






## Antimicrobial Chemotherapy

### **Chemotherapeutic Agents**

- Chemical agents used to treat disease
- Destroy pathogenic microbes or inhibit their growth within host
- Most are antibiotics
  - microbial products or their derivatives that kill susceptible (سریعة التأثر) microbes or inhibit their growth

#### **Penicillin**

- First discovered by Ernest Duchesne (1896), but discovery lost
- Accidentally discovered by Alexander Fleming (1928)
  - observed penicillin activity on contaminated plate
  - did not think could be developed further
- Effectiveness demonstrated by Florey, Chain, and Heatley (1939)
- Fleming, Florey, and Chain received Nobel Prize in 1945 for discovery and production of penicillin



Christine L. Case, Skyline College

#### **Later Discoveries**

- Streptomycin, an antibiotic active against tuberculosis(مرض السل), was discovered by Selman Waksman (1944)
  - Nobel Prize was awarded to Waksman in 1952 for this discovery
- By 1953 chloramphenicol, terramycin, neomycin, and tetracycline isolated

### General Characteristics of Antimicrobial Drugs

- Selective toxicity
  - ability of drug to kill or inhibit pathogen while damaging host as little as possible
- Therapeutic dose
  - drug level required for clinical treatment
- Toxic dose
  - drug level at which drug becomes too toxic for patient (i.e., produces side effects)
- Therapeutic index
  - ratio of toxic dose to therapeutic dose

## **General Characteristics of Antimicrobial Drugs...**

- Side effects undesirable effects of drugs on host cells
- Narrow-spectrum drugs attack only a few different pathogens
- Broad-spectrum drugs attack many different pathogens
- Cidal agent kills microbes
- Static agent inhibits growth of microbes

| Antibiotic<br>Group                | Primary<br>Effect | Mechanism of Action                                                                                                                                                                                                | Members                                                                    | Spectrum                                                                                                                     | Common Side<br>Effects                                                                                           |
|------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Cell Wall Synthes                  | is Inhibition     |                                                                                                                                                                                                                    |                                                                            |                                                                                                                              |                                                                                                                  |
| Penicillins                        | Cidal             | Inhibit transpeptidation<br>enzymes involved in cross-<br>linking the polysaccharide<br>chains of peptidoglycan<br>Activate cell wall lytic enzymes                                                                | Penicillin G, penicillin<br>V, methicillin<br>Ampicillin,<br>carbenicillin | Narrow (Gram-positive)  Broad (Gram-positive, some Gram-negative)                                                            | Allergic reactions<br>(diarrhea, anemia,<br>hives, nausea,<br>renal toxicity)                                    |
| Cephalosporins                     | Cidal             | Same as above                                                                                                                                                                                                      | Cephalothin, cefoxitin,<br>cefaperazone,<br>ceftriaxone                    | Broad (Gram-positive,<br>some Gram-negative)                                                                                 | Allergic reactions,<br>thrombophlebitis,<br>renal injury                                                         |
| Vancomycin                         | Cidal             | Prevents transpeptidation<br>of peptidoglycan subunits by<br>binding to p-Ala-tr-Ala amino<br>acids at the end of peptide<br>side chains. Thus it has a<br>different binding site than<br>that of the penicillins. | Vancomycin                                                                 | Narrow (Gram-positive)                                                                                                       | Ototoxic (tinnitus and deafness), nephrotoxic allergic reactions                                                 |
| Protein Synthesi                   | s Inhibition      |                                                                                                                                                                                                                    |                                                                            |                                                                                                                              |                                                                                                                  |
| Aminoglycosides                    | Cidal             | Bind to small ribosomal subunit<br>(305) and interfere with protein<br>synthesis by directly<br>inhibiting synthesis and causing<br>misreading of mRNA                                                             | Neomycin, kanamycin,<br>gentamicin<br>Streptomycin                         | Broad (Gram-negative,<br>mycobacteria)  Narrow (aerobic<br>Gram-negative)                                                    | Ototoxic, renal<br>damage, loss of<br>balance, nausea,<br>allergic reactions                                     |
| Tetracyclines                      | Static            | Same as aminoglycosides                                                                                                                                                                                            | Oxytetracycline, chlortetracycline                                         | Broad (including rickettsia and chlamydia)                                                                                   | Gastrointestinal<br>upset, teeth<br>discoloration, renal and<br>hepatic injury                                   |
| Macrolides                         | Static            | Bind to 235 rRNA of large<br>ribosomal subunit (505) to<br>inhibit peptide chain elongation<br>during protein synthesis                                                                                            | Erythromycin,<br>clindamycin                                               | Broad (aerobic and<br>anaerobic Gram-<br>positive, some<br>Gram-negative)                                                    | Gastrointestinal upset,<br>hepatic injury, anemia<br>allergic reactions                                          |
| Chloramphenicol                    | Static            | Same as macrolides                                                                                                                                                                                                 | Chloramphenicol                                                            | Broad (Gram-positive<br>and -negative,<br>rickettsia and<br>chlamydia)                                                       | Depressed bone<br>marrow function,<br>allergic reactions                                                         |
| Nucleic Acid Syn                   | thesis Inhibiti   | on                                                                                                                                                                                                                 |                                                                            |                                                                                                                              |                                                                                                                  |
| Quinolones and<br>Fluoroquinolones | Cidal             | Inhibit DNA gyrase and<br>topoisomerase II, thereby<br>blocking DNA replication                                                                                                                                    | Norfloxacin,<br>ciprofloxacin,<br>Levofloxacin                             | Narrow (Gram-<br>negatives better than<br>Gram-positives)<br>Broad spectrum                                                  | Tendonitis, headache,<br>light-headedness,<br>convulsions, allergic<br>reactions                                 |
| Rifampin                           | Cidal             | Inhibits bacterial DNA-<br>dependent RNA polymerase                                                                                                                                                                | R-Cin, rifacilin,<br>rifarnycin, rimactane,<br>rimpin, siticox             | Mycobacterium<br>infections and some<br>Gram-negatives (e.g.,<br>Neisseria meningitidis<br>and Haemophilius<br>influenzae b) | Nausea, vomiting,<br>diarrhea, fatigue,<br>anemia, drowsiness,<br>headache, mouth<br>ulceration, liver<br>damage |

| Table 9.1 Pr    | roperties of So                                                                          | me Common Antibacterial Dr                                                                                                                  | ugs (continued)                                                              |                                                           |                                                                                                                                                        |
|-----------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cell Membrane   | Disruption                                                                               |                                                                                                                                             |                                                                              |                                                           |                                                                                                                                                        |
| Polymyxin B     | Cidal                                                                                    | Binds to plasma membrane and disrupts its structure and permeability properties                                                             | Polymyxin B,<br>polymyxin topical<br>ointment                                | Narrow—mycobacterial infections, principally leprosy      | Can cause severe<br>kidney damage,<br>drowsiness, dizziness                                                                                            |
| Antimetabolites | s                                                                                        |                                                                                                                                             |                                                                              |                                                           |                                                                                                                                                        |
| Sulfonamides    | Static                                                                                   | Inhibit folic acid synthesis by competing with p-aminobenzoic acid (PABA)                                                                   | Silver sulfadiazine,<br>sulfamethoxazole,<br>sulfanilamide,<br>sulfasalazine | Broad spectrum                                            | Nausea, vomiting, and diarrhea; hypersensitivity reactions such as rashes, photosensitivity                                                            |
| Trimethoprim    | Static                                                                                   | Blocks folic acid synthesis by inhibiting the enzyme tetrahydrofolate reductase                                                             | Trimethoprim (in combination with a sulfamethoxazole)                        | Broad spectrum                                            | Same as sulfonamides<br>but less frequent                                                                                                              |
| Dapsone         | Static                                                                                   | Thought to interfere with folic acid synthesis                                                                                              | Dapsone                                                                      | Narrow—mycobacterial infections, principally leprosy      | Back, leg, or stomach<br>pains; discolored<br>fingernails, lips, or skin;<br>breathing difficulties,<br>fever, loss of appetite,<br>skin rash, fatigue |
| Isoniazid       | Cidal if<br>bacteria are<br>actively<br>growing,<br>static if<br>bacteria are<br>dormant | Exact mechanism is unclear but<br>thought to inhibit lipid<br>synthesis (especially mycolic<br>acid); putative enoyl-reductase<br>inhibitor | Isoniazid                                                                    | Narrow—mycobacterial infections, principally tuberculosis | Nausea, vomiting, liver<br>damage, seizures,<br>"pins and needles" in<br>extremities (peripheral<br>neuropathy)                                        |

## General Characteristics of Antimicrobial Drugs...

- Effect of an agent may vary
  - with concentration, microbe, host
- Effectiveness expressed in two ways
  - minimal inhibitory concentration (MIC)
    - lowest concentration of drug that inhibits growth of pathogen
  - minimal lethal concentration (MLC)
    - lowest concentration of drug that kills pathogen

## 9.3 Determining the level of antimicrobial activity

- Explain how to determine the level of antibacterial drug activity using the dilution susceptibility test, the disk diffusion test, and the Etest
- 2. Predict antimicrobial drug levels *in vivo* from *in vitro* data

## Determining the Level of Antimicrobial Activity

- Dilution susceptibility tests for MIC
- Disk diffusion tests Kirby Bauer
- The E-test MIC and diffusion

### **Dilution Susceptibility Tests**

- Involves inoculating media containing different concentrations of drug
  - broth or agar with lowest concentration showing no growth is MIC
  - if broth used, tubes showing no growth can be subcultured into drug-free medium
    - broth from which microbe can't be recovered is MLC

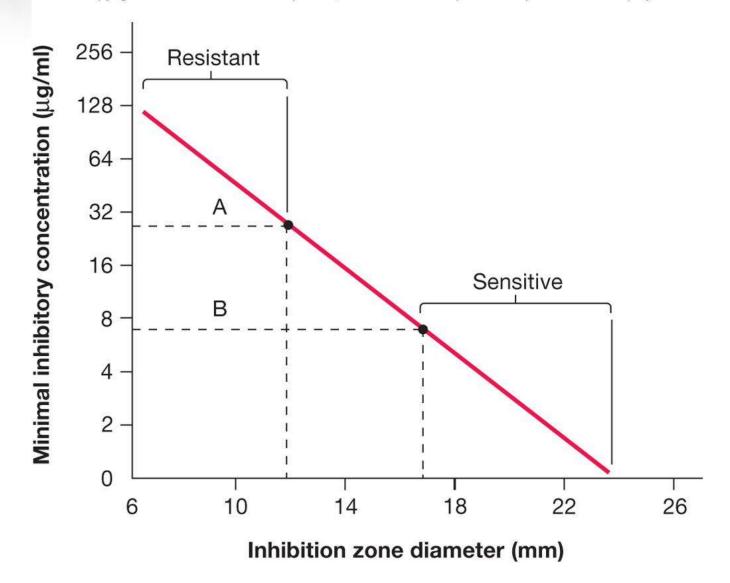
#### **Disk Diffusion Tests**

- Disks impregnated with specific drugs are placed on agar plates inoculated with test microbe
- Drug diffuses from disk into agar, establishing concentration gradient
- Observe clear zones (no growth) around disks

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

#### **Table 9.2** Inhibition Zone Diameter of Selected Chemotherapeutic Drugs

|                                               | Disk Content      | ZONE DIAMETER (NEAREST MM) |              |             |
|-----------------------------------------------|-------------------|----------------------------|--------------|-------------|
| Chemotherapeutic Drug                         |                   | Resistant                  | Intermediate | Susceptible |
| Carbenicillin (with Proteus spp. and E. coli) | 100 μg            | ≤17                        | 18-22        | ≥23         |
| Carbenicillin (with Pseudomonas aeruginosa)   | 100 μg            | ≤13                        | 14–16        | ≥17         |
| Erythromycin                                  | 15 µg             | ≤13                        | 14–17        | ≥18         |
| Penicillin G (with staphylococci)             | 10 U <sup>1</sup> | ≤20                        | 21-28        | ≥29         |
| Penicillin G (with other microorganisms)      | 10 U              | ≤11                        | 12-21        | ≥22         |
| Streptomycin                                  | 10 μg             | ≤11                        | 12-14        | ≥15         |
| Sulfonamides                                  | 250 or 300 μg     | ≤12                        | 13–16        | ≥17         |


<sup>1</sup> One milligram of penicillin G sodium = 1,600 units (U).

### **Kirby-Bauer Method**

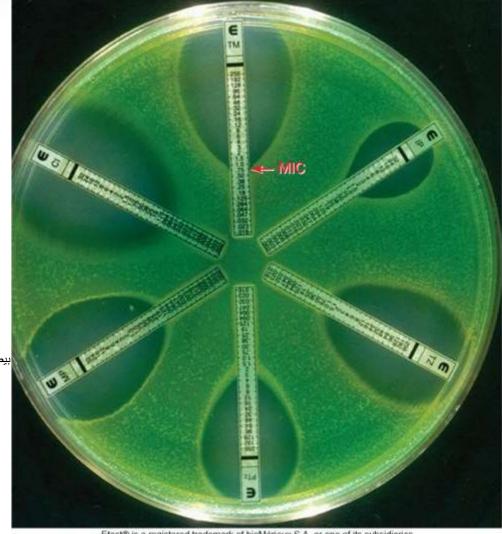
- Standardized method for disk diffusion test
- Sensitivity/resistance determined using tables relating zone diameter with microbial resistance
- Table values plotted, used to determine if effective concentration of drug in body can be reached



Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.



#### The E Test


Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Convenient(سناسب) for use with anaerobic pathogens

Similar to disk diffusion method, but uses strip rather than disk

E-test strips contain a gradient of an antibiotic

Intersection(تامن) of elliptical(الشكار) zone of inhibition with strip indicates MIC



Etest® is a registered trademark of bioMérieux S.A. or one of its subsidiaries

#### 9.4 Antibacterial drugs

- 1. Compare antibacterial drug mechanisms of action
- 2. Relate side effect toxicity of antibacterial drugs to mechanism of action
- Explain the relative effectiveness of various antibacterial agents based on drug target

#### **Antimicrobial Drugs**

- Inhibitors of cell wall synthesis
- Protein synthesis inhibitors
- Metabolic antagonists
- Nucleic acid synthesis inhibition

#### **Inhibitors of Cell Wall Synthesis**

#### Penicillins

- most are 6-aminopenicillanic acid derivatives and differ in side chain attached to amino group
- most crucial(مهمة) feature of molecule is the β-lactam ring
  - essential for bioactivity
  - many penicillin resistant organisms produce βlactamase (penicillinase) which hydrolyzes a bond in this ring

#### Penicillins...

- Mode of action
  - blocks the enzyme that catalyzes transpeptidation (formation of cross-links in peptidoglycan)
  - prevents the synthesis of complete cell walls leading to lysis of cell
  - acts only on growing bacteria that are synthesizing new peptidoglycan

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

6-aminopenicillanic acid

High activity against most Gram-positive bacteria, low against Gram negative; destroyed by acid and penicillinase

 Penicillinases attack her on the β-lactam ring.

#### Penicillin V

Penicillin G

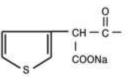
Same spectrum but more acidresistant than penicillin G

#### Ampicillin

Active against Gram-positive and Gram-negative bacteria; acid stable

#### Carbenicillin

Active against Gram-negative bacteria such as Pseudomonas and Proteus; acid stable; not well absorbed by small intestine


#### Methicillin

Penicillinase-resistant but less active than penicillin G; acid-labile

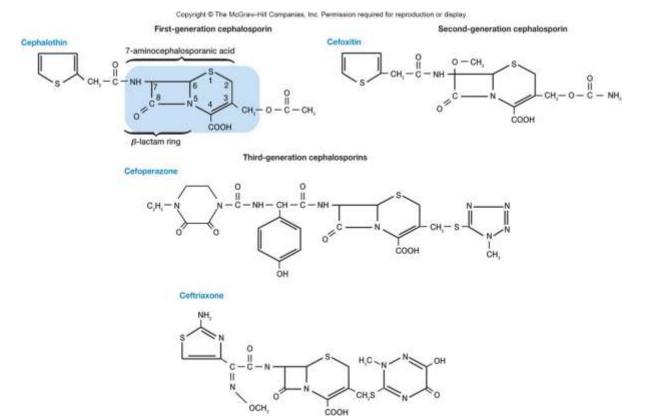


#### Ticarcillin

Similar to carbenicillin but more active against Pseudomonas

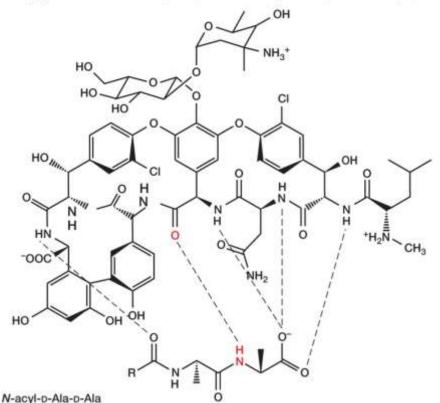


#### Other Actions of Penicillins


- Binds to periplasmic proteins (penicillinbinding proteins, PBPs)
- May activate bacterial autolysins and murein hydrolases
- Stimulate bacterial holins to form holes or lesions in the plasma membrane

#### Penicillins...

- Naturally occurring penicillins
  - penicillin V and G are narrow spectrum
- Semisynthetic penicillins have a broader spectrum than naturally occurring ones
- Resistance to penicillins, including the semisynthetic analogs, continues to be a problem
- ~1–5% of adults in U.S. are allergic to penicillin
  - allergy can lead to a violent allergic response and death

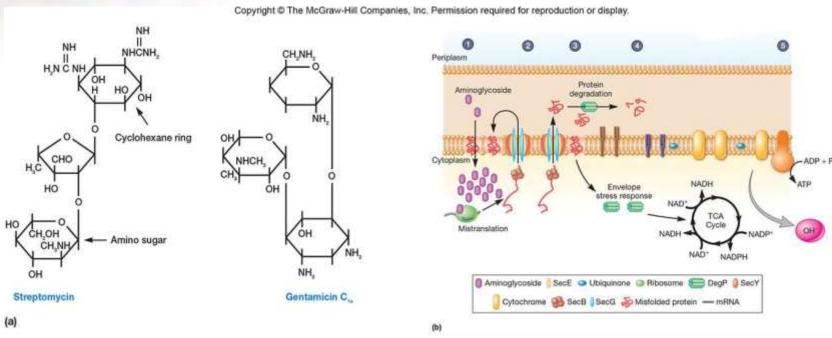

### Cephalosporins

- Structurally and functionally similar to penicillins
- Broad-spectrum antibiotics that can be used by most patients that are allergic to penicillin
- Four categories based on their spectrum of activity



#### Vancomycin and Teicoplanin

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.




- Glycopeptide antibiotics
- Inhibit cell wall synthesis
- Vancomycin important for treatment of antibioticresistant staphylococcal and enterococcal infections
  - previously considered
     "drug of last resort" so
     rise in resistance to
     vancomycin is of great
     concern(کبیر/قلق عظیم)

#### **Protein Synthesis Inhibitors**

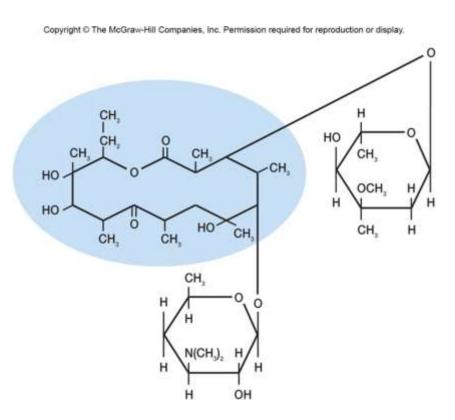
- Many antibiotics bind specifically to the bacterial ribosome
  - binding can be to 30S (small) or 50S (large) ribosomal subunit
- Other antibiotics inhibit a step in protein synthesis
  - aminoacyl-tRNA binding
  - peptide bond formation
  - mRNA reading
  - translocation

### Aminoglycoside Antibiotics



- Large group, all with a cyclohexane ring, amino sugars
- Bind to 30S ribosomal subunit, interfere with protein synthesis by directly inhibiting the process and by causing misreading of the messenger RNA
- Resistance and toxicity

#### **Tetracyclines**


- All have a four-ring structure to which a variety of side chains are attached
- Are broad spectrum, bacteriostatic
- Combine with 30S ribosomal subunit
  - inhibits bind of aminoacyl-tRNA molecules to the A site of the ribosome
- Sometimes used to treat <u>acne</u>(حب الشباب)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

#### Tetracycline (chlortetracycline, doxycycline)

#### **Macrolides**

- Contain 12- to 22-carbon lactone rings linked to one or more sugars
- e.g., erythromycin
  - broad spectrum, usually bacteriostatic
  - binds to 23S rRNA of 50S ribosomal subunit
    - inhibits peptide chain elongation
- Used for patients allergic to penicillin



### Chloramphenicol

- Now is chemically synthesized
- Binds to 23s rRNA on 50S ribosomal subunit and inhibits peptidyl transferase reaction
- Toxic with numerous side effects so only used in life-threatening situations

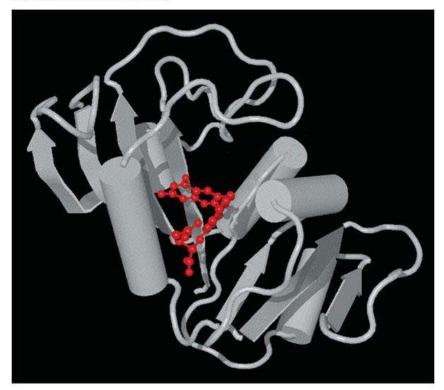
### **Metabolic Antagonists**

- Act as antimetabolites
  - antagonize or block functioning of metabolic pathways by competitively inhibiting the use of metabolites by key enzymes
- Are structural analogs
  - molecules that are structurally similar to, and compete with, naturally occurring metabolic intermediates
    - block normal cellular metabolism

### **Sulfonamides or Sulfa Drugs**

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- Structurally related to sulfanilamide, a paminobenzoic acid (PABA) analog
- PABA used for the synthesis of folic acid and is made by many pathogens
  - sulfa drugs are selectively toxic due to competitive inhibition of folic acid synthesis enzymes


#### **Trimethoprim**

- Synthetic antibiotic that also interferes with(بتداخل مع) folic acid production
- Broad spectrum
- Can be combined with sulfa drugs to increase efficacy of treatment
  - combination blocks two steps in folic acid pathway
- Has a variety of side effects including abdominal pain and photosensitivity reactions (الحساسية للضوء)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

$$\begin{array}{c|c} O & O \\ \parallel & \\ -N - CH_2NH - CH_2CH_2COOH \\ \parallel & COOH \\ H_2N - N - CHCH_2CH_2COOH \\ \parallel & COOH \\ \end{array}$$

(a) Dihydrofolic acid (DFA)



(b) Dihydrofolate reductase

Alex MacKerell, Ph.D.

### **Nucleic Acid Synthesis Inhibition**

- A variety of mechanisms
  - block DNA replication
    - inhibition of DNA polymerase
    - inhibition of DNA helicase
  - block transcription
    - inhibition of RNA polymerase
- Drugs not as selectively toxic as other antibiotics because bacteria and eukaryotes do not differ greatly in the way they synthesize nucleic acids

#### Quinolones

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

$$H_3C$$
 $7$ 
 $N$ 
 $C_2H_5$ 
 $COOH$ 
 $COOH$ 
 $C_2H_5$ 

Nalidixic acid

Norfloxacin

- Broad-spectrum, synthetic drugs containing the 4quinolone ring
- Nalidixic acid first synthesized quinolone (1962)
- Act by inhibiting bacterial DNA-gyrase and topoisomerase II
- Broad spectrum, bactericidal, wide range of infections

**Type II <u>topoisomerases</u>** cut both strands of the DNA helix simultaneously in order to manage DNA tangles and <u>supercoils</u>. They use the hydrolysis of <u>ATP</u>, unlike <u>Type I topoisomerase</u>. In this process, these enzymes change the <u>linking number</u> of circular DNA by ±2.

DNA gyrase, or simply gyrase, is an <u>enzyme</u> within the class of <u>topoisomerase</u> (Type II topoisomerase) <sup>[1]</sup> that relieves strain(يخفف من الضغط) while double-stranded <u>DNA</u> is being unwound by <u>helicase</u>. <sup>[2][3]</sup> The enzyme causes negative <u>supercoiling</u> of the DNA or relaxes positive supercoils.

## 9.8 Factors influencing antimicrobial drug effectiveness

- 1. Predict the effects of (1) delivery route, (2) metabolism, and (3) local concentration on the effectiveness of an antimicrobial drug
- 2. Correlate the sensitivity of a microorganism to an antimicrobial agent with microbial growth in the presence of that agent
- Identify the practices that lead to antimicrobial drug resistance and suggest countermeasures

## Factors Influencing Antimicrobial Drugs

- Ability of drug to reach site of infection
- Susceptibility of pathogen to drug
- Ability of drug to reach concentrations in body that <u>exceed(یتجاوز)</u> MIC of pathogen

## Ability of Drug to Reach Site of Infection

- Depends in part on mode of administration
  - oral
    - some drugs destroyed by stomach acid
  - topical
  - parenteral routes
    - nonoral routes of administration
- Drug can be excluded by blood clots or necrotic tissue(الأنسجة الميتة)

# Factors Influencing Ability of Drug to Reach Concentrations Exceeding MIC

- Amount administered
- Route of administration
- Speed of uptake
- Rate of clearance (elimination) from body

#### **Drug Resistance**

- An increasing problem
  - once resistance originates(ینشاً) in a population it can be transmitted to other bacteria
  - a particular type of resistance mechanism is not confirmed to a single class of drugs
- Microbes in abscesses or biofilms may be growing slowly and not be susceptible(سریع التاثر)
- Resistance mutants arise spontaneously and are then selected

#### **Overcoming Drug Resistance**

- Give drug in appropriate concentrations to destroy susceptible
- Give two or more drugs at same time
- Use drugs only when necessary
- Possible future solutions
  - continued development of new drugs
  - use of bacteriophages to treat bacterial disease