Image Compression

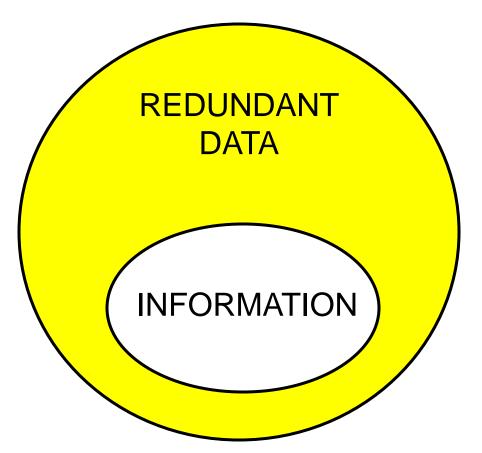
Birzeit University

First Semester UpRade 5 By 2 Jibre Bornat

Image Compression

- Everyday an enormous amount of information is stored, processed, and transmitted
 - Financial data
 - Reports

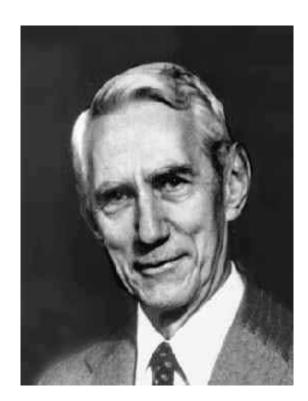
2


- Inventory
- Cable TV
- Online Ordering and tracking
- Because much of this information is graphical or pictorial in nature, the storage and communications requirements are immense.
- Image compression addresses the problem of reducing the amount of data requirements to represent a digital image.

Fundamentals

- 3
- The term data compression refers to the process of reducing the amount of data required to represent a given quantity of information
- **Data** \neq Information
- Various amount of data can be used to represent the same information
- Data might contain elements that provide no relevant information : *data redundancy*
- Data redundancy is a central issue in image compression. It is not an abstract concept but mathematically quantifiable entity

Information vs Data


4

DATA = INFORMATION + REDUNDANT DATA

STUDENTS-HUB.com

Measuring Information (not assessed)

Claude Shannon 1916-2001 Founder of information theory

The entropy of a source is a simple measure of the information content. For any discrete probability distribution, the value of the entropy function (H) is given by:- q = 1

$$H = \sum_{i=1}^{q} p_i \log_r \frac{1}{p_i}$$

(r=radix = 2 for binary) The units of entropy are bits/symbol.

We can compare the performance of our compression method with the calculated source entropy. Where the source 'alphabet' has q symbols of probability p_i (i=1..q).

Why Need Compression?

- Savings in storage and transmission
 - multimedia data (esp. image and video) have large data volume
 - difficult to send real-time uncompressed video over current network
- Accommodate relatively slow storage devices
 - they do not allow playing back uncompressed multimedia data in real time
 - 1x CD-ROM transfer rate ~ 150 kB/s
 - 320 x 240 x 24 fps color video bit rate ~ 5.5MB/s
 - => 36 seconds needed to transfer 1-sec uncompressed video from CD

STUDENTS-HUB.com

6

Example: Storing An Encyclopedia

- 7
- 500,000 pages of text (2kB/page) ~ 1GB => 2:1 compress
- 3,000 color pictures (640×480×24bits) ~ 3GB => 15:1
- 500 maps (640×480×16bits=0.6MB/map) ~ 0.3GB => 10:1
- 60 minutes of stereo sound (176kB/s) ~ 0.6GB => 6:1
- 30 animations with average 2 minutes long
 (640×320×16bits×16frames/s=6.5MB/s) ~ 23.4GB => 50:1
- 50 digitized movies with average 1 minute long (640×480×24bits×30frames/s = 27.6MB/s) ~ 82.8GB => 50:1
- Require a total of 111.1GB storage capacity if without compression
- → Reduce to 2.96GB if with compression STUDENTS-HUB.com

Relative Data Redundancy and Compression Ratio

Relative Data Redundancy

$$R_D = 1 - \frac{1}{C_R}$$

Compression Ratio

$$C_R = \frac{n_1}{n_2}$$

n1 and *n2* denote the number of information carrying units in two data sets that represent the same information

Types of data redundancy

- 1. Coding redundancy
- 2. Interpixel redundancy
- 3. Psychovisual redundancy

STUDENTS-HUB.com

Coding Redundancy

9

□ Recall from the histogram calculations

$$p(r_k) = \frac{h(r_k)}{n} = \frac{n_k}{n}$$

where $p(r_k)$ is the probability of a pixel to have a certain value r_k

If the number of bits used to represent r_k is $l(r_k)$, then

$$L_{av} = \sum_{k=0}^{L-1} l(r_k)(p(r_k))$$

STUDENTS-HUB.com

Coding Redundancy

10

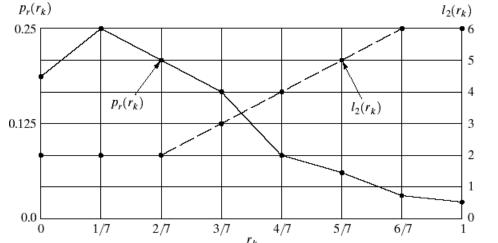
Example:

r _k	$p_r(r_k)$	Code 1	$l_1(r_k)$	Code 2	$l_2(r_k)$
$r_0 = 0$	0.19	000	3	11	2
$r_1 = 1/7$	0.25	001	3	01	2
$r_2 = 2/7$	0.21	010	3	10	2
$r_3 = 3/7$	0.16	011	3	001	3
$r_4 = 4/7$	0.08	100	3	0001	4
$r_5 = 5/7$	0.06	101	3	00001	5
$r_6 = 6/7$	0.03	110	3	000001	6
$r_7 = 1$	0.02	111	3	000000	6
,					

$$L_{av} = \sum_{k=0}^{7} l(r_k) (p(r_k))$$

 $= 2(019) + 2(0.25) + 3(0.16) + \dots + 6(0.02)$

$$= 2.7 bits$$

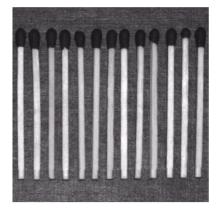

$$C_{R} = \frac{3}{2} = 1.11$$
$$R_{D} = 1 - \frac{1}{1.11} = 0.099$$

STUDENTS-HUB.com

Coding Redundancy 11

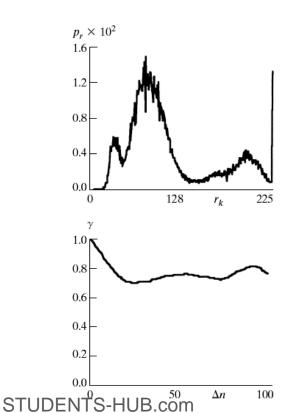
r _k	$p_r(r_k)$	Code 1	$l_1(r_k)$	Code 2	$l_2(r_k)$
$r_0 = 0$	0.19	000	3	11	2
$r_1 = 1/7$	0.25	001	3	01	2
$r_2 = 2/7$	0.21	010	3	10	2
$r_3 = 3/7$	0.16	011	3	001	3
$r_4 = 4/7$	0.08	100	3	0001	4
$r_5 = 5/7$	0.06	101	3	00001	5
$r_6 = 6/7$	0.03	110	3	000001	6
$r_7 = 1$	0.02	111	3	000000	6
-					

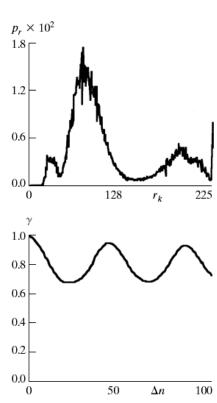
Variable-Length Coding


Graphic representation of the fundamental basis of data compression through variablelength coding.

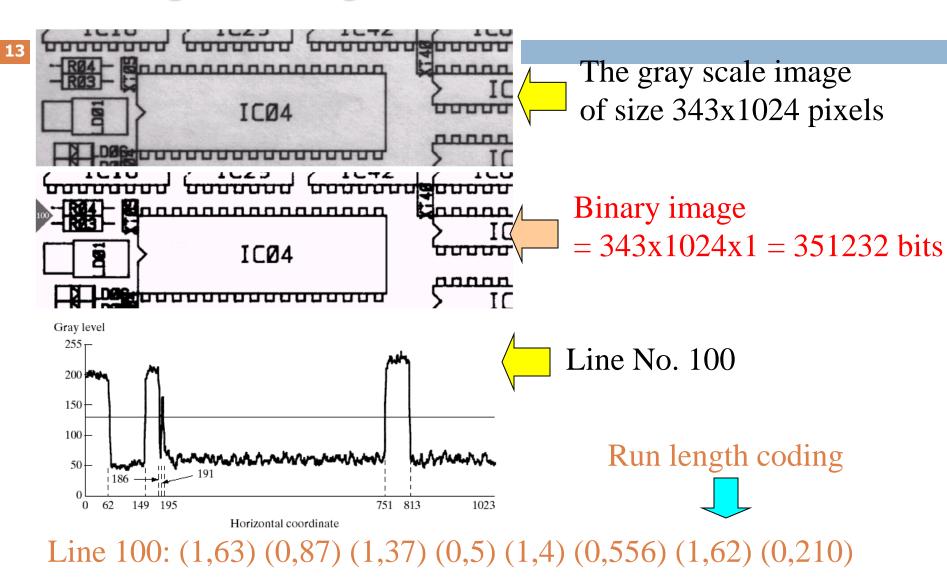
Concept: assign the longest code word to the symbol with the least STUDENTS-HUB.com probability of occurrence.

Interpixel Redundancy

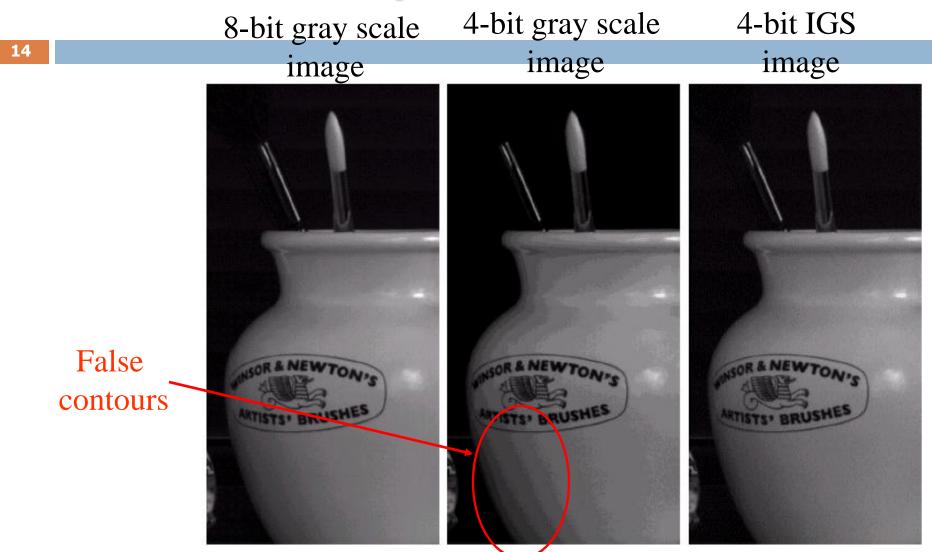

a b c d e f


> FIGURE 8.2 Two images and their gray-level histograms and normalized autocorrelation coefficients along one line.

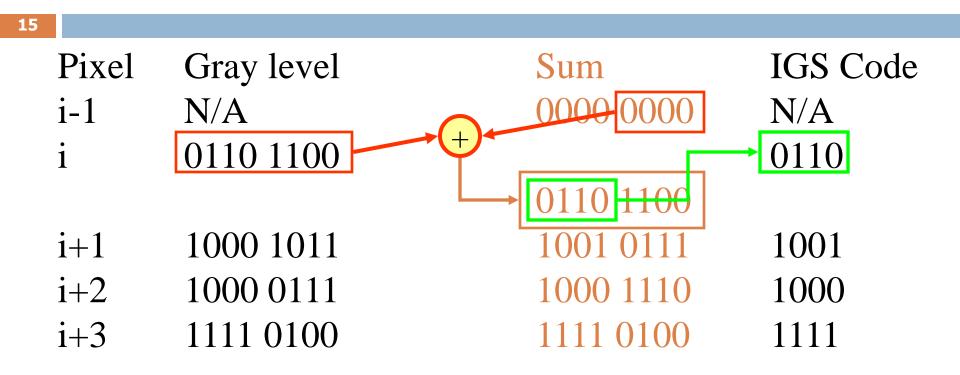
> > Here the two pictures have Approximately the same Histogram.


Interpixel redundancy: Parts of an image are highly correlated.

In other words,we can predict a given pixel from its neighbor.



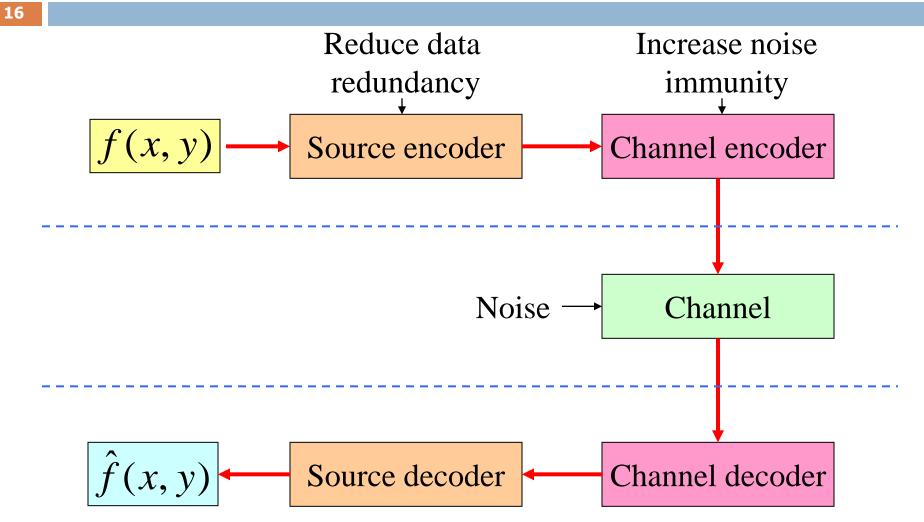
Run Length Coding


Total 12166 runs, each run use 11 bits → Total = 133826 Bits STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Irrelevant Redundancy

The eye does not response with equal sensitivity to all visual information. STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Improved Gray Scale Quantization



Algorithm

 Add the least significant 4 bits of the previous value of Sum to the 8-bit current pixel. If the most significant 4 bit of the pixel is 1111 then add 0000 instead. Keep the result in Sum

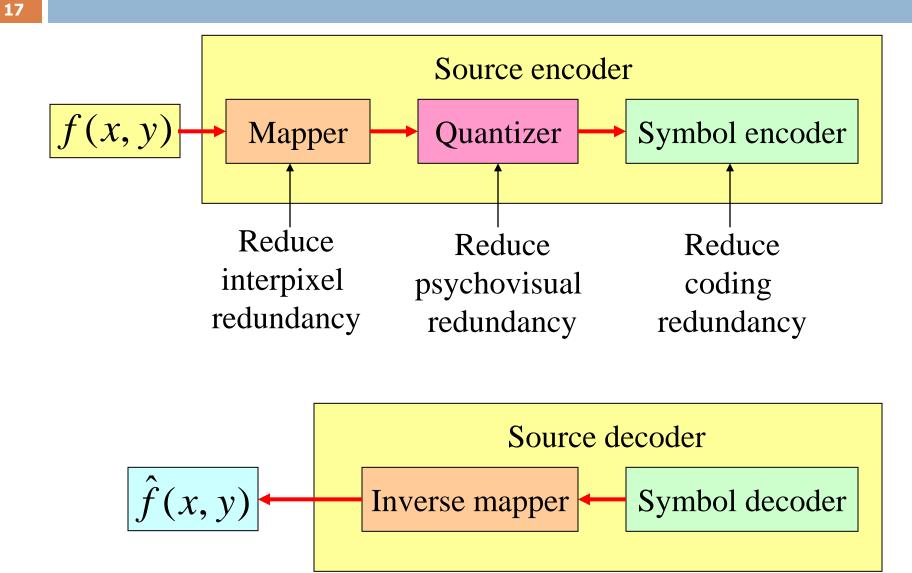
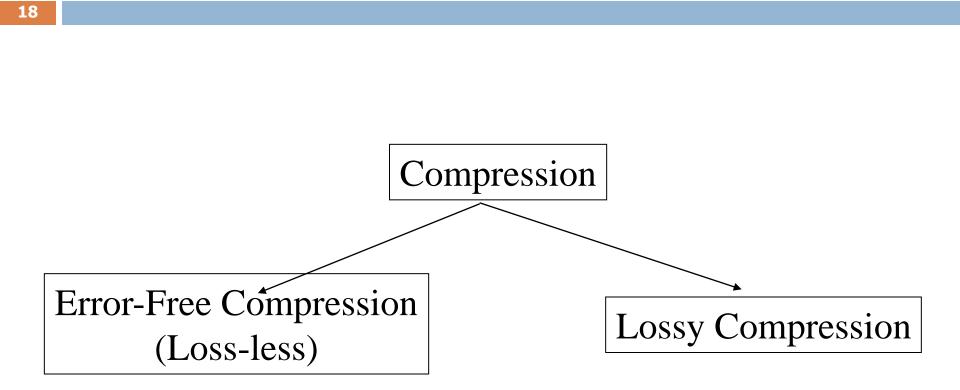

2. Keep only the most significant 4 bits of Sum for IGS code. STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Image Compression Models


STUDENTS-HUB.com

Source Encoder and Decoder Models

STUDENTS-HUB.com

Compression Types

Lossless and Lossy Compression

- 19
- Lossless compression (reversible) produces an exact copy of original.
- Lossy compression (irreversible) produces an approximation of original.
- Lossy compression is used on image, video and audio files where imperceptible (or "tolerable") losses to quality are exchanged for much larger compression ratios.
- Lossless compression usually achieves much less compression than lossy compression.
- It can be difficult to get a lossless compression ratio of more than 2:1 for images, but most lossy image compression can usually achieve 10:1 without too much loss of quality.
- Increasing lossy compression beyond specified limits can result in unwanted compression artefacts (characteristic errors introduced by compression losses).

Measuring "Quality"

20

- How do we measure the "quality" of lossily compressed images?
- Measurement methods
- Objective:- impartial measuring methods
- Subjective:- based on personal feelings
- We need definitions of "quality" ("degree of excellence"?) and to define how we will compare the original and decompressed images.

Fidelity Criteria

- 21
- A closely related objective fidelity criterion is the mean square signal to noise ratio of the compressed-decompressed image

$$SNR_{ms} = \frac{\sum_{x=0}^{M-1} \sum_{y=0}^{N-1} \hat{f}(x, y)^2}{\sum_{x=0}^{M-1} \sum_{y=0}^{N-1} [\hat{f}(x, y) - f(x, y)]^2}$$

Subjective Fidelity Criterion:

Human Rating

Value	Rating	Description
1	Excellent	An image of extremely high quality, as good as you could desire.
2	Fine	An image of high quality, providing enjoyable viewing. Interference is not objectionable.
3	Passable	An image of acceptable quality. Interference is not objectionable.
4	Marginal	An image of poor quality; you wish you could improve it. Interference is somewhat objectionable.
5	Inferior	A very poor image, but you could watch it. Objectionable interference is definitely present.
6	Unusable	An image so bad that you could not watch it. Uploaded By: Jibreel Bornat

What About Content?

- 22
 - Does image or video content affect quality perception?
 - Can very poor image quality be offset by interesting content?

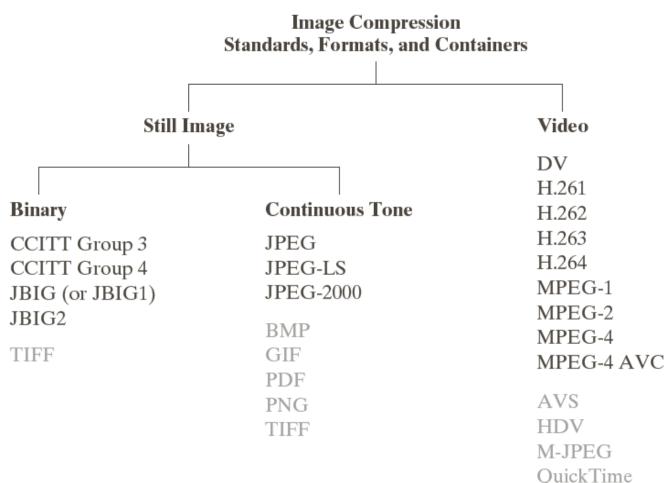


FIGURE 8.6 Some popular image compression standards, file formats, and containers. Internationally sanctioned entries are shown in black; all others are grayed.

23

STUDENTS-HUB.com

Uploaded By: Jibreel Bornat

VC-1 (or WMV9)

Name	Organization	Description
Bi-Level S	Still Images	
CCITT Group 3	ITU-T	Designed as a facsimile (FAX) method for transmitting binary documents over telephone lines. Supports 1-D and 2-D run-length [8.2.5] and Huffman [8.2.1] coding.
CCITT Group 4	ITU-T	A simplified and streamlined version of the CCITT Group 3 standard supporting 2-D run-length coding only.
JBIG or JBIG1	ISO/IEC/ ITU-T	A <i>Joint Bi-level Image Experts Group</i> standard for progressive, lossless compression of bi-level images. Continuous-tone images of up to 6 bits/pixel can be coded on a bit-plane basis [8.2.7]. Context sensitive arithmetic coding [8.2.3] is used and an initial low resolution version of the image can be gradually enhanced with additional compressed data.
JBIG2	ISO/IEC/ ITU-T	A follow-on to JBIG1 for bi-level images in desktop, Internet, and FAX applications. The compression method used is content based, with dictionary based methods [8.2.6] for text and halftone regions, and Huffman [8.2.1] or arithmetic coding [8.2.3] for other image content. It can be lossy or lossless.
Continuo	us-Tone Still In	nages
JPEG	ISO/IEC/ ITU-T	A Joint Photographic Experts Group standard for images of photographic quality. Its lossy baseline coding system (most commonly implemented) uses quantized discrete cosine transforms (DCT) on 8×8 image blocks [8.2.8], Huffman [8.2.1], and run-length [8.2.5] coding. It is one of the most popular methods for compressing images on the Internet.
JPEG-LS	ISO/IEC/ ITU-T	A lossless to near-lossless standard for continuous tone images based on adaptive prediction [8.2.9], context modeling [8.2.3], and Golomb coding [8.2.2].
JPEG- 2000	ISO/IEC/ ITU-T	A follow-on to JPEG for increased compression of photographic quality images. Arithmetic coding [8.2.3] and quantized discrete wavelet transforms (DWT) [8.2.10] are used. The compression can be lossy or lossless.

Name	Organization	Description
Video		
DV	IEC	<i>Digital Video</i> . A video standard tailored to home and semiprofessional video production applications and equipment—like electronic news gathering and camcorders. Frames are compressed independently for uncomplicated editing using a DCT-based approach [8.2.8] similar to JPEG.
H.261	ITU-T	A two-way videoconferencing standard for ISDN (<i>integrated services digital network</i>) lines. It supports non-interlaced 352×288 and 176×144 resolution images, called CIF (<i>Common Intermediate Format</i>) and QCIF (<i>Quarter CIF</i>), respectively. A DCT-based compression approach [8.2.8] similar to JPEG is used, with frame-to-frame prediction differencing [8.2.9] to reduce temporal redundancy. A block-based technique is used to compensate for motion between frames.
H.262	ITU-T	See MPEG-2 below.
H.263	ITU-T	An enhanced version of H.261 designed for ordinary telephone modems (i.e., 28.8 Kb/s) with additional resolutions: SQCIF (<i>Sub-Quarter</i> CIF 128 \times 96), 4CIF (704 \times 576), and 16CIF (1408 \times 512).
H.264	ITU-T	An extension of H.261–H.263 for videoconferencing, Internet streaming, and television broadcasting. It supports prediction differences within frames [8.2.9], variable block size integer transforms (rather than the DCT), and context adaptive arithmetic coding [8.2.3].
MPEG-1	ISO/IEC	A <i>Motion Pictures Expert Group</i> standard for CD-ROM applications with non-interlaced video at up to 1.5 Mb/s. It is similar to H.261 but frame predictions can be based on the previous frame, next frame, or an interpolation of both. It is supported by almost all computers and DVD players.
MPEG-2	ISO/IEC	An extension of MPEG-1 designed for DVDs with transfer rates to 15 Mb/s. Supports interlaced video and HDTV. It is the most successful video standard to date.
MPEG-4	ISO/IEC	An extension of MPEG-2 that supports variable block sizes and prediction differencing [8.2.9] within frames.
MPEG-4 AVC	ISO/IEC	MPEG-4 Part 10 <i>Advanced Video Coding</i> (AVC). Identical to H.264 above.

STUDENTS-HUB.com

Name	Organization	Description
Continuous-	Tone Still Images	
BMP	Microsoft	<i>Windows Bitmap</i> . A file format used mainly for simple uncompressed images.
GIF	CompuServe	Graphic Interchange Format. A file format that uses lossless LZW coding [8.2.4] for 1- through 8-bit images. It is frequently used to make small animations and short low resolution films for the World Wide Web.
PDF	Adobe Systems	<i>Portable Document Format.</i> A format for representing 2-D documents in a device and resolution independent way. It can function as a container for JPEG, JPEG 2000, CCITT, and other compressed images. Some PDF versions have become ISO standards.
PNG	World Wide Web Consortium (W3C)	<i>Portable Network Graphics</i> . A file format that losslessly compresses full color images with transparency (up to 48 bits/pixel) by coding the difference between each pixel's value and a predicted value based on past pixels [8.2.9].
TIFF	Aldus	<i>Tagged Image File Format.</i> A flexible file format supporting a variety of image compression standards, including JPEG, JPEG-LS, JPEG-2000, JBIG2, and others.
Video		
AVS	MII	<i>Audio-Video Standard.</i> Similar to H.264 but uses exponential Golomb coding [8.2.2]. Developed in China.
HDV	Company consortium	<i>High Definition Video</i> . An extension of DV for HD television that uses MPEG-2 like compression, including temporal redundancy removal by prediction differencing [8.2.9].
M-JPEG	Various companies	<i>Motion JPEG</i> . A compression format in which each frame is compressed independently using JPEG.
Quick-Time	Apple Computer	A media container supporting DV, H.261, H.262, H.264, MPEG-1, MPEG-2, MPEG-4, and other video compression formats.
VC-1 WMV9	SMPTE Microsoft	The most used video format on the Internet. Adopted for HD and <i>Blu-ray</i> high-definition DVDs. It is similar to H.264/AVC, using an integer DCT with varying block sizes [8.2.8 and 8.2.9] and context dependent variable- length code tables [8.2.1]—but no predictions within frames.
		Uploaded By: Jibre

25

STUDENTS-HUB.com

Error-Free Compression

- 26
- Some applications require no error in compression (medical, business documents, etc..)
- \Box C_R=2 to 10 can be expected.
- Make use of coding redundancy and inter-pixel redundancy.
- Ex: Huffman codes, LZW, Arithmetic coding, 1D and 2D runlength encoding, Loss-less Predictive Coding, and Bit-Plane Coding.

Error-Free Compression: Huffman Coding

27

S

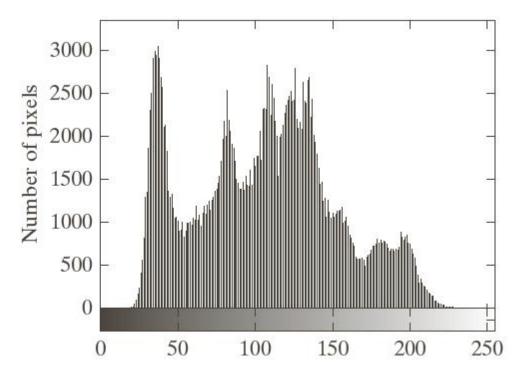
Source character frequency statistics are used to allocate codewords for output.

Compression can be achieved by allocating shorter codewords to the more frequently occurring characters.

Step 1: Source reduction

Original source		Source reduction			
Symbol	Probability	1	2	3	4
a2	0.4	0.4	0.4	0.4 _F	0.6
a_6	0.3	0.3	0.3	0.3-	0.4
a_1	0.1	0.1 🗗	- 0.2 −	0.3	
a_4	0.1	0.1 -	0.1		
a_3	0.06	- 0.1			
a_5	0.04 —				
UDENTS-HUB.com					Uploa

Error-Free Compression: Huffman Coding


28

Step 2: Code assignment procedure

(Driginal source				S	ource re	ductio	n		
Sym.	Prob.	Code	1	1	2	2	2	3	4	4
$a_2 \\ a_6 \\ a_1 \\ a_4 \\ a_3 \\ a_5 $	0.4 0.3 0.1 0.06 0.04	1 00 011 0100 01010 -	0.4 0.3 0.1 0.1 0.1	1 00 011 0100 - 0101 -	0.3 - 0.2 0.1	1 00 010 011 		$\begin{array}{c}1\\00\\01\end{array}$	—0.6 0.4	0 1

The code is instantaneous uniquely decodable without referencing succeeding symbols.

STUDENTS-HUB.com

Arithmetic Coding

Nonblock code: one-to-one correspondence between source symbols And code words does not exist.

Concept: The entire sequences of source symbols is assigned a single arithmetic code word in the form of a number in an interval of real number between 0 and 1.

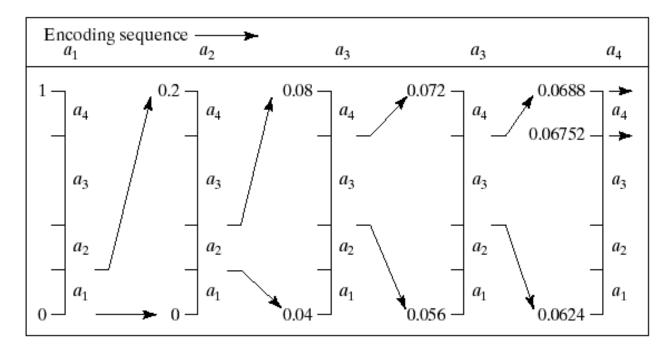
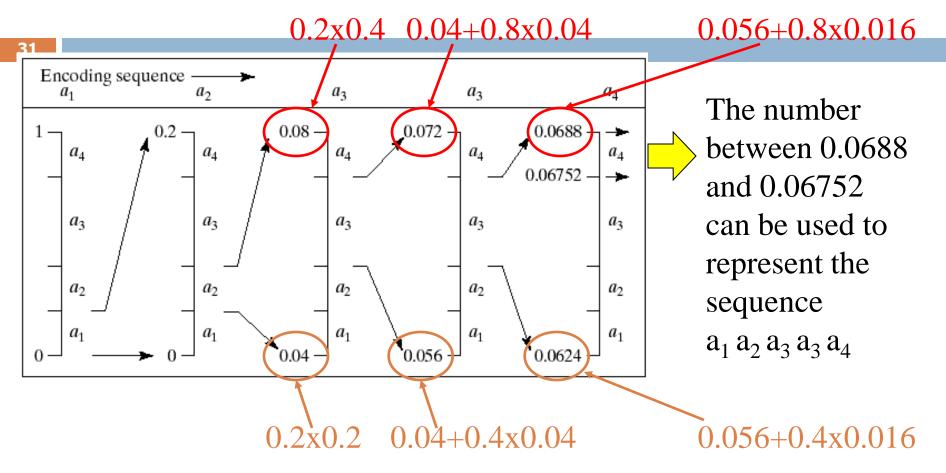



FIGURE 8.13 Arithmetic coding procedure.

STUDENTS-HUB.com

Arithmetic Coding Example

Source Symbol	Probability	Initial Subinterval
a_1	0.2	[0.0, 0.2)
a_2	0.2	[0.2, 0.4)
a_3	0.4	[0.4, 0.8)
STUDEN # S-HUB.com	0.2	[0.8, 1.0)

Fixed Length: LZW Coding

32

- Error Free Compression Technique
- Remove Inter-pixel redundancy
- Requires no priori knowledge of probability distribution of pixels
- Assigns fixed length code words to variable length sequences
- Included in GIF and TIFF and PDF file formats

33

Coding Technique

- A codebook or a dictionary has to be constructed
- For an 8-bit monochrome image, the first 256 entries are assigned to the gray levels 0,1,2,...,255.
- As the encoder examines image pixels, gray level sequences that are not in the dictionary are assigned to a new entry.
- For instance sequence 255-255 can be assigned to entry 256, the address following the locations reserved for gray levels 0 to 255.

34

Example

Consider the following 4 x 4 8 bit image

39	39	126	126
39	39	126	126
39	39	126	126
39	39	126	126

Dictionary Location	Entry
0	0
1	1
255	255
256	-
511	-

Initial Dictionary

STUDENTS-HUB.com

35

39	39	126	126
39	39	126	126

- 39 39 126 126
- 39 39 126 126

- •Is 39 in the dictionary.....Yes
- •What about 39-39.....No
- •Then add 39-39 in entry 256 🔨
- •And output the last recognized symbol...39

STUDENTS-HUB.com

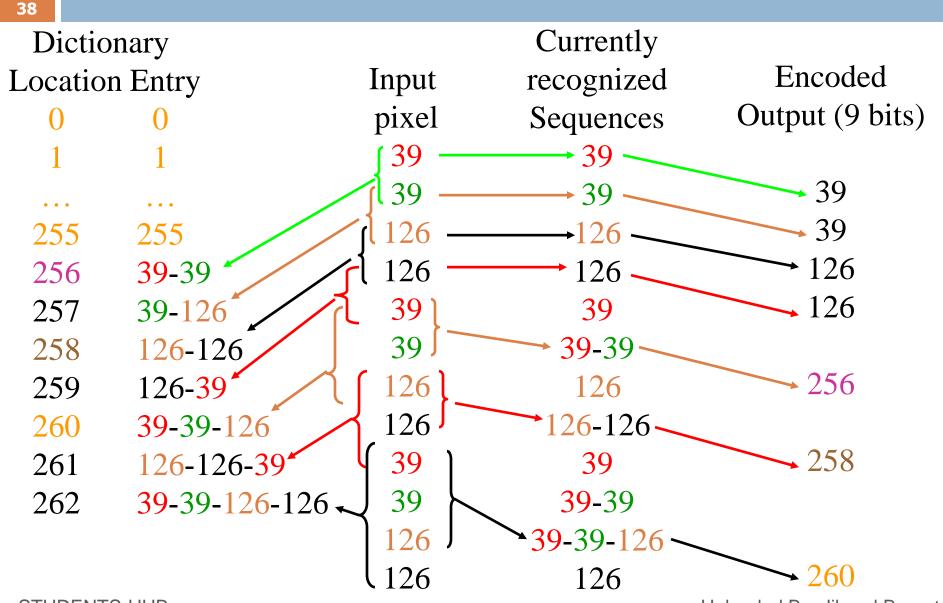
36

Lempel-Ziv-Welch coding : assign fixed length code words to

variable length sequences of source symbols.

	Currently Recognized Sequence	Pixel Being Processed	Encoded Output	Dictionary Location (Code Word)	Dictionary Entry
		39			
	39	39	39	256	39-39
	39	126	39	257	39-126
	126	126	126	258	126-126
	126	39	126	259	126-39
	39	39			
	39-39	126	256	260	39-39-126
	126	126			
	126-126	39	258	261	126-126-39
	39	39			
	30-39	126	\frown		
	39-39-126	126	260	262	39-39-126-126
4 Bits	126	39			
A DIIS	126-39	39	259	263	126-39-39
	30	126			
	39-126	126	257	264	39-126-126
9 Bits_	126		126		
SIUDENTS	HUB.com				Uploaded By: Jibre

LZW Coding Algorithm

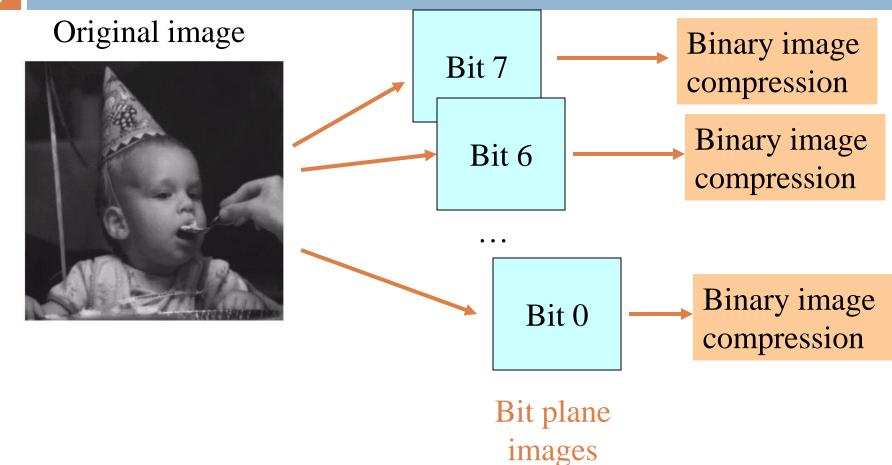

- 0. Initialize a dictionary by all possible gray values (0-255)
- 1. Input current pixel
- 2. If the current pixel combined with previous pixels
 - form one of existing dictionary entries

Then

- 2.1 Move to the next pixel and repeat Step 1
- Else
 - 2.2 Output the dictionary location of the currently recognized sequence (which is not include the current pixel)
 - 2.3 Create a new dictionary entry by appending the currently recognized sequence in 2.2 with the current pixel
 - 2.4 Move to the next pixel and repeat Step 1

STUDENTS-HUB.com

LZW Coding Example

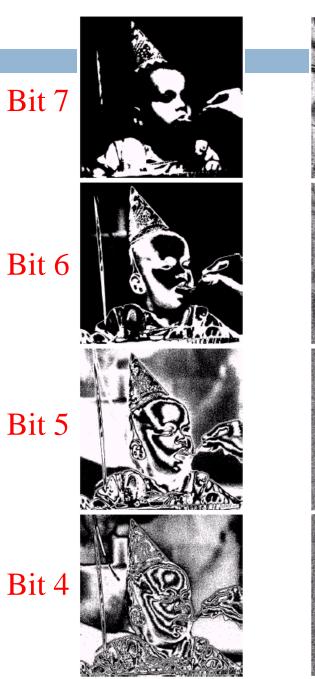

STUDENTS-HUB.com

Bit-Plane Coding

- 39
- An effective technique to reduce inter pixel redundancy is to process each bit plane individually
- □ The image is decomposed into a series of binary images.
- Each binary image is compressed using one of well known binary compression techniques.

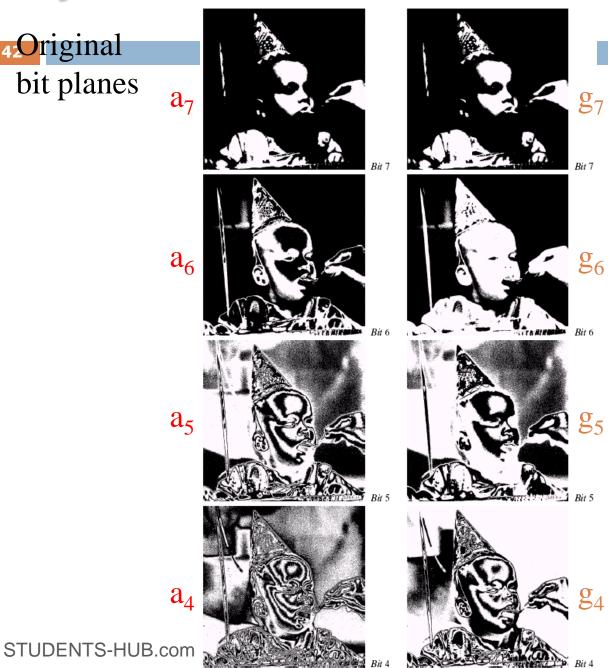
Bit-Plane Coding

Example of binary image compression: Run length coding


STUDENTS-HUB.com

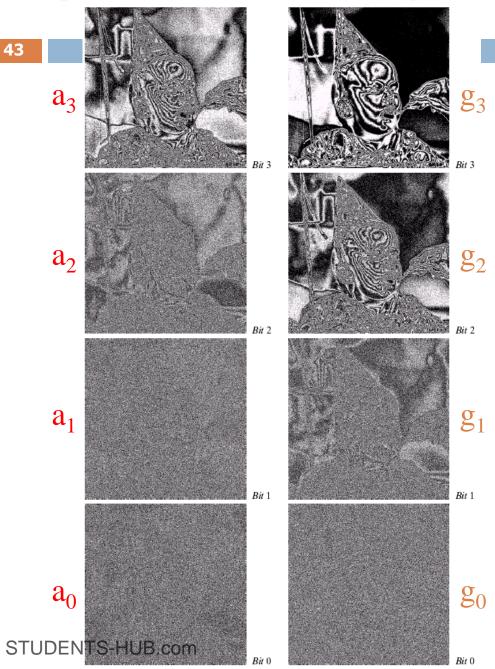
Bit Planes

Original gray scale image


STUDENTS-HUB.com

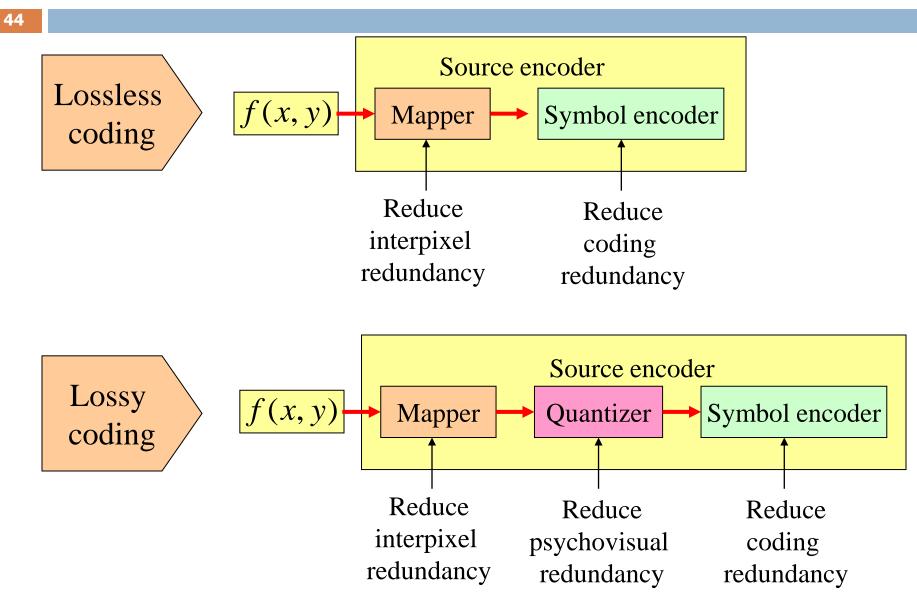
Bit 3 Bit 2 Bit 1 Bit 0 Uploaded By: Jibreel Bornat

Gray-coded Bit Planes

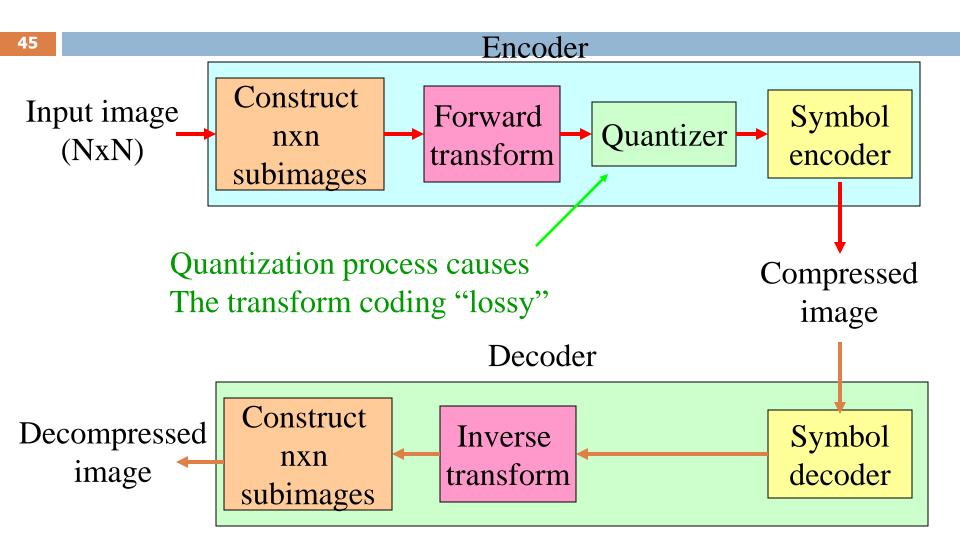

4.Original bit planes

Gray code: $g_i = a_i \otimes a_{i+1}$ for $0 \le i \le 6$ and $g_7 = a_7$

 a_i = Original bit planes $g_5 \otimes = XOR$


Gray-coded Bit Planes (cont.)

There are less 0-1 and 1-0 transitions in grayed code bit planes.


Hence gray coded bit planes are more efficient for coding.

Lossless VS Lossy Coding

STUDENTS-HUB.com

Transform Coding (for fixed resolution transforms)

Examples of transformations used for image compression: DFT and DCT

STUDENTS-HUB.com

Transform Coding (for fixed resolution transforms)

- **46**
- 3 Parameters that effect transform coding performance:
- 1. Type of transformation
- 2. Size of subimage
- 3. Quantization algorithm

2D Discrete Transformation

47

Forward transform:

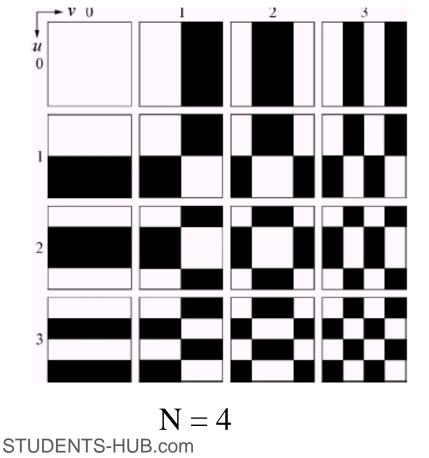
$$T(u,v) = \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x,y)g(x,y,u,v)$$

where g(x, y, u, v) = forward transformation kernel or basis function

T(u, v) is called the transform coefficient image.

Inverse transform:

$$f(x, y) = \sum_{u=0}^{N-1} \sum_{v=0}^{N-1} T(u, v) h(x, y, u, v)$$


where h(x, y, u, v) = inverse transformation kernel or inverse basis function

STUDENTS-HUB.com

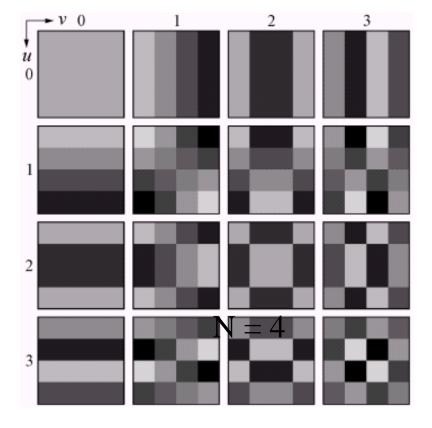
Transform Example: Walsh-Hadamard Basis Functions

48

$$g(x, y, u, v) = h(u, v, x, y) = \frac{1}{N} (-1)^{\sum_{i=0}^{m-1} \lfloor b_i(x) p_i(u) + b_i(y) p_i(v) \rfloor}$$

 $N = 2^{m}$ $b_{k}(z) = \text{the } k^{\text{th}} \text{ bit of } z$ $p_{0}(u) = b_{m-1}(u)$ $p_{1}(u) = b_{m-1}(u) + b_{m-2}(u)$ $p_{2}(u) = b_{m-2}(u) + b_{m-3}(u)$

$$p_{m-1}(u) = b_1(u) + b_0(u)$$


Advantage: simple, easy to implement Disadvantage: not good packing ability

. . .

Transform Example: Discrete Cosine Basis Functions

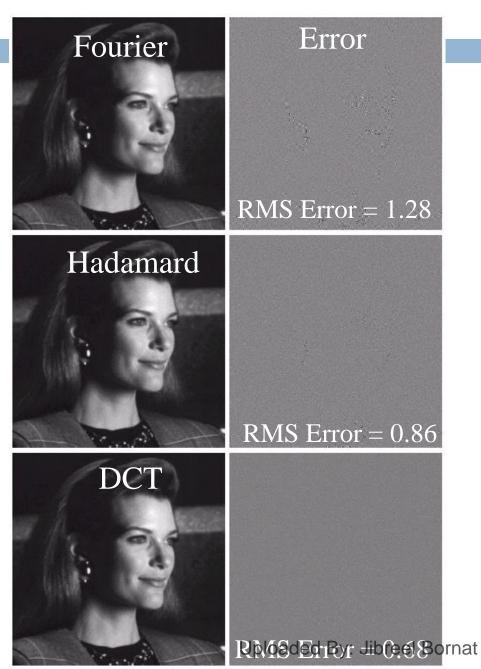
49

$$g(x, y, u, v) = h(u, v, x, y) = \alpha(u)\alpha(v)\cos\left[\frac{(2x+1)u\pi}{2N}\right]\cos\left[\frac{(2y+1)v\pi}{2N}\right]$$

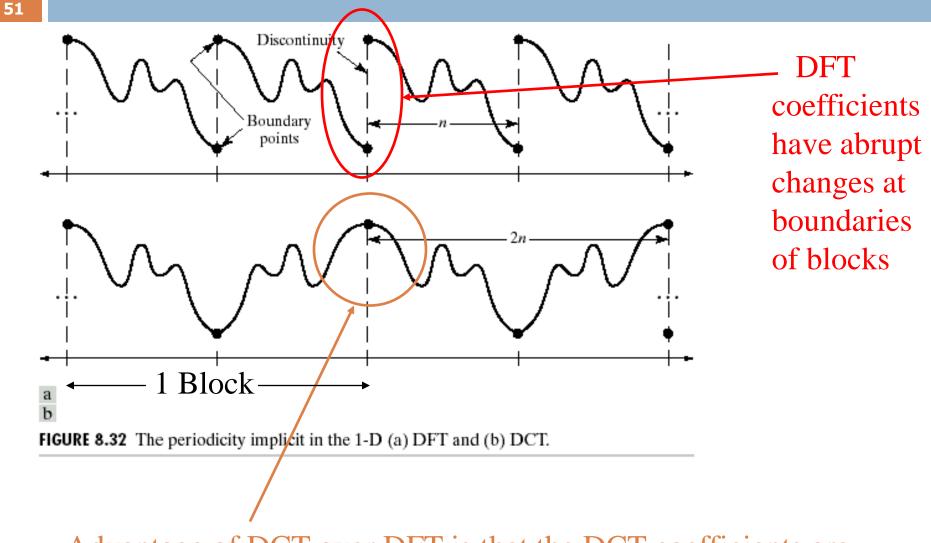
STUDENTS-HUB

$$\alpha(u) = \begin{cases} \sqrt{\frac{1}{N}} & \text{for } u = 0\\ \sqrt{\frac{2}{N}} & \text{for } u = 1, \dots, N-1 \end{cases}$$

DCT is one of the most frequently used transform for image compression. For example, DCT is used in JPG files. Advantage: good packing ability, modulate computational complexitymat

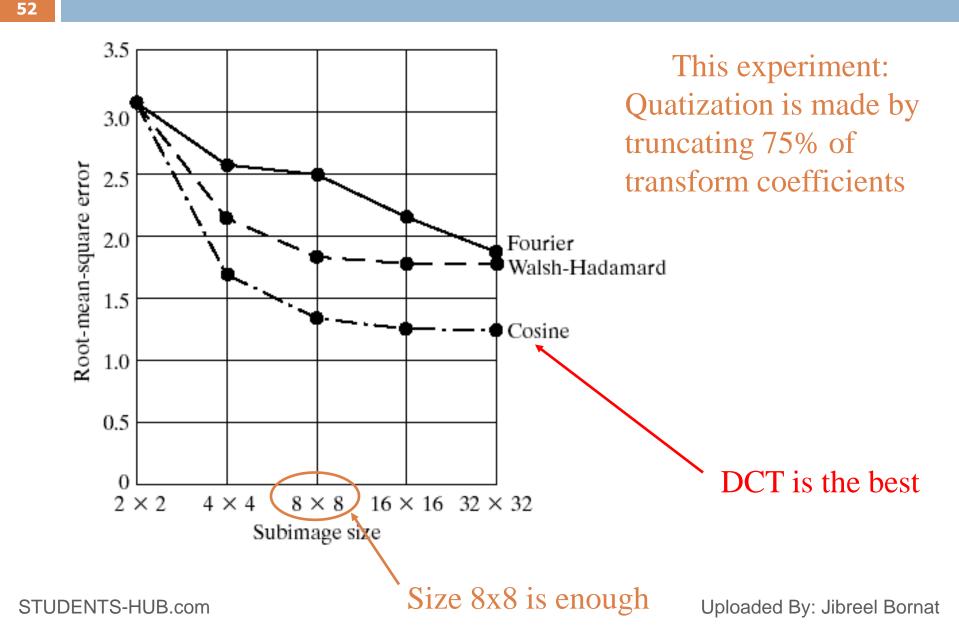

Transform Coding Examples

50



Original image 512x512 pixels Subimage size: 8x8 pixels = 64 pixels

Quatization by truncating 50% of coefficients (only 32 max cofficients are kept.) STUDENTS-HUB.com

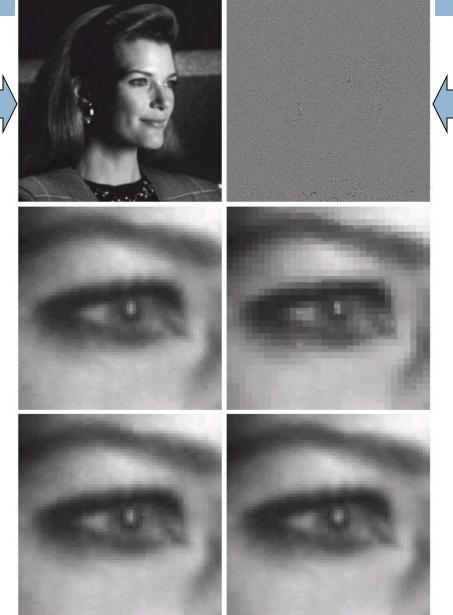


DCT vs DFT Coding

Advantage of DCT over DFT is that the DCT coefficients are more continuous at boundaries of blocks. STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Subimage Size and Transform Coding Performance

Subimage Size and Transform Coding Performance


Reconstructed by using 25% of coefficients $(C_R = 4:1)$ with 8x8 subimages

53

Zoomed detail Original

Zoomed detail Subimage size: 4x4 pixels

STUDENTS-HUB.com

DCT Coefficients

Zoomed detail Subimage size: 2x2 pixels

Zoomed detail Subimage size: 8x8 pixels

Quantization Process: Bit Allocation

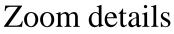
To assign different numbers of bits to represent transform coefficients based on importance of each coefficient:

- More importance coefficients \rightarrow assign a large number of bits
- Less importance coefficients → assign a small number of bits or not assign at all

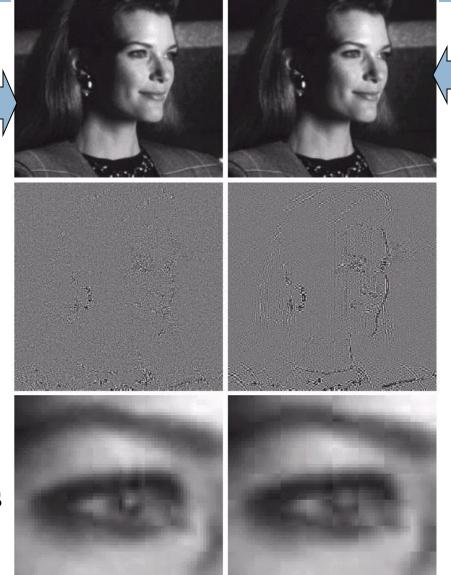
2 Popular bit allocation methods

1. Zonal coding : allocate bits based on the basis of maximum variance, using fixed mask for all subimages

2. Threshold coding : allocate bits based on maximum magnitudes of coefficients


STUDENTS-HUB.com

54


Example: Results with Different Bit Allocation Methods

Keconstructed by using 12.5% of coefficients (8 coefficients with largest magnitude are used)

Threshold coding Error

STUDENTS-HUB.com

Reconstructed by using 12.5% of coefficients (8 coefficients with largest variance are used)

Zonal coding Error

Zonal Coding Example

56

								Γ								
1	1	1	1	1	0	0	0		8	7	6	4	3	2	1	0
1	1	1	1	0	0	0	0		7	6	5	4	3	2	1	0
1	1	1	0	0	0	0	0		6	5	4	3	3	1	1	0
1	1	0	0	0	0	0	0		4	4	3	3	2	1	0	0
1	0	0	0	0	0	0	0		3	3	3	2	1	1	0	0
0	0	0	0	0	0	0	0		2	2	1	1	1	0	0	0
0	0	0	0	0	0	0	0		1	1	1	0	0	0	0	0
0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0
			1	1							-				•	

Zonal mask

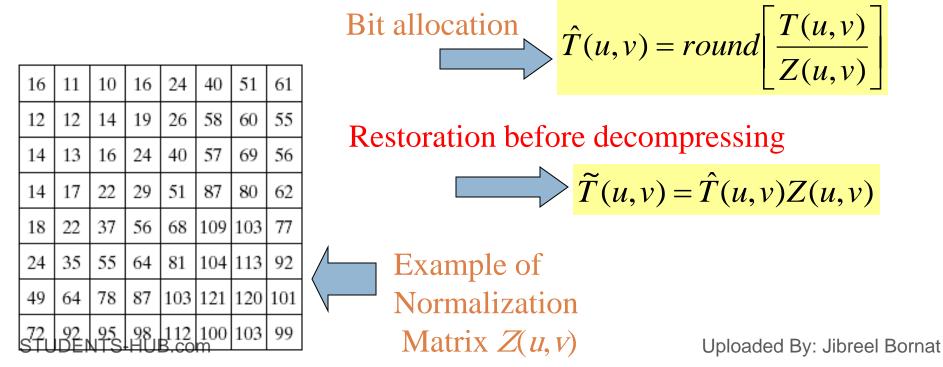
Zonal bit allocation

Threshold Coding Example

1	1	0	1	1	0	0	0	0	1	5	6	14	15	27	28
1	1	1	1	0	0	0	0	2	4	7	13	16	26	29	42
1	1	0	0	0	0	0	0	3	8	12	17	25	30	41	43
1	0	0	0	0	0	0	0	9	11	18	24	31	40	44	53
0	0	0	0	0	0	0	0	10	19	23	32	39	45	52	54
0	1	0	0	0	0	0	0	20	22	33	38	46	51	55	60
0	0	0	0	0	0	0	0	21	34	37	47	50	56	59	61
0	0	0	0	0	0	0	0	35	36	48	49	57	58	62	63

Threshold mask

Thresholded coefficient ordering

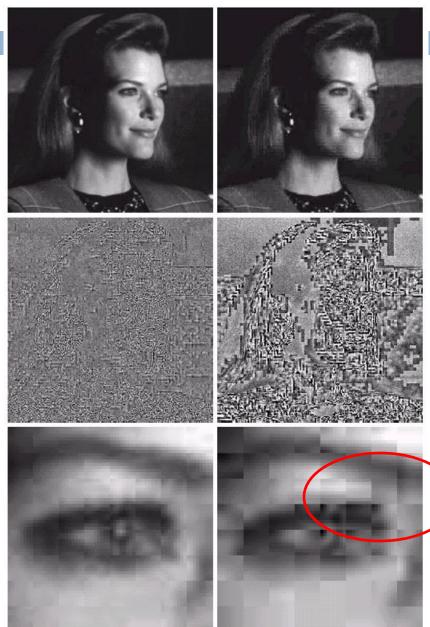

Thresholding Coding Quantization

Popular Thresholding Methods

Method 1: Global thresholding : Use a single global threshold value for all subimages

Method 2: N-largest coding: Keep only N largest coefficients

Method 3: Normalized thresholding: each subimage is normalized by a normalization matrix before rounding


DCT Coding Example

 $(C_R = 38:1)$

Error image RMS Error = 3.42

Zoom details

 $(C_R = 67:1)$

Method: - Normalized Thresholding, - Subimage size: 8x8 pixels

> Blocking Artifact at Subimage boundaries