

are to be copied to the file. (1)
2. The second parameter of function fwrite is the number of bytes to copy to

the file for one component. (2)

11.2 BINARY FILES

➢ A C operator sizeof can be applied to any data type name to find the number of
bytes that the current implementation uses for storage of the data type. (1)

1. The third parameter of fwrite is the number of values to write to the binary

file. (2)

2. The final argument to fwrite is a file pointer to the file being created, a file

previously opened in mode "wb" using function fopen .

11.2 BINARY FILES

printf("An integer requires %d bytes ", sizeof (int));

printf("in this implementation.\n");

➢ For example, if array score is an array of ten integers, the following statement
writes the entire array to the output file.

➢ Writing the value of an integer variable i to a binary file using fwrite is faster
than writing i to a text file.

➢ For example, if the value of i is 244 , the statement from the for loop copies the

internal binary representation of i from memory to the file accessed by binaryp .
(1)

11.2 BINARY FILES

fwrite(score, sizeof (int), 10, binaryp);

fwrite(&i, sizeof (int), 1, binaryp);

➢ Assuming textp is a pointer to a text output file, the following statement writes
the value of i to the file using four characters (four bytes). (1)

● Obviously, it takes more time to do the conversion and copy each character than

it does to copy the internal binary representation to disk.

● Also, twice as much disk space is required to store four characters as to store the
internal binary representation of the type int value (four bytes versus two).

11.2 BINARY FILES

fprintf(textp, "%d ", i);

● The negative side to binary side usage:

1. A binary file created on one computer is rarely readable on another type of

computer.

2. A person cannot proofread the file by printing it out or by examining it in a

word processor. (1)

3. A binary file cannot be created or modified in a word processor(2)

11.2 BINARY FILES

➢ The stdio library includes an input function fread that is comparable to fwrite .
➢ Function fread also requires four arguments:

1. Address of first memory cell to fill.
2. Size of one value.
3. Maximum number of elements to copy from the file into memory.
4. File pointer to a binary file opened in mode "rb" using function fopen

➢ Function fread returns as its value an integer indicating how many elements it

successfully copied from the file (1)

11.2 BINARY FILES

➢ It is very important not to mix file types.

• A binary file created (written) using fwrite must be read using fread .
• A text file created using fprintf must be read using a text file input function such

as fscanf .

● Table 11.5 p.637 compares the use of text and binary files for input and output
of data of various types. (1)

11.2 BINARY FILES

➢ In Example 1 of Table 11.5 , we use fopen to open our input files, and we store
the file pointers returned by fopen in variables of type FILE* .

➢ Notice that the type of the file pointer does not vary.

➢ Also notice that the form of the call to fopen for opening a binary file differs

from the call for opening a text file only in the value of the mode (second
argument). In fact, even this difference is optional .

11.2 BINARY FILES

➢ We see a similar situation in the opening of output files in Example 2.

➢ One consequence of this similarity is that the ability of the C compiler and run-
time support system to detect misuse of a file pointer is severely limited.

➢ It is the programmer’s responsibility to keep track of which type of file each file

pointer accesses and to use the right I/O function at the right time.

11.2 BINARY FILES

➢ In Examples 3 and 4 of Table 11.5 , we compare input/output of a user-defined
structure type as it is done with text and binary files.

➢ In Examples 5 and 6, we see input/output of an array of type double values (1)

➢ Example 7 demonstrates partially filling array nums and setting n to the

number of elements filled.

➢ Example 8 shows that all files—binary or text, input or output—are closed in
the same way.

11.2 BINARY FILES

➢ Remember to declare a file pointer variable (type FILE*) for each file you want
to process.

➢ In a program that manipulates both file types, choose names for your file pointers

that remind you of the type of file accessed. (2)

➢ It is easy to use the wrong library function with a file pointer. (1)

➢ It is also critical that you remember that library functions fscanf , fprintf , getc ,
and putc must be used for text I/O only;

➢ Functions fread and fwrite are applied exclusively to binary files. (3)

11.4 COMMON PROGRAMMING
ERRORS

➢ The fact that fprintf , fscanf , and getc take the file pointer as their first
argument while putc , fread , and fwrite take it as the last argument is definitely
confusing at first.

➢ Keep in mind that opening a file for output by calling fopen with a second

argument of "w" or "wb" typically results in a loss of any existing file whose
name matches the first argument.

➢ It is easy to forget that binary files cannot be created, viewed, or modified using

an editor or word processor program (1)

11.4 COMMON PROGRAMMING
ERRORS

Thanks!

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 11
Text and Binary
File Processing

Loading…

Chapter Objectives:

1. Learn about streams in C and their relationship to files and standard input and output
devices.

2. Review how scanf , fscanf and printf , fprintf are used to read and write data.

3. Review escape sequences and their use in format strings.

4. Review file pointer variables and learn how to use functions that process them to

make a backup copy of a text file.

5. Learn about binary files and understand the differences between binary and text files.

● A text file is a named collection of characters saved in secondary storage (e.g.,
on a disk).

● A text file has no fixed size.

● To mark the end of a text file, the computer places a special end-of-file

character, which we will denote <eof>, after the last character in the file.

● As you create a text file using an editor program, pressing the <return> or
<enter> key causes the newline character (represented by C as '\n') to be placed
in the file.

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

Loading…

 (1)

➢ The disk file consists of a sequence of characters occupying consecutive storage
locations on a track of the disk, as shown here:
 (2)

➢ We sometimes refer to a data source or destination as an input stream or an

output stream. (3)

➢ These general terms can be applied to files, to the terminal keyboard and
screen, and to any other sources of input data or destinations of output data.

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

● The Keyboard and Screen as Text Streams
➢ The name stdin represents the keyboard’s input stream.
➢ Two system streams are associated with the screen:

1. The “normal” output stream stdout
2. The “error” output stream stderr. (1)

➢ Normally at the keyboard, we enter one line of data at a time, pressing <return> or <enter> to

indicate the end of a data line. Pressing one of these keys inserts the newline character in system
stream stdin .

➢ The eof character could be used to indicate the end of data (2).

➢ Writing characters to the streams stdout and stderr causes a display on the screen in an

interactive program (i.e. Printf) (3)

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

● Newline and EOF

➢ The <newline> can be processed like any other character: It can be input using scanf with the
%c specifier, it can be compared to '\n' for equality, and it can be output using printf .

➢ Input of the special eof character is regarded as a failed operation, (1)

➢ The C run-time support system is under no obligation to provide an error message if the

program ignores the warning value and continues to attempt to get input from the stream in
question.

● Escape Sequences: p.626 (review)

● Formatting Output with printf: p.626 (review)

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

● File Pointer Variables: p. 627 (review):

• A pointer whose value equals NULL is called a null pointer (1)
• Using fopen with mode "w" to open for output a file that already exists usually causes loss of the

contents of the existing file. (2)

● Functions That Take File Pointer Arguments: p.629 (review)

● Closing a File: p.630 (review):
• Function fclose disposes of the structure that was created to store file access information and

carries out other “cleanup” operations.

● EXAMPLE 11.1, Figure 11.1

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

➢ When we use text files for storage of data, a program must expend a significant
amount of effort to convert the stream of characters from an input file into the
binary integers, type double mantissas and exponents, and character strings that
are the representation in main memory of the same data.

➢ The program must again expend time in converting the internal data format back

into a stream of characters for storage in an output file of text.

11.2 BINARY FILES

➢ We can avoid the unnecessary translation by using a binary file rather than a
text file. (1)

➢ A binary file is created by executing a program that stores directly in the file the
computer’s internal representation of each file component. (2)

11.2 BINARY FILES

Loading…

➢ the second argument to fopen is either "wb" (write binary) for output files
or "rb" (read binary) for input files.

➢ However, a different stdio library function is used for copying values into the

file: function fwrite , which has four input parameters.

1. The first parameter is the address of the first memory cell whose contents

are to be copied to the file. (1)
2. The second parameter of function fwrite is the number of bytes to copy to

the file for one component. (2)

11.2 BINARY FILES

➢ A C operator sizeof can be applied to any data type name to find the number of
bytes that the current implementation uses for storage of the data type. (1)

1. The third parameter of fwrite is the number of values to write to the binary

file. (2)

2. The final argument to fwrite is a file pointer to the file being created, a file

previously opened in mode "wb" using function fopen .

11.2 BINARY FILES

printf("An integer requires %d bytes ", sizeof (int));

printf("in this implementation.\n");

➢ For example, if array score is an array of ten integers, the following statement
writes the entire array to the output file.

➢ Writing the value of an integer variable i to a binary file using fwrite is faster
than writing i to a text file.

➢ For example, if the value of i is 244 , the statement from the for loop copies the

internal binary representation of i from memory to the file accessed by binaryp .
(1)

11.2 BINARY FILES

fwrite(score, sizeof (int), 10, binaryp);

fwrite(&i, sizeof (int), 1, binaryp);

➢ Assuming textp is a pointer to a text output file, the following statement writes
the value of i to the file using four characters (four bytes). (1)

● Obviously, it takes more time to do the conversion and copy each character than

it does to copy the internal binary representation to disk.

● Also, twice as much disk space is required to store four characters as to store the
internal binary representation of the type int value (four bytes versus two).

11.2 BINARY FILES

fprintf(textp, "%d ", i);

● The negative side to binary side usage:

1. A binary file created on one computer is rarely readable on another type of

computer.

2. A person cannot proofread the file by printing it out or by examining it in a

word processor. (1)

3. A binary file cannot be created or modified in a word processor(2)

11.2 BINARY FILES

➢ The stdio library includes an input function fread that is comparable to fwrite .
➢ Function fread also requires four arguments:

1. Address of first memory cell to fill.
2. Size of one value.
3. Maximum number of elements to copy from the file into memory.
4. File pointer to a binary file opened in mode "rb" using function fopen

➢ Function fread returns as its value an integer indicating how many elements it

successfully copied from the file (1)

11.2 BINARY FILES

➢ It is very important not to mix file types.

• A binary file created (written) using fwrite must be read using fread .
• A text file created using fprintf must be read using a text file input function such

as fscanf .

● Table 11.5 p.637 compares the use of text and binary files for input and output
of data of various types. (1)

11.2 BINARY FILES

➢ In Example 1 of Table 11.5 , we use fopen to open our input files, and we store
the file pointers returned by fopen in variables of type FILE* .

➢ Notice that the type of the file pointer does not vary.

➢ Also notice that the form of the call to fopen for opening a binary file differs

from the call for opening a text file only in the value of the mode (second
argument). In fact, even this difference is optional .

11.2 BINARY FILES

➢ We see a similar situation in the opening of output files in Example 2.

➢ One consequence of this similarity is that the ability of the C compiler and run-
time support system to detect misuse of a file pointer is severely limited.

➢ It is the programmer’s responsibility to keep track of which type of file each file

pointer accesses and to use the right I/O function at the right time.

11.2 BINARY FILES

➢ In Examples 3 and 4 of Table 11.5 , we compare input/output of a user-defined
structure type as it is done with text and binary files.

➢ In Examples 5 and 6, we see input/output of an array of type double values (1)

➢ Example 7 demonstrates partially filling array nums and setting n to the

number of elements filled.

➢ Example 8 shows that all files—binary or text, input or output—are closed in
the same way.

11.2 BINARY FILES

➢ Remember to declare a file pointer variable (type FILE*) for each file you want
to process.

➢ In a program that manipulates both file types, choose names for your file pointers

that remind you of the type of file accessed. (2)

➢ It is easy to use the wrong library function with a file pointer. (1)

➢ It is also critical that you remember that library functions fscanf , fprintf , getc ,
and putc must be used for text I/O only;

➢ Functions fread and fwrite are applied exclusively to binary files. (3)

11.4 COMMON PROGRAMMING
ERRORS

➢ The fact that fprintf , fscanf , and getc take the file pointer as their first
argument while putc , fread , and fwrite take it as the last argument is definitely
confusing at first.

➢ Keep in mind that opening a file for output by calling fopen with a second

argument of "w" or "wb" typically results in a loss of any existing file whose
name matches the first argument.

➢ It is easy to forget that binary files cannot be created, viewed, or modified using

an editor or word processor program (1)

11.4 COMMON PROGRAMMING
ERRORS

Thanks!

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 11
Text and Binary
File Processing

Loading…

Chapter Objectives:

1. Learn about streams in C and their relationship to files and standard input and output
devices.

2. Review how scanf , fscanf and printf , fprintf are used to read and write data.

3. Review escape sequences and their use in format strings.

4. Review file pointer variables and learn how to use functions that process them to

make a backup copy of a text file.

5. Learn about binary files and understand the differences between binary and text files.

● A text file is a named collection of characters saved in secondary storage (e.g.,
on a disk).

● A text file has no fixed size.

● To mark the end of a text file, the computer places a special end-of-file

character, which we will denote <eof>, after the last character in the file.

● As you create a text file using an editor program, pressing the <return> or
<enter> key causes the newline character (represented by C as '\n') to be placed
in the file.

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

Loading…

 (1)

➢ The disk file consists of a sequence of characters occupying consecutive storage
locations on a track of the disk, as shown here:
 (2)

➢ We sometimes refer to a data source or destination as an input stream or an

output stream. (3)

➢ These general terms can be applied to files, to the terminal keyboard and
screen, and to any other sources of input data or destinations of output data.

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

● The Keyboard and Screen as Text Streams
➢ The name stdin represents the keyboard’s input stream.
➢ Two system streams are associated with the screen:

1. The “normal” output stream stdout
2. The “error” output stream stderr. (1)

➢ Normally at the keyboard, we enter one line of data at a time, pressing <return> or <enter> to

indicate the end of a data line. Pressing one of these keys inserts the newline character in system
stream stdin .

➢ The eof character could be used to indicate the end of data (2).

➢ Writing characters to the streams stdout and stderr causes a display on the screen in an

interactive program (i.e. Printf) (3)

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

● Newline and EOF

➢ The <newline> can be processed like any other character: It can be input using scanf with the
%c specifier, it can be compared to '\n' for equality, and it can be output using printf .

➢ Input of the special eof character is regarded as a failed operation, (1)

➢ The C run-time support system is under no obligation to provide an error message if the

program ignores the warning value and continues to attempt to get input from the stream in
question.

● Escape Sequences: p.626 (review)

● Formatting Output with printf: p.626 (review)

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

● File Pointer Variables: p. 627 (review):

• A pointer whose value equals NULL is called a null pointer (1)
• Using fopen with mode "w" to open for output a file that already exists usually causes loss of the

contents of the existing file. (2)

● Functions That Take File Pointer Arguments: p.629 (review)

● Closing a File: p.630 (review):
• Function fclose disposes of the structure that was created to store file access information and

carries out other “cleanup” operations.

● EXAMPLE 11.1, Figure 11.1

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

➢ When we use text files for storage of data, a program must expend a significant
amount of effort to convert the stream of characters from an input file into the
binary integers, type double mantissas and exponents, and character strings that
are the representation in main memory of the same data.

➢ The program must again expend time in converting the internal data format back

into a stream of characters for storage in an output file of text.

11.2 BINARY FILES

➢ We can avoid the unnecessary translation by using a binary file rather than a
text file. (1)

➢ A binary file is created by executing a program that stores directly in the file the
computer’s internal representation of each file component. (2)

11.2 BINARY FILES

Loading…

➢ the second argument to fopen is either "wb" (write binary) for output files
or "rb" (read binary) for input files.

➢ However, a different stdio library function is used for copying values into the

file: function fwrite , which has four input parameters.

1. The first parameter is the address of the first memory cell whose contents

are to be copied to the file. (1)
2. The second parameter of function fwrite is the number of bytes to copy to

the file for one component. (2)

11.2 BINARY FILES

➢ A C operator sizeof can be applied to any data type name to find the number of
bytes that the current implementation uses for storage of the data type. (1)

1. The third parameter of fwrite is the number of values to write to the binary

file. (2)

2. The final argument to fwrite is a file pointer to the file being created, a file

previously opened in mode "wb" using function fopen .

11.2 BINARY FILES

printf("An integer requires %d bytes ", sizeof (int));

printf("in this implementation.\n");

➢ For example, if array score is an array of ten integers, the following statement
writes the entire array to the output file.

➢ Writing the value of an integer variable i to a binary file using fwrite is faster
than writing i to a text file.

➢ For example, if the value of i is 244 , the statement from the for loop copies the

internal binary representation of i from memory to the file accessed by binaryp .
(1)

11.2 BINARY FILES

fwrite(score, sizeof (int), 10, binaryp);

fwrite(&i, sizeof (int), 1, binaryp);

➢ Assuming textp is a pointer to a text output file, the following statement writes
the value of i to the file using four characters (four bytes). (1)

● Obviously, it takes more time to do the conversion and copy each character than

it does to copy the internal binary representation to disk.

● Also, twice as much disk space is required to store four characters as to store the
internal binary representation of the type int value (four bytes versus two).

11.2 BINARY FILES

fprintf(textp, "%d ", i);

● The negative side to binary side usage:

1. A binary file created on one computer is rarely readable on another type of

computer.

2. A person cannot proofread the file by printing it out or by examining it in a

word processor. (1)

3. A binary file cannot be created or modified in a word processor(2)

11.2 BINARY FILES

➢ The stdio library includes an input function fread that is comparable to fwrite .
➢ Function fread also requires four arguments:

1. Address of first memory cell to fill.
2. Size of one value.
3. Maximum number of elements to copy from the file into memory.
4. File pointer to a binary file opened in mode "rb" using function fopen

➢ Function fread returns as its value an integer indicating how many elements it

successfully copied from the file (1)

11.2 BINARY FILES

➢ It is very important not to mix file types.

• A binary file created (written) using fwrite must be read using fread .
• A text file created using fprintf must be read using a text file input function such

as fscanf .

● Table 11.5 p.637 compares the use of text and binary files for input and output
of data of various types. (1)

11.2 BINARY FILES

➢ In Example 1 of Table 11.5 , we use fopen to open our input files, and we store
the file pointers returned by fopen in variables of type FILE* .

➢ Notice that the type of the file pointer does not vary.

➢ Also notice that the form of the call to fopen for opening a binary file differs

from the call for opening a text file only in the value of the mode (second
argument). In fact, even this difference is optional .

11.2 BINARY FILES

➢ We see a similar situation in the opening of output files in Example 2.

➢ One consequence of this similarity is that the ability of the C compiler and run-
time support system to detect misuse of a file pointer is severely limited.

➢ It is the programmer’s responsibility to keep track of which type of file each file

pointer accesses and to use the right I/O function at the right time.

11.2 BINARY FILES

➢ In Examples 3 and 4 of Table 11.5 , we compare input/output of a user-defined
structure type as it is done with text and binary files.

➢ In Examples 5 and 6, we see input/output of an array of type double values (1)

➢ Example 7 demonstrates partially filling array nums and setting n to the

number of elements filled.

➢ Example 8 shows that all files—binary or text, input or output—are closed in
the same way.

11.2 BINARY FILES

➢ Remember to declare a file pointer variable (type FILE*) for each file you want
to process.

➢ In a program that manipulates both file types, choose names for your file pointers

that remind you of the type of file accessed. (2)

➢ It is easy to use the wrong library function with a file pointer. (1)

➢ It is also critical that you remember that library functions fscanf , fprintf , getc ,
and putc must be used for text I/O only;

➢ Functions fread and fwrite are applied exclusively to binary files. (3)

11.4 COMMON PROGRAMMING
ERRORS

➢ The fact that fprintf , fscanf , and getc take the file pointer as their first
argument while putc , fread , and fwrite take it as the last argument is definitely
confusing at first.

➢ Keep in mind that opening a file for output by calling fopen with a second

argument of "w" or "wb" typically results in a loss of any existing file whose
name matches the first argument.

➢ It is easy to forget that binary files cannot be created, viewed, or modified using

an editor or word processor program (1)

11.4 COMMON PROGRAMMING
ERRORS

Thanks!

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 11
Text and Binary
File Processing

Loading…

Chapter Objectives:

1. Learn about streams in C and their relationship to files and standard input and output
devices.

2. Review how scanf , fscanf and printf , fprintf are used to read and write data.

3. Review escape sequences and their use in format strings.

4. Review file pointer variables and learn how to use functions that process them to

make a backup copy of a text file.

5. Learn about binary files and understand the differences between binary and text files.

● A text file is a named collection of characters saved in secondary storage (e.g.,
on a disk).

● A text file has no fixed size.

● To mark the end of a text file, the computer places a special end-of-file

character, which we will denote <eof>, after the last character in the file.

● As you create a text file using an editor program, pressing the <return> or
<enter> key causes the newline character (represented by C as '\n') to be placed
in the file.

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

Loading…

 (1)

➢ The disk file consists of a sequence of characters occupying consecutive storage
locations on a track of the disk, as shown here:
 (2)

➢ We sometimes refer to a data source or destination as an input stream or an

output stream. (3)

➢ These general terms can be applied to files, to the terminal keyboard and
screen, and to any other sources of input data or destinations of output data.

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

● The Keyboard and Screen as Text Streams
➢ The name stdin represents the keyboard’s input stream.
➢ Two system streams are associated with the screen:

1. The “normal” output stream stdout
2. The “error” output stream stderr. (1)

➢ Normally at the keyboard, we enter one line of data at a time, pressing <return> or <enter> to

indicate the end of a data line. Pressing one of these keys inserts the newline character in system
stream stdin .

➢ The eof character could be used to indicate the end of data (2).

➢ Writing characters to the streams stdout and stderr causes a display on the screen in an

interactive program (i.e. Printf) (3)

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

● Newline and EOF

➢ The <newline> can be processed like any other character: It can be input using scanf with the
%c specifier, it can be compared to '\n' for equality, and it can be output using printf .

➢ Input of the special eof character is regarded as a failed operation, (1)

➢ The C run-time support system is under no obligation to provide an error message if the

program ignores the warning value and continues to attempt to get input from the stream in
question.

● Escape Sequences: p.626 (review)

● Formatting Output with printf: p.626 (review)

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

● File Pointer Variables: p. 627 (review):

• A pointer whose value equals NULL is called a null pointer (1)
• Using fopen with mode "w" to open for output a file that already exists usually causes loss of the

contents of the existing file. (2)

● Functions That Take File Pointer Arguments: p.629 (review)

● Closing a File: p.630 (review):
• Function fclose disposes of the structure that was created to store file access information and

carries out other “cleanup” operations.

● EXAMPLE 11.1, Figure 11.1

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

➢ When we use text files for storage of data, a program must expend a significant
amount of effort to convert the stream of characters from an input file into the
binary integers, type double mantissas and exponents, and character strings that
are the representation in main memory of the same data.

➢ The program must again expend time in converting the internal data format back

into a stream of characters for storage in an output file of text.

11.2 BINARY FILES

➢ We can avoid the unnecessary translation by using a binary file rather than a
text file. (1)

➢ A binary file is created by executing a program that stores directly in the file the
computer’s internal representation of each file component. (2)

11.2 BINARY FILES

Loading…

➢ the second argument to fopen is either "wb" (write binary) for output files
or "rb" (read binary) for input files.

➢ However, a different stdio library function is used for copying values into the

file: function fwrite , which has four input parameters.

1. The first parameter is the address of the first memory cell whose contents

are to be copied to the file. (1)
2. The second parameter of function fwrite is the number of bytes to copy to

the file for one component. (2)

11.2 BINARY FILES

➢ A C operator sizeof can be applied to any data type name to find the number of
bytes that the current implementation uses for storage of the data type. (1)

1. The third parameter of fwrite is the number of values to write to the binary

file. (2)

2. The final argument to fwrite is a file pointer to the file being created, a file

previously opened in mode "wb" using function fopen .

11.2 BINARY FILES

printf("An integer requires %d bytes ", sizeof (int));

printf("in this implementation.\n");

➢ For example, if array score is an array of ten integers, the following statement
writes the entire array to the output file.

➢ Writing the value of an integer variable i to a binary file using fwrite is faster
than writing i to a text file.

➢ For example, if the value of i is 244 , the statement from the for loop copies the

internal binary representation of i from memory to the file accessed by binaryp .
(1)

11.2 BINARY FILES

fwrite(score, sizeof (int), 10, binaryp);

fwrite(&i, sizeof (int), 1, binaryp);

➢ Assuming textp is a pointer to a text output file, the following statement writes
the value of i to the file using four characters (four bytes). (1)

● Obviously, it takes more time to do the conversion and copy each character than

it does to copy the internal binary representation to disk.

● Also, twice as much disk space is required to store four characters as to store the
internal binary representation of the type int value (four bytes versus two).

11.2 BINARY FILES

fprintf(textp, "%d ", i);

● The negative side to binary side usage:

1. A binary file created on one computer is rarely readable on another type of

computer.

2. A person cannot proofread the file by printing it out or by examining it in a

word processor. (1)

3. A binary file cannot be created or modified in a word processor(2)

11.2 BINARY FILES

➢ The stdio library includes an input function fread that is comparable to fwrite .
➢ Function fread also requires four arguments:

1. Address of first memory cell to fill.
2. Size of one value.
3. Maximum number of elements to copy from the file into memory.
4. File pointer to a binary file opened in mode "rb" using function fopen

➢ Function fread returns as its value an integer indicating how many elements it

successfully copied from the file (1)

11.2 BINARY FILES

➢ It is very important not to mix file types.

• A binary file created (written) using fwrite must be read using fread .
• A text file created using fprintf must be read using a text file input function such

as fscanf .

● Table 11.5 p.637 compares the use of text and binary files for input and output
of data of various types. (1)

11.2 BINARY FILES

➢ In Example 1 of Table 11.5 , we use fopen to open our input files, and we store
the file pointers returned by fopen in variables of type FILE* .

➢ Notice that the type of the file pointer does not vary.

➢ Also notice that the form of the call to fopen for opening a binary file differs

from the call for opening a text file only in the value of the mode (second
argument). In fact, even this difference is optional .

11.2 BINARY FILES

➢ We see a similar situation in the opening of output files in Example 2.

➢ One consequence of this similarity is that the ability of the C compiler and run-
time support system to detect misuse of a file pointer is severely limited.

➢ It is the programmer’s responsibility to keep track of which type of file each file

pointer accesses and to use the right I/O function at the right time.

11.2 BINARY FILES

➢ In Examples 3 and 4 of Table 11.5 , we compare input/output of a user-defined
structure type as it is done with text and binary files.

➢ In Examples 5 and 6, we see input/output of an array of type double values (1)

➢ Example 7 demonstrates partially filling array nums and setting n to the

number of elements filled.

➢ Example 8 shows that all files—binary or text, input or output—are closed in
the same way.

11.2 BINARY FILES

➢ Remember to declare a file pointer variable (type FILE*) for each file you want
to process.

➢ In a program that manipulates both file types, choose names for your file pointers

that remind you of the type of file accessed. (2)

➢ It is easy to use the wrong library function with a file pointer. (1)

➢ It is also critical that you remember that library functions fscanf , fprintf , getc ,
and putc must be used for text I/O only;

➢ Functions fread and fwrite are applied exclusively to binary files. (3)

11.4 COMMON PROGRAMMING
ERRORS

➢ The fact that fprintf , fscanf , and getc take the file pointer as their first
argument while putc , fread , and fwrite take it as the last argument is definitely
confusing at first.

➢ Keep in mind that opening a file for output by calling fopen with a second

argument of "w" or "wb" typically results in a loss of any existing file whose
name matches the first argument.

➢ It is easy to forget that binary files cannot be created, viewed, or modified using

an editor or word processor program (1)

11.4 COMMON PROGRAMMING
ERRORS

Thanks!

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 11
Text and Binary
File Processing

Loading…

Chapter Objectives:

1. Learn about streams in C and their relationship to files and standard input and output
devices.

2. Review how scanf , fscanf and printf , fprintf are used to read and write data.

3. Review escape sequences and their use in format strings.

4. Review file pointer variables and learn how to use functions that process them to

make a backup copy of a text file.

5. Learn about binary files and understand the differences between binary and text files.

● A text file is a named collection of characters saved in secondary storage (e.g.,
on a disk).

● A text file has no fixed size.

● To mark the end of a text file, the computer places a special end-of-file

character, which we will denote <eof>, after the last character in the file.

● As you create a text file using an editor program, pressing the <return> or
<enter> key causes the newline character (represented by C as '\n') to be placed
in the file.

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

Loading…

 (1)

➢ The disk file consists of a sequence of characters occupying consecutive storage
locations on a track of the disk, as shown here:
 (2)

➢ We sometimes refer to a data source or destination as an input stream or an

output stream. (3)

➢ These general terms can be applied to files, to the terminal keyboard and
screen, and to any other sources of input data or destinations of output data.

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

● The Keyboard and Screen as Text Streams
➢ The name stdin represents the keyboard’s input stream.
➢ Two system streams are associated with the screen:

1. The “normal” output stream stdout
2. The “error” output stream stderr. (1)

➢ Normally at the keyboard, we enter one line of data at a time, pressing <return> or <enter> to

indicate the end of a data line. Pressing one of these keys inserts the newline character in system
stream stdin .

➢ The eof character could be used to indicate the end of data (2).

➢ Writing characters to the streams stdout and stderr causes a display on the screen in an

interactive program (i.e. Printf) (3)

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

● Newline and EOF

➢ The <newline> can be processed like any other character: It can be input using scanf with the
%c specifier, it can be compared to '\n' for equality, and it can be output using printf .

➢ Input of the special eof character is regarded as a failed operation, (1)

➢ The C run-time support system is under no obligation to provide an error message if the

program ignores the warning value and continues to attempt to get input from the stream in
question.

● Escape Sequences: p.626 (review)

● Formatting Output with printf: p.626 (review)

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

● File Pointer Variables: p. 627 (review):

• A pointer whose value equals NULL is called a null pointer (1)
• Using fopen with mode "w" to open for output a file that already exists usually causes loss of the

contents of the existing file. (2)

● Functions That Take File Pointer Arguments: p.629 (review)

● Closing a File: p.630 (review):
• Function fclose disposes of the structure that was created to store file access information and

carries out other “cleanup” operations.

● EXAMPLE 11.1, Figure 11.1

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

➢ When we use text files for storage of data, a program must expend a significant
amount of effort to convert the stream of characters from an input file into the
binary integers, type double mantissas and exponents, and character strings that
are the representation in main memory of the same data.

➢ The program must again expend time in converting the internal data format back

into a stream of characters for storage in an output file of text.

11.2 BINARY FILES

➢ We can avoid the unnecessary translation by using a binary file rather than a
text file. (1)

➢ A binary file is created by executing a program that stores directly in the file the
computer’s internal representation of each file component. (2)

11.2 BINARY FILES

Loading…

➢ the second argument to fopen is either "wb" (write binary) for output files
or "rb" (read binary) for input files.

➢ However, a different stdio library function is used for copying values into the

file: function fwrite , which has four input parameters.

1. The first parameter is the address of the first memory cell whose contents

are to be copied to the file. (1)
2. The second parameter of function fwrite is the number of bytes to copy to

the file for one component. (2)

11.2 BINARY FILES

➢ A C operator sizeof can be applied to any data type name to find the number of
bytes that the current implementation uses for storage of the data type. (1)

1. The third parameter of fwrite is the number of values to write to the binary

file. (2)

2. The final argument to fwrite is a file pointer to the file being created, a file

previously opened in mode "wb" using function fopen .

11.2 BINARY FILES

printf("An integer requires %d bytes ", sizeof (int));

printf("in this implementation.\n");

➢ For example, if array score is an array of ten integers, the following statement
writes the entire array to the output file.

➢ Writing the value of an integer variable i to a binary file using fwrite is faster
than writing i to a text file.

➢ For example, if the value of i is 244 , the statement from the for loop copies the

internal binary representation of i from memory to the file accessed by binaryp .
(1)

11.2 BINARY FILES

fwrite(score, sizeof (int), 10, binaryp);

fwrite(&i, sizeof (int), 1, binaryp);

➢ Assuming textp is a pointer to a text output file, the following statement writes
the value of i to the file using four characters (four bytes). (1)

● Obviously, it takes more time to do the conversion and copy each character than

it does to copy the internal binary representation to disk.

● Also, twice as much disk space is required to store four characters as to store the
internal binary representation of the type int value (four bytes versus two).

11.2 BINARY FILES

fprintf(textp, "%d ", i);

● The negative side to binary side usage:

1. A binary file created on one computer is rarely readable on another type of

computer.

2. A person cannot proofread the file by printing it out or by examining it in a

word processor. (1)

3. A binary file cannot be created or modified in a word processor(2)

11.2 BINARY FILES

➢ The stdio library includes an input function fread that is comparable to fwrite .
➢ Function fread also requires four arguments:

1. Address of first memory cell to fill.
2. Size of one value.
3. Maximum number of elements to copy from the file into memory.
4. File pointer to a binary file opened in mode "rb" using function fopen

➢ Function fread returns as its value an integer indicating how many elements it

successfully copied from the file (1)

11.2 BINARY FILES

➢ It is very important not to mix file types.

• A binary file created (written) using fwrite must be read using fread .
• A text file created using fprintf must be read using a text file input function such

as fscanf .

● Table 11.5 p.637 compares the use of text and binary files for input and output
of data of various types. (1)

11.2 BINARY FILES

➢ In Example 1 of Table 11.5 , we use fopen to open our input files, and we store
the file pointers returned by fopen in variables of type FILE* .

➢ Notice that the type of the file pointer does not vary.

➢ Also notice that the form of the call to fopen for opening a binary file differs

from the call for opening a text file only in the value of the mode (second
argument). In fact, even this difference is optional .

11.2 BINARY FILES

➢ We see a similar situation in the opening of output files in Example 2.

➢ One consequence of this similarity is that the ability of the C compiler and run-
time support system to detect misuse of a file pointer is severely limited.

➢ It is the programmer’s responsibility to keep track of which type of file each file

pointer accesses and to use the right I/O function at the right time.

11.2 BINARY FILES

➢ In Examples 3 and 4 of Table 11.5 , we compare input/output of a user-defined
structure type as it is done with text and binary files.

➢ In Examples 5 and 6, we see input/output of an array of type double values (1)

➢ Example 7 demonstrates partially filling array nums and setting n to the

number of elements filled.

➢ Example 8 shows that all files—binary or text, input or output—are closed in
the same way.

11.2 BINARY FILES

➢ Remember to declare a file pointer variable (type FILE*) for each file you want
to process.

➢ In a program that manipulates both file types, choose names for your file pointers

that remind you of the type of file accessed. (2)

➢ It is easy to use the wrong library function with a file pointer. (1)

➢ It is also critical that you remember that library functions fscanf , fprintf , getc ,
and putc must be used for text I/O only;

➢ Functions fread and fwrite are applied exclusively to binary files. (3)

11.4 COMMON PROGRAMMING
ERRORS

➢ The fact that fprintf , fscanf , and getc take the file pointer as their first
argument while putc , fread , and fwrite take it as the last argument is definitely
confusing at first.

➢ Keep in mind that opening a file for output by calling fopen with a second

argument of "w" or "wb" typically results in a loss of any existing file whose
name matches the first argument.

➢ It is easy to forget that binary files cannot be created, viewed, or modified using

an editor or word processor program (1)

11.4 COMMON PROGRAMMING
ERRORS

Thanks!

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 11
Text and Binary
File Processing

Loading…

Chapter Objectives:

1. Learn about streams in C and their relationship to files and standard input and output
devices.

2. Review how scanf , fscanf and printf , fprintf are used to read and write data.

3. Review escape sequences and their use in format strings.

4. Review file pointer variables and learn how to use functions that process them to

make a backup copy of a text file.

5. Learn about binary files and understand the differences between binary and text files.

● A text file is a named collection of characters saved in secondary storage (e.g.,
on a disk).

● A text file has no fixed size.

● To mark the end of a text file, the computer places a special end-of-file

character, which we will denote <eof>, after the last character in the file.

● As you create a text file using an editor program, pressing the <return> or
<enter> key causes the newline character (represented by C as '\n') to be placed
in the file.

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

Loading…

 (1)

➢ The disk file consists of a sequence of characters occupying consecutive storage
locations on a track of the disk, as shown here:
 (2)

➢ We sometimes refer to a data source or destination as an input stream or an

output stream. (3)

➢ These general terms can be applied to files, to the terminal keyboard and
screen, and to any other sources of input data or destinations of output data.

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

● The Keyboard and Screen as Text Streams
➢ The name stdin represents the keyboard’s input stream.
➢ Two system streams are associated with the screen:

1. The “normal” output stream stdout
2. The “error” output stream stderr. (1)

➢ Normally at the keyboard, we enter one line of data at a time, pressing <return> or <enter> to

indicate the end of a data line. Pressing one of these keys inserts the newline character in system
stream stdin .

➢ The eof character could be used to indicate the end of data (2).

➢ Writing characters to the streams stdout and stderr causes a display on the screen in an

interactive program (i.e. Printf) (3)

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

● Newline and EOF

➢ The <newline> can be processed like any other character: It can be input using scanf with the
%c specifier, it can be compared to '\n' for equality, and it can be output using printf .

➢ Input of the special eof character is regarded as a failed operation, (1)

➢ The C run-time support system is under no obligation to provide an error message if the

program ignores the warning value and continues to attempt to get input from the stream in
question.

● Escape Sequences: p.626 (review)

● Formatting Output with printf: p.626 (review)

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

● File Pointer Variables: p. 627 (review):

• A pointer whose value equals NULL is called a null pointer (1)
• Using fopen with mode "w" to open for output a file that already exists usually causes loss of the

contents of the existing file. (2)

● Functions That Take File Pointer Arguments: p.629 (review)

● Closing a File: p.630 (review):
• Function fclose disposes of the structure that was created to store file access information and

carries out other “cleanup” operations.

● EXAMPLE 11.1, Figure 11.1

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

➢ When we use text files for storage of data, a program must expend a significant
amount of effort to convert the stream of characters from an input file into the
binary integers, type double mantissas and exponents, and character strings that
are the representation in main memory of the same data.

➢ The program must again expend time in converting the internal data format back

into a stream of characters for storage in an output file of text.

11.2 BINARY FILES

➢ We can avoid the unnecessary translation by using a binary file rather than a
text file. (1)

➢ A binary file is created by executing a program that stores directly in the file the
computer’s internal representation of each file component. (2)

11.2 BINARY FILES

Loading…

➢ the second argument to fopen is either "wb" (write binary) for output files
or "rb" (read binary) for input files.

➢ However, a different stdio library function is used for copying values into the

file: function fwrite , which has four input parameters.

1. The first parameter is the address of the first memory cell whose contents

are to be copied to the file. (1)
2. The second parameter of function fwrite is the number of bytes to copy to

the file for one component. (2)

11.2 BINARY FILES

➢ A C operator sizeof can be applied to any data type name to find the number of
bytes that the current implementation uses for storage of the data type. (1)

1. The third parameter of fwrite is the number of values to write to the binary

file. (2)

2. The final argument to fwrite is a file pointer to the file being created, a file

previously opened in mode "wb" using function fopen .

11.2 BINARY FILES

printf("An integer requires %d bytes ", sizeof (int));

printf("in this implementation.\n");

➢ For example, if array score is an array of ten integers, the following statement
writes the entire array to the output file.

➢ Writing the value of an integer variable i to a binary file using fwrite is faster
than writing i to a text file.

➢ For example, if the value of i is 244 , the statement from the for loop copies the

internal binary representation of i from memory to the file accessed by binaryp .
(1)

11.2 BINARY FILES

fwrite(score, sizeof (int), 10, binaryp);

fwrite(&i, sizeof (int), 1, binaryp);

➢ Assuming textp is a pointer to a text output file, the following statement writes
the value of i to the file using four characters (four bytes). (1)

● Obviously, it takes more time to do the conversion and copy each character than

it does to copy the internal binary representation to disk.

● Also, twice as much disk space is required to store four characters as to store the
internal binary representation of the type int value (four bytes versus two).

11.2 BINARY FILES

fprintf(textp, "%d ", i);

● The negative side to binary side usage:

1. A binary file created on one computer is rarely readable on another type of

computer.

2. A person cannot proofread the file by printing it out or by examining it in a

word processor. (1)

3. A binary file cannot be created or modified in a word processor(2)

11.2 BINARY FILES

➢ The stdio library includes an input function fread that is comparable to fwrite .
➢ Function fread also requires four arguments:

1. Address of first memory cell to fill.
2. Size of one value.
3. Maximum number of elements to copy from the file into memory.
4. File pointer to a binary file opened in mode "rb" using function fopen

➢ Function fread returns as its value an integer indicating how many elements it

successfully copied from the file (1)

11.2 BINARY FILES

➢ It is very important not to mix file types.

• A binary file created (written) using fwrite must be read using fread .
• A text file created using fprintf must be read using a text file input function such

as fscanf .

● Table 11.5 p.637 compares the use of text and binary files for input and output
of data of various types. (1)

11.2 BINARY FILES

➢ In Example 1 of Table 11.5 , we use fopen to open our input files, and we store
the file pointers returned by fopen in variables of type FILE* .

➢ Notice that the type of the file pointer does not vary.

➢ Also notice that the form of the call to fopen for opening a binary file differs

from the call for opening a text file only in the value of the mode (second
argument). In fact, even this difference is optional .

11.2 BINARY FILES

➢ We see a similar situation in the opening of output files in Example 2.

➢ One consequence of this similarity is that the ability of the C compiler and run-
time support system to detect misuse of a file pointer is severely limited.

➢ It is the programmer’s responsibility to keep track of which type of file each file

pointer accesses and to use the right I/O function at the right time.

11.2 BINARY FILES

➢ In Examples 3 and 4 of Table 11.5 , we compare input/output of a user-defined
structure type as it is done with text and binary files.

➢ In Examples 5 and 6, we see input/output of an array of type double values (1)

➢ Example 7 demonstrates partially filling array nums and setting n to the

number of elements filled.

➢ Example 8 shows that all files—binary or text, input or output—are closed in
the same way.

11.2 BINARY FILES

➢ Remember to declare a file pointer variable (type FILE*) for each file you want
to process.

➢ In a program that manipulates both file types, choose names for your file pointers

that remind you of the type of file accessed. (2)

➢ It is easy to use the wrong library function with a file pointer. (1)

➢ It is also critical that you remember that library functions fscanf , fprintf , getc ,
and putc must be used for text I/O only;

➢ Functions fread and fwrite are applied exclusively to binary files. (3)

11.4 COMMON PROGRAMMING
ERRORS

➢ The fact that fprintf , fscanf , and getc take the file pointer as their first
argument while putc , fread , and fwrite take it as the last argument is definitely
confusing at first.

➢ Keep in mind that opening a file for output by calling fopen with a second

argument of "w" or "wb" typically results in a loss of any existing file whose
name matches the first argument.

➢ It is easy to forget that binary files cannot be created, viewed, or modified using

an editor or word processor program (1)

11.4 COMMON PROGRAMMING
ERRORS

Thanks!

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 11
Text and Binary
File Processing

Loading…

Chapter Objectives:

1. Learn about streams in C and their relationship to files and standard input and output
devices.

2. Review how scanf , fscanf and printf , fprintf are used to read and write data.

3. Review escape sequences and their use in format strings.

4. Review file pointer variables and learn how to use functions that process them to

make a backup copy of a text file.

5. Learn about binary files and understand the differences between binary and text files.

● A text file is a named collection of characters saved in secondary storage (e.g.,
on a disk).

● A text file has no fixed size.

● To mark the end of a text file, the computer places a special end-of-file

character, which we will denote <eof>, after the last character in the file.

● As you create a text file using an editor program, pressing the <return> or
<enter> key causes the newline character (represented by C as '\n') to be placed
in the file.

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

Loading…

 (1)

➢ The disk file consists of a sequence of characters occupying consecutive storage
locations on a track of the disk, as shown here:
 (2)

➢ We sometimes refer to a data source or destination as an input stream or an

output stream. (3)

➢ These general terms can be applied to files, to the terminal keyboard and
screen, and to any other sources of input data or destinations of output data.

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

● The Keyboard and Screen as Text Streams
➢ The name stdin represents the keyboard’s input stream.
➢ Two system streams are associated with the screen:

1. The “normal” output stream stdout
2. The “error” output stream stderr. (1)

➢ Normally at the keyboard, we enter one line of data at a time, pressing <return> or <enter> to

indicate the end of a data line. Pressing one of these keys inserts the newline character in system
stream stdin .

➢ The eof character could be used to indicate the end of data (2).

➢ Writing characters to the streams stdout and stderr causes a display on the screen in an

interactive program (i.e. Printf) (3)

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

● Newline and EOF

➢ The <newline> can be processed like any other character: It can be input using scanf with the
%c specifier, it can be compared to '\n' for equality, and it can be output using printf .

➢ Input of the special eof character is regarded as a failed operation, (1)

➢ The C run-time support system is under no obligation to provide an error message if the

program ignores the warning value and continues to attempt to get input from the stream in
question.

● Escape Sequences: p.626 (review)

● Formatting Output with printf: p.626 (review)

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

● File Pointer Variables: p. 627 (review):

• A pointer whose value equals NULL is called a null pointer (1)
• Using fopen with mode "w" to open for output a file that already exists usually causes loss of the

contents of the existing file. (2)

● Functions That Take File Pointer Arguments: p.629 (review)

● Closing a File: p.630 (review):
• Function fclose disposes of the structure that was created to store file access information and

carries out other “cleanup” operations.

● EXAMPLE 11.1, Figure 11.1

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

➢ When we use text files for storage of data, a program must expend a significant
amount of effort to convert the stream of characters from an input file into the
binary integers, type double mantissas and exponents, and character strings that
are the representation in main memory of the same data.

➢ The program must again expend time in converting the internal data format back

into a stream of characters for storage in an output file of text.

11.2 BINARY FILES

➢ We can avoid the unnecessary translation by using a binary file rather than a
text file. (1)

➢ A binary file is created by executing a program that stores directly in the file the
computer’s internal representation of each file component. (2)

11.2 BINARY FILES

Loading…

➢ the second argument to fopen is either "wb" (write binary) for output files
or "rb" (read binary) for input files.

➢ However, a different stdio library function is used for copying values into the

file: function fwrite , which has four input parameters.

1. The first parameter is the address of the first memory cell whose contents

are to be copied to the file. (1)
2. The second parameter of function fwrite is the number of bytes to copy to

the file for one component. (2)

11.2 BINARY FILES

➢ A C operator sizeof can be applied to any data type name to find the number of
bytes that the current implementation uses for storage of the data type. (1)

1. The third parameter of fwrite is the number of values to write to the binary

file. (2)

2. The final argument to fwrite is a file pointer to the file being created, a file

previously opened in mode "wb" using function fopen .

11.2 BINARY FILES

printf("An integer requires %d bytes ", sizeof (int));

printf("in this implementation.\n");

➢ For example, if array score is an array of ten integers, the following statement
writes the entire array to the output file.

➢ Writing the value of an integer variable i to a binary file using fwrite is faster
than writing i to a text file.

➢ For example, if the value of i is 244 , the statement from the for loop copies the

internal binary representation of i from memory to the file accessed by binaryp .
(1)

11.2 BINARY FILES

fwrite(score, sizeof (int), 10, binaryp);

fwrite(&i, sizeof (int), 1, binaryp);

➢ Assuming textp is a pointer to a text output file, the following statement writes
the value of i to the file using four characters (four bytes). (1)

● Obviously, it takes more time to do the conversion and copy each character than

it does to copy the internal binary representation to disk.

● Also, twice as much disk space is required to store four characters as to store the
internal binary representation of the type int value (four bytes versus two).

11.2 BINARY FILES

fprintf(textp, "%d ", i);

● The negative side to binary side usage:

1. A binary file created on one computer is rarely readable on another type of

computer.

2. A person cannot proofread the file by printing it out or by examining it in a

word processor. (1)

3. A binary file cannot be created or modified in a word processor(2)

11.2 BINARY FILES

➢ The stdio library includes an input function fread that is comparable to fwrite .
➢ Function fread also requires four arguments:

1. Address of first memory cell to fill.
2. Size of one value.
3. Maximum number of elements to copy from the file into memory.
4. File pointer to a binary file opened in mode "rb" using function fopen

➢ Function fread returns as its value an integer indicating how many elements it

successfully copied from the file (1)

11.2 BINARY FILES

➢ It is very important not to mix file types.

• A binary file created (written) using fwrite must be read using fread .
• A text file created using fprintf must be read using a text file input function such

as fscanf .

● Table 11.5 p.637 compares the use of text and binary files for input and output
of data of various types. (1)

11.2 BINARY FILES

➢ In Example 1 of Table 11.5 , we use fopen to open our input files, and we store
the file pointers returned by fopen in variables of type FILE* .

➢ Notice that the type of the file pointer does not vary.

➢ Also notice that the form of the call to fopen for opening a binary file differs

from the call for opening a text file only in the value of the mode (second
argument). In fact, even this difference is optional .

11.2 BINARY FILES

➢ We see a similar situation in the opening of output files in Example 2.

➢ One consequence of this similarity is that the ability of the C compiler and run-
time support system to detect misuse of a file pointer is severely limited.

➢ It is the programmer’s responsibility to keep track of which type of file each file

pointer accesses and to use the right I/O function at the right time.

11.2 BINARY FILES

➢ In Examples 3 and 4 of Table 11.5 , we compare input/output of a user-defined
structure type as it is done with text and binary files.

➢ In Examples 5 and 6, we see input/output of an array of type double values (1)

➢ Example 7 demonstrates partially filling array nums and setting n to the

number of elements filled.

➢ Example 8 shows that all files—binary or text, input or output—are closed in
the same way.

11.2 BINARY FILES

➢ Remember to declare a file pointer variable (type FILE*) for each file you want
to process.

➢ In a program that manipulates both file types, choose names for your file pointers

that remind you of the type of file accessed. (2)

➢ It is easy to use the wrong library function with a file pointer. (1)

➢ It is also critical that you remember that library functions fscanf , fprintf , getc ,
and putc must be used for text I/O only;

➢ Functions fread and fwrite are applied exclusively to binary files. (3)

11.4 COMMON PROGRAMMING
ERRORS

➢ The fact that fprintf , fscanf , and getc take the file pointer as their first
argument while putc , fread , and fwrite take it as the last argument is definitely
confusing at first.

➢ Keep in mind that opening a file for output by calling fopen with a second

argument of "w" or "wb" typically results in a loss of any existing file whose
name matches the first argument.

➢ It is easy to forget that binary files cannot be created, viewed, or modified using

an editor or word processor program (1)

11.4 COMMON PROGRAMMING
ERRORS

Thanks!

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 11
Text and Binary
File Processing

Loading…

Chapter Objectives:

1. Learn about streams in C and their relationship to files and standard input and output
devices.

2. Review how scanf , fscanf and printf , fprintf are used to read and write data.

3. Review escape sequences and their use in format strings.

4. Review file pointer variables and learn how to use functions that process them to

make a backup copy of a text file.

5. Learn about binary files and understand the differences between binary and text files.

● A text file is a named collection of characters saved in secondary storage (e.g.,
on a disk).

● A text file has no fixed size.

● To mark the end of a text file, the computer places a special end-of-file

character, which we will denote <eof>, after the last character in the file.

● As you create a text file using an editor program, pressing the <return> or
<enter> key causes the newline character (represented by C as '\n') to be placed
in the file.

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

Loading…

 (1)

➢ The disk file consists of a sequence of characters occupying consecutive storage
locations on a track of the disk, as shown here:
 (2)

➢ We sometimes refer to a data source or destination as an input stream or an

output stream. (3)

➢ These general terms can be applied to files, to the terminal keyboard and
screen, and to any other sources of input data or destinations of output data.

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

● The Keyboard and Screen as Text Streams
➢ The name stdin represents the keyboard’s input stream.
➢ Two system streams are associated with the screen:

1. The “normal” output stream stdout
2. The “error” output stream stderr. (1)

➢ Normally at the keyboard, we enter one line of data at a time, pressing <return> or <enter> to

indicate the end of a data line. Pressing one of these keys inserts the newline character in system
stream stdin .

➢ The eof character could be used to indicate the end of data (2).

➢ Writing characters to the streams stdout and stderr causes a display on the screen in an

interactive program (i.e. Printf) (3)

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

● Newline and EOF

➢ The <newline> can be processed like any other character: It can be input using scanf with the
%c specifier, it can be compared to '\n' for equality, and it can be output using printf .

➢ Input of the special eof character is regarded as a failed operation, (1)

➢ The C run-time support system is under no obligation to provide an error message if the

program ignores the warning value and continues to attempt to get input from the stream in
question.

● Escape Sequences: p.626 (review)

● Formatting Output with printf: p.626 (review)

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

● File Pointer Variables: p. 627 (review):

• A pointer whose value equals NULL is called a null pointer (1)
• Using fopen with mode "w" to open for output a file that already exists usually causes loss of the

contents of the existing file. (2)

● Functions That Take File Pointer Arguments: p.629 (review)

● Closing a File: p.630 (review):
• Function fclose disposes of the structure that was created to store file access information and

carries out other “cleanup” operations.

● EXAMPLE 11.1, Figure 11.1

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

➢ When we use text files for storage of data, a program must expend a significant
amount of effort to convert the stream of characters from an input file into the
binary integers, type double mantissas and exponents, and character strings that
are the representation in main memory of the same data.

➢ The program must again expend time in converting the internal data format back

into a stream of characters for storage in an output file of text.

11.2 BINARY FILES

➢ We can avoid the unnecessary translation by using a binary file rather than a
text file. (1)

➢ A binary file is created by executing a program that stores directly in the file the
computer’s internal representation of each file component. (2)

11.2 BINARY FILES

Loading…

➢ the second argument to fopen is either "wb" (write binary) for output files
or "rb" (read binary) for input files.

➢ However, a different stdio library function is used for copying values into the

file: function fwrite , which has four input parameters.

1. The first parameter is the address of the first memory cell whose contents

are to be copied to the file. (1)
2. The second parameter of function fwrite is the number of bytes to copy to

the file for one component. (2)

11.2 BINARY FILES

➢ A C operator sizeof can be applied to any data type name to find the number of
bytes that the current implementation uses for storage of the data type. (1)

1. The third parameter of fwrite is the number of values to write to the binary

file. (2)

2. The final argument to fwrite is a file pointer to the file being created, a file

previously opened in mode "wb" using function fopen .

11.2 BINARY FILES

printf("An integer requires %d bytes ", sizeof (int));

printf("in this implementation.\n");

➢ For example, if array score is an array of ten integers, the following statement
writes the entire array to the output file.

➢ Writing the value of an integer variable i to a binary file using fwrite is faster
than writing i to a text file.

➢ For example, if the value of i is 244 , the statement from the for loop copies the

internal binary representation of i from memory to the file accessed by binaryp .
(1)

11.2 BINARY FILES

fwrite(score, sizeof (int), 10, binaryp);

fwrite(&i, sizeof (int), 1, binaryp);

➢ Assuming textp is a pointer to a text output file, the following statement writes
the value of i to the file using four characters (four bytes). (1)

● Obviously, it takes more time to do the conversion and copy each character than

it does to copy the internal binary representation to disk.

● Also, twice as much disk space is required to store four characters as to store the
internal binary representation of the type int value (four bytes versus two).

11.2 BINARY FILES

fprintf(textp, "%d ", i);

● The negative side to binary side usage:

1. A binary file created on one computer is rarely readable on another type of

computer.

2. A person cannot proofread the file by printing it out or by examining it in a

word processor. (1)

3. A binary file cannot be created or modified in a word processor(2)

11.2 BINARY FILES

➢ The stdio library includes an input function fread that is comparable to fwrite .
➢ Function fread also requires four arguments:

1. Address of first memory cell to fill.
2. Size of one value.
3. Maximum number of elements to copy from the file into memory.
4. File pointer to a binary file opened in mode "rb" using function fopen

➢ Function fread returns as its value an integer indicating how many elements it

successfully copied from the file (1)

11.2 BINARY FILES

➢ It is very important not to mix file types.

• A binary file created (written) using fwrite must be read using fread .
• A text file created using fprintf must be read using a text file input function such

as fscanf .

● Table 11.5 p.637 compares the use of text and binary files for input and output
of data of various types. (1)

11.2 BINARY FILES

➢ In Example 1 of Table 11.5 , we use fopen to open our input files, and we store
the file pointers returned by fopen in variables of type FILE* .

➢ Notice that the type of the file pointer does not vary.

➢ Also notice that the form of the call to fopen for opening a binary file differs

from the call for opening a text file only in the value of the mode (second
argument). In fact, even this difference is optional .

11.2 BINARY FILES

➢ We see a similar situation in the opening of output files in Example 2.

➢ One consequence of this similarity is that the ability of the C compiler and run-
time support system to detect misuse of a file pointer is severely limited.

➢ It is the programmer’s responsibility to keep track of which type of file each file

pointer accesses and to use the right I/O function at the right time.

11.2 BINARY FILES

➢ In Examples 3 and 4 of Table 11.5 , we compare input/output of a user-defined
structure type as it is done with text and binary files.

➢ In Examples 5 and 6, we see input/output of an array of type double values (1)

➢ Example 7 demonstrates partially filling array nums and setting n to the

number of elements filled.

➢ Example 8 shows that all files—binary or text, input or output—are closed in
the same way.

11.2 BINARY FILES

➢ Remember to declare a file pointer variable (type FILE*) for each file you want
to process.

➢ In a program that manipulates both file types, choose names for your file pointers

that remind you of the type of file accessed. (2)

➢ It is easy to use the wrong library function with a file pointer. (1)

➢ It is also critical that you remember that library functions fscanf , fprintf , getc ,
and putc must be used for text I/O only;

➢ Functions fread and fwrite are applied exclusively to binary files. (3)

11.4 COMMON PROGRAMMING
ERRORS

➢ The fact that fprintf , fscanf , and getc take the file pointer as their first
argument while putc , fread , and fwrite take it as the last argument is definitely
confusing at first.

➢ Keep in mind that opening a file for output by calling fopen with a second

argument of "w" or "wb" typically results in a loss of any existing file whose
name matches the first argument.

➢ It is easy to forget that binary files cannot be created, viewed, or modified using

an editor or word processor program (1)

11.4 COMMON PROGRAMMING
ERRORS

Thanks!

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 11
Text and Binary
File Processing

Loading…

Chapter Objectives:

1. Learn about streams in C and their relationship to files and standard input and output
devices.

2. Review how scanf , fscanf and printf , fprintf are used to read and write data.

3. Review escape sequences and their use in format strings.

4. Review file pointer variables and learn how to use functions that process them to

make a backup copy of a text file.

5. Learn about binary files and understand the differences between binary and text files.

● A text file is a named collection of characters saved in secondary storage (e.g.,
on a disk).

● A text file has no fixed size.

● To mark the end of a text file, the computer places a special end-of-file

character, which we will denote <eof>, after the last character in the file.

● As you create a text file using an editor program, pressing the <return> or
<enter> key causes the newline character (represented by C as '\n') to be placed
in the file.

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

Loading…

 (1)

➢ The disk file consists of a sequence of characters occupying consecutive storage
locations on a track of the disk, as shown here:
 (2)

➢ We sometimes refer to a data source or destination as an input stream or an

output stream. (3)

➢ These general terms can be applied to files, to the terminal keyboard and
screen, and to any other sources of input data or destinations of output data.

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

● The Keyboard and Screen as Text Streams
➢ The name stdin represents the keyboard’s input stream.
➢ Two system streams are associated with the screen:

1. The “normal” output stream stdout
2. The “error” output stream stderr. (1)

➢ Normally at the keyboard, we enter one line of data at a time, pressing <return> or <enter> to

indicate the end of a data line. Pressing one of these keys inserts the newline character in system
stream stdin .

➢ The eof character could be used to indicate the end of data (2).

➢ Writing characters to the streams stdout and stderr causes a display on the screen in an

interactive program (i.e. Printf) (3)

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

● Newline and EOF

➢ The <newline> can be processed like any other character: It can be input using scanf with the
%c specifier, it can be compared to '\n' for equality, and it can be output using printf .

➢ Input of the special eof character is regarded as a failed operation, (1)

➢ The C run-time support system is under no obligation to provide an error message if the

program ignores the warning value and continues to attempt to get input from the stream in
question.

● Escape Sequences: p.626 (review)

● Formatting Output with printf: p.626 (review)

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

● File Pointer Variables: p. 627 (review):

• A pointer whose value equals NULL is called a null pointer (1)
• Using fopen with mode "w" to open for output a file that already exists usually causes loss of the

contents of the existing file. (2)

● Functions That Take File Pointer Arguments: p.629 (review)

● Closing a File: p.630 (review):
• Function fclose disposes of the structure that was created to store file access information and

carries out other “cleanup” operations.

● EXAMPLE 11.1, Figure 11.1

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

➢ When we use text files for storage of data, a program must expend a significant
amount of effort to convert the stream of characters from an input file into the
binary integers, type double mantissas and exponents, and character strings that
are the representation in main memory of the same data.

➢ The program must again expend time in converting the internal data format back

into a stream of characters for storage in an output file of text.

11.2 BINARY FILES

➢ We can avoid the unnecessary translation by using a binary file rather than a
text file. (1)

➢ A binary file is created by executing a program that stores directly in the file the
computer’s internal representation of each file component. (2)

11.2 BINARY FILES

Loading…

➢ the second argument to fopen is either "wb" (write binary) for output files
or "rb" (read binary) for input files.

➢ However, a different stdio library function is used for copying values into the

file: function fwrite , which has four input parameters.

1. The first parameter is the address of the first memory cell whose contents

are to be copied to the file. (1)
2. The second parameter of function fwrite is the number of bytes to copy to

the file for one component. (2)

11.2 BINARY FILES

➢ A C operator sizeof can be applied to any data type name to find the number of
bytes that the current implementation uses for storage of the data type. (1)

1. The third parameter of fwrite is the number of values to write to the binary

file. (2)

2. The final argument to fwrite is a file pointer to the file being created, a file

previously opened in mode "wb" using function fopen .

11.2 BINARY FILES

printf("An integer requires %d bytes ", sizeof (int));

printf("in this implementation.\n");

➢ For example, if array score is an array of ten integers, the following statement
writes the entire array to the output file.

➢ Writing the value of an integer variable i to a binary file using fwrite is faster
than writing i to a text file.

➢ For example, if the value of i is 244 , the statement from the for loop copies the

internal binary representation of i from memory to the file accessed by binaryp .
(1)

11.2 BINARY FILES

fwrite(score, sizeof (int), 10, binaryp);

fwrite(&i, sizeof (int), 1, binaryp);

➢ Assuming textp is a pointer to a text output file, the following statement writes
the value of i to the file using four characters (four bytes). (1)

● Obviously, it takes more time to do the conversion and copy each character than

it does to copy the internal binary representation to disk.

● Also, twice as much disk space is required to store four characters as to store the
internal binary representation of the type int value (four bytes versus two).

11.2 BINARY FILES

fprintf(textp, "%d ", i);

● The negative side to binary side usage:

1. A binary file created on one computer is rarely readable on another type of

computer.

2. A person cannot proofread the file by printing it out or by examining it in a

word processor. (1)

3. A binary file cannot be created or modified in a word processor(2)

11.2 BINARY FILES

➢ The stdio library includes an input function fread that is comparable to fwrite .
➢ Function fread also requires four arguments:

1. Address of first memory cell to fill.
2. Size of one value.
3. Maximum number of elements to copy from the file into memory.
4. File pointer to a binary file opened in mode "rb" using function fopen

➢ Function fread returns as its value an integer indicating how many elements it

successfully copied from the file (1)

11.2 BINARY FILES

➢ It is very important not to mix file types.

• A binary file created (written) using fwrite must be read using fread .
• A text file created using fprintf must be read using a text file input function such

as fscanf .

● Table 11.5 p.637 compares the use of text and binary files for input and output
of data of various types. (1)

11.2 BINARY FILES

➢ In Example 1 of Table 11.5 , we use fopen to open our input files, and we store
the file pointers returned by fopen in variables of type FILE* .

➢ Notice that the type of the file pointer does not vary.

➢ Also notice that the form of the call to fopen for opening a binary file differs

from the call for opening a text file only in the value of the mode (second
argument). In fact, even this difference is optional .

11.2 BINARY FILES

➢ We see a similar situation in the opening of output files in Example 2.

➢ One consequence of this similarity is that the ability of the C compiler and run-
time support system to detect misuse of a file pointer is severely limited.

➢ It is the programmer’s responsibility to keep track of which type of file each file

pointer accesses and to use the right I/O function at the right time.

11.2 BINARY FILES

➢ In Examples 3 and 4 of Table 11.5 , we compare input/output of a user-defined
structure type as it is done with text and binary files.

➢ In Examples 5 and 6, we see input/output of an array of type double values (1)

➢ Example 7 demonstrates partially filling array nums and setting n to the

number of elements filled.

➢ Example 8 shows that all files—binary or text, input or output—are closed in
the same way.

11.2 BINARY FILES

➢ Remember to declare a file pointer variable (type FILE*) for each file you want
to process.

➢ In a program that manipulates both file types, choose names for your file pointers

that remind you of the type of file accessed. (2)

➢ It is easy to use the wrong library function with a file pointer. (1)

➢ It is also critical that you remember that library functions fscanf , fprintf , getc ,
and putc must be used for text I/O only;

➢ Functions fread and fwrite are applied exclusively to binary files. (3)

11.4 COMMON PROGRAMMING
ERRORS

➢ The fact that fprintf , fscanf , and getc take the file pointer as their first
argument while putc , fread , and fwrite take it as the last argument is definitely
confusing at first.

➢ Keep in mind that opening a file for output by calling fopen with a second

argument of "w" or "wb" typically results in a loss of any existing file whose
name matches the first argument.

➢ It is easy to forget that binary files cannot be created, viewed, or modified using

an editor or word processor program (1)

11.4 COMMON PROGRAMMING
ERRORS

Thanks!

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 11
Text and Binary
File Processing

Loading…

Chapter Objectives:

1. Learn about streams in C and their relationship to files and standard input and output
devices.

2. Review how scanf , fscanf and printf , fprintf are used to read and write data.

3. Review escape sequences and their use in format strings.

4. Review file pointer variables and learn how to use functions that process them to

make a backup copy of a text file.

5. Learn about binary files and understand the differences between binary and text files.

● A text file is a named collection of characters saved in secondary storage (e.g.,
on a disk).

● A text file has no fixed size.

● To mark the end of a text file, the computer places a special end-of-file

character, which we will denote <eof>, after the last character in the file.

● As you create a text file using an editor program, pressing the <return> or
<enter> key causes the newline character (represented by C as '\n') to be placed
in the file.

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

Loading…

 (1)

➢ The disk file consists of a sequence of characters occupying consecutive storage
locations on a track of the disk, as shown here:
 (2)

➢ We sometimes refer to a data source or destination as an input stream or an

output stream. (3)

➢ These general terms can be applied to files, to the terminal keyboard and
screen, and to any other sources of input data or destinations of output data.

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

● The Keyboard and Screen as Text Streams
➢ The name stdin represents the keyboard’s input stream.
➢ Two system streams are associated with the screen:

1. The “normal” output stream stdout
2. The “error” output stream stderr. (1)

➢ Normally at the keyboard, we enter one line of data at a time, pressing <return> or <enter> to

indicate the end of a data line. Pressing one of these keys inserts the newline character in system
stream stdin .

➢ The eof character could be used to indicate the end of data (2).

➢ Writing characters to the streams stdout and stderr causes a display on the screen in an

interactive program (i.e. Printf) (3)

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

● Newline and EOF

➢ The <newline> can be processed like any other character: It can be input using scanf with the
%c specifier, it can be compared to '\n' for equality, and it can be output using printf .

➢ Input of the special eof character is regarded as a failed operation, (1)

➢ The C run-time support system is under no obligation to provide an error message if the

program ignores the warning value and continues to attempt to get input from the stream in
question.

● Escape Sequences: p.626 (review)

● Formatting Output with printf: p.626 (review)

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

● File Pointer Variables: p. 627 (review):

• A pointer whose value equals NULL is called a null pointer (1)
• Using fopen with mode "w" to open for output a file that already exists usually causes loss of the

contents of the existing file. (2)

● Functions That Take File Pointer Arguments: p.629 (review)

● Closing a File: p.630 (review):
• Function fclose disposes of the structure that was created to store file access information and

carries out other “cleanup” operations.

● EXAMPLE 11.1, Figure 11.1

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

➢ When we use text files for storage of data, a program must expend a significant
amount of effort to convert the stream of characters from an input file into the
binary integers, type double mantissas and exponents, and character strings that
are the representation in main memory of the same data.

➢ The program must again expend time in converting the internal data format back

into a stream of characters for storage in an output file of text.

11.2 BINARY FILES

➢ We can avoid the unnecessary translation by using a binary file rather than a
text file. (1)

➢ A binary file is created by executing a program that stores directly in the file the
computer’s internal representation of each file component. (2)

11.2 BINARY FILES

Loading…

➢ the second argument to fopen is either "wb" (write binary) for output files
or "rb" (read binary) for input files.

➢ However, a different stdio library function is used for copying values into the

file: function fwrite , which has four input parameters.

1. The first parameter is the address of the first memory cell whose contents

are to be copied to the file. (1)
2. The second parameter of function fwrite is the number of bytes to copy to

the file for one component. (2)

11.2 BINARY FILES

➢ A C operator sizeof can be applied to any data type name to find the number of
bytes that the current implementation uses for storage of the data type. (1)

1. The third parameter of fwrite is the number of values to write to the binary

file. (2)

2. The final argument to fwrite is a file pointer to the file being created, a file

previously opened in mode "wb" using function fopen .

11.2 BINARY FILES

printf("An integer requires %d bytes ", sizeof (int));

printf("in this implementation.\n");

➢ For example, if array score is an array of ten integers, the following statement
writes the entire array to the output file.

➢ Writing the value of an integer variable i to a binary file using fwrite is faster
than writing i to a text file.

➢ For example, if the value of i is 244 , the statement from the for loop copies the

internal binary representation of i from memory to the file accessed by binaryp .
(1)

11.2 BINARY FILES

fwrite(score, sizeof (int), 10, binaryp);

fwrite(&i, sizeof (int), 1, binaryp);

➢ Assuming textp is a pointer to a text output file, the following statement writes
the value of i to the file using four characters (four bytes). (1)

● Obviously, it takes more time to do the conversion and copy each character than

it does to copy the internal binary representation to disk.

● Also, twice as much disk space is required to store four characters as to store the
internal binary representation of the type int value (four bytes versus two).

11.2 BINARY FILES

fprintf(textp, "%d ", i);

● The negative side to binary side usage:

1. A binary file created on one computer is rarely readable on another type of

computer.

2. A person cannot proofread the file by printing it out or by examining it in a

word processor. (1)

3. A binary file cannot be created or modified in a word processor(2)

11.2 BINARY FILES

➢ The stdio library includes an input function fread that is comparable to fwrite .
➢ Function fread also requires four arguments:

1. Address of first memory cell to fill.
2. Size of one value.
3. Maximum number of elements to copy from the file into memory.
4. File pointer to a binary file opened in mode "rb" using function fopen

➢ Function fread returns as its value an integer indicating how many elements it

successfully copied from the file (1)

11.2 BINARY FILES

➢ It is very important not to mix file types.

• A binary file created (written) using fwrite must be read using fread .
• A text file created using fprintf must be read using a text file input function such

as fscanf .

● Table 11.5 p.637 compares the use of text and binary files for input and output
of data of various types. (1)

11.2 BINARY FILES

➢ In Example 1 of Table 11.5 , we use fopen to open our input files, and we store
the file pointers returned by fopen in variables of type FILE* .

➢ Notice that the type of the file pointer does not vary.

➢ Also notice that the form of the call to fopen for opening a binary file differs

from the call for opening a text file only in the value of the mode (second
argument). In fact, even this difference is optional .

11.2 BINARY FILES

➢ We see a similar situation in the opening of output files in Example 2.

➢ One consequence of this similarity is that the ability of the C compiler and run-
time support system to detect misuse of a file pointer is severely limited.

➢ It is the programmer’s responsibility to keep track of which type of file each file

pointer accesses and to use the right I/O function at the right time.

11.2 BINARY FILES

➢ In Examples 3 and 4 of Table 11.5 , we compare input/output of a user-defined
structure type as it is done with text and binary files.

➢ In Examples 5 and 6, we see input/output of an array of type double values (1)

➢ Example 7 demonstrates partially filling array nums and setting n to the

number of elements filled.

➢ Example 8 shows that all files—binary or text, input or output—are closed in
the same way.

11.2 BINARY FILES

➢ Remember to declare a file pointer variable (type FILE*) for each file you want
to process.

➢ In a program that manipulates both file types, choose names for your file pointers

that remind you of the type of file accessed. (2)

➢ It is easy to use the wrong library function with a file pointer. (1)

➢ It is also critical that you remember that library functions fscanf , fprintf , getc ,
and putc must be used for text I/O only;

➢ Functions fread and fwrite are applied exclusively to binary files. (3)

11.4 COMMON PROGRAMMING
ERRORS

➢ The fact that fprintf , fscanf , and getc take the file pointer as their first
argument while putc , fread , and fwrite take it as the last argument is definitely
confusing at first.

➢ Keep in mind that opening a file for output by calling fopen with a second

argument of "w" or "wb" typically results in a loss of any existing file whose
name matches the first argument.

➢ It is easy to forget that binary files cannot be created, viewed, or modified using

an editor or word processor program (1)

11.4 COMMON PROGRAMMING
ERRORS

Thanks!

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 11
Text and Binary
File Processing

Loading…

Chapter Objectives:

1. Learn about streams in C and their relationship to files and standard input and output
devices.

2. Review how scanf , fscanf and printf , fprintf are used to read and write data.

3. Review escape sequences and their use in format strings.

4. Review file pointer variables and learn how to use functions that process them to

make a backup copy of a text file.

5. Learn about binary files and understand the differences between binary and text files.

● A text file is a named collection of characters saved in secondary storage (e.g.,
on a disk).

● A text file has no fixed size.

● To mark the end of a text file, the computer places a special end-of-file

character, which we will denote <eof>, after the last character in the file.

● As you create a text file using an editor program, pressing the <return> or
<enter> key causes the newline character (represented by C as '\n') to be placed
in the file.

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

Loading…

 (1)

➢ The disk file consists of a sequence of characters occupying consecutive storage
locations on a track of the disk, as shown here:
 (2)

➢ We sometimes refer to a data source or destination as an input stream or an

output stream. (3)

➢ These general terms can be applied to files, to the terminal keyboard and
screen, and to any other sources of input data or destinations of output data.

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

● The Keyboard and Screen as Text Streams
➢ The name stdin represents the keyboard’s input stream.
➢ Two system streams are associated with the screen:

1. The “normal” output stream stdout
2. The “error” output stream stderr. (1)

➢ Normally at the keyboard, we enter one line of data at a time, pressing <return> or <enter> to

indicate the end of a data line. Pressing one of these keys inserts the newline character in system
stream stdin .

➢ The eof character could be used to indicate the end of data (2).

➢ Writing characters to the streams stdout and stderr causes a display on the screen in an

interactive program (i.e. Printf) (3)

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

● Newline and EOF

➢ The <newline> can be processed like any other character: It can be input using scanf with the
%c specifier, it can be compared to '\n' for equality, and it can be output using printf .

➢ Input of the special eof character is regarded as a failed operation, (1)

➢ The C run-time support system is under no obligation to provide an error message if the

program ignores the warning value and continues to attempt to get input from the stream in
question.

● Escape Sequences: p.626 (review)

● Formatting Output with printf: p.626 (review)

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

● File Pointer Variables: p. 627 (review):

• A pointer whose value equals NULL is called a null pointer (1)
• Using fopen with mode "w" to open for output a file that already exists usually causes loss of the

contents of the existing file. (2)

● Functions That Take File Pointer Arguments: p.629 (review)

● Closing a File: p.630 (review):
• Function fclose disposes of the structure that was created to store file access information and

carries out other “cleanup” operations.

● EXAMPLE 11.1, Figure 11.1

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

➢ When we use text files for storage of data, a program must expend a significant
amount of effort to convert the stream of characters from an input file into the
binary integers, type double mantissas and exponents, and character strings that
are the representation in main memory of the same data.

➢ The program must again expend time in converting the internal data format back

into a stream of characters for storage in an output file of text.

11.2 BINARY FILES

➢ We can avoid the unnecessary translation by using a binary file rather than a
text file. (1)

➢ A binary file is created by executing a program that stores directly in the file the
computer’s internal representation of each file component. (2)

11.2 BINARY FILES

Loading…

➢ the second argument to fopen is either "wb" (write binary) for output files
or "rb" (read binary) for input files.

➢ However, a different stdio library function is used for copying values into the

file: function fwrite , which has four input parameters.

1. The first parameter is the address of the first memory cell whose contents

are to be copied to the file. (1)
2. The second parameter of function fwrite is the number of bytes to copy to

the file for one component. (2)

11.2 BINARY FILES

➢ A C operator sizeof can be applied to any data type name to find the number of
bytes that the current implementation uses for storage of the data type. (1)

1. The third parameter of fwrite is the number of values to write to the binary

file. (2)

2. The final argument to fwrite is a file pointer to the file being created, a file

previously opened in mode "wb" using function fopen .

11.2 BINARY FILES

printf("An integer requires %d bytes ", sizeof (int));

printf("in this implementation.\n");

➢ For example, if array score is an array of ten integers, the following statement
writes the entire array to the output file.

➢ Writing the value of an integer variable i to a binary file using fwrite is faster
than writing i to a text file.

➢ For example, if the value of i is 244 , the statement from the for loop copies the

internal binary representation of i from memory to the file accessed by binaryp .
(1)

11.2 BINARY FILES

fwrite(score, sizeof (int), 10, binaryp);

fwrite(&i, sizeof (int), 1, binaryp);

➢ Assuming textp is a pointer to a text output file, the following statement writes
the value of i to the file using four characters (four bytes). (1)

● Obviously, it takes more time to do the conversion and copy each character than

it does to copy the internal binary representation to disk.

● Also, twice as much disk space is required to store four characters as to store the
internal binary representation of the type int value (four bytes versus two).

11.2 BINARY FILES

fprintf(textp, "%d ", i);

● The negative side to binary side usage:

1. A binary file created on one computer is rarely readable on another type of

computer.

2. A person cannot proofread the file by printing it out or by examining it in a

word processor. (1)

3. A binary file cannot be created or modified in a word processor(2)

11.2 BINARY FILES

➢ The stdio library includes an input function fread that is comparable to fwrite .
➢ Function fread also requires four arguments:

1. Address of first memory cell to fill.
2. Size of one value.
3. Maximum number of elements to copy from the file into memory.
4. File pointer to a binary file opened in mode "rb" using function fopen

➢ Function fread returns as its value an integer indicating how many elements it

successfully copied from the file (1)

11.2 BINARY FILES

➢ It is very important not to mix file types.

• A binary file created (written) using fwrite must be read using fread .
• A text file created using fprintf must be read using a text file input function such

as fscanf .

● Table 11.5 p.637 compares the use of text and binary files for input and output
of data of various types. (1)

11.2 BINARY FILES

➢ In Example 1 of Table 11.5 , we use fopen to open our input files, and we store
the file pointers returned by fopen in variables of type FILE* .

➢ Notice that the type of the file pointer does not vary.

➢ Also notice that the form of the call to fopen for opening a binary file differs

from the call for opening a text file only in the value of the mode (second
argument). In fact, even this difference is optional .

11.2 BINARY FILES

➢ We see a similar situation in the opening of output files in Example 2.

➢ One consequence of this similarity is that the ability of the C compiler and run-
time support system to detect misuse of a file pointer is severely limited.

➢ It is the programmer’s responsibility to keep track of which type of file each file

pointer accesses and to use the right I/O function at the right time.

11.2 BINARY FILES

➢ In Examples 3 and 4 of Table 11.5 , we compare input/output of a user-defined
structure type as it is done with text and binary files.

➢ In Examples 5 and 6, we see input/output of an array of type double values (1)

➢ Example 7 demonstrates partially filling array nums and setting n to the

number of elements filled.

➢ Example 8 shows that all files—binary or text, input or output—are closed in
the same way.

11.2 BINARY FILES

➢ Remember to declare a file pointer variable (type FILE*) for each file you want
to process.

➢ In a program that manipulates both file types, choose names for your file pointers

that remind you of the type of file accessed. (2)

➢ It is easy to use the wrong library function with a file pointer. (1)

➢ It is also critical that you remember that library functions fscanf , fprintf , getc ,
and putc must be used for text I/O only;

➢ Functions fread and fwrite are applied exclusively to binary files. (3)

11.4 COMMON PROGRAMMING
ERRORS

➢ The fact that fprintf , fscanf , and getc take the file pointer as their first
argument while putc , fread , and fwrite take it as the last argument is definitely
confusing at first.

➢ Keep in mind that opening a file for output by calling fopen with a second

argument of "w" or "wb" typically results in a loss of any existing file whose
name matches the first argument.

➢ It is easy to forget that binary files cannot be created, viewed, or modified using

an editor or word processor program (1)

11.4 COMMON PROGRAMMING
ERRORS

Thanks!

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 11
Text and Binary
File Processing

Loading…

Chapter Objectives:

1. Learn about streams in C and their relationship to files and standard input and output
devices.

2. Review how scanf , fscanf and printf , fprintf are used to read and write data.

3. Review escape sequences and their use in format strings.

4. Review file pointer variables and learn how to use functions that process them to

make a backup copy of a text file.

5. Learn about binary files and understand the differences between binary and text files.

● A text file is a named collection of characters saved in secondary storage (e.g.,
on a disk).

● A text file has no fixed size.

● To mark the end of a text file, the computer places a special end-of-file

character, which we will denote <eof>, after the last character in the file.

● As you create a text file using an editor program, pressing the <return> or
<enter> key causes the newline character (represented by C as '\n') to be placed
in the file.

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

Loading…

 (1)

➢ The disk file consists of a sequence of characters occupying consecutive storage
locations on a track of the disk, as shown here:
 (2)

➢ We sometimes refer to a data source or destination as an input stream or an

output stream. (3)

➢ These general terms can be applied to files, to the terminal keyboard and
screen, and to any other sources of input data or destinations of output data.

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

● The Keyboard and Screen as Text Streams
➢ The name stdin represents the keyboard’s input stream.
➢ Two system streams are associated with the screen:

1. The “normal” output stream stdout
2. The “error” output stream stderr. (1)

➢ Normally at the keyboard, we enter one line of data at a time, pressing <return> or <enter> to

indicate the end of a data line. Pressing one of these keys inserts the newline character in system
stream stdin .

➢ The eof character could be used to indicate the end of data (2).

➢ Writing characters to the streams stdout and stderr causes a display on the screen in an

interactive program (i.e. Printf) (3)

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

● Newline and EOF

➢ The <newline> can be processed like any other character: It can be input using scanf with the
%c specifier, it can be compared to '\n' for equality, and it can be output using printf .

➢ Input of the special eof character is regarded as a failed operation, (1)

➢ The C run-time support system is under no obligation to provide an error message if the

program ignores the warning value and continues to attempt to get input from the stream in
question.

● Escape Sequences: p.626 (review)

● Formatting Output with printf: p.626 (review)

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

● File Pointer Variables: p. 627 (review):

• A pointer whose value equals NULL is called a null pointer (1)
• Using fopen with mode "w" to open for output a file that already exists usually causes loss of the

contents of the existing file. (2)

● Functions That Take File Pointer Arguments: p.629 (review)

● Closing a File: p.630 (review):
• Function fclose disposes of the structure that was created to store file access information and

carries out other “cleanup” operations.

● EXAMPLE 11.1, Figure 11.1

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

➢ When we use text files for storage of data, a program must expend a significant
amount of effort to convert the stream of characters from an input file into the
binary integers, type double mantissas and exponents, and character strings that
are the representation in main memory of the same data.

➢ The program must again expend time in converting the internal data format back

into a stream of characters for storage in an output file of text.

11.2 BINARY FILES

➢ We can avoid the unnecessary translation by using a binary file rather than a
text file. (1)

➢ A binary file is created by executing a program that stores directly in the file the
computer’s internal representation of each file component. (2)

11.2 BINARY FILES

Loading…

➢ the second argument to fopen is either "wb" (write binary) for output files
or "rb" (read binary) for input files.

➢ However, a different stdio library function is used for copying values into the

file: function fwrite , which has four input parameters.

1. The first parameter is the address of the first memory cell whose contents

are to be copied to the file. (1)
2. The second parameter of function fwrite is the number of bytes to copy to

the file for one component. (2)

11.2 BINARY FILES

➢ A C operator sizeof can be applied to any data type name to find the number of
bytes that the current implementation uses for storage of the data type. (1)

1. The third parameter of fwrite is the number of values to write to the binary

file. (2)

2. The final argument to fwrite is a file pointer to the file being created, a file

previously opened in mode "wb" using function fopen .

11.2 BINARY FILES

printf("An integer requires %d bytes ", sizeof (int));

printf("in this implementation.\n");

➢ For example, if array score is an array of ten integers, the following statement
writes the entire array to the output file.

➢ Writing the value of an integer variable i to a binary file using fwrite is faster
than writing i to a text file.

➢ For example, if the value of i is 244 , the statement from the for loop copies the

internal binary representation of i from memory to the file accessed by binaryp .
(1)

11.2 BINARY FILES

fwrite(score, sizeof (int), 10, binaryp);

fwrite(&i, sizeof (int), 1, binaryp);

➢ Assuming textp is a pointer to a text output file, the following statement writes
the value of i to the file using four characters (four bytes). (1)

● Obviously, it takes more time to do the conversion and copy each character than

it does to copy the internal binary representation to disk.

● Also, twice as much disk space is required to store four characters as to store the
internal binary representation of the type int value (four bytes versus two).

11.2 BINARY FILES

fprintf(textp, "%d ", i);

● The negative side to binary side usage:

1. A binary file created on one computer is rarely readable on another type of

computer.

2. A person cannot proofread the file by printing it out or by examining it in a

word processor. (1)

3. A binary file cannot be created or modified in a word processor(2)

11.2 BINARY FILES

➢ The stdio library includes an input function fread that is comparable to fwrite .
➢ Function fread also requires four arguments:

1. Address of first memory cell to fill.
2. Size of one value.
3. Maximum number of elements to copy from the file into memory.
4. File pointer to a binary file opened in mode "rb" using function fopen

➢ Function fread returns as its value an integer indicating how many elements it

successfully copied from the file (1)

11.2 BINARY FILES

➢ It is very important not to mix file types.

• A binary file created (written) using fwrite must be read using fread .
• A text file created using fprintf must be read using a text file input function such

as fscanf .

● Table 11.5 p.637 compares the use of text and binary files for input and output
of data of various types. (1)

11.2 BINARY FILES

➢ In Example 1 of Table 11.5 , we use fopen to open our input files, and we store
the file pointers returned by fopen in variables of type FILE* .

➢ Notice that the type of the file pointer does not vary.

➢ Also notice that the form of the call to fopen for opening a binary file differs

from the call for opening a text file only in the value of the mode (second
argument). In fact, even this difference is optional .

11.2 BINARY FILES

➢ We see a similar situation in the opening of output files in Example 2.

➢ One consequence of this similarity is that the ability of the C compiler and run-
time support system to detect misuse of a file pointer is severely limited.

➢ It is the programmer’s responsibility to keep track of which type of file each file

pointer accesses and to use the right I/O function at the right time.

11.2 BINARY FILES

➢ In Examples 3 and 4 of Table 11.5 , we compare input/output of a user-defined
structure type as it is done with text and binary files.

➢ In Examples 5 and 6, we see input/output of an array of type double values (1)

➢ Example 7 demonstrates partially filling array nums and setting n to the

number of elements filled.

➢ Example 8 shows that all files—binary or text, input or output—are closed in
the same way.

11.2 BINARY FILES

➢ Remember to declare a file pointer variable (type FILE*) for each file you want
to process.

➢ In a program that manipulates both file types, choose names for your file pointers

that remind you of the type of file accessed. (2)

➢ It is easy to use the wrong library function with a file pointer. (1)

➢ It is also critical that you remember that library functions fscanf , fprintf , getc ,
and putc must be used for text I/O only;

➢ Functions fread and fwrite are applied exclusively to binary files. (3)

11.4 COMMON PROGRAMMING
ERRORS

➢ The fact that fprintf , fscanf , and getc take the file pointer as their first
argument while putc , fread , and fwrite take it as the last argument is definitely
confusing at first.

➢ Keep in mind that opening a file for output by calling fopen with a second

argument of "w" or "wb" typically results in a loss of any existing file whose
name matches the first argument.

➢ It is easy to forget that binary files cannot be created, viewed, or modified using

an editor or word processor program (1)

11.4 COMMON PROGRAMMING
ERRORS

Thanks!

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 11
Text and Binary
File Processing

Loading…

Chapter Objectives:

1. Learn about streams in C and their relationship to files and standard input and output
devices.

2. Review how scanf , fscanf and printf , fprintf are used to read and write data.

3. Review escape sequences and their use in format strings.

4. Review file pointer variables and learn how to use functions that process them to

make a backup copy of a text file.

5. Learn about binary files and understand the differences between binary and text files.

● A text file is a named collection of characters saved in secondary storage (e.g.,
on a disk).

● A text file has no fixed size.

● To mark the end of a text file, the computer places a special end-of-file

character, which we will denote <eof>, after the last character in the file.

● As you create a text file using an editor program, pressing the <return> or
<enter> key causes the newline character (represented by C as '\n') to be placed
in the file.

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

Loading…

 (1)

➢ The disk file consists of a sequence of characters occupying consecutive storage
locations on a track of the disk, as shown here:
 (2)

➢ We sometimes refer to a data source or destination as an input stream or an

output stream. (3)

➢ These general terms can be applied to files, to the terminal keyboard and
screen, and to any other sources of input data or destinations of output data.

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

● The Keyboard and Screen as Text Streams
➢ The name stdin represents the keyboard’s input stream.
➢ Two system streams are associated with the screen:

1. The “normal” output stream stdout
2. The “error” output stream stderr. (1)

➢ Normally at the keyboard, we enter one line of data at a time, pressing <return> or <enter> to

indicate the end of a data line. Pressing one of these keys inserts the newline character in system
stream stdin .

➢ The eof character could be used to indicate the end of data (2).

➢ Writing characters to the streams stdout and stderr causes a display on the screen in an

interactive program (i.e. Printf) (3)

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

● Newline and EOF

➢ The <newline> can be processed like any other character: It can be input using scanf with the
%c specifier, it can be compared to '\n' for equality, and it can be output using printf .

➢ Input of the special eof character is regarded as a failed operation, (1)

➢ The C run-time support system is under no obligation to provide an error message if the

program ignores the warning value and continues to attempt to get input from the stream in
question.

● Escape Sequences: p.626 (review)

● Formatting Output with printf: p.626 (review)

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

● File Pointer Variables: p. 627 (review):

• A pointer whose value equals NULL is called a null pointer (1)
• Using fopen with mode "w" to open for output a file that already exists usually causes loss of the

contents of the existing file. (2)

● Functions That Take File Pointer Arguments: p.629 (review)

● Closing a File: p.630 (review):
• Function fclose disposes of the structure that was created to store file access information and

carries out other “cleanup” operations.

● EXAMPLE 11.1, Figure 11.1

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

➢ When we use text files for storage of data, a program must expend a significant
amount of effort to convert the stream of characters from an input file into the
binary integers, type double mantissas and exponents, and character strings that
are the representation in main memory of the same data.

➢ The program must again expend time in converting the internal data format back

into a stream of characters for storage in an output file of text.

11.2 BINARY FILES

➢ We can avoid the unnecessary translation by using a binary file rather than a
text file. (1)

➢ A binary file is created by executing a program that stores directly in the file the
computer’s internal representation of each file component. (2)

11.2 BINARY FILES

Loading…

➢ the second argument to fopen is either "wb" (write binary) for output files
or "rb" (read binary) for input files.

➢ However, a different stdio library function is used for copying values into the

file: function fwrite , which has four input parameters.

1. The first parameter is the address of the first memory cell whose contents

are to be copied to the file. (1)
2. The second parameter of function fwrite is the number of bytes to copy to

the file for one component. (2)

11.2 BINARY FILES

➢ A C operator sizeof can be applied to any data type name to find the number of
bytes that the current implementation uses for storage of the data type. (1)

1. The third parameter of fwrite is the number of values to write to the binary

file. (2)

2. The final argument to fwrite is a file pointer to the file being created, a file

previously opened in mode "wb" using function fopen .

11.2 BINARY FILES

printf("An integer requires %d bytes ", sizeof (int));

printf("in this implementation.\n");

➢ For example, if array score is an array of ten integers, the following statement
writes the entire array to the output file.

➢ Writing the value of an integer variable i to a binary file using fwrite is faster
than writing i to a text file.

➢ For example, if the value of i is 244 , the statement from the for loop copies the

internal binary representation of i from memory to the file accessed by binaryp .
(1)

11.2 BINARY FILES

fwrite(score, sizeof (int), 10, binaryp);

fwrite(&i, sizeof (int), 1, binaryp);

➢ Assuming textp is a pointer to a text output file, the following statement writes
the value of i to the file using four characters (four bytes). (1)

● Obviously, it takes more time to do the conversion and copy each character than

it does to copy the internal binary representation to disk.

● Also, twice as much disk space is required to store four characters as to store the
internal binary representation of the type int value (four bytes versus two).

11.2 BINARY FILES

fprintf(textp, "%d ", i);

● The negative side to binary side usage:

1. A binary file created on one computer is rarely readable on another type of

computer.

2. A person cannot proofread the file by printing it out or by examining it in a

word processor. (1)

3. A binary file cannot be created or modified in a word processor(2)

11.2 BINARY FILES

➢ The stdio library includes an input function fread that is comparable to fwrite .
➢ Function fread also requires four arguments:

1. Address of first memory cell to fill.
2. Size of one value.
3. Maximum number of elements to copy from the file into memory.
4. File pointer to a binary file opened in mode "rb" using function fopen

➢ Function fread returns as its value an integer indicating how many elements it

successfully copied from the file (1)

11.2 BINARY FILES

➢ It is very important not to mix file types.

• A binary file created (written) using fwrite must be read using fread .
• A text file created using fprintf must be read using a text file input function such

as fscanf .

● Table 11.5 p.637 compares the use of text and binary files for input and output
of data of various types. (1)

11.2 BINARY FILES

➢ In Example 1 of Table 11.5 , we use fopen to open our input files, and we store
the file pointers returned by fopen in variables of type FILE* .

➢ Notice that the type of the file pointer does not vary.

➢ Also notice that the form of the call to fopen for opening a binary file differs

from the call for opening a text file only in the value of the mode (second
argument). In fact, even this difference is optional .

11.2 BINARY FILES

➢ We see a similar situation in the opening of output files in Example 2.

➢ One consequence of this similarity is that the ability of the C compiler and run-
time support system to detect misuse of a file pointer is severely limited.

➢ It is the programmer’s responsibility to keep track of which type of file each file

pointer accesses and to use the right I/O function at the right time.

11.2 BINARY FILES

➢ In Examples 3 and 4 of Table 11.5 , we compare input/output of a user-defined
structure type as it is done with text and binary files.

➢ In Examples 5 and 6, we see input/output of an array of type double values (1)

➢ Example 7 demonstrates partially filling array nums and setting n to the

number of elements filled.

➢ Example 8 shows that all files—binary or text, input or output—are closed in
the same way.

11.2 BINARY FILES

➢ Remember to declare a file pointer variable (type FILE*) for each file you want
to process.

➢ In a program that manipulates both file types, choose names for your file pointers

that remind you of the type of file accessed. (2)

➢ It is easy to use the wrong library function with a file pointer. (1)

➢ It is also critical that you remember that library functions fscanf , fprintf , getc ,
and putc must be used for text I/O only;

➢ Functions fread and fwrite are applied exclusively to binary files. (3)

11.4 COMMON PROGRAMMING
ERRORS

➢ The fact that fprintf , fscanf , and getc take the file pointer as their first
argument while putc , fread , and fwrite take it as the last argument is definitely
confusing at first.

➢ Keep in mind that opening a file for output by calling fopen with a second

argument of "w" or "wb" typically results in a loss of any existing file whose
name matches the first argument.

➢ It is easy to forget that binary files cannot be created, viewed, or modified using

an editor or word processor program (1)

11.4 COMMON PROGRAMMING
ERRORS

Thanks!

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 11
Text and Binary
File Processing

Loading…

Chapter Objectives:

1. Learn about streams in C and their relationship to files and standard input and output
devices.

2. Review how scanf , fscanf and printf , fprintf are used to read and write data.

3. Review escape sequences and their use in format strings.

4. Review file pointer variables and learn how to use functions that process them to

make a backup copy of a text file.

5. Learn about binary files and understand the differences between binary and text files.

● A text file is a named collection of characters saved in secondary storage (e.g.,
on a disk).

● A text file has no fixed size.

● To mark the end of a text file, the computer places a special end-of-file

character, which we will denote <eof>, after the last character in the file.

● As you create a text file using an editor program, pressing the <return> or
<enter> key causes the newline character (represented by C as '\n') to be placed
in the file.

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

Loading…

 (1)

➢ The disk file consists of a sequence of characters occupying consecutive storage
locations on a track of the disk, as shown here:
 (2)

➢ We sometimes refer to a data source or destination as an input stream or an

output stream. (3)

➢ These general terms can be applied to files, to the terminal keyboard and
screen, and to any other sources of input data or destinations of output data.

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

● The Keyboard and Screen as Text Streams
➢ The name stdin represents the keyboard’s input stream.
➢ Two system streams are associated with the screen:

1. The “normal” output stream stdout
2. The “error” output stream stderr. (1)

➢ Normally at the keyboard, we enter one line of data at a time, pressing <return> or <enter> to

indicate the end of a data line. Pressing one of these keys inserts the newline character in system
stream stdin .

➢ The eof character could be used to indicate the end of data (2).

➢ Writing characters to the streams stdout and stderr causes a display on the screen in an

interactive program (i.e. Printf) (3)

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

● Newline and EOF

➢ The <newline> can be processed like any other character: It can be input using scanf with the
%c specifier, it can be compared to '\n' for equality, and it can be output using printf .

➢ Input of the special eof character is regarded as a failed operation, (1)

➢ The C run-time support system is under no obligation to provide an error message if the

program ignores the warning value and continues to attempt to get input from the stream in
question.

● Escape Sequences: p.626 (review)

● Formatting Output with printf: p.626 (review)

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

● File Pointer Variables: p. 627 (review):

• A pointer whose value equals NULL is called a null pointer (1)
• Using fopen with mode "w" to open for output a file that already exists usually causes loss of the

contents of the existing file. (2)

● Functions That Take File Pointer Arguments: p.629 (review)

● Closing a File: p.630 (review):
• Function fclose disposes of the structure that was created to store file access information and

carries out other “cleanup” operations.

● EXAMPLE 11.1, Figure 11.1

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

➢ When we use text files for storage of data, a program must expend a significant
amount of effort to convert the stream of characters from an input file into the
binary integers, type double mantissas and exponents, and character strings that
are the representation in main memory of the same data.

➢ The program must again expend time in converting the internal data format back

into a stream of characters for storage in an output file of text.

11.2 BINARY FILES

➢ We can avoid the unnecessary translation by using a binary file rather than a
text file. (1)

➢ A binary file is created by executing a program that stores directly in the file the
computer’s internal representation of each file component. (2)

11.2 BINARY FILES

Loading…

➢ the second argument to fopen is either "wb" (write binary) for output files
or "rb" (read binary) for input files.

➢ However, a different stdio library function is used for copying values into the

file: function fwrite , which has four input parameters.

1. The first parameter is the address of the first memory cell whose contents

are to be copied to the file. (1)
2. The second parameter of function fwrite is the number of bytes to copy to

the file for one component. (2)

11.2 BINARY FILES

➢ A C operator sizeof can be applied to any data type name to find the number of
bytes that the current implementation uses for storage of the data type. (1)

1. The third parameter of fwrite is the number of values to write to the binary

file. (2)

2. The final argument to fwrite is a file pointer to the file being created, a file

previously opened in mode "wb" using function fopen .

11.2 BINARY FILES

printf("An integer requires %d bytes ", sizeof (int));

printf("in this implementation.\n");

➢ For example, if array score is an array of ten integers, the following statement
writes the entire array to the output file.

➢ Writing the value of an integer variable i to a binary file using fwrite is faster
than writing i to a text file.

➢ For example, if the value of i is 244 , the statement from the for loop copies the

internal binary representation of i from memory to the file accessed by binaryp .
(1)

11.2 BINARY FILES

fwrite(score, sizeof (int), 10, binaryp);

fwrite(&i, sizeof (int), 1, binaryp);

➢ Assuming textp is a pointer to a text output file, the following statement writes
the value of i to the file using four characters (four bytes). (1)

● Obviously, it takes more time to do the conversion and copy each character than

it does to copy the internal binary representation to disk.

● Also, twice as much disk space is required to store four characters as to store the
internal binary representation of the type int value (four bytes versus two).

11.2 BINARY FILES

fprintf(textp, "%d ", i);

● The negative side to binary side usage:

1. A binary file created on one computer is rarely readable on another type of

computer.

2. A person cannot proofread the file by printing it out or by examining it in a

word processor. (1)

3. A binary file cannot be created or modified in a word processor(2)

11.2 BINARY FILES

➢ The stdio library includes an input function fread that is comparable to fwrite .
➢ Function fread also requires four arguments:

1. Address of first memory cell to fill.
2. Size of one value.
3. Maximum number of elements to copy from the file into memory.
4. File pointer to a binary file opened in mode "rb" using function fopen

➢ Function fread returns as its value an integer indicating how many elements it

successfully copied from the file (1)

11.2 BINARY FILES

➢ It is very important not to mix file types.

• A binary file created (written) using fwrite must be read using fread .
• A text file created using fprintf must be read using a text file input function such

as fscanf .

● Table 11.5 p.637 compares the use of text and binary files for input and output
of data of various types. (1)

11.2 BINARY FILES

➢ In Example 1 of Table 11.5 , we use fopen to open our input files, and we store
the file pointers returned by fopen in variables of type FILE* .

➢ Notice that the type of the file pointer does not vary.

➢ Also notice that the form of the call to fopen for opening a binary file differs

from the call for opening a text file only in the value of the mode (second
argument). In fact, even this difference is optional .

11.2 BINARY FILES

➢ We see a similar situation in the opening of output files in Example 2.

➢ One consequence of this similarity is that the ability of the C compiler and run-
time support system to detect misuse of a file pointer is severely limited.

➢ It is the programmer’s responsibility to keep track of which type of file each file

pointer accesses and to use the right I/O function at the right time.

11.2 BINARY FILES

➢ In Examples 3 and 4 of Table 11.5 , we compare input/output of a user-defined
structure type as it is done with text and binary files.

➢ In Examples 5 and 6, we see input/output of an array of type double values (1)

➢ Example 7 demonstrates partially filling array nums and setting n to the

number of elements filled.

➢ Example 8 shows that all files—binary or text, input or output—are closed in
the same way.

11.2 BINARY FILES

➢ Remember to declare a file pointer variable (type FILE*) for each file you want
to process.

➢ In a program that manipulates both file types, choose names for your file pointers

that remind you of the type of file accessed. (2)

➢ It is easy to use the wrong library function with a file pointer. (1)

➢ It is also critical that you remember that library functions fscanf , fprintf , getc ,
and putc must be used for text I/O only;

➢ Functions fread and fwrite are applied exclusively to binary files. (3)

11.4 COMMON PROGRAMMING
ERRORS

➢ The fact that fprintf , fscanf , and getc take the file pointer as their first
argument while putc , fread , and fwrite take it as the last argument is definitely
confusing at first.

➢ Keep in mind that opening a file for output by calling fopen with a second

argument of "w" or "wb" typically results in a loss of any existing file whose
name matches the first argument.

➢ It is easy to forget that binary files cannot be created, viewed, or modified using

an editor or word processor program (1)

11.4 COMMON PROGRAMMING
ERRORS

Thanks!

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 11
Text and Binary
File Processing

Loading…

Chapter Objectives:

1. Learn about streams in C and their relationship to files and standard input and output
devices.

2. Review how scanf , fscanf and printf , fprintf are used to read and write data.

3. Review escape sequences and their use in format strings.

4. Review file pointer variables and learn how to use functions that process them to

make a backup copy of a text file.

5. Learn about binary files and understand the differences between binary and text files.

● A text file is a named collection of characters saved in secondary storage (e.g.,
on a disk).

● A text file has no fixed size.

● To mark the end of a text file, the computer places a special end-of-file

character, which we will denote <eof>, after the last character in the file.

● As you create a text file using an editor program, pressing the <return> or
<enter> key causes the newline character (represented by C as '\n') to be placed
in the file.

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

Loading…

 (1)

➢ The disk file consists of a sequence of characters occupying consecutive storage
locations on a track of the disk, as shown here:
 (2)

➢ We sometimes refer to a data source or destination as an input stream or an

output stream. (3)

➢ These general terms can be applied to files, to the terminal keyboard and
screen, and to any other sources of input data or destinations of output data.

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

● The Keyboard and Screen as Text Streams
➢ The name stdin represents the keyboard’s input stream.
➢ Two system streams are associated with the screen:

1. The “normal” output stream stdout
2. The “error” output stream stderr. (1)

➢ Normally at the keyboard, we enter one line of data at a time, pressing <return> or <enter> to

indicate the end of a data line. Pressing one of these keys inserts the newline character in system
stream stdin .

➢ The eof character could be used to indicate the end of data (2).

➢ Writing characters to the streams stdout and stderr causes a display on the screen in an

interactive program (i.e. Printf) (3)

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

● Newline and EOF

➢ The <newline> can be processed like any other character: It can be input using scanf with the
%c specifier, it can be compared to '\n' for equality, and it can be output using printf .

➢ Input of the special eof character is regarded as a failed operation, (1)

➢ The C run-time support system is under no obligation to provide an error message if the

program ignores the warning value and continues to attempt to get input from the stream in
question.

● Escape Sequences: p.626 (review)

● Formatting Output with printf: p.626 (review)

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

● File Pointer Variables: p. 627 (review):

• A pointer whose value equals NULL is called a null pointer (1)
• Using fopen with mode "w" to open for output a file that already exists usually causes loss of the

contents of the existing file. (2)

● Functions That Take File Pointer Arguments: p.629 (review)

● Closing a File: p.630 (review):
• Function fclose disposes of the structure that was created to store file access information and

carries out other “cleanup” operations.

● EXAMPLE 11.1, Figure 11.1

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

➢ When we use text files for storage of data, a program must expend a significant
amount of effort to convert the stream of characters from an input file into the
binary integers, type double mantissas and exponents, and character strings that
are the representation in main memory of the same data.

➢ The program must again expend time in converting the internal data format back

into a stream of characters for storage in an output file of text.

11.2 BINARY FILES

➢ We can avoid the unnecessary translation by using a binary file rather than a
text file. (1)

➢ A binary file is created by executing a program that stores directly in the file the
computer’s internal representation of each file component. (2)

11.2 BINARY FILES

Loading…

➢ the second argument to fopen is either "wb" (write binary) for output files
or "rb" (read binary) for input files.

➢ However, a different stdio library function is used for copying values into the

file: function fwrite , which has four input parameters.

1. The first parameter is the address of the first memory cell whose contents

are to be copied to the file. (1)
2. The second parameter of function fwrite is the number of bytes to copy to

the file for one component. (2)

11.2 BINARY FILES

➢ A C operator sizeof can be applied to any data type name to find the number of
bytes that the current implementation uses for storage of the data type. (1)

1. The third parameter of fwrite is the number of values to write to the binary

file. (2)

2. The final argument to fwrite is a file pointer to the file being created, a file

previously opened in mode "wb" using function fopen .

11.2 BINARY FILES

printf("An integer requires %d bytes ", sizeof (int));

printf("in this implementation.\n");

➢ For example, if array score is an array of ten integers, the following statement
writes the entire array to the output file.

➢ Writing the value of an integer variable i to a binary file using fwrite is faster
than writing i to a text file.

➢ For example, if the value of i is 244 , the statement from the for loop copies the

internal binary representation of i from memory to the file accessed by binaryp .
(1)

11.2 BINARY FILES

fwrite(score, sizeof (int), 10, binaryp);

fwrite(&i, sizeof (int), 1, binaryp);

➢ Assuming textp is a pointer to a text output file, the following statement writes
the value of i to the file using four characters (four bytes). (1)

● Obviously, it takes more time to do the conversion and copy each character than

it does to copy the internal binary representation to disk.

● Also, twice as much disk space is required to store four characters as to store the
internal binary representation of the type int value (four bytes versus two).

11.2 BINARY FILES

fprintf(textp, "%d ", i);

● The negative side to binary side usage:

1. A binary file created on one computer is rarely readable on another type of

computer.

2. A person cannot proofread the file by printing it out or by examining it in a

word processor. (1)

3. A binary file cannot be created or modified in a word processor(2)

11.2 BINARY FILES

➢ The stdio library includes an input function fread that is comparable to fwrite .
➢ Function fread also requires four arguments:

1. Address of first memory cell to fill.
2. Size of one value.
3. Maximum number of elements to copy from the file into memory.
4. File pointer to a binary file opened in mode "rb" using function fopen

➢ Function fread returns as its value an integer indicating how many elements it

successfully copied from the file (1)

11.2 BINARY FILES

➢ It is very important not to mix file types.

• A binary file created (written) using fwrite must be read using fread .
• A text file created using fprintf must be read using a text file input function such

as fscanf .

● Table 11.5 p.637 compares the use of text and binary files for input and output
of data of various types. (1)

11.2 BINARY FILES

➢ In Example 1 of Table 11.5 , we use fopen to open our input files, and we store
the file pointers returned by fopen in variables of type FILE* .

➢ Notice that the type of the file pointer does not vary.

➢ Also notice that the form of the call to fopen for opening a binary file differs

from the call for opening a text file only in the value of the mode (second
argument). In fact, even this difference is optional .

11.2 BINARY FILES

➢ We see a similar situation in the opening of output files in Example 2.

➢ One consequence of this similarity is that the ability of the C compiler and run-
time support system to detect misuse of a file pointer is severely limited.

➢ It is the programmer’s responsibility to keep track of which type of file each file

pointer accesses and to use the right I/O function at the right time.

11.2 BINARY FILES

➢ In Examples 3 and 4 of Table 11.5 , we compare input/output of a user-defined
structure type as it is done with text and binary files.

➢ In Examples 5 and 6, we see input/output of an array of type double values (1)

➢ Example 7 demonstrates partially filling array nums and setting n to the

number of elements filled.

➢ Example 8 shows that all files—binary or text, input or output—are closed in
the same way.

11.2 BINARY FILES

➢ Remember to declare a file pointer variable (type FILE*) for each file you want
to process.

➢ In a program that manipulates both file types, choose names for your file pointers

that remind you of the type of file accessed. (2)

➢ It is easy to use the wrong library function with a file pointer. (1)

➢ It is also critical that you remember that library functions fscanf , fprintf , getc ,
and putc must be used for text I/O only;

➢ Functions fread and fwrite are applied exclusively to binary files. (3)

11.4 COMMON PROGRAMMING
ERRORS

➢ The fact that fprintf , fscanf , and getc take the file pointer as their first
argument while putc , fread , and fwrite take it as the last argument is definitely
confusing at first.

➢ Keep in mind that opening a file for output by calling fopen with a second

argument of "w" or "wb" typically results in a loss of any existing file whose
name matches the first argument.

➢ It is easy to forget that binary files cannot be created, viewed, or modified using

an editor or word processor program (1)

11.4 COMMON PROGRAMMING
ERRORS

Thanks!

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 11
Text and Binary
File Processing

Loading…

Chapter Objectives:

1. Learn about streams in C and their relationship to files and standard input and output
devices.

2. Review how scanf , fscanf and printf , fprintf are used to read and write data.

3. Review escape sequences and their use in format strings.

4. Review file pointer variables and learn how to use functions that process them to

make a backup copy of a text file.

5. Learn about binary files and understand the differences between binary and text files.

● A text file is a named collection of characters saved in secondary storage (e.g.,
on a disk).

● A text file has no fixed size.

● To mark the end of a text file, the computer places a special end-of-file

character, which we will denote <eof>, after the last character in the file.

● As you create a text file using an editor program, pressing the <return> or
<enter> key causes the newline character (represented by C as '\n') to be placed
in the file.

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

Loading…

 (1)

➢ The disk file consists of a sequence of characters occupying consecutive storage
locations on a track of the disk, as shown here:
 (2)

➢ We sometimes refer to a data source or destination as an input stream or an

output stream. (3)

➢ These general terms can be applied to files, to the terminal keyboard and
screen, and to any other sources of input data or destinations of output data.

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

● The Keyboard and Screen as Text Streams
➢ The name stdin represents the keyboard’s input stream.
➢ Two system streams are associated with the screen:

1. The “normal” output stream stdout
2. The “error” output stream stderr. (1)

➢ Normally at the keyboard, we enter one line of data at a time, pressing <return> or <enter> to

indicate the end of a data line. Pressing one of these keys inserts the newline character in system
stream stdin .

➢ The eof character could be used to indicate the end of data (2).

➢ Writing characters to the streams stdout and stderr causes a display on the screen in an

interactive program (i.e. Printf) (3)

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

● Newline and EOF

➢ The <newline> can be processed like any other character: It can be input using scanf with the
%c specifier, it can be compared to '\n' for equality, and it can be output using printf .

➢ Input of the special eof character is regarded as a failed operation, (1)

➢ The C run-time support system is under no obligation to provide an error message if the

program ignores the warning value and continues to attempt to get input from the stream in
question.

● Escape Sequences: p.626 (review)

● Formatting Output with printf: p.626 (review)

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

● File Pointer Variables: p. 627 (review):

• A pointer whose value equals NULL is called a null pointer (1)
• Using fopen with mode "w" to open for output a file that already exists usually causes loss of the

contents of the existing file. (2)

● Functions That Take File Pointer Arguments: p.629 (review)

● Closing a File: p.630 (review):
• Function fclose disposes of the structure that was created to store file access information and

carries out other “cleanup” operations.

● EXAMPLE 11.1, Figure 11.1

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

➢ When we use text files for storage of data, a program must expend a significant
amount of effort to convert the stream of characters from an input file into the
binary integers, type double mantissas and exponents, and character strings that
are the representation in main memory of the same data.

➢ The program must again expend time in converting the internal data format back

into a stream of characters for storage in an output file of text.

11.2 BINARY FILES

➢ We can avoid the unnecessary translation by using a binary file rather than a
text file. (1)

➢ A binary file is created by executing a program that stores directly in the file the
computer’s internal representation of each file component. (2)

11.2 BINARY FILES

Loading…

➢ the second argument to fopen is either "wb" (write binary) for output files
or "rb" (read binary) for input files.

➢ However, a different stdio library function is used for copying values into the

file: function fwrite , which has four input parameters.

1. The first parameter is the address of the first memory cell whose contents

are to be copied to the file. (1)
2. The second parameter of function fwrite is the number of bytes to copy to

the file for one component. (2)

11.2 BINARY FILES

➢ A C operator sizeof can be applied to any data type name to find the number of
bytes that the current implementation uses for storage of the data type. (1)

1. The third parameter of fwrite is the number of values to write to the binary

file. (2)

2. The final argument to fwrite is a file pointer to the file being created, a file

previously opened in mode "wb" using function fopen .

11.2 BINARY FILES

printf("An integer requires %d bytes ", sizeof (int));

printf("in this implementation.\n");

➢ For example, if array score is an array of ten integers, the following statement
writes the entire array to the output file.

➢ Writing the value of an integer variable i to a binary file using fwrite is faster
than writing i to a text file.

➢ For example, if the value of i is 244 , the statement from the for loop copies the

internal binary representation of i from memory to the file accessed by binaryp .
(1)

11.2 BINARY FILES

fwrite(score, sizeof (int), 10, binaryp);

fwrite(&i, sizeof (int), 1, binaryp);

➢ Assuming textp is a pointer to a text output file, the following statement writes
the value of i to the file using four characters (four bytes). (1)

● Obviously, it takes more time to do the conversion and copy each character than

it does to copy the internal binary representation to disk.

● Also, twice as much disk space is required to store four characters as to store the
internal binary representation of the type int value (four bytes versus two).

11.2 BINARY FILES

fprintf(textp, "%d ", i);

● The negative side to binary side usage:

1. A binary file created on one computer is rarely readable on another type of

computer.

2. A person cannot proofread the file by printing it out or by examining it in a

word processor. (1)

3. A binary file cannot be created or modified in a word processor(2)

11.2 BINARY FILES

➢ The stdio library includes an input function fread that is comparable to fwrite .
➢ Function fread also requires four arguments:

1. Address of first memory cell to fill.
2. Size of one value.
3. Maximum number of elements to copy from the file into memory.
4. File pointer to a binary file opened in mode "rb" using function fopen

➢ Function fread returns as its value an integer indicating how many elements it

successfully copied from the file (1)

11.2 BINARY FILES

➢ It is very important not to mix file types.

• A binary file created (written) using fwrite must be read using fread .
• A text file created using fprintf must be read using a text file input function such

as fscanf .

● Table 11.5 p.637 compares the use of text and binary files for input and output
of data of various types. (1)

11.2 BINARY FILES

➢ In Example 1 of Table 11.5 , we use fopen to open our input files, and we store
the file pointers returned by fopen in variables of type FILE* .

➢ Notice that the type of the file pointer does not vary.

➢ Also notice that the form of the call to fopen for opening a binary file differs

from the call for opening a text file only in the value of the mode (second
argument). In fact, even this difference is optional .

11.2 BINARY FILES

➢ We see a similar situation in the opening of output files in Example 2.

➢ One consequence of this similarity is that the ability of the C compiler and run-
time support system to detect misuse of a file pointer is severely limited.

➢ It is the programmer’s responsibility to keep track of which type of file each file

pointer accesses and to use the right I/O function at the right time.

11.2 BINARY FILES

➢ In Examples 3 and 4 of Table 11.5 , we compare input/output of a user-defined
structure type as it is done with text and binary files.

➢ In Examples 5 and 6, we see input/output of an array of type double values (1)

➢ Example 7 demonstrates partially filling array nums and setting n to the

number of elements filled.

➢ Example 8 shows that all files—binary or text, input or output—are closed in
the same way.

11.2 BINARY FILES

➢ Remember to declare a file pointer variable (type FILE*) for each file you want
to process.

➢ In a program that manipulates both file types, choose names for your file pointers

that remind you of the type of file accessed. (2)

➢ It is easy to use the wrong library function with a file pointer. (1)

➢ It is also critical that you remember that library functions fscanf , fprintf , getc ,
and putc must be used for text I/O only;

➢ Functions fread and fwrite are applied exclusively to binary files. (3)

11.4 COMMON PROGRAMMING
ERRORS

➢ The fact that fprintf , fscanf , and getc take the file pointer as their first
argument while putc , fread , and fwrite take it as the last argument is definitely
confusing at first.

➢ Keep in mind that opening a file for output by calling fopen with a second

argument of "w" or "wb" typically results in a loss of any existing file whose
name matches the first argument.

➢ It is easy to forget that binary files cannot be created, viewed, or modified using

an editor or word processor program (1)

11.4 COMMON PROGRAMMING
ERRORS

Thanks!

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 11
Text and Binary
File Processing

Loading…

Chapter Objectives:

1. Learn about streams in C and their relationship to files and standard input and output
devices.

2. Review how scanf , fscanf and printf , fprintf are used to read and write data.

3. Review escape sequences and their use in format strings.

4. Review file pointer variables and learn how to use functions that process them to

make a backup copy of a text file.

5. Learn about binary files and understand the differences between binary and text files.

● A text file is a named collection of characters saved in secondary storage (e.g.,
on a disk).

● A text file has no fixed size.

● To mark the end of a text file, the computer places a special end-of-file

character, which we will denote <eof>, after the last character in the file.

● As you create a text file using an editor program, pressing the <return> or
<enter> key causes the newline character (represented by C as '\n') to be placed
in the file.

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

Loading…

 (1)

➢ The disk file consists of a sequence of characters occupying consecutive storage
locations on a track of the disk, as shown here:
 (2)

➢ We sometimes refer to a data source or destination as an input stream or an

output stream. (3)

➢ These general terms can be applied to files, to the terminal keyboard and
screen, and to any other sources of input data or destinations of output data.

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

● The Keyboard and Screen as Text Streams
➢ The name stdin represents the keyboard’s input stream.
➢ Two system streams are associated with the screen:

1. The “normal” output stream stdout
2. The “error” output stream stderr. (1)

➢ Normally at the keyboard, we enter one line of data at a time, pressing <return> or <enter> to

indicate the end of a data line. Pressing one of these keys inserts the newline character in system
stream stdin .

➢ The eof character could be used to indicate the end of data (2).

➢ Writing characters to the streams stdout and stderr causes a display on the screen in an

interactive program (i.e. Printf) (3)

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

● Newline and EOF

➢ The <newline> can be processed like any other character: It can be input using scanf with the
%c specifier, it can be compared to '\n' for equality, and it can be output using printf .

➢ Input of the special eof character is regarded as a failed operation, (1)

➢ The C run-time support system is under no obligation to provide an error message if the

program ignores the warning value and continues to attempt to get input from the stream in
question.

● Escape Sequences: p.626 (review)

● Formatting Output with printf: p.626 (review)

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

● File Pointer Variables: p. 627 (review):

• A pointer whose value equals NULL is called a null pointer (1)
• Using fopen with mode "w" to open for output a file that already exists usually causes loss of the

contents of the existing file. (2)

● Functions That Take File Pointer Arguments: p.629 (review)

● Closing a File: p.630 (review):
• Function fclose disposes of the structure that was created to store file access information and

carries out other “cleanup” operations.

● EXAMPLE 11.1, Figure 11.1

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

➢ When we use text files for storage of data, a program must expend a significant
amount of effort to convert the stream of characters from an input file into the
binary integers, type double mantissas and exponents, and character strings that
are the representation in main memory of the same data.

➢ The program must again expend time in converting the internal data format back

into a stream of characters for storage in an output file of text.

11.2 BINARY FILES

➢ We can avoid the unnecessary translation by using a binary file rather than a
text file. (1)

➢ A binary file is created by executing a program that stores directly in the file the
computer’s internal representation of each file component. (2)

11.2 BINARY FILES

Loading…

➢ the second argument to fopen is either "wb" (write binary) for output files
or "rb" (read binary) for input files.

➢ However, a different stdio library function is used for copying values into the

file: function fwrite , which has four input parameters.

1. The first parameter is the address of the first memory cell whose contents

are to be copied to the file. (1)
2. The second parameter of function fwrite is the number of bytes to copy to

the file for one component. (2)

11.2 BINARY FILES

➢ A C operator sizeof can be applied to any data type name to find the number of
bytes that the current implementation uses for storage of the data type. (1)

1. The third parameter of fwrite is the number of values to write to the binary

file. (2)

2. The final argument to fwrite is a file pointer to the file being created, a file

previously opened in mode "wb" using function fopen .

11.2 BINARY FILES

printf("An integer requires %d bytes ", sizeof (int));

printf("in this implementation.\n");

➢ For example, if array score is an array of ten integers, the following statement
writes the entire array to the output file.

➢ Writing the value of an integer variable i to a binary file using fwrite is faster
than writing i to a text file.

➢ For example, if the value of i is 244 , the statement from the for loop copies the

internal binary representation of i from memory to the file accessed by binaryp .
(1)

11.2 BINARY FILES

fwrite(score, sizeof (int), 10, binaryp);

fwrite(&i, sizeof (int), 1, binaryp);

➢ Assuming textp is a pointer to a text output file, the following statement writes
the value of i to the file using four characters (four bytes). (1)

● Obviously, it takes more time to do the conversion and copy each character than

it does to copy the internal binary representation to disk.

● Also, twice as much disk space is required to store four characters as to store the
internal binary representation of the type int value (four bytes versus two).

11.2 BINARY FILES

fprintf(textp, "%d ", i);

● The negative side to binary side usage:

1. A binary file created on one computer is rarely readable on another type of

computer.

2. A person cannot proofread the file by printing it out or by examining it in a

word processor. (1)

3. A binary file cannot be created or modified in a word processor(2)

11.2 BINARY FILES

➢ The stdio library includes an input function fread that is comparable to fwrite .
➢ Function fread also requires four arguments:

1. Address of first memory cell to fill.
2. Size of one value.
3. Maximum number of elements to copy from the file into memory.
4. File pointer to a binary file opened in mode "rb" using function fopen

➢ Function fread returns as its value an integer indicating how many elements it

successfully copied from the file (1)

11.2 BINARY FILES

➢ It is very important not to mix file types.

• A binary file created (written) using fwrite must be read using fread .
• A text file created using fprintf must be read using a text file input function such

as fscanf .

● Table 11.5 p.637 compares the use of text and binary files for input and output
of data of various types. (1)

11.2 BINARY FILES

➢ In Example 1 of Table 11.5 , we use fopen to open our input files, and we store
the file pointers returned by fopen in variables of type FILE* .

➢ Notice that the type of the file pointer does not vary.

➢ Also notice that the form of the call to fopen for opening a binary file differs

from the call for opening a text file only in the value of the mode (second
argument). In fact, even this difference is optional .

11.2 BINARY FILES

➢ We see a similar situation in the opening of output files in Example 2.

➢ One consequence of this similarity is that the ability of the C compiler and run-
time support system to detect misuse of a file pointer is severely limited.

➢ It is the programmer’s responsibility to keep track of which type of file each file

pointer accesses and to use the right I/O function at the right time.

11.2 BINARY FILES

➢ In Examples 3 and 4 of Table 11.5 , we compare input/output of a user-defined
structure type as it is done with text and binary files.

➢ In Examples 5 and 6, we see input/output of an array of type double values (1)

➢ Example 7 demonstrates partially filling array nums and setting n to the

number of elements filled.

➢ Example 8 shows that all files—binary or text, input or output—are closed in
the same way.

11.2 BINARY FILES

➢ Remember to declare a file pointer variable (type FILE*) for each file you want
to process.

➢ In a program that manipulates both file types, choose names for your file pointers

that remind you of the type of file accessed. (2)

➢ It is easy to use the wrong library function with a file pointer. (1)

➢ It is also critical that you remember that library functions fscanf , fprintf , getc ,
and putc must be used for text I/O only;

➢ Functions fread and fwrite are applied exclusively to binary files. (3)

11.4 COMMON PROGRAMMING
ERRORS

➢ The fact that fprintf , fscanf , and getc take the file pointer as their first
argument while putc , fread , and fwrite take it as the last argument is definitely
confusing at first.

➢ Keep in mind that opening a file for output by calling fopen with a second

argument of "w" or "wb" typically results in a loss of any existing file whose
name matches the first argument.

➢ It is easy to forget that binary files cannot be created, viewed, or modified using

an editor or word processor program (1)

11.4 COMMON PROGRAMMING
ERRORS

Thanks!

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 11
Text and Binary
File Processing

Loading…

Chapter Objectives:

1. Learn about streams in C and their relationship to files and standard input and output
devices.

2. Review how scanf , fscanf and printf , fprintf are used to read and write data.

3. Review escape sequences and their use in format strings.

4. Review file pointer variables and learn how to use functions that process them to

make a backup copy of a text file.

5. Learn about binary files and understand the differences between binary and text files.

● A text file is a named collection of characters saved in secondary storage (e.g.,
on a disk).

● A text file has no fixed size.

● To mark the end of a text file, the computer places a special end-of-file

character, which we will denote <eof>, after the last character in the file.

● As you create a text file using an editor program, pressing the <return> or
<enter> key causes the newline character (represented by C as '\n') to be placed
in the file.

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

Loading…

 (1)

➢ The disk file consists of a sequence of characters occupying consecutive storage
locations on a track of the disk, as shown here:
 (2)

➢ We sometimes refer to a data source or destination as an input stream or an

output stream. (3)

➢ These general terms can be applied to files, to the terminal keyboard and
screen, and to any other sources of input data or destinations of output data.

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

● The Keyboard and Screen as Text Streams
➢ The name stdin represents the keyboard’s input stream.
➢ Two system streams are associated with the screen:

1. The “normal” output stream stdout
2. The “error” output stream stderr. (1)

➢ Normally at the keyboard, we enter one line of data at a time, pressing <return> or <enter> to

indicate the end of a data line. Pressing one of these keys inserts the newline character in system
stream stdin .

➢ The eof character could be used to indicate the end of data (2).

➢ Writing characters to the streams stdout and stderr causes a display on the screen in an

interactive program (i.e. Printf) (3)

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

● Newline and EOF

➢ The <newline> can be processed like any other character: It can be input using scanf with the
%c specifier, it can be compared to '\n' for equality, and it can be output using printf .

➢ Input of the special eof character is regarded as a failed operation, (1)

➢ The C run-time support system is under no obligation to provide an error message if the

program ignores the warning value and continues to attempt to get input from the stream in
question.

● Escape Sequences: p.626 (review)

● Formatting Output with printf: p.626 (review)

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

● File Pointer Variables: p. 627 (review):

• A pointer whose value equals NULL is called a null pointer (1)
• Using fopen with mode "w" to open for output a file that already exists usually causes loss of the

contents of the existing file. (2)

● Functions That Take File Pointer Arguments: p.629 (review)

● Closing a File: p.630 (review):
• Function fclose disposes of the structure that was created to store file access information and

carries out other “cleanup” operations.

● EXAMPLE 11.1, Figure 11.1

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

➢ When we use text files for storage of data, a program must expend a significant
amount of effort to convert the stream of characters from an input file into the
binary integers, type double mantissas and exponents, and character strings that
are the representation in main memory of the same data.

➢ The program must again expend time in converting the internal data format back

into a stream of characters for storage in an output file of text.

11.2 BINARY FILES

➢ We can avoid the unnecessary translation by using a binary file rather than a
text file. (1)

➢ A binary file is created by executing a program that stores directly in the file the
computer’s internal representation of each file component. (2)

11.2 BINARY FILES

Loading…

➢ the second argument to fopen is either "wb" (write binary) for output files
or "rb" (read binary) for input files.

➢ However, a different stdio library function is used for copying values into the

file: function fwrite , which has four input parameters.

1. The first parameter is the address of the first memory cell whose contents

are to be copied to the file. (1)
2. The second parameter of function fwrite is the number of bytes to copy to

the file for one component. (2)

11.2 BINARY FILES

➢ A C operator sizeof can be applied to any data type name to find the number of
bytes that the current implementation uses for storage of the data type. (1)

1. The third parameter of fwrite is the number of values to write to the binary

file. (2)

2. The final argument to fwrite is a file pointer to the file being created, a file

previously opened in mode "wb" using function fopen .

11.2 BINARY FILES

printf("An integer requires %d bytes ", sizeof (int));

printf("in this implementation.\n");

➢ For example, if array score is an array of ten integers, the following statement
writes the entire array to the output file.

➢ Writing the value of an integer variable i to a binary file using fwrite is faster
than writing i to a text file.

➢ For example, if the value of i is 244 , the statement from the for loop copies the

internal binary representation of i from memory to the file accessed by binaryp .
(1)

11.2 BINARY FILES

fwrite(score, sizeof (int), 10, binaryp);

fwrite(&i, sizeof (int), 1, binaryp);

➢ Assuming textp is a pointer to a text output file, the following statement writes
the value of i to the file using four characters (four bytes). (1)

● Obviously, it takes more time to do the conversion and copy each character than

it does to copy the internal binary representation to disk.

● Also, twice as much disk space is required to store four characters as to store the
internal binary representation of the type int value (four bytes versus two).

11.2 BINARY FILES

fprintf(textp, "%d ", i);

● The negative side to binary side usage:

1. A binary file created on one computer is rarely readable on another type of

computer.

2. A person cannot proofread the file by printing it out or by examining it in a

word processor. (1)

3. A binary file cannot be created or modified in a word processor(2)

11.2 BINARY FILES

➢ The stdio library includes an input function fread that is comparable to fwrite .
➢ Function fread also requires four arguments:

1. Address of first memory cell to fill.
2. Size of one value.
3. Maximum number of elements to copy from the file into memory.
4. File pointer to a binary file opened in mode "rb" using function fopen

➢ Function fread returns as its value an integer indicating how many elements it

successfully copied from the file (1)

11.2 BINARY FILES

➢ It is very important not to mix file types.

• A binary file created (written) using fwrite must be read using fread .
• A text file created using fprintf must be read using a text file input function such

as fscanf .

● Table 11.5 p.637 compares the use of text and binary files for input and output
of data of various types. (1)

11.2 BINARY FILES

➢ In Example 1 of Table 11.5 , we use fopen to open our input files, and we store
the file pointers returned by fopen in variables of type FILE* .

➢ Notice that the type of the file pointer does not vary.

➢ Also notice that the form of the call to fopen for opening a binary file differs

from the call for opening a text file only in the value of the mode (second
argument). In fact, even this difference is optional .

11.2 BINARY FILES

➢ We see a similar situation in the opening of output files in Example 2.

➢ One consequence of this similarity is that the ability of the C compiler and run-
time support system to detect misuse of a file pointer is severely limited.

➢ It is the programmer’s responsibility to keep track of which type of file each file

pointer accesses and to use the right I/O function at the right time.

11.2 BINARY FILES

➢ In Examples 3 and 4 of Table 11.5 , we compare input/output of a user-defined
structure type as it is done with text and binary files.

➢ In Examples 5 and 6, we see input/output of an array of type double values (1)

➢ Example 7 demonstrates partially filling array nums and setting n to the

number of elements filled.

➢ Example 8 shows that all files—binary or text, input or output—are closed in
the same way.

11.2 BINARY FILES

➢ Remember to declare a file pointer variable (type FILE*) for each file you want
to process.

➢ In a program that manipulates both file types, choose names for your file pointers

that remind you of the type of file accessed. (2)

➢ It is easy to use the wrong library function with a file pointer. (1)

➢ It is also critical that you remember that library functions fscanf , fprintf , getc ,
and putc must be used for text I/O only;

➢ Functions fread and fwrite are applied exclusively to binary files. (3)

11.4 COMMON PROGRAMMING
ERRORS

➢ The fact that fprintf , fscanf , and getc take the file pointer as their first
argument while putc , fread , and fwrite take it as the last argument is definitely
confusing at first.

➢ Keep in mind that opening a file for output by calling fopen with a second

argument of "w" or "wb" typically results in a loss of any existing file whose
name matches the first argument.

➢ It is easy to forget that binary files cannot be created, viewed, or modified using

an editor or word processor program (1)

11.4 COMMON PROGRAMMING
ERRORS

Thanks!

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 11
Text and Binary
File Processing

Loading…

Chapter Objectives:

1. Learn about streams in C and their relationship to files and standard input and output
devices.

2. Review how scanf , fscanf and printf , fprintf are used to read and write data.

3. Review escape sequences and their use in format strings.

4. Review file pointer variables and learn how to use functions that process them to

make a backup copy of a text file.

5. Learn about binary files and understand the differences between binary and text files.

● A text file is a named collection of characters saved in secondary storage (e.g.,
on a disk).

● A text file has no fixed size.

● To mark the end of a text file, the computer places a special end-of-file

character, which we will denote <eof>, after the last character in the file.

● As you create a text file using an editor program, pressing the <return> or
<enter> key causes the newline character (represented by C as '\n') to be placed
in the file.

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

Loading…

 (1)

➢ The disk file consists of a sequence of characters occupying consecutive storage
locations on a track of the disk, as shown here:
 (2)

➢ We sometimes refer to a data source or destination as an input stream or an

output stream. (3)

➢ These general terms can be applied to files, to the terminal keyboard and
screen, and to any other sources of input data or destinations of output data.

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

● The Keyboard and Screen as Text Streams
➢ The name stdin represents the keyboard’s input stream.
➢ Two system streams are associated with the screen:

1. The “normal” output stream stdout
2. The “error” output stream stderr. (1)

➢ Normally at the keyboard, we enter one line of data at a time, pressing <return> or <enter> to

indicate the end of a data line. Pressing one of these keys inserts the newline character in system
stream stdin .

➢ The eof character could be used to indicate the end of data (2).

➢ Writing characters to the streams stdout and stderr causes a display on the screen in an

interactive program (i.e. Printf) (3)

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

● Newline and EOF

➢ The <newline> can be processed like any other character: It can be input using scanf with the
%c specifier, it can be compared to '\n' for equality, and it can be output using printf .

➢ Input of the special eof character is regarded as a failed operation, (1)

➢ The C run-time support system is under no obligation to provide an error message if the

program ignores the warning value and continues to attempt to get input from the stream in
question.

● Escape Sequences: p.626 (review)

● Formatting Output with printf: p.626 (review)

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

● File Pointer Variables: p. 627 (review):

• A pointer whose value equals NULL is called a null pointer (1)
• Using fopen with mode "w" to open for output a file that already exists usually causes loss of the

contents of the existing file. (2)

● Functions That Take File Pointer Arguments: p.629 (review)

● Closing a File: p.630 (review):
• Function fclose disposes of the structure that was created to store file access information and

carries out other “cleanup” operations.

● EXAMPLE 11.1, Figure 11.1

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

➢ When we use text files for storage of data, a program must expend a significant
amount of effort to convert the stream of characters from an input file into the
binary integers, type double mantissas and exponents, and character strings that
are the representation in main memory of the same data.

➢ The program must again expend time in converting the internal data format back

into a stream of characters for storage in an output file of text.

11.2 BINARY FILES

➢ We can avoid the unnecessary translation by using a binary file rather than a
text file. (1)

➢ A binary file is created by executing a program that stores directly in the file the
computer’s internal representation of each file component. (2)

11.2 BINARY FILES

Loading…

➢ the second argument to fopen is either "wb" (write binary) for output files
or "rb" (read binary) for input files.

➢ However, a different stdio library function is used for copying values into the

file: function fwrite , which has four input parameters.

1. The first parameter is the address of the first memory cell whose contents

are to be copied to the file. (1)
2. The second parameter of function fwrite is the number of bytes to copy to

the file for one component. (2)

11.2 BINARY FILES

➢ A C operator sizeof can be applied to any data type name to find the number of
bytes that the current implementation uses for storage of the data type. (1)

1. The third parameter of fwrite is the number of values to write to the binary

file. (2)

2. The final argument to fwrite is a file pointer to the file being created, a file

previously opened in mode "wb" using function fopen .

11.2 BINARY FILES

printf("An integer requires %d bytes ", sizeof (int));

printf("in this implementation.\n");

➢ For example, if array score is an array of ten integers, the following statement
writes the entire array to the output file.

➢ Writing the value of an integer variable i to a binary file using fwrite is faster
than writing i to a text file.

➢ For example, if the value of i is 244 , the statement from the for loop copies the

internal binary representation of i from memory to the file accessed by binaryp .
(1)

11.2 BINARY FILES

fwrite(score, sizeof (int), 10, binaryp);

fwrite(&i, sizeof (int), 1, binaryp);

➢ Assuming textp is a pointer to a text output file, the following statement writes
the value of i to the file using four characters (four bytes). (1)

● Obviously, it takes more time to do the conversion and copy each character than

it does to copy the internal binary representation to disk.

● Also, twice as much disk space is required to store four characters as to store the
internal binary representation of the type int value (four bytes versus two).

11.2 BINARY FILES

fprintf(textp, "%d ", i);

● The negative side to binary side usage:

1. A binary file created on one computer is rarely readable on another type of

computer.

2. A person cannot proofread the file by printing it out or by examining it in a

word processor. (1)

3. A binary file cannot be created or modified in a word processor(2)

11.2 BINARY FILES

➢ The stdio library includes an input function fread that is comparable to fwrite .
➢ Function fread also requires four arguments:

1. Address of first memory cell to fill.
2. Size of one value.
3. Maximum number of elements to copy from the file into memory.
4. File pointer to a binary file opened in mode "rb" using function fopen

➢ Function fread returns as its value an integer indicating how many elements it

successfully copied from the file (1)

11.2 BINARY FILES

➢ It is very important not to mix file types.

• A binary file created (written) using fwrite must be read using fread .
• A text file created using fprintf must be read using a text file input function such

as fscanf .

● Table 11.5 p.637 compares the use of text and binary files for input and output
of data of various types. (1)

11.2 BINARY FILES

➢ In Example 1 of Table 11.5 , we use fopen to open our input files, and we store
the file pointers returned by fopen in variables of type FILE* .

➢ Notice that the type of the file pointer does not vary.

➢ Also notice that the form of the call to fopen for opening a binary file differs

from the call for opening a text file only in the value of the mode (second
argument). In fact, even this difference is optional .

11.2 BINARY FILES

➢ We see a similar situation in the opening of output files in Example 2.

➢ One consequence of this similarity is that the ability of the C compiler and run-
time support system to detect misuse of a file pointer is severely limited.

➢ It is the programmer’s responsibility to keep track of which type of file each file

pointer accesses and to use the right I/O function at the right time.

11.2 BINARY FILES

➢ In Examples 3 and 4 of Table 11.5 , we compare input/output of a user-defined
structure type as it is done with text and binary files.

➢ In Examples 5 and 6, we see input/output of an array of type double values (1)

➢ Example 7 demonstrates partially filling array nums and setting n to the

number of elements filled.

➢ Example 8 shows that all files—binary or text, input or output—are closed in
the same way.

11.2 BINARY FILES

➢ Remember to declare a file pointer variable (type FILE*) for each file you want
to process.

➢ In a program that manipulates both file types, choose names for your file pointers

that remind you of the type of file accessed. (2)

➢ It is easy to use the wrong library function with a file pointer. (1)

➢ It is also critical that you remember that library functions fscanf , fprintf , getc ,
and putc must be used for text I/O only;

➢ Functions fread and fwrite are applied exclusively to binary files. (3)

11.4 COMMON PROGRAMMING
ERRORS

➢ The fact that fprintf , fscanf , and getc take the file pointer as their first
argument while putc , fread , and fwrite take it as the last argument is definitely
confusing at first.

➢ Keep in mind that opening a file for output by calling fopen with a second

argument of "w" or "wb" typically results in a loss of any existing file whose
name matches the first argument.

➢ It is easy to forget that binary files cannot be created, viewed, or modified using

an editor or word processor program (1)

11.4 COMMON PROGRAMMING
ERRORS

Thanks!

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 11
Text and Binary
File Processing

Loading…

Chapter Objectives:

1. Learn about streams in C and their relationship to files and standard input and output
devices.

2. Review how scanf , fscanf and printf , fprintf are used to read and write data.

3. Review escape sequences and their use in format strings.

4. Review file pointer variables and learn how to use functions that process them to

make a backup copy of a text file.

5. Learn about binary files and understand the differences between binary and text files.

● A text file is a named collection of characters saved in secondary storage (e.g.,
on a disk).

● A text file has no fixed size.

● To mark the end of a text file, the computer places a special end-of-file

character, which we will denote <eof>, after the last character in the file.

● As you create a text file using an editor program, pressing the <return> or
<enter> key causes the newline character (represented by C as '\n') to be placed
in the file.

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

Loading…

 (1)

➢ The disk file consists of a sequence of characters occupying consecutive storage
locations on a track of the disk, as shown here:
 (2)

➢ We sometimes refer to a data source or destination as an input stream or an

output stream. (3)

➢ These general terms can be applied to files, to the terminal keyboard and
screen, and to any other sources of input data or destinations of output data.

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

● The Keyboard and Screen as Text Streams
➢ The name stdin represents the keyboard’s input stream.
➢ Two system streams are associated with the screen:

1. The “normal” output stream stdout
2. The “error” output stream stderr. (1)

➢ Normally at the keyboard, we enter one line of data at a time, pressing <return> or <enter> to

indicate the end of a data line. Pressing one of these keys inserts the newline character in system
stream stdin .

➢ The eof character could be used to indicate the end of data (2).

➢ Writing characters to the streams stdout and stderr causes a display on the screen in an

interactive program (i.e. Printf) (3)

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

● Newline and EOF

➢ The <newline> can be processed like any other character: It can be input using scanf with the
%c specifier, it can be compared to '\n' for equality, and it can be output using printf .

➢ Input of the special eof character is regarded as a failed operation, (1)

➢ The C run-time support system is under no obligation to provide an error message if the

program ignores the warning value and continues to attempt to get input from the stream in
question.

● Escape Sequences: p.626 (review)

● Formatting Output with printf: p.626 (review)

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

● File Pointer Variables: p. 627 (review):

• A pointer whose value equals NULL is called a null pointer (1)
• Using fopen with mode "w" to open for output a file that already exists usually causes loss of the

contents of the existing file. (2)

● Functions That Take File Pointer Arguments: p.629 (review)

● Closing a File: p.630 (review):
• Function fclose disposes of the structure that was created to store file access information and

carries out other “cleanup” operations.

● EXAMPLE 11.1, Figure 11.1

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

➢ When we use text files for storage of data, a program must expend a significant
amount of effort to convert the stream of characters from an input file into the
binary integers, type double mantissas and exponents, and character strings that
are the representation in main memory of the same data.

➢ The program must again expend time in converting the internal data format back

into a stream of characters for storage in an output file of text.

11.2 BINARY FILES

➢ We can avoid the unnecessary translation by using a binary file rather than a
text file. (1)

➢ A binary file is created by executing a program that stores directly in the file the
computer’s internal representation of each file component. (2)

11.2 BINARY FILES

Loading…

➢ the second argument to fopen is either "wb" (write binary) for output files
or "rb" (read binary) for input files.

➢ However, a different stdio library function is used for copying values into the

file: function fwrite , which has four input parameters.

1. The first parameter is the address of the first memory cell whose contents

are to be copied to the file. (1)
2. The second parameter of function fwrite is the number of bytes to copy to

the file for one component. (2)

11.2 BINARY FILES

➢ A C operator sizeof can be applied to any data type name to find the number of
bytes that the current implementation uses for storage of the data type. (1)

1. The third parameter of fwrite is the number of values to write to the binary

file. (2)

2. The final argument to fwrite is a file pointer to the file being created, a file

previously opened in mode "wb" using function fopen .

11.2 BINARY FILES

printf("An integer requires %d bytes ", sizeof (int));

printf("in this implementation.\n");

➢ For example, if array score is an array of ten integers, the following statement
writes the entire array to the output file.

➢ Writing the value of an integer variable i to a binary file using fwrite is faster
than writing i to a text file.

➢ For example, if the value of i is 244 , the statement from the for loop copies the

internal binary representation of i from memory to the file accessed by binaryp .
(1)

11.2 BINARY FILES

fwrite(score, sizeof (int), 10, binaryp);

fwrite(&i, sizeof (int), 1, binaryp);

➢ Assuming textp is a pointer to a text output file, the following statement writes
the value of i to the file using four characters (four bytes). (1)

● Obviously, it takes more time to do the conversion and copy each character than

it does to copy the internal binary representation to disk.

● Also, twice as much disk space is required to store four characters as to store the
internal binary representation of the type int value (four bytes versus two).

11.2 BINARY FILES

fprintf(textp, "%d ", i);

● The negative side to binary side usage:

1. A binary file created on one computer is rarely readable on another type of

computer.

2. A person cannot proofread the file by printing it out or by examining it in a

word processor. (1)

3. A binary file cannot be created or modified in a word processor(2)

11.2 BINARY FILES

➢ The stdio library includes an input function fread that is comparable to fwrite .
➢ Function fread also requires four arguments:

1. Address of first memory cell to fill.
2. Size of one value.
3. Maximum number of elements to copy from the file into memory.
4. File pointer to a binary file opened in mode "rb" using function fopen

➢ Function fread returns as its value an integer indicating how many elements it

successfully copied from the file (1)

11.2 BINARY FILES

➢ It is very important not to mix file types.

• A binary file created (written) using fwrite must be read using fread .
• A text file created using fprintf must be read using a text file input function such

as fscanf .

● Table 11.5 p.637 compares the use of text and binary files for input and output
of data of various types. (1)

11.2 BINARY FILES

➢ In Example 1 of Table 11.5 , we use fopen to open our input files, and we store
the file pointers returned by fopen in variables of type FILE* .

➢ Notice that the type of the file pointer does not vary.

➢ Also notice that the form of the call to fopen for opening a binary file differs

from the call for opening a text file only in the value of the mode (second
argument). In fact, even this difference is optional .

11.2 BINARY FILES

➢ We see a similar situation in the opening of output files in Example 2.

➢ One consequence of this similarity is that the ability of the C compiler and run-
time support system to detect misuse of a file pointer is severely limited.

➢ It is the programmer’s responsibility to keep track of which type of file each file

pointer accesses and to use the right I/O function at the right time.

11.2 BINARY FILES

➢ In Examples 3 and 4 of Table 11.5 , we compare input/output of a user-defined
structure type as it is done with text and binary files.

➢ In Examples 5 and 6, we see input/output of an array of type double values (1)

➢ Example 7 demonstrates partially filling array nums and setting n to the

number of elements filled.

➢ Example 8 shows that all files—binary or text, input or output—are closed in
the same way.

11.2 BINARY FILES

➢ Remember to declare a file pointer variable (type FILE*) for each file you want
to process.

➢ In a program that manipulates both file types, choose names for your file pointers

that remind you of the type of file accessed. (2)

➢ It is easy to use the wrong library function with a file pointer. (1)

➢ It is also critical that you remember that library functions fscanf , fprintf , getc ,
and putc must be used for text I/O only;

➢ Functions fread and fwrite are applied exclusively to binary files. (3)

11.4 COMMON PROGRAMMING
ERRORS

➢ The fact that fprintf , fscanf , and getc take the file pointer as their first
argument while putc , fread , and fwrite take it as the last argument is definitely
confusing at first.

➢ Keep in mind that opening a file for output by calling fopen with a second

argument of "w" or "wb" typically results in a loss of any existing file whose
name matches the first argument.

➢ It is easy to forget that binary files cannot be created, viewed, or modified using

an editor or word processor program (1)

11.4 COMMON PROGRAMMING
ERRORS

Thanks!

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 11
Text and Binary
File Processing

Loading…

Chapter Objectives:

1. Learn about streams in C and their relationship to files and standard input and output
devices.

2. Review how scanf , fscanf and printf , fprintf are used to read and write data.

3. Review escape sequences and their use in format strings.

4. Review file pointer variables and learn how to use functions that process them to

make a backup copy of a text file.

5. Learn about binary files and understand the differences between binary and text files.

● A text file is a named collection of characters saved in secondary storage (e.g.,
on a disk).

● A text file has no fixed size.

● To mark the end of a text file, the computer places a special end-of-file

character, which we will denote <eof>, after the last character in the file.

● As you create a text file using an editor program, pressing the <return> or
<enter> key causes the newline character (represented by C as '\n') to be placed
in the file.

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

Loading…

 (1)

➢ The disk file consists of a sequence of characters occupying consecutive storage
locations on a track of the disk, as shown here:
 (2)

➢ We sometimes refer to a data source or destination as an input stream or an

output stream. (3)

➢ These general terms can be applied to files, to the terminal keyboard and
screen, and to any other sources of input data or destinations of output data.

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

● The Keyboard and Screen as Text Streams
➢ The name stdin represents the keyboard’s input stream.
➢ Two system streams are associated with the screen:

1. The “normal” output stream stdout
2. The “error” output stream stderr. (1)

➢ Normally at the keyboard, we enter one line of data at a time, pressing <return> or <enter> to

indicate the end of a data line. Pressing one of these keys inserts the newline character in system
stream stdin .

➢ The eof character could be used to indicate the end of data (2).

➢ Writing characters to the streams stdout and stderr causes a display on the screen in an

interactive program (i.e. Printf) (3)

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

● Newline and EOF

➢ The <newline> can be processed like any other character: It can be input using scanf with the
%c specifier, it can be compared to '\n' for equality, and it can be output using printf .

➢ Input of the special eof character is regarded as a failed operation, (1)

➢ The C run-time support system is under no obligation to provide an error message if the

program ignores the warning value and continues to attempt to get input from the stream in
question.

● Escape Sequences: p.626 (review)

● Formatting Output with printf: p.626 (review)

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

● File Pointer Variables: p. 627 (review):

• A pointer whose value equals NULL is called a null pointer (1)
• Using fopen with mode "w" to open for output a file that already exists usually causes loss of the

contents of the existing file. (2)

● Functions That Take File Pointer Arguments: p.629 (review)

● Closing a File: p.630 (review):
• Function fclose disposes of the structure that was created to store file access information and

carries out other “cleanup” operations.

● EXAMPLE 11.1, Figure 11.1

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

➢ When we use text files for storage of data, a program must expend a significant
amount of effort to convert the stream of characters from an input file into the
binary integers, type double mantissas and exponents, and character strings that
are the representation in main memory of the same data.

➢ The program must again expend time in converting the internal data format back

into a stream of characters for storage in an output file of text.

11.2 BINARY FILES

➢ We can avoid the unnecessary translation by using a binary file rather than a
text file. (1)

➢ A binary file is created by executing a program that stores directly in the file the
computer’s internal representation of each file component. (2)

11.2 BINARY FILES

Loading…

➢ the second argument to fopen is either "wb" (write binary) for output files
or "rb" (read binary) for input files.

➢ However, a different stdio library function is used for copying values into the

file: function fwrite , which has four input parameters.

1. The first parameter is the address of the first memory cell whose contents

are to be copied to the file. (1)
2. The second parameter of function fwrite is the number of bytes to copy to

the file for one component. (2)

11.2 BINARY FILES

➢ A C operator sizeof can be applied to any data type name to find the number of
bytes that the current implementation uses for storage of the data type. (1)

1. The third parameter of fwrite is the number of values to write to the binary

file. (2)

2. The final argument to fwrite is a file pointer to the file being created, a file

previously opened in mode "wb" using function fopen .

11.2 BINARY FILES

printf("An integer requires %d bytes ", sizeof (int));

printf("in this implementation.\n");

➢ For example, if array score is an array of ten integers, the following statement
writes the entire array to the output file.

➢ Writing the value of an integer variable i to a binary file using fwrite is faster
than writing i to a text file.

➢ For example, if the value of i is 244 , the statement from the for loop copies the

internal binary representation of i from memory to the file accessed by binaryp .
(1)

11.2 BINARY FILES

fwrite(score, sizeof (int), 10, binaryp);

fwrite(&i, sizeof (int), 1, binaryp);

➢ Assuming textp is a pointer to a text output file, the following statement writes
the value of i to the file using four characters (four bytes). (1)

● Obviously, it takes more time to do the conversion and copy each character than

it does to copy the internal binary representation to disk.

● Also, twice as much disk space is required to store four characters as to store the
internal binary representation of the type int value (four bytes versus two).

11.2 BINARY FILES

fprintf(textp, "%d ", i);

● The negative side to binary side usage:

1. A binary file created on one computer is rarely readable on another type of

computer.

2. A person cannot proofread the file by printing it out or by examining it in a

word processor. (1)

3. A binary file cannot be created or modified in a word processor(2)

11.2 BINARY FILES

➢ The stdio library includes an input function fread that is comparable to fwrite .
➢ Function fread also requires four arguments:

1. Address of first memory cell to fill.
2. Size of one value.
3. Maximum number of elements to copy from the file into memory.
4. File pointer to a binary file opened in mode "rb" using function fopen

➢ Function fread returns as its value an integer indicating how many elements it

successfully copied from the file (1)

11.2 BINARY FILES

➢ It is very important not to mix file types.

• A binary file created (written) using fwrite must be read using fread .
• A text file created using fprintf must be read using a text file input function such

as fscanf .

● Table 11.5 p.637 compares the use of text and binary files for input and output
of data of various types. (1)

11.2 BINARY FILES

➢ In Example 1 of Table 11.5 , we use fopen to open our input files, and we store
the file pointers returned by fopen in variables of type FILE* .

➢ Notice that the type of the file pointer does not vary.

➢ Also notice that the form of the call to fopen for opening a binary file differs

from the call for opening a text file only in the value of the mode (second
argument). In fact, even this difference is optional .

11.2 BINARY FILES

➢ We see a similar situation in the opening of output files in Example 2.

➢ One consequence of this similarity is that the ability of the C compiler and run-
time support system to detect misuse of a file pointer is severely limited.

➢ It is the programmer’s responsibility to keep track of which type of file each file

pointer accesses and to use the right I/O function at the right time.

11.2 BINARY FILES

➢ In Examples 3 and 4 of Table 11.5 , we compare input/output of a user-defined
structure type as it is done with text and binary files.

➢ In Examples 5 and 6, we see input/output of an array of type double values (1)

➢ Example 7 demonstrates partially filling array nums and setting n to the

number of elements filled.

➢ Example 8 shows that all files—binary or text, input or output—are closed in
the same way.

11.2 BINARY FILES

➢ Remember to declare a file pointer variable (type FILE*) for each file you want
to process.

➢ In a program that manipulates both file types, choose names for your file pointers

that remind you of the type of file accessed. (2)

➢ It is easy to use the wrong library function with a file pointer. (1)

➢ It is also critical that you remember that library functions fscanf , fprintf , getc ,
and putc must be used for text I/O only;

➢ Functions fread and fwrite are applied exclusively to binary files. (3)

11.4 COMMON PROGRAMMING
ERRORS

➢ The fact that fprintf , fscanf , and getc take the file pointer as their first
argument while putc , fread , and fwrite take it as the last argument is definitely
confusing at first.

➢ Keep in mind that opening a file for output by calling fopen with a second

argument of "w" or "wb" typically results in a loss of any existing file whose
name matches the first argument.

➢ It is easy to forget that binary files cannot be created, viewed, or modified using

an editor or word processor program (1)

11.4 COMMON PROGRAMMING
ERRORS

Thanks!

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 11
Text and Binary
File Processing

Loading…

Chapter Objectives:

1. Learn about streams in C and their relationship to files and standard input and output
devices.

2. Review how scanf , fscanf and printf , fprintf are used to read and write data.

3. Review escape sequences and their use in format strings.

4. Review file pointer variables and learn how to use functions that process them to

make a backup copy of a text file.

5. Learn about binary files and understand the differences between binary and text files.

● A text file is a named collection of characters saved in secondary storage (e.g.,
on a disk).

● A text file has no fixed size.

● To mark the end of a text file, the computer places a special end-of-file

character, which we will denote <eof>, after the last character in the file.

● As you create a text file using an editor program, pressing the <return> or
<enter> key causes the newline character (represented by C as '\n') to be placed
in the file.

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

Loading…

 (1)

➢ The disk file consists of a sequence of characters occupying consecutive storage
locations on a track of the disk, as shown here:
 (2)

➢ We sometimes refer to a data source or destination as an input stream or an

output stream. (3)

➢ These general terms can be applied to files, to the terminal keyboard and
screen, and to any other sources of input data or destinations of output data.

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

● The Keyboard and Screen as Text Streams
➢ The name stdin represents the keyboard’s input stream.
➢ Two system streams are associated with the screen:

1. The “normal” output stream stdout
2. The “error” output stream stderr. (1)

➢ Normally at the keyboard, we enter one line of data at a time, pressing <return> or <enter> to

indicate the end of a data line. Pressing one of these keys inserts the newline character in system
stream stdin .

➢ The eof character could be used to indicate the end of data (2).

➢ Writing characters to the streams stdout and stderr causes a display on the screen in an

interactive program (i.e. Printf) (3)

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

● Newline and EOF

➢ The <newline> can be processed like any other character: It can be input using scanf with the
%c specifier, it can be compared to '\n' for equality, and it can be output using printf .

➢ Input of the special eof character is regarded as a failed operation, (1)

➢ The C run-time support system is under no obligation to provide an error message if the

program ignores the warning value and continues to attempt to get input from the stream in
question.

● Escape Sequences: p.626 (review)

● Formatting Output with printf: p.626 (review)

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

● File Pointer Variables: p. 627 (review):

• A pointer whose value equals NULL is called a null pointer (1)
• Using fopen with mode "w" to open for output a file that already exists usually causes loss of the

contents of the existing file. (2)

● Functions That Take File Pointer Arguments: p.629 (review)

● Closing a File: p.630 (review):
• Function fclose disposes of the structure that was created to store file access information and

carries out other “cleanup” operations.

● EXAMPLE 11.1, Figure 11.1

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

➢ When we use text files for storage of data, a program must expend a significant
amount of effort to convert the stream of characters from an input file into the
binary integers, type double mantissas and exponents, and character strings that
are the representation in main memory of the same data.

➢ The program must again expend time in converting the internal data format back

into a stream of characters for storage in an output file of text.

11.2 BINARY FILES

➢ We can avoid the unnecessary translation by using a binary file rather than a
text file. (1)

➢ A binary file is created by executing a program that stores directly in the file the
computer’s internal representation of each file component. (2)

11.2 BINARY FILES

Loading…

➢ the second argument to fopen is either "wb" (write binary) for output files
or "rb" (read binary) for input files.

➢ However, a different stdio library function is used for copying values into the

file: function fwrite , which has four input parameters.

1. The first parameter is the address of the first memory cell whose contents

are to be copied to the file. (1)
2. The second parameter of function fwrite is the number of bytes to copy to

the file for one component. (2)

11.2 BINARY FILES

➢ A C operator sizeof can be applied to any data type name to find the number of
bytes that the current implementation uses for storage of the data type. (1)

1. The third parameter of fwrite is the number of values to write to the binary

file. (2)

2. The final argument to fwrite is a file pointer to the file being created, a file

previously opened in mode "wb" using function fopen .

11.2 BINARY FILES

printf("An integer requires %d bytes ", sizeof (int));

printf("in this implementation.\n");

➢ For example, if array score is an array of ten integers, the following statement
writes the entire array to the output file.

➢ Writing the value of an integer variable i to a binary file using fwrite is faster
than writing i to a text file.

➢ For example, if the value of i is 244 , the statement from the for loop copies the

internal binary representation of i from memory to the file accessed by binaryp .
(1)

11.2 BINARY FILES

fwrite(score, sizeof (int), 10, binaryp);

fwrite(&i, sizeof (int), 1, binaryp);

➢ Assuming textp is a pointer to a text output file, the following statement writes
the value of i to the file using four characters (four bytes). (1)

● Obviously, it takes more time to do the conversion and copy each character than

it does to copy the internal binary representation to disk.

● Also, twice as much disk space is required to store four characters as to store the
internal binary representation of the type int value (four bytes versus two).

11.2 BINARY FILES

fprintf(textp, "%d ", i);

● The negative side to binary side usage:

1. A binary file created on one computer is rarely readable on another type of

computer.

2. A person cannot proofread the file by printing it out or by examining it in a

word processor. (1)

3. A binary file cannot be created or modified in a word processor(2)

11.2 BINARY FILES

➢ The stdio library includes an input function fread that is comparable to fwrite .
➢ Function fread also requires four arguments:

1. Address of first memory cell to fill.
2. Size of one value.
3. Maximum number of elements to copy from the file into memory.
4. File pointer to a binary file opened in mode "rb" using function fopen

➢ Function fread returns as its value an integer indicating how many elements it

successfully copied from the file (1)

11.2 BINARY FILES

➢ It is very important not to mix file types.

• A binary file created (written) using fwrite must be read using fread .
• A text file created using fprintf must be read using a text file input function such

as fscanf .

● Table 11.5 p.637 compares the use of text and binary files for input and output
of data of various types. (1)

11.2 BINARY FILES

➢ In Example 1 of Table 11.5 , we use fopen to open our input files, and we store
the file pointers returned by fopen in variables of type FILE* .

➢ Notice that the type of the file pointer does not vary.

➢ Also notice that the form of the call to fopen for opening a binary file differs

from the call for opening a text file only in the value of the mode (second
argument). In fact, even this difference is optional .

11.2 BINARY FILES

➢ We see a similar situation in the opening of output files in Example 2.

➢ One consequence of this similarity is that the ability of the C compiler and run-
time support system to detect misuse of a file pointer is severely limited.

➢ It is the programmer’s responsibility to keep track of which type of file each file

pointer accesses and to use the right I/O function at the right time.

11.2 BINARY FILES

➢ In Examples 3 and 4 of Table 11.5 , we compare input/output of a user-defined
structure type as it is done with text and binary files.

➢ In Examples 5 and 6, we see input/output of an array of type double values (1)

➢ Example 7 demonstrates partially filling array nums and setting n to the

number of elements filled.

➢ Example 8 shows that all files—binary or text, input or output—are closed in
the same way.

11.2 BINARY FILES

➢ Remember to declare a file pointer variable (type FILE*) for each file you want
to process.

➢ In a program that manipulates both file types, choose names for your file pointers

that remind you of the type of file accessed. (2)

➢ It is easy to use the wrong library function with a file pointer. (1)

➢ It is also critical that you remember that library functions fscanf , fprintf , getc ,
and putc must be used for text I/O only;

➢ Functions fread and fwrite are applied exclusively to binary files. (3)

11.4 COMMON PROGRAMMING
ERRORS

➢ The fact that fprintf , fscanf , and getc take the file pointer as their first
argument while putc , fread , and fwrite take it as the last argument is definitely
confusing at first.

➢ Keep in mind that opening a file for output by calling fopen with a second

argument of "w" or "wb" typically results in a loss of any existing file whose
name matches the first argument.

➢ It is easy to forget that binary files cannot be created, viewed, or modified using

an editor or word processor program (1)

11.4 COMMON PROGRAMMING
ERRORS

Thanks!

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 11
Text and Binary
File Processing

Loading…

Chapter Objectives:

1. Learn about streams in C and their relationship to files and standard input and output
devices.

2. Review how scanf , fscanf and printf , fprintf are used to read and write data.

3. Review escape sequences and their use in format strings.

4. Review file pointer variables and learn how to use functions that process them to

make a backup copy of a text file.

5. Learn about binary files and understand the differences between binary and text files.

● A text file is a named collection of characters saved in secondary storage (e.g.,
on a disk).

● A text file has no fixed size.

● To mark the end of a text file, the computer places a special end-of-file

character, which we will denote <eof>, after the last character in the file.

● As you create a text file using an editor program, pressing the <return> or
<enter> key causes the newline character (represented by C as '\n') to be placed
in the file.

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

Loading…

 (1)

➢ The disk file consists of a sequence of characters occupying consecutive storage
locations on a track of the disk, as shown here:
 (2)

➢ We sometimes refer to a data source or destination as an input stream or an

output stream. (3)

➢ These general terms can be applied to files, to the terminal keyboard and
screen, and to any other sources of input data or destinations of output data.

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

● The Keyboard and Screen as Text Streams
➢ The name stdin represents the keyboard’s input stream.
➢ Two system streams are associated with the screen:

1. The “normal” output stream stdout
2. The “error” output stream stderr. (1)

➢ Normally at the keyboard, we enter one line of data at a time, pressing <return> or <enter> to

indicate the end of a data line. Pressing one of these keys inserts the newline character in system
stream stdin .

➢ The eof character could be used to indicate the end of data (2).

➢ Writing characters to the streams stdout and stderr causes a display on the screen in an

interactive program (i.e. Printf) (3)

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

● Newline and EOF

➢ The <newline> can be processed like any other character: It can be input using scanf with the
%c specifier, it can be compared to '\n' for equality, and it can be output using printf .

➢ Input of the special eof character is regarded as a failed operation, (1)

➢ The C run-time support system is under no obligation to provide an error message if the

program ignores the warning value and continues to attempt to get input from the stream in
question.

● Escape Sequences: p.626 (review)

● Formatting Output with printf: p.626 (review)

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

● File Pointer Variables: p. 627 (review):

• A pointer whose value equals NULL is called a null pointer (1)
• Using fopen with mode "w" to open for output a file that already exists usually causes loss of the

contents of the existing file. (2)

● Functions That Take File Pointer Arguments: p.629 (review)

● Closing a File: p.630 (review):
• Function fclose disposes of the structure that was created to store file access information and

carries out other “cleanup” operations.

● EXAMPLE 11.1, Figure 11.1

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

➢ When we use text files for storage of data, a program must expend a significant
amount of effort to convert the stream of characters from an input file into the
binary integers, type double mantissas and exponents, and character strings that
are the representation in main memory of the same data.

➢ The program must again expend time in converting the internal data format back

into a stream of characters for storage in an output file of text.

11.2 BINARY FILES

➢ We can avoid the unnecessary translation by using a binary file rather than a
text file. (1)

➢ A binary file is created by executing a program that stores directly in the file the
computer’s internal representation of each file component. (2)

11.2 BINARY FILES

Loading…

➢ the second argument to fopen is either "wb" (write binary) for output files
or "rb" (read binary) for input files.

➢ However, a different stdio library function is used for copying values into the

file: function fwrite , which has four input parameters.

1. The first parameter is the address of the first memory cell whose contents

are to be copied to the file. (1)
2. The second parameter of function fwrite is the number of bytes to copy to

the file for one component. (2)

11.2 BINARY FILES

➢ A C operator sizeof can be applied to any data type name to find the number of
bytes that the current implementation uses for storage of the data type. (1)

1. The third parameter of fwrite is the number of values to write to the binary

file. (2)

2. The final argument to fwrite is a file pointer to the file being created, a file

previously opened in mode "wb" using function fopen .

11.2 BINARY FILES

printf("An integer requires %d bytes ", sizeof (int));

printf("in this implementation.\n");

➢ For example, if array score is an array of ten integers, the following statement
writes the entire array to the output file.

➢ Writing the value of an integer variable i to a binary file using fwrite is faster
than writing i to a text file.

➢ For example, if the value of i is 244 , the statement from the for loop copies the

internal binary representation of i from memory to the file accessed by binaryp .
(1)

11.2 BINARY FILES

fwrite(score, sizeof (int), 10, binaryp);

fwrite(&i, sizeof (int), 1, binaryp);

➢ Assuming textp is a pointer to a text output file, the following statement writes
the value of i to the file using four characters (four bytes). (1)

● Obviously, it takes more time to do the conversion and copy each character than

it does to copy the internal binary representation to disk.

● Also, twice as much disk space is required to store four characters as to store the
internal binary representation of the type int value (four bytes versus two).

11.2 BINARY FILES

fprintf(textp, "%d ", i);

● The negative side to binary side usage:

1. A binary file created on one computer is rarely readable on another type of

computer.

2. A person cannot proofread the file by printing it out or by examining it in a

word processor. (1)

3. A binary file cannot be created or modified in a word processor(2)

11.2 BINARY FILES

➢ The stdio library includes an input function fread that is comparable to fwrite .
➢ Function fread also requires four arguments:

1. Address of first memory cell to fill.
2. Size of one value.
3. Maximum number of elements to copy from the file into memory.
4. File pointer to a binary file opened in mode "rb" using function fopen

➢ Function fread returns as its value an integer indicating how many elements it

successfully copied from the file (1)

11.2 BINARY FILES

➢ It is very important not to mix file types.

• A binary file created (written) using fwrite must be read using fread .
• A text file created using fprintf must be read using a text file input function such

as fscanf .

● Table 11.5 p.637 compares the use of text and binary files for input and output
of data of various types. (1)

11.2 BINARY FILES

➢ In Example 1 of Table 11.5 , we use fopen to open our input files, and we store
the file pointers returned by fopen in variables of type FILE* .

➢ Notice that the type of the file pointer does not vary.

➢ Also notice that the form of the call to fopen for opening a binary file differs

from the call for opening a text file only in the value of the mode (second
argument). In fact, even this difference is optional .

11.2 BINARY FILES

➢ We see a similar situation in the opening of output files in Example 2.

➢ One consequence of this similarity is that the ability of the C compiler and run-
time support system to detect misuse of a file pointer is severely limited.

➢ It is the programmer’s responsibility to keep track of which type of file each file

pointer accesses and to use the right I/O function at the right time.

11.2 BINARY FILES

➢ In Examples 3 and 4 of Table 11.5 , we compare input/output of a user-defined
structure type as it is done with text and binary files.

➢ In Examples 5 and 6, we see input/output of an array of type double values (1)

➢ Example 7 demonstrates partially filling array nums and setting n to the

number of elements filled.

➢ Example 8 shows that all files—binary or text, input or output—are closed in
the same way.

11.2 BINARY FILES

➢ Remember to declare a file pointer variable (type FILE*) for each file you want
to process.

➢ In a program that manipulates both file types, choose names for your file pointers

that remind you of the type of file accessed. (2)

➢ It is easy to use the wrong library function with a file pointer. (1)

➢ It is also critical that you remember that library functions fscanf , fprintf , getc ,
and putc must be used for text I/O only;

➢ Functions fread and fwrite are applied exclusively to binary files. (3)

11.4 COMMON PROGRAMMING
ERRORS

➢ The fact that fprintf , fscanf , and getc take the file pointer as their first
argument while putc , fread , and fwrite take it as the last argument is definitely
confusing at first.

➢ Keep in mind that opening a file for output by calling fopen with a second

argument of "w" or "wb" typically results in a loss of any existing file whose
name matches the first argument.

➢ It is easy to forget that binary files cannot be created, viewed, or modified using

an editor or word processor program (1)

11.4 COMMON PROGRAMMING
ERRORS

Thanks!

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 11
Text and Binary
File Processing

Loading…

Chapter Objectives:

1. Learn about streams in C and their relationship to files and standard input and output
devices.

2. Review how scanf , fscanf and printf , fprintf are used to read and write data.

3. Review escape sequences and their use in format strings.

4. Review file pointer variables and learn how to use functions that process them to

make a backup copy of a text file.

5. Learn about binary files and understand the differences between binary and text files.

● A text file is a named collection of characters saved in secondary storage (e.g.,
on a disk).

● A text file has no fixed size.

● To mark the end of a text file, the computer places a special end-of-file

character, which we will denote <eof>, after the last character in the file.

● As you create a text file using an editor program, pressing the <return> or
<enter> key causes the newline character (represented by C as '\n') to be placed
in the file.

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

Loading…

 (1)

➢ The disk file consists of a sequence of characters occupying consecutive storage
locations on a track of the disk, as shown here:
 (2)

➢ We sometimes refer to a data source or destination as an input stream or an

output stream. (3)

➢ These general terms can be applied to files, to the terminal keyboard and
screen, and to any other sources of input data or destinations of output data.

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

● The Keyboard and Screen as Text Streams
➢ The name stdin represents the keyboard’s input stream.
➢ Two system streams are associated with the screen:

1. The “normal” output stream stdout
2. The “error” output stream stderr. (1)

➢ Normally at the keyboard, we enter one line of data at a time, pressing <return> or <enter> to

indicate the end of a data line. Pressing one of these keys inserts the newline character in system
stream stdin .

➢ The eof character could be used to indicate the end of data (2).

➢ Writing characters to the streams stdout and stderr causes a display on the screen in an

interactive program (i.e. Printf) (3)

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

● Newline and EOF

➢ The <newline> can be processed like any other character: It can be input using scanf with the
%c specifier, it can be compared to '\n' for equality, and it can be output using printf .

➢ Input of the special eof character is regarded as a failed operation, (1)

➢ The C run-time support system is under no obligation to provide an error message if the

program ignores the warning value and continues to attempt to get input from the stream in
question.

● Escape Sequences: p.626 (review)

● Formatting Output with printf: p.626 (review)

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

● File Pointer Variables: p. 627 (review):

• A pointer whose value equals NULL is called a null pointer (1)
• Using fopen with mode "w" to open for output a file that already exists usually causes loss of the

contents of the existing file. (2)

● Functions That Take File Pointer Arguments: p.629 (review)

● Closing a File: p.630 (review):
• Function fclose disposes of the structure that was created to store file access information and

carries out other “cleanup” operations.

● EXAMPLE 11.1, Figure 11.1

11.1 INPUT/OUTPUT FILES: REVIEW AND FURTHER STUDY

➢ When we use text files for storage of data, a program must expend a significant
amount of effort to convert the stream of characters from an input file into the
binary integers, type double mantissas and exponents, and character strings that
are the representation in main memory of the same data.

➢ The program must again expend time in converting the internal data format back

into a stream of characters for storage in an output file of text.

11.2 BINARY FILES

➢ We can avoid the unnecessary translation by using a binary file rather than a
text file. (1)

➢ A binary file is created by executing a program that stores directly in the file the
computer’s internal representation of each file component. (2)

11.2 BINARY FILES

Loading…

➢ the second argument to fopen is either "wb" (write binary) for output files
or "rb" (read binary) for input files.

➢ However, a different stdio library function is used for copying values into the

file: function fwrite , which has four input parameters.

1. The first parameter is the address of the first memory cell whose contents

are to be copied to the file. (1)
2. The second parameter of function fwrite is the number of bytes to copy to

the file for one component. (2)

11.2 BINARY FILES

➢ A C operator sizeof can be applied to any data type name to find the number of
bytes that the current implementation uses for storage of the data type. (1)

1. The third parameter of fwrite is the number of values to write to the binary

file. (2)

2. The final argument to fwrite is a file pointer to the file being created, a file

previously opened in mode "wb" using function fopen .

11.2 BINARY FILES

printf("An integer requires %d bytes ", sizeof (int));

printf("in this implementation.\n");

➢ For example, if array score is an array of ten integers, the following statement
writes the entire array to the output file.

➢ Writing the value of an integer variable i to a binary file using fwrite is faster
than writing i to a text file.

➢ For example, if the value of i is 244 , the statement from the for loop copies the

internal binary representation of i from memory to the file accessed by binaryp .
(1)

11.2 BINARY FILES

fwrite(score, sizeof (int), 10, binaryp);

fwrite(&i, sizeof (int), 1, binaryp);

➢ Assuming textp is a pointer to a text output file, the following statement writes
the value of i to the file using four characters (four bytes). (1)

● Obviously, it takes more time to do the conversion and copy each character than

it does to copy the internal binary representation to disk.

● Also, twice as much disk space is required to store four characters as to store the
internal binary representation of the type int value (four bytes versus two).

11.2 BINARY FILES

fprintf(textp, "%d ", i);

● The negative side to binary side usage:

1. A binary file created on one computer is rarely readable on another type of

computer.

2. A person cannot proofread the file by printing it out or by examining it in a

word processor. (1)

3. A binary file cannot be created or modified in a word processor(2)

11.2 BINARY FILES

➢ The stdio library includes an input function fread that is comparable to fwrite .
➢ Function fread also requires four arguments:

1. Address of first memory cell to fill.
2. Size of one value.
3. Maximum number of elements to copy from the file into memory.
4. File pointer to a binary file opened in mode "rb" using function fopen

➢ Function fread returns as its value an integer indicating how many elements it

successfully copied from the file (1)

11.2 BINARY FILES

➢ It is very important not to mix file types.

• A binary file created (written) using fwrite must be read using fread .
• A text file created using fprintf must be read using a text file input function such

as fscanf .

● Table 11.5 p.637 compares the use of text and binary files for input and output
of data of various types. (1)

11.2 BINARY FILES

➢ In Example 1 of Table 11.5 , we use fopen to open our input files, and we store
the file pointers returned by fopen in variables of type FILE* .

➢ Notice that the type of the file pointer does not vary.

➢ Also notice that the form of the call to fopen for opening a binary file differs

from the call for opening a text file only in the value of the mode (second
argument). In fact, even this difference is optional .

11.2 BINARY FILES

➢ We see a similar situation in the opening of output files in Example 2.

➢ One consequence of this similarity is that the ability of the C compiler and run-
time support system to detect misuse of a file pointer is severely limited.

➢ It is the programmer’s responsibility to keep track of which type of file each file

pointer accesses and to use the right I/O function at the right time.

11.2 BINARY FILES

➢ In Examples 3 and 4 of Table 11.5 , we compare input/output of a user-defined
structure type as it is done with text and binary files.

➢ In Examples 5 and 6, we see input/output of an array of type double values (1)

➢ Example 7 demonstrates partially filling array nums and setting n to the

number of elements filled.

➢ Example 8 shows that all files—binary or text, input or output—are closed in
the same way.

11.2 BINARY FILES

➢ Remember to declare a file pointer variable (type FILE*) for each file you want
to process.

➢ In a program that manipulates both file types, choose names for your file pointers

that remind you of the type of file accessed. (2)

➢ It is easy to use the wrong library function with a file pointer. (1)

➢ It is also critical that you remember that library functions fscanf , fprintf , getc ,
and putc must be used for text I/O only;

➢ Functions fread and fwrite are applied exclusively to binary files. (3)

11.4 COMMON PROGRAMMING
ERRORS

➢ The fact that fprintf , fscanf , and getc take the file pointer as their first
argument while putc , fread , and fwrite take it as the last argument is definitely
confusing at first.

➢ Keep in mind that opening a file for output by calling fopen with a second

argument of "w" or "wb" typically results in a loss of any existing file whose
name matches the first argument.

➢ It is easy to forget that binary files cannot be created, viewed, or modified using

an editor or word processor program (1)

11.4 COMMON PROGRAMMING
ERRORS

Thanks!

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

