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In Chapter 1 we dealt with the oscillations of one mass. We saw that there were various
possible motions, depending on what was influencing the mass (spring, damping, driving
forces). In this chapter we’ll look at oscillations (generally without damping or driving)
involving more than one object. Roughly speaking, our counting of the number of masses
will proceed as: two, then three, then infinity. The infinite case is relevant to a continuous
system, because such a system contains (ignoring the atomic nature of matter) an infinite
number of infinitesimally small pieces. This is therefore the chapter in which we will make
the transition from the oscillations of one particle to the oscillations of a continuous object,
that is, to waves.

The outline of this chapter is as follows. In Section 2.1 we solve the problem of two
masses connected by springs to each other and to two walls. We will solve this in two ways
– a quick way and then a longer but more fail-safe way. We encounter the important concepts
of normal modes and normal coordinates. We then add on driving and damping forces and
apply some results from Chapter 1. In Section 2.2 we move up a step and solve the analogous
problem involving three masses. In Section 2.3 we solve the general problem involving N
masses and show that the results reduce properly to the ones we already obtained in the
N = 2 and N = 3 cases. In Section 2.4 we take the N → ∞ limit (which corresponds
to a continuous stretchable material) and derive the all-important wave equation. We then
discuss what the possible waves can look like.

2.1 Two masses

For a single mass on a spring, there is one natural frequency, namely
√
k/m. (We’ll consider

undamped and undriven motion for now.) Let’s see what happens if we have two equal
masses and three spring arranged as shown in Fig. 1. The two outside spring constants

m m

k κ k

Figure 1

are the same, but we’ll allow the middle one to be different. In general, all three spring
constants could be different, but the math gets messy in that case.

Let x1 and x2 measure the displacements of the left and right masses from their respective
equilibrium positions. We can assume that all of the springs are unstretched at equilibrium,
but we don’t actually have to, because the spring force is linear (see Problem [to be added]).
The middle spring is stretched (or compressed) by x2 −x1, so the F = ma equations on the
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2 CHAPTER 2. NORMAL MODES

two masses are

mẍ1 = −kx1 − κ(x1 − x2),

mẍ2 = −kx2 − κ(x2 − x1). (1)

Concerning the signs of the κ terms here, they are equal and opposite, as dictated by
Newton’s third law, so they are either both right or both wrong. They are indeed both
right, as can be seen by taking the limit of, say, large x2. The force on the left mass is then
in the positive direction, which is correct.

These two F = ma equations are “coupled,” in the sense that both x1 and x2 appear in
both equations. How do we go about solving for x1(t) and x2(t)? There are (at least) two
ways we can do this.

2.1.1 First method

This first method is quick, but it works only for simple systems with a sufficient amount of
symmetry. The main goal in this method is to combine the F = ma equations in well-chosen
ways so that x1 and x2 appear only in certain unique combinations. It sometimes involves a
bit of guesswork to determine what these well-chosen ways are. But in the present problem,
the simplest thing to do is add the F = ma equations in Eq. (1), and it turns out that this
is in fact one of the two useful combinations to form. The sum yields

m(ẍ1 + ẍ2) = −k(x1 + x2) =⇒ d2

dt2
(x1 + x2) = − k

m
(x1 + x2). (2)

The variables x1 and x2 appear here only in the unique combination, x1 +x2. And further-
more, this equation is simply a harmonic-motion equation for the quantity x1 + x2. The
solution is therefore

x1(t) + x2(t) = 2As cos(ωst+ φs), where ωs ≡
√

k

m
(3)

The “s” here stands for “slow,” to be distinguished from the “fast” frequency we’ll find
below. And we’ve defined the coefficient to be 2As so that we won’t have a bunch of factors
of 1/2 in our final answer in Eq. (6) below.

No matter what complicated motion the masses are doing, the quantity x1 + x2 always
undergoes simple harmonic motion with frequency ωs. This is by no means obvious if you
look at two masses bouncing back and forth in an arbitrary manner.

The other useful combination of the F = ma equations is their difference, which conve-
niently is probably the next thing you might try. This yields

m(ẍ1 − ẍ2) = −(k + 2κ)(x1 − x2) =⇒ d2

dt2
(x1 − x2) = −k + 2κ

m
(x1 − x2). (4)

The variables x1 and x2 now appear only in the unique combination, x1 − x2. And again,
we have a harmonic-motion equation for the quantity x1 − x2. So the solution is (the “f”
stands for “fast”)

x1(t)− x2(t) = 2Af cos(ωft+ φf), where ωf ≡
√

k + 2κ

m
(5)

As above, no matter what complicated motion the masses are doing, the quantity x1 − x2

always undergoes simple harmonic motion with frequency ωf .
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2.1. TWO MASSES 3

We can now solve for x1(t) and x2(t) by adding and subtracting Eqs. (3) and (5). The
result is

x1(t) = As cos(ωst+ φs) +Af cos(ωft+ φf),

x2(t) = As cos(ωst+ φs)−Af cos(ωft+ φf). (6)

The four constants, As, Af , φs, φf are determined by the four initial conditions, x1(0), x2(0),
ẋ1(0), ẋ1(0).

The above method will clearly work only if we’re able to guess the proper combinations of
the F = ma equations that yield equations involving unique combinations of the variables.
Adding and subtracting the equations worked fine here, but for more complicated systems
with unequal masses or with all the spring constants different, the appropriate combination
of the equations might be far from obvious. And there is no guarantee that guessing around
will get you anywhere. So before discussing the features of the solution in Eq. (6), let’s take
a look at the other more systematic and fail-safe method of solving for x1 and x2.

2.1.2 Second method

This method is longer, but it works (in theory) for any setup. Our strategy will be to look
for simple kinds of motions where both masses move with the same frequency. We will
then build up the most general solution from these simple motions. For all we know, such
motions might not even exist, but we have nothing to lose by trying to find them. We will
find that they do in fact exist. You might want to try to guess now what they are for our
two-mass system, but it isn’t necessary to know what they look like before undertaking this
method.

Let’s guess solutions of the form x1(t) = A1e
iωt and x2(t) = A2e

iωt. For bookkeeping
purposes, it is convenient to write these solutions in vector form:

(
x1(t)
x2(t)

)
=

(
A1

A2

)
eiωt. (7)

We’ll end up taking the real part in the end. We can alternatively guess the solution eαt

without the i, but then our α will come out to be imaginary. Either choice will get the job
done. Plugging these guesses into the F = ma equations in Eq. (1), and canceling the factor
of eiωt, yields

−mω2A1 = −kA1 − κ(A1 −A2),

−mω2A2 = −kA2 − κ(A2 −A1). (8)

In matrix form, this can be written as

( −mω2 + k + κ −κ
−κ −mω2 + k + κ

)(
A1

A2

)
=

(
0
0

)
. (9)

At this point, it seems like we can multiply both sides of this equation by the inverse of
the matrix. This leads to (A1, A2) = (0, 0). This is obviously a solution (the masses just
sit there), but we’re looking for a nontrivial solution that actually contains some motion.
The only way to escape the preceding conclusion that A1 and A2 must both be zero is if
the inverse of the matrix doesn’t exist. Now, matrix inverses are somewhat messy things
(involving cofactors and determinants), but for the present purposes, the only fact we need to
know about them is that they involve dividing by the determinant. So if the determinant is
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4 CHAPTER 2. NORMAL MODES

zero, then the inverse doesn’t exist. This is therefore what we want. Setting the determinant
equal to zero gives the quartic equation,

∣∣∣∣
−mω2 + k + κ −κ

−κ −mω2 + k + κ

∣∣∣∣ = 0 =⇒ (−mω2 + k + κ)2 − κ2 = 0

=⇒ −mω2 + k + κ = ±κ

=⇒ ω2 =
k

m
or

k + 2κ

m
. (10)

The four solutions to the quartic equation are therefore ω = ±
√
k/m and ω = ±

√
(k + 2κ)/m.

For the case where ω2 = k/m, we can plug this value of ω2 back into Eq. (9) to obtain

κ

(
1 −1
−1 1

)(
A1

A2

)
=

(
0
0

)
. (11)

Both rows of this equation yield the same result (this was the point of setting the determinant
equal to zero), namely A1 = A2. So (A1, A2) is proportional to the vector (1, 1).

For the case where ω2 = (k + 2κ)/m, Eq. (9) gives

κ

( −1 −1
−1 −1

)(
A1

A2

)
=

(
0
0

)
. (12)

Both rows now yield A1 = −A2. So (A1, A2) is proportional to the vector (1,−1).
With ωs ≡

√
k/m and ωf ≡

√
(k + 2κ)/m, we can write the general solution as the sum

of the four solutions we have found. In vector notation, x1(t) and x2(t) are given by

(
x1(t)
x2(t)

)
= C1

(
1
1

)
eiωst+C2

(
1
1

)
e−iωst+C3

(
1
−1

)
eiωf t+C4

(
1
−1

)
e−iωf t. (13)

We now perform the usual step of invoking the fact that the positions x1(t) and x2(t)
must be real for all t. This yields that standard result that C1 = C∗

2 ≡ (As/2)e
iφs and

C3 = C∗
4 ≡ (Af/2)e

iφf . We have included the factors of 1/2 in these definitions so that we
won’t have a bunch of factors of 1/2 in our final answer. The imaginary parts in Eq. (13)
cancel, and we obtain

(
x1(t)
x2(t)

)
= As

(
1
1

)
cos(ωst+ φs) +Af

(
1
−1

)
cos(ωft+ φf) (14)

Therefore,

x1(t) = As cos(ωst+ φs) +Af cos(ωft+ φf),

x2(t) = As cos(ωst+ φs)−Af cos(ωft+ φf). (15)

This agrees with the result in Eq. (6).
As we discussed in Section 1.1.5, we could have just taken the real part of the C1(1, 1)e

iωst

and C3(1,−1)eiωf t solutions, instead of going through the “positions must be real” reasoning.
However, you should continue using the latter reasoning until you’re comfortable with the
short cut of taking the real part.

Remark: Note that Eq. (9) can be written in the form,

(
k + κ −κ
−κ k + κ

)(
A1

A2

)
= mω2

(
A1

A2

)
. (16)
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2.1. TWO MASSES 5

So what we did above was solve for the eigenvectors and eigenvalues of this matrix. The eigenvectors

of a matrix are the special vectors that get carried into a multiple of themselves what acted on by

the matrix. And the multiple (which is mω2 here) is called the eigenvalue. Such vectors are indeed

special, because in general a vector gets both stretched (or shrunk) and rotated when acted on by

a matrix. Eigenvectors don’t get rotated at all. ♣

A third method of solving our coupled-oscillator problem is to solve for x2 in the first
equation in Eq. (1) and plug the result into the second. You will get a big mess of a
fourth-order differential equation, but it’s solvable by guessing x1 = Aeiωt.

2.1.3 Normal modes and normal coordinates

Normal modes

Having solved for x1(t) and x2(t) in various ways, let’s now look at what we’re found. If
Af = 0 in Eq. (15), then we have

x1(t) = x2(t) = As cos(ωst+ φs). (17)

So both masses move in exactly the same manner. Both to the right, then both to the left,
and so on. This is shown in Fig. 2. The middle spring is never stretched, so it effectively

Figure 2

isn’t there. We therefore basically have two copies of a simple spring-mass system. This
is consistent with the fact that ωs equals the standard expression

√
k/m, independent of

κ. This nice motion, where both masses move with the same frequency, is called a normal
mode. To specify what a normal mode looks like, you have to give the frequency and also
the relative amplitudes. So this mode has frequency

√
k/m, and the amplitudes are equal.

If, on the other hand, As = 0 in Eq. (15), then we have

x1(t) = −x2(t) = Af cos(ωft+ φf). (18)

Now the masses move oppositely. Both outward, then both inward, and so on. This is shown
in Fig. 3. The frequency is now ωf =

√
(k + 2κ)/m. It makes sense that this is larger than

Figure 3

ωs, because the middle spring is now stretched or compressed, so it adds to the restoring
force. This nice motion is the other normal mode. It has frequency

√
(k + 2κ)/m, and the

amplitudes are equal and opposite. The task of Problem [to be added] is to deduce the
frequency ωf in a simpler way, without going through the whole process above.

Eq. (15) tells us that any arbitrary motion of the system can be thought of as a linear
combination of these two normal modes. But in the general case where both coefficients
As and Af are nonzero, it’s rather difficult to tell that the motion is actually built up from
these two simple normal-mode motions.

Normal coordinates

By adding and subtracting the expressions for x1(t) and x1(t) in Eq. (15), we see that for
any arbitrary motion of the system, the quantity x1 + x2 oscillates with frequency ωs, and
the quantity x1 − x2 oscillates with frequency ωf . These combinations of the coordinates
are known as the normal coordinates of the system. They are the nice combinations of the
coordinates that we found advantageous to use in the first method above.

The x1 + x2 normal coordinate is associated with the normal mode (1, 1), because they
both have frequency ωs. Equivalently, any contribution from the other mode (where x1 =
−x2) will vanish in the sum x1 + x2. Basically, the sum x1 + x2 picks out the part of the
motion with frequency ωs and discards the part with frequency ωf . Similarly, the x1 − x2

normal coordinate is associated with the normal mode (1,−1), because they both have
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6 CHAPTER 2. NORMAL MODES

frequency ωf . Equivalently, any contribution from the other mode (where x1 = x2) will
vanish in the difference x1 − x2.

Note, however, that the association of the normal coordinate x1 + x2 with the normal
mode (1, 1) does not follow from the fact that the coefficients in x1+x2 are both 1. Rather,
it follows from the fact that the other normal mode, namely (x1, x2) ∝ (1,−1), gives no
contribution to the sum x1+x2. There are a few too many 1’s floating around in the present
example, so it’s hard to see which results are meaningful and which results are coincidence.
But the following example should clear things up. Let’s say we solved a problem using the
determinant method, and we found the solution to be

(
x
y

)
= B1

(
3
2

)
cos(ω1t+ φ1) +B2

(
1
−5

)
cos(ω2t+ φ2). (19)

Then 5x + y is the normal coordinate associated with the normal mode (3, 2), which has
frequency ω1. This is true because there is no cos(ω2t + φ2) dependence in the quantity
5x + y. And similarly, 2x − 3y is the normal coordinate associated with the normal mode
(1,−5), which has frequency ω2, because there is no cos(ω1t+φ1) dependence in the quantity
2x− 3y.

2.1.4 Beats

Let’s now apply some initial conditions to the solution in Eq. (15). We’ll take the initial
conditions to be ẋ1(0) = ẋ2(0) = 0, x1(0) = 0, and x2(0) = A. In other words, we’re pulling
the right mass to the right, and then releasing both masses from rest. It’s easier to apply
these conditions if we write the solutions for x1(t) and x2(t) in the form,

x1(t) = a cosωst+ b sinωst+ c cosωft+ d sinωft

x2(t) = a cosωst+ b sinωst− c cosωft− d sinωft. (20)

This form of the solution is obtained by using the trig sum formulas to expand the sines
and cosines in Eq. (15). The coefficients a, b, c, d are related to the constants As, Af , φs,
φf . For example, the cosine sum formula gives a = As cosφs. If we now apply the initial
conditions to Eq. (20), the velocities ẋ1(0) = ẋ1(0) = 0 quickly give b = d = 0. And the
positions x1(0) = 0 and x2(0) = A give a = −c = A/2. So we have

x1(t) =
A

2

(
cosωst− cosωft

)
,

x2(t) =
A

2

(
cosωst+ cosωft

)
. (21)

For arbitrary values of ωs and ωf , this generally looks like fairly random motion, but let’s
look at a special case. If κ ¿ k, then the ωf in Eq. (5) is only slightly larger than the ωs in
Eq. (3), so something interesting happens. For frequencies that are very close to each other,
it’s a standard technique (for reasons that will become clear) to write ωs and ωf in terms of
their average and (half) difference:

ωs =
ωf + ωs

2
− ωf − ωs

2
≡ Ω− ε,

ωf =
ωf + ωs

2
+

ωf − ωs

2
≡ Ω+ ε, (22)

where

Ω ≡ ωf + ωs

2
, and ε ≡ ωf − ωs

2
. (23)
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2.1. TWO MASSES 7

Using the identity cos(α± β) = cosα cosβ ∓ sinα sinβ, Eq. (21) becomes

x1(t) =
A

2

(
cos(Ω− ε)t− cos(Ω + ε)t

)
= A sinΩt sin εt,

x2(t) =
A

2

(
cos(Ω− ε)t+ cos(Ω + ε)t

)
= A cosΩt cos εt. (24)

If ωs is very close to ωf , then ε ¿ Ω, which means that the εt oscillation is much slower
than that Ωt oscillation. The former therefore simply acts as an envelope for the latter.
x1(t) and x2(t) are shown in Fig. 4 for Ω = 10 and ε = 1. The motion sloshes back and

1 2 3 4 5 6

1 2 3 4 5 6

t

t

x1=A sinΩt sinεt

-A sinεt

x2=A cosΩt cosεt

Ω=10, ε=1

A

-A

A

-A

Figure 4

forth between the masses. At the start, only the second mass is moving. But after a time
of εt = π/2 =⇒ t = π/2ε, the second mass is essentially not moving and the first mass has
all the motion. Then after another time of π/2ε it switches back, and so on.

This sloshing back and forth can be understood in terms of driving forces and resonance.
At the start (and until εt = π/2), x2 looks like cosΩt with a slowly changing amplitude
(assuming ε ¿ Ω). And x1 looks like sinΩt with a slowly changing amplitude. So x2 is 90◦

ahead of x1, because cosΩt = sin(Ωt + π/2). This 90◦ phase difference means that the x2

mass basically acts like a driving force (on resonance) on the x1 mass. Equivalently, the x2

mass is always doing positive work on the x1 mass, and the x1 mass is always doing negative
work on the x2 mass. Energy is therefore transferred from x2 to x1.

However, right after x2 has zero amplitude (instantaneously) at εt = π/2, the cos εt factor
in x2 switches sign, so x2 now looks like − cosΩt (times a slowly-changing amplitude). And
x1 still looks like sinΩt. So now x2 is 90◦ behind x1, because − cosΩt = sin(Ωt− π/2). So
the x1 mass now acts like a driving force (on resonance) on the x2 mass. Energy is therefore
transferred from x1 back to x2. And so on and so forth.

In the plots in Fig. 4, you can see that something goes a little haywire when the envelope
curves pass through zero at εt = π/2, π, etc. The x1 or x2 curves skip ahead (or equivalently,
fall behind) by half of a period. If you inverted the second envelope “bubble” in the first
plot, the periodicity would then return. That is, the peaks of the fast-oscillation curve would
occur at equal intervals, even in the transition region around εt = π.

The classic demonstration of beats consists of two identical pendulums connected by a
weak spring. The gravitational restoring force mimics the “outside” springs in the above
setup, so the same general results carry over (see Problem [to be added]). At the start, one
pendulum moves while the other is nearly stationary. But then after a while the situation
is reversed. However, if the masses of the pendulums are different, it turns out that not all
of the energy is transferred. See Problem [to be added] for the details.

When people talk about the “beat frequency,” they generally mean the frequency of
the “bubbles” in the envelope curve. If you’re listening to, say, the sound from two guitar
strings that are at nearly the same frequency, then this beat frequency is the frequency of
the waxing and waning that you hear. But note that this frequency is 2ε, and not ε, because
two bubbles occur in each of the εt = 2π periods of the envelope.1

2.1.5 Driven and damped coupled oscillators

Consider the coupled oscillator system with two masses and three springs from Fig. 1 above,
but now with a driving force acting on one of the masses, say the left one (the x1 one); see
Fig. 5. And while we’re at it, let’s immerse the system in a fluid, so that both masses have

m m

k kκ

d cos ωt F

Figure 5
a drag coefficient b (we’ll assume it’s the same for both). Then the F = ma equations are

mẍ1 = −kx1 − κ(x1 − x2)− bẋ1 + Fd cosωt,

1If you want to map the spring/mass setup onto the guitar setup, then the x1 in Eq. (21) represents the
amplitude of the sound wave at your ear, and the ωs and ωf represent the two different nearby frequencies.
The second position, x2, doesn’t come into play (or vice versa). Only one of the plots in Fig. 4 is relevant.
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8 CHAPTER 2. NORMAL MODES

mẍ2 = −kx2 − κ(x2 − x1)− bẋ2. (25)

We can solve these equations by using the same adding and subtracting technique we used
in Section 2.1.1. Adding them gives

m(ẍ1 + ẍ2) = −k(x1 + x2)− b(ẋ1 + ẋ2) + Fd cosωt

=⇒ z̈s + γżs + ω2
s zs = F cosωt, (26)

where zs ≡ x1 + x2, γ ≡ b/m, ω2
s ≡ k/m, and F ≡ Fd/m. But this is our good ol’

driven/dampded oscillator equation, in the variable zs. We can therefore just invoke the
results from Chapter 1. The general solution is the sum of the homogeneous and particular
solutions. But the let’s just concentrate on the particular (steady state) solution here. We
can imagine that the system has been oscillating for a long time, so that the damping has
made the homogeneous solution decay to zero. For the particular solution, we can simply
copy the results from Section 1.3.1. So we have

x1 + x2 ≡ zs = As cos(ωt+ φs), (27)

where

tanφs =
−γω

ω2
s − ω2

, and As =
F√

(ω2
s − ω2)2 + γ2ω2

. (28)

Similarly, subtracting the F = ma equations gives

m(ẍ1 − ẍ2) = −(k + 2κ)(x1 − x2)− b(ẋ1 − ẋ2) + Fd cosωt

=⇒ z̈f + γżf + ω2
f zf = F cosωt, (29)

where zf ≡ x1 − x2 and ω2
f ≡ (k + 2κ)/m. Again, this is a nice driven/dampded oscillator

equation, and the particular solution is

x1 − x2 ≡ zf = Af cos(ωt+ φf), (30)

where

tanφf =
−γω

ω2
f − ω2

, and Af =
F√

(ω2
f − ω2)2 + γ2ω2

. (31)

Adding and subtracting Eqs. (27) and (30) to solve for x1(t) and x2(t) gives

x1(t) = Cs cos(ωt+ φs) + Cf cos(ωt+ φf),

x2(t) = Cs cos(ωt+ φs)− Cf cos(ωt+ φf), (32)

where Cs ≡ As/2, and Cf ≡ Af/2.
We end up getting two resonant frequencies, which are simply the frequencies of the

normal modes, ωs and ωf . If γ is small, and if the driving frequency ω equals either ωs

or ωf , then the amplitudes of x1 and x2 are large. In the ω = ωs case, x1 and x2 are
approximately in phase with equal amplitudes (the Cs terms dominate the Cf terms). And
in the ω = ωs case, x1 and x2 are approximately out of phase with equal amplitudes (the Cf

terms dominate the Cs terms, and there is a relative minus sign). But these are the normal
modes we found in Section 2.1.3. The resonances therefore cause the system to be in the
normal modes.

In general, if there are N masses (and hence N modes), then there are N resonant
frequencies, which are the N normal-mode frequencies. So for complicated objects with
more than two pieces, there are lots of resonances.
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2.2. THREE MASSES 9

2.2 Three masses

As a warmup to the general case of N masses connected by springs, let’s look at the case of
three masses, as shown in Fig. 6. We’ll just deal with undriven and undamped motion here,

m m m

k k k k

Figure 6

and we’ll also assume that all the spring constants are equal, lest the math get intractable.
If x1, x2, and x3 are the displacements of the three masses from their equilibrium positions,
then the three F = ma equations are

mẍ1 = −kx1 − k(x1 − x2),

mẍ2 = −k(x2 − x1)− k(x2 − x3),

mẍ3 = −k(x3 − x2)− kx3. (33)

You can check that all the signs of the k(xi − xj) terms are correct, by imagining that, say,
one of the x’s is very large. It isn’t so obvious which combinations of these equations yield
equations involving only certain unique combinations of the x’s (the normal coordinates), so
we won’t be able to use the method of Section 2.1.1. We will therefore use the determinant
method from Section 2.1.2 and guess a solution of the form




x1

x2

x3


 =




A1

A2

A3


 eiωt, (34)

with the goal of solving for ω, and also for the amplitudes A1, A2, and A3 (up to an overall
factor). Plugging this guess into Eq. (33) and putting all the terms on the lefthand side,
and canceling the eiωt factor, gives




−ω2 + 2ω2
0 −ω2

0 0
−ω2

0 −ω2 + 2ω2
0 −ω2

0

0 −ω2
0 −ω2 + 2ω2

0







A1

A2

A3


 =




0
0
0


 , (35)

where ω2
0 ≡ k/m. As in the earlier two-mass case, a nonzero solution for (A1, A2, A3) exists

only if the determinant of this matrix is zero. Setting it equal to zero gives

(−ω2 + 2ω2
0)
(
(−ω2 + 2ω2

0)
2 − ω4

0

)
+ ω2

0

(
− ω2

0(−ω2 + 2ω2
0)
)

= 0

=⇒ (−ω2 + 2ω2
0)(ω

4 − 4ω2
0ω

2 + 2ω4
0) = 0. (36)

Although this is technically a 6th-order equation, it’s really just a cubic equation in ω2. But
since we know that (−ω2+2ω2

0) is a factor, in the end it boils down to a quadratic equation
in ω2.

Remark: If you had multiplied everything out and lost the information that (−ω2 + 2ω2
0) is a

factor, you could still easily see that ω2 = 2ω2
0 must be a root, because an easy-to-see normal

mode is one where the middle mass stays fixed and the outer masses move in opposite directions.

In this case the middle mass is essentially a brick wall, so the outer masses are connected to two

springs whose other ends are fixed. The effective spring constant is then 2k, which means that the

frequency is
√
2ω0. ♣

Using the quadratic formula, the roots to Eq. (36) are

ω2 = 2ω2
0 , and ω2 = (2±

√
2)ω0. (37)

Plugging these values back into Eq. (35) to find the relations among A1, A2, and A3 gives
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10 CHAPTER 2. NORMAL MODES

the three normal modes:2

ω = ±
√
2ω0 =⇒




A1

A2

A3


 ∝




1
0
−1


 ,

ω = ±
√
2 +

√
2ω0 =⇒




A1

A2

A3


 ∝




1

−√
2

1


 ,

ω = ±
√
2−

√
2ω0 =⇒




A1

A2

A3


 ∝




1√
2
1


 . (38)

The most general solution is obtained by taking an arbitrary linear combination of the
six solutions corresponding to the six possible values of ω (don’t forget the three negative
solutions):




x1

x2

x3


 = C1




1
0
−1


 ei

√
2ω0t + C2




1
0
−1


 e−i

√
2ω0t + · · · . (39)

However, the x’s must be real, so C2 must be the complex conjugate of C1. Likewise for the
two C’s corresponding to the (1,−√

2, 1) mode, and also for the two C’s corresponding to
the (1,

√
2, 1) mode. Following the procedure that transformed Eq. (13) into Eq. (14), we

see that the most general solution can be written as




x1

x2

x3


 = Am




1
0
−1


 cos

(√
2ω0t+ φm

)

+Af




1

−√
2

1


 cos

(√
2 +

√
2ω0t+ φf

)

+As




1√
2
1


 cos

(√
2−

√
2ω0t+ φs

)
. (40)

The subscripts “m,” “f,” and “s” stand for middle, fast, and slow. The six unknowns, Am,
Af , As, φm, φf , and φs are determined by the six initial conditions (three positions and three
velocities). If Am is the only nonzero coefficient, then the motion is purely in the middle
mode. Likewise for the cases where only Af or only As is nonzero. Snapshots of these modes
are shown in Fig. 7. You should convince yourself that they qualitatively make sense. If you

medium: (-1,0,1)

fast: (1,      ,1)

slow: (1,    ,1)2

2-

Figure 7

want to get quantitative, the task of Problem [to be added] is to give a force argument that
explains the presence of the

√
2 in the amplitudes of the fast and slow modes.

2.3 N masses

2.3.1 Derivation of the general result

Let’s now consider the general case of N masses between two fixed walls. The masses are
all equal to m, and the spring constants are all equal to k. The method we’ll use below will

2Only two of the equations in Eq. (35) are needed. The third equation is redundant; that was the point
of setting the determinant equal to zero.
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2.3. N MASSES 11

actually work even if we don’t have walls at the ends, that is, even if the masses extend
infinitely in both directions. Let the displacements of the masses relative to their equilibrium
positions be x1, x2,. . . , xN . If the displacements of the walls are called x0 and xN+1, then
the boundary conditions that we’ll eventually apply are x0 = xN+1 = 0.

The force on the nth mass is

Fn = −k(xn − xn−1)− k(xn − xn+1) = kxn−1 − 2kxn + kxn+1. (41)

So we end up with a collection of F = ma equations that look like

mẍn = kxn−1 − 2kxn + kxn+1. (42)

These can all be collected into the matrix equation,

m
d2

dt2




...
xn−1

xn

xn+1

...




=




...
· · · k −2k k

k −2k k
k −2k k · · ·

...







...
xn−1

xn

xn+1

...




. (43)

In principle, we could solve for the normal modes by guessing a solution of the form,



...
xn−1

xn

xn+1

...




=




...
An−1

An

An+1

...




eiωt, (44)

and then setting the resulting determinant equal to zero. This is what we did in the N = 2
and N = 3 cases above. However, for large N , it would be completely intractable to solve
for the ω’s by using the determinant method. So we’ll solve it in a different way, as follows.

We’ll stick with the guess in Eq. (44), but instead of the determinant method, we’ll
look at each of the F = ma equations individually. Consider the nth equation. Plugging
xn(t) = Ane

iωt into Eq. (42) and canceling the factor of eiωt gives

−ω2An = ω2
0

(
An−1 − 2An +An+1

)

=⇒ An−1 +An+1

An
=

2ω2
0 − ω2

ω2
0

, (45)

where ω0 =
√
k/m, as usual. This equation must hold for all values of n from 1 to N ,

so we have N equations of this form. For a given mode with a given frequency ω, the
quantity (2ω2

0 − ω2)/ω2
0 on the righthand side is a constant, independent of n. So the ratio

(An−1+An+1)/An on the lefthand side must also be independent of n. The problem therefore
reduces to finding the general form of a string of A’s that has the ratio (An−1 +An+1)/An

being independent of n.
If someone gives you three adjacent A’s, then this ratio is determined, so you can recur-

sively find the A’s for all other n (both larger and smaller than the three you were given).
Or equivalently, if someone gives you two adjacent A’s and also ω, so that the value of
(2ω2

0 − ω2)/ω2
0 is known (we’re assuming that ω0 is given), then all the other A’s can be

determined. The following claim tells us what form the A’s take. It is this claim that allows
us to avoid using the determinant method.
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12 CHAPTER 2. NORMAL MODES

Claim 2.1 If ω ≤ 2ω0, then any set of An’s satisfying the system of N equations in Eq.
(45) can be written as

An = B cosnθ + C sinnθ, (46)

for certain values of B, C, and θ. (The fact that there are three parameters here is consistent
with the fact that three A’s, or two A’s and ω, determine the whole set.)

Proof: We’ll start by defining

cos θ ≡ An−1 +An+1

2An
. (47)

As mentioned above, the righthand side is independent of n, so θ is well defined (up to the
usual ambiguities of duplicate angles; θ + 2π, and −θ, etc. also work).3 If we’re looking at
a given normal mode with frequency ω, then in view of Eq. (45), an equivalent definition of
θ is

2 cos θ ≡ 2ω2
0 − ω2

ω2
0

. (48)

These definitions are permitted only if they yield a value of cos θ that satisfies | cos θ| ≤ 1.
This condition is equivalent to the condition that ω must satisfy −2ω0 ≤ ω ≤ 2ω0. We’ll
just deal with positive ω here (negative ω yields the same results, because only its square
enters into the problem), but we must remember to also include the e−iωt solution in the
end (as usual). So this is where the ω ≤ 2ω0 condition in the claim comes from.4

We will find that with walls at the ends, θ (and hence ω) can take on only a certain set
of discrete values. We will calculate these below. If there are no walls, that is, if the system
extends infinitely in both directions, then θ (and hence ω) can take on a continuous set of
values.

As we mentioned above, the N equations represented in Eq. (45) tell us that if we
know two of the A’s, and if we also have a value of ω, then we can use the equations to
successively determine all the other A’s. Let’s say that we know what A0 and A1 are. (In
the case where there are walls, we know know that A0 = 0, but let’s be general and not
invoke this constraint yet.) The rest of the An’s can be determined as follows. Define B by

A0 ≡ B cos(0 · θ) + C sin(0 · θ) =⇒ A0 ≡ B. (49)

(So B = 0 if there are walls.) Once B has been defined, define C by

A1 ≡ B cos(1 · θ) + C sin(1 · θ) =⇒ A1 ≡ B cos θ + C sin θ, (50)

For any A0 and A1, these two equations uniquely determine B and C (θ was already deter-
mined by ω). So to sum up the definitions: ω, A0, and A1 uniquely determine θ, B and C.
(We’ll deal with the multiplicity of the possible θ values below in the “Nyquist” subsection.)
By construction of these definitions, the proposed An = B cosnθ + C sinnθ relation holds
for n = 0 and n = 1. We will now show inductively that it holds for all n.

3The motivation for this definition is that the fraction on the righthand side has a sort of second-derivative
feel to it. The more this fraction differs from 1, the more curvature there is in the plot of the An’s. (If the
fraction equals 1, then each An is the average of its two neighbors, so we just have a straight line.) And since
it’s a good bet that we’re going to get some sort of sinusoidal result out of all this, it’s not an outrageous
thing to define this fraction to be a sinusoidal function of a new quantity θ. But in the end, it does come a
bit out of the blue. That’s the way it is sometimes. However, you will find it less mysterious after reading
Section 2.4, where we actually end up with a true second derivative, along with sinusoidal functions of x
(the analog of n here).

4If ω > 2ω0, then we have a so-called evanescent wave. We’ll discuss these in Chapter 6. The ω = 0 and
ω = 2ω0 cases are somewhat special; see Problem [to be added].
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2.3. N MASSES 13

If we solve for An+1 in Eq. (47) and use the inductive hypothesis that the An = B cosnθ+
C sinnθ result holds for n− 1 and n, we have

An+1 = (2 cos θ)An −An−1

= 2 cos θ
(
B cosnθ + C sinnθ

)
−
(
B cos(n− 1)θ + C sin(n− 1)θ

)

= B
(
2 cosnθ cos θ − (cosnθ cos θ + sinnθ sin θ)

)

+C
(
2 sinnθ cos θ − (sinnθ cos θ − cosnθ sin θ)

)

= B
(
cosnθ cos θ − sinnθ sin θ)

)
+ C

(
sinnθ cos θ + cosnθ sin θ)

)

= B cos(n+ 1)θ + C sin(n+ 1)θ, (51)

which is the desired expression for the case of n + 1. (Note that this works independently
for the B and C terms.) Therefore, since the An = B cosnθ+C sinnθ result holds for n = 0
and n = 1, and since the inductive step is valid, the result therefore holds for all n.

If you wanted, you could have instead solved for An−1 in Eq. (51) and demonstrated
that the inductive step works in the negative direction too. Therefore, starting with two
arbitrary masses anywhere in the line, the An = B cosnθ+C sinnθ result holds even for an
infinite number of masses extending in both directions.

This claim tells us that we have found a solution of the form,

xn(t) = Ane
iωt = (B cosnθ + C sinnθ)eiωt. (52)

However, with the convention that ω is positive, we must remember that an e−iωt solution
works just as well. So another solution is

xn(t) = Ane
−iωt = (D cosnθ + E sinnθ)e−iωt. (53)

Note that the coefficients in this solution need not be the same as those in the eiωt solution.
Since the F = ma equations in Eq. (42) are all linear, the sum of two solutions is again a
solution. So the most general solution (for a given value of ω) is the sum of the above two
solutions (each of which is itself a linear combination of two solutions).

As usual, we now invoke the fact that the positions must be real. This implies that the
above two solutions must be complex conjugates of each other. And since this must be true
for all values of n, we see that B and D must be complex conjugates, and likewise for C
and E. Let’s define B = D∗ ≡ (F/2)eiβ and C = E∗ ≡ (G/2)eiγ . There is no reason why
B, C, D, and E (or equivalently the A’s in Eq. (44)) have to be real. The sum of the two
solutions then becomes

xn(t) = F cosnθ cos(ωt+ β) +G sinnθ cos(ωt+ γ) (54)

As usual, we could have just taken the real part of either of the solutions to obtain this (up
to a factor of 2, which we can absorb into the definition of the constants). We can make it
look a little more symmetrical be using the trig sum formula for the cosines. This gives the
result (we’re running out of letters, so we’ll use Ci’s for the coefficients here),

xn(t) = C1 cosnθ cosωt+ C2 cosnθ sinωt+ C3 sinnθ cosωt+ C4 sinnθ sinωt (55)

where θ is determined by ω via Eq. (48), which we can write in the form,

θ ≡ cos−1

(
2ω2

0 − ω2

2ω2
0

)
(56)
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14 CHAPTER 2. NORMAL MODES

The constants C1, C2, C3, C4 in Eq. (55) are related to the constants F , G, β, γ in Eq. (54)
in the usual way (C1 = F cosβ, etc.). There are yet other ways to write the solution, but
we’ll save the discussion of these for Section 2.4.

Eq. (55) is the most general form of the positions for the mode that has frequency ω.
This set of the xn(t) functions (N of them) satisfies the F = ma equations in Eq. (42) (N
of them) for any values of C1, C2, C3, C4. These four constants are determined by four
initial values, for example, x0(0), ẋ0(0), x1(0), and ẋ1(0). Of course, if n = 0 corresponds
to a fixed wall, then the first two of these are zero.

Remarks:

1. Interestingly, we have found that xn(t) varies sinusoidally with position (that is, with n), as
well as with time. However, whereas time takes on a continuous set of values, the position is
relevant only at the discrete locations of the masses. For example, if the equilibrium positions
are at the locations z = na, where a is the equilibrium spacing between the masses, then we
can rewrite xn(t) in terms of z instead of n, using n = z/a. Assuming for simplicity that we
have only, say, the C1 cosnθ cosωt part of the solution, we have

xn(t) =⇒ xz(t) = C1 cos(zθ/a) cosωt. (57)

For a given values of θ (which is related to ω) and a, this is a sinusoidal function of z (as
well as of t). But we must remember that it is defined only at the discrete values of z of the
form, z = na. We’ll draw some nice pictures below to demonstrate the sinusoidal behavior,
when we discuss a few specific values of N .

2. We should stress the distinction between z (or equivalently n) and x. z represents the
equilibrium positions of the masses. A given mass is associated with a unique value of z. z
doesn’t change as the mass moves. xz(t), on the other hand, measures the position of a mass
(the one whose equilibrium position is z) relative to its equilibrium position (namely z). So
the total position of a given mass is z + x. The function xz(t) has dependence on both z
and t, so we could very well write it as a function of two variables, x(z, t). We will in fact
adopt this notation in Section 2.4 when we talk about continuous systems. But in the present
case where z can take on only discrete values, we’ll stick with the xz(t) notation. But either
notation is fine.

3. Eq. (55) gives the most general solution for a given value of ω, that is, for a given mode. While
the most general motion of the masses is certainly not determined by x0(0), ẋ0(0), x1(0), and
ẋ1(0), the motion for a single mode is. Let’s see why this is true. If we apply the x0(0) and
x1(0) boundary conditions to Eq. (55), we obtain x0(0) = C1 and x1(0) = C1 cos θ+C3 sin θ.
Since we are assuming that ω (and hence θ) is given, these two equations determine C1 and
C3. But C1 and C3 in turn determine all the other xn(0) values via Eq. (55), because the
sinωt terms are all zero at t = 0. So for a given mode, x0(0) and x1(0) determine all the
other initial positions. In a similar manner, the ẋ0(0) and ẋ1(0) values determine C2 and
C4, which in turn determine all the other initial velocities. Therefore, since the four values
x0(0), ẋ0(0), x1(0), and ẋ1(0) give us all the initial positions and velocities, and since the
accelerations depend on the positions (from the F = ma equations in Eq. (42)), the future
motion of all the masses is determined. ♣

2.3.2 Wall boundary conditions

Let us now see what happens when we invoke the boundary conditions due to fixed walls
at the two ends. The boundary conditions at the walls are x0(t) = xN+1(t) = 0, for all t.
These conditions are most easily applied to xn(t) written in the form in Eq. (54), although
the form in Eq. (55) will work fine too. At the left wall, the x0(t) = 0 condition gives

0 = x0(t) = F cos(0) cos(ωt+ β) +G sin(0) cos(ωt+ γ)

= F cos(ωt+ β). (58)
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If this is to be true for all t, we must have F = 0. So we’re left with just the G sinnθ cos(ωt+
γ) term in Eq. (54). Applying the xN+1(t) = 0 condition to this then gives

0 = xN+1(t) = G sin(N + 1)θ cos(ωt+ γ). (59)

One way for this to be true for all t is to have G = 0. But then all the x’s are identically
zero, which means that we have no motion at all. The other (nontrivial) way for this to be
true is to have the sin(N + 1)θ factor be zero. This occurs when

(N + 1)θ = mπ =⇒ θ =
mπ

N + 1
, (60)

where m is an integer. The solution for xn(t) is therefore

xn(t) = G sin

(
nmπ

N + 1

)
cos(ωt+ γ) (61)

The amplitudes of the masses are then

An = G sin

(
nmπ

N + 1

)
(62)

We’ve made a slight change in notation here. The An that we’re now using for the amplitude
is themagnitude of the An that we used in Eq. (44). That An was equal to B cosnθ+C sinnθ,
which itself is some complex number which can be written in the form, |An|eiα. The solution
for xn(t) is obtained by taking the real part of Eq. (52), which yields xn(t) = |An| cos(ωt+α).
So we’re now using An to stand for |An|, lest we get tired if writing the absolute value bars
over and over.5 And α happens to equal the γ in Eq. (61).

If we invert the definition of θ in Eq. (48) to solve for ω in terms of θ, we find that the
frequency is given by

2 cos θ ≡ 2ω2
0 − ω2

ω2
0

=⇒ ω2 = 2ω2
0(1− cos θ)

= 4ω2
0 sin

2(θ/2)

=⇒ ω = 2ω0 sin

(
mπ

2(N + 1)

)
(63)

We’ve taken the positive square root, because the convention is that ω is positive. We’ll
see below that m labels the normal mode (so the “m” stands for “mode”). If m = 0 or
m = N + 1, then Eq. (61) says that all the xn’s are identically zero, which means that we
don’t have any motion at all. So only m values in the range 1 ≤ m ≤ N are relevant. We’ll
see below in the “Nyquist” subsection that higher values of m simply give repetitions of the
modes generated by the 1 ≤ m ≤ N values.

The most important point in the above results is that if the boundary conditions are
walls at both ends, then the θ in Eq. (60), and hence the ω in Eq. (63), can take on only a
certain set of discrete values. This is consistent with our results for the N = 2 and N = 3
cases in Sections 2.1 and 2.2, where we found that there were only two or three (respectively)
allowed values of ω, that is, only two or three normal modes. Let’s now show that for N = 2
and N = 3, the preceding equations quantitatively reproduce the results from Sections 2.1
and 2.2. You can examine higher values of N in Problem [to be added].

5If instead of taking the real part, you did the nearly equivalent thing of adding on the complex conjugate
solution in Eq. (53), then 2|An| would be the amplitude. In this case, the An in Eq. (62) stands for 2|An|.
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The N = 2 case

If N = 2, there are two possible values of m:

• m = 1: Eqs. (62) and (63) give

An ∝ sin
(nπ

3

)
, and ω = 2ω0 sin

(π
6

)
. (64)

So this mode is given by

(
A1

A2

)
∝

(
sin(π/3)
sin(2π/3)

)
∝

(
1
1

)
, and ω = ω0. (65)

These agree with the first mode we found in Section 2.1.2. The frequency is ω0, and
the masses move in phase with each other.

• m = 2: Eqs. (62) and (63) give

An ∝ sin
(2nπ

3

)
, and ω = 2ω0 sin

(π
3

)
. (66)

So this mode is given by

(
A1

A2

)
∝

(
sin(2π/3)
sin(4π/3)

)
∝

(
1
−1

)
, and ω =

√
3ω0. (67)

These agree with the second mode we found in Section 2.1.2. The frequency is
√
3ω0,

and the masses move exactly out of phase with each other.

To recap, the various parameters are: N (the number of masses), m (the mode number),
and n (the label of each of the N masses). n runs from 1 to N , of course. And m effectively
also runs from 1 to N (there are N possible modes for N masses). We say “effectively”
because as we mentioned above, although m can technically take on any integer value, the
values that lie outside the 1 ≤ m ≤ N range give duplications of the modes inside this
range. See the “Nyquist” subsection below.

In applying Eqs. (62) and (63), things can get a little confusing because of all the
parameters floating around. And this is just the simple case of N = 2. Fortunately, there
is an extremely useful graphical way to see what’s going on. This is one situation where a
picture is indeed worth a thousand words (or equations).

If we write the argument of the sin in Eq. (62) as mπ · n/(N + 1), then we see that
for a given N , the relative amplitudes of the masses in the mth mode are obtained by
drawing a sin curve with m half oscillations, and then finding the value of this curve at
equal “1/(N + 1)” intervals along the horizontal axis. Fig. 8 shows the results for N = 2.

m = 1

(N = 2)

m = 2

Figure 8

We’ve drawn either m = 1 or m = 2 half oscillations, and we’ve divided each horizontal
axis into N + 1 = 3 equal intervals. These curves look a lot like snapshots of beads on a
string oscillating transversely back and forth. And indeed, we will find in Chapter 4 that
the F = ma equations for transverse motion of beads on a string are exactly the same as
the equations in Eq. (42) for the longitudinal motion of the spring/mass system. But for
now, all of the displacements indicated in these pictures are in the longitudinal direction.
And the displacements have meaning only at the discrete locations of the masses. There
isn’t anything actually happening at the rest of the points on the curve.
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2.3. N MASSES 17

We can also easily visualize what the frequencies are. If we write the argument of the
sin in Eq. (63) as π/2 · m/(N + 1) then we see that for a given N , the frequency of the
mth mode is obtained by breaking a quarter circle (with radius 2ω0) into “1/(N +1)” equal
intervals, and then finding the y values of the resulting points. Fig. 9 shows the results for

m = 1

(N = 2)

m = 2

2ω0

Figure 9

N = 2. We’ve divided the quarter circle into N + 1 = 3 equal angles of π/6, which results
in points at the angles of π/6 and π/3. It is much easier to see what’s going on by looking
at the pictures in Figs. 8 and 9 than by working with the algebraic expressions in Eqs. (62)
and (63).

The N = 3 case

If N = 3, there are three possible values of m:

• m = 1: Eqs. (62) and (63) give

An ∝ sin
(nπ

4

)
, and ω = 2ω0 sin

(π
8

)
. (68)

So this mode is given by




A1

A2

A3


 ∝




sin(π/4)
sin(2π/4)
sin(3π/4)


 ∝




1√
2

−1


 , and ω =

√
2−

√
2ω0, (69)

where we have used the half-angle formula for sin(π/8) to obtain ω. (Or equivalently,
we just used the first line in Eq. (63).) These results agree with the “slow” mode we
found in Section 2.2.

• m = 2: Eqs. (62) and (63) give

An ∝ sin
(2nπ

4

)
, and ω = 2ω0 sin

(2π
8

)
. (70)

So this mode is given by




A1

A2

A3


 ∝




sin(2π/4)
sin(4π/4)
sin(6π/4)


 ∝




1
0
−1


 , and ω =

√
2ω0. (71)

These agree with the “medium” mode we found in Section 2.2.

• m = 3: Eqs. (62) and (63) give

An ∝ sin
(3nπ

4

)
, and ω = 2ω0 sin

(3π
8

)
. (72)

So this mode is given by




A1

A2

A3


 ∝




sin(3π/4)
sin(6π/4)
sin(9π/4)


 ∝




1

−√
2

1


 , and ω =

√
2 +

√
2ω0. (73)

These agree with the “fast” mode we found in Section 2.2..

As with the N = 2 case, it’s much easier to see what’s going on if we draw some pictures.
Fig.10shows the relative amplitudes within the three modes, and Fig.11shows the associated

m = 1

(N = 3)

m = 2

m = 3

Figure 10

m = 1

(N = 3)

m = 3

m = 2

2ω0

Figure 11
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frequencies. Each horizontal axis in Fig. 10 is broken up into N + 1 = 4 equal segments,
and the quarter circle in Fig. 11 is broken up into N + 1 = 4 equal arcs.

As mentioned above, although Fig. 10 looks like transverse motion on a string, remember
that all the displacements indicated in this figure are in the longitudinal direction. For
example, in the first m = 1 mode, all three masses move in the same direction, but the
middle one moves farther (by a factor of

√
2) than the outer ones. Problem [to be added]

discusses higher values of N .

Aliasing, Nyquist frequency

Consider the N = 6 case shown in Fig. 12. Assuming that this corresponds to a normal
Figure 12 mode, which one is it? If you start with m = 1 and keep trying different values of m until

the (appropriately scaled) sin curve in Eq. (62) matches up with the six points in Fig. 12
(corresponding to n values from 1 to N), you’ll find that m = 3 works, as shown in Fig. 13.

Figure 13

However, the question then arises as to whether this is the only value of m that allows
the sin curve to fit the given points. If you try some higher values of m, and if you’re
persistent, then you’ll find that m = 11 also works, as long as you throw in a minus sign
in front of the sin curve (this corresponds to the G coefficient in Eq. (61) being negative,
which is fine). This is shown in Fig. 14. And if you keep going with higher m values, you’ll

gray:  m' = 2(N+1) - m = 11

black: m = 3

(N = 6)

Figure 14

find that m = 17 works too, and this time there’s no need for a minus sign. This is shown
in Fig. 15. Note that the m value always equals the number of bumps (local maxima or

gray:  m' = 2(N+1) + m = 17

black: m = 3

(N = 6)

Figure 15

minima) in the sin curve.
It turns out that there is an infinite number of m values that work, and they fall into

two classes. If we start with particular values of N and m (6 and 3 here), then all m′ values
of the form,

m′ = 2a(N + 1)−m, (74)

also work (with a minus sign in the sin curve), where a is any integer. And all m′ values of
the form,

m′ = 2a(N + 1) +m, (75)

also work, where again a is any integer. You can verify these claims by using Eq. (62);
see Problem [to be added]. For N = 6 and m = 3, the first of these classes contains
m′ = 11, 25, 39, . . ., and the second class contains m′ = 3, 17, 31, 45, . . .. Negative values of
a work too, but they simply reproduce the sin curves for these m′ values, up to an overall
minus sign.

You can show using Eq. (63) that the frequencies corresponding to all of these values of
m′ (in both classes) are equal; see Problem [to be added] (a frequency of −ω yields the same
motion as a frequency of ω). So as far as the motions of the six masses go, all of these modes
yield exactly the same motions of the masses. (The other parts of the various sin curves
don’t match up, but all we care about are the locations of the masses.) It is impossible to
tell which mode the masses are in. Or said more accurately, the masses aren’t really in any
one particular mode. There isn’t one “correct” mode. Any of the above m or m′ values is
just as good as any other. However, by convention we label the mode with the m value in
the range 1 ≤ m ≤ N .

The above discussion pertains to a setup with N discrete masses in a line, with massless
springs between them. However, if we have a continuous string/mass system, or in other
words a massive spring (we’ll talk about such a system in Section 2.4), then the different
m′ values do represent physically different motions. The m = 3 and m = 17 curves in Fig.
15 are certainly different. You can think of a continuous system as a setup with N −→ ∞
masses, so all the m values in the range 1 ≤ m ≤ N =⇒ 1 ≤ m ≤ ∞ yield different modes.
In other words, each value of m yields a different mode.
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However, if we have a continuous string, and if we only look at what is happening at
equally spaced locations along it, then there is no way to tell what mode the string is really
in (and in this case it really is in a well defined mode). If the string is in the m = 11 mode,
and if you only look at the six equally-spaced points we considered above, then you won’t
be able to tell which of the m = 3, 11, 17, 25, . . . modes is the correct one.

This ambiguity is known as aliasing, or the nyquist effect. If you look at only discrete
points in space, then you can’t tell the true spatial frequency. Or similarly, If you look at
only discrete moments in time, then you can’t tell the true temporal frequency. This effect
manifests itself in many ways in the real world. If you watch a car traveling by under a
streetlight (which emits light in quick pulses, unlike an ordinary filament lightbulb), or if
you watch a car speed by in a movie (which was filmed at a certain number of frames per
second), then the “spokes” on the tires often appear to be moving at a different angular rate
than the actual angular rate of the tire. They might even appear to be moving backwards.
This is called the “strobe” effect. There are also countless instances of aliasing in electronics.

2.4 N → ∞ and the wave equation

Let’s now consider the N → ∞ limit of our mass/spring setup. This means that we’ll now
effectively have a continuous system. This will actually make the problem easier than the
finite-N case in the previous section, and we’ll be able to use a quicker method to solve it. If
you want, you can use the strategy of taking the N → ∞ limit of the results in the previous
section. This method will work (see Problem [to be added]), but we’ll derive things from
scratch here, because the method we will use is a very important one, and it will come up
again in our study of waves.

First, a change of notation. The equilibrium position of each mass will now play a more
fundamental role and appear more regularly, so we’re going to label it with x instead of n
(or instead of the z we used in the first two remarks at the end of Section 2.3.1). So xn is the
equilibrium position of the nth mass (we’ll eventually drop the subscript n). We now need
a new letter for the displacement of the masses, because we used xn for this above. We’ll
use ξ now. So ξn is the displacement of the nth mass. The x’s are constants (they just label
the equilibrium positions, which don’t change), and the ξ’s are the things that change with
time. The actual location of the nth mass is xn + ξn, but only the ξn part will show up in
the F = ma equations, because the xn terms don’t contribute to the acceleration (because
they are constant), nor do they contribute to the force (because only the displacement from
equilibrium matters, since the spring force is linear).

Instead of the ξn notation, we’ll use ξ(xn). And we’ll soon drop the subscript n and just
write ξ(x). All three of the ξn, ξ(xn), ξ(x) expressions stand for the same thing, namely
the displacement from equilibrium of the mass whose equilibrium position is x (and whose
numerical label is n). ξ is a function of t too, of course, but we won’t bother writing the t
dependence yet. But eventually we’ll write the displacement as ξ(x, t).

Let ∆x ≡ xn − xn−1 be the (equal) spacing between the equilibrium positions of all the
masses. The xn values don’t change with time, so neither does ∆x. If the n = 0 mass is
located at the origin, then the other masses are located at positions xn = n∆x. In our new
notation, the F = ma equation in Eq. (42) becomes

mξ̈n = kξn−1 − 2kξn + kξn+1

=⇒ mξ̈(xn) = kξ(xn −∆x) + 2kξ(xn) + kξ(xn +∆x)

=⇒ mξ̈(x) = kξ(x−∆x) + 2kξ(x) + kξ(x+∆x). (76)

In going from the second to the third line, we are able to drop the subscript n because the
value of x uniquely determines which mass we’re looking at. If we ever care to know the
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value of n, we can find it via xn = n∆x =⇒ n = x/∆x. Although the third line holds only
for x values that are integral multiples of ∆x, we will soon take the ∆x → 0 limit, in which
case the equation holds for essentially all x.

We will now gradually transform Eq. (76) into a very nice result, which is called the
wave equation. The first step actually involves going backward to the F = ma form in Eq.
(41). We have

m
d2ξ(x)

dt2
= k

[(
ξ(x+∆x)− ξ(x)

)
−
(
ξ(x)− ξ(x−∆x)

)]

=⇒ m

∆x

d2ξ(x)

dt2
= k∆x

(
ξ(x+∆x)−ξ(x)

∆x − ξ(x)−ξ(x−∆x)
∆x

∆x

)
. (77)

We have made these judicious divisions by ∆x for the following reason. If we let ∆x → 0
(which is indeed the case if we have N → ∞ masses in the system), then we can use
the definitions of the first and second derivatives to obtain (with primes denoting spatial
derivatives)6

m

∆x

d2ξ(x)

dt2
= (k∆x)

ξ′(x)− ξ′(x−∆x)

∆x
= (k∆x)ξ′′(x). (78)

But m/∆x is the mass density ρ. And k∆x is known as the elastic modulus, E, which
happens to have the units of force. So we obtain

ρ
d2ξ(x)

dt2
= Eξ′′(x). (79)

Note that E ≡ k∆x is a reasonable quantity to appear here, because the spring constant
k for an infinitely small piece of spring is infinitely large (because if you cut a spring in
half, its k doubles, etc.). The ∆x in the product k∆x has the effect of yielding a finite and
informative quantity. If various people have various lengths of springs made out of a given
material, then these springs have different k values, but they all have the same E value.
Basically, if you buy a spring in a store, and if it’s cut from a large supply on a big spool,
then the spool should be labeled with the E value, because E is a property of the material
and independent of the length. k depends on the length.

Since ξ is actually a function of both x and t, let’s be explicit and write Eq. (79) as

ρ
∂2ξ(x, t)

∂t2
= E

∂2ξ(x, t)

∂x2
(wave equation) (80)

This is called the wave equation. This equation (or analogous equations for other systems)
will appear repeatedly throughout this book. Note that the derivatives are now written as
partial derivatives, because ξ is a function of two arguments. Up to the factors of ρ and E,
the wave equation is symmetric in x and t.

The second time derivative on the lefthand side of Eq. (80) comes from the “a” in
F = ma. The second space derivative on the righthand side comes from the fact that it
is the differences in the lengths of two springs that yields the net force, and each of these
lengths is itself the difference of the positions of two masses. So it is the difference of the
differences that we’re concerned with. In other words, the second derivative.

6There is a slight ambiguity here. Is the (ξ(x+∆x)−ξ(x))∆x term in Eq. (77) equal to ξ′(x) or ξ′(x+∆x)?
Or perhaps ξ′(x+∆x/2)? It doesn’t matter which we pick, as long as we use the same convention for the
(ξ(x)− ξ(x−∆x))∆x term. The point is that Eq. (78) contains the first derivatives at two points (whatever
they may be) that differ by ∆x, and the difference of these yields the second derivative.
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How do we solve the wave equation? Recall that in the finite-N case, the strategy was
to guess a solution of the form (using ξ now instead of x),




...
ξn−1

ξn
ξn+1

...




=




...
an−1

an
an+1

...




eiωt. (81)

If we relabel ξn → ξ(xn, t) → ξ(x, t), and an → a(xn) → a(x), we can write the guess in the
more compact form,

ξ(x, t) = a(x)eiωt. (82)

This is actually an infinite number of equations (one for each x), just as Eq. (81) is an
infinite number of equations (one for each n). The a(x) function gives the amplitudes of the
masses, just as the original normal mode vector (A1, A2, A3, . . .) did. If you want, you can
think of a(x) as an infinite-component vector.

Plugging this expression for ξ(x, t) into the wave equation, Eq. (80), gives

ρ
∂2

∂t2
(
a(x)eiωt

)
= E

∂2

∂x2

(
a(x)eiωt

)

=⇒ −ω2ρ a(x) = E
d2

dx2
a(x)

=⇒ d2

dx2
a(x) = −ω2ρ

E
a(x). (83)

But this is our good ol’ simple-harmonic-oscillator equation, so the solution is

a(x) = Ae±ikx where k ≡ ω

√
ρ

E
(84)

k is called the wave number. It is usually defined to be a positive number, so we’ve put in
the ± by hand. Unfortunately, we’ve already been using k as the spring constant, but there
are only so many letters! The context (and units) should make it clear which way we’re
using k. The wave number k has units of

[k] = [ω]

√
[ρ]

[E]
=

1

s

√
kg/m

kgm/s2
=

1

m
. (85)

So kx is dimensionless, as it should be, because it appears in the exponent in Eq. (84).
What is the physical meaning of k? If λ is the wavelength, then the kx exponent in Eq.

(84) increases by 2π whenever x increases by λ. So we have

kλ = 2π =⇒ k =
2π

λ
. (86)

If k were just equal to 1/λ, then it would equal the number of wavelengths (that is, the
number of spatial oscillations) that fit into a unit length. With the 2π, it instead equals the
number of radians of spatial oscillations that fit into a unit length.

Using Eq. (84), our solution for ξ(x, t) in Eq. (82) becomes

ξ(x, t) = a(x)eiωt = Aei(±kx+ωt). (87)
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As usual, we could have done all this with an e−iωt term in Eq. (81), because only the
square of ω came into play (ω is generally assumed to be positive). So we really have the
four different solutions,

ξ(x, t) = Aei(±kx±ωt). (88)

The most general solution is the sum of these, which gives

ξ(x, t) = A1e
i(kx+ωt) +A∗

1e
i(−kx−ωt) +A2e

i(kx−ωt) +A∗
2e

i(−kx+ωt), (89)

where the complex conjugates appear because ξ must be real. There are many ways to
rewrite this expression in terms of trig functions. Depending on the situation you’re dealing
with, one form is usually easier to deal with than the others, but they’re all usable in theory.
Let’s list them out and discuss them. In the end, each form has four free parameters. We
saw above in the third remark at the end of Section 2.3.1 why four was the necessary number
in the discrete case, but we’ll talk more about this below.

• If we let A1 ≡ (B1/2)e
iφ1 and A2 ≡ (B2/2)e

iφ2 in Eq. (89), then the imaginary parts
of the exponentials cancel, and we end up with

ξ(x, t) = B1 cos(kx+ ωt+ φ1) +B2 cos(kx− ωt+ φ2) (90)

The interpretation of these two terms is that they represent traveling waves. The
first one moves to the left, and the second one moves to the right. We’ll talk about
traveling waves below.

• If we use the trig sum formulas to expand the previous expression, we obtain

ξ(x, t) = C1 cos(kx+ ωt) + C2 sin(kx+ ωt) + C3 cos(kx− ωt) + C4 sin(kx− ωt)

(91)
where C1 = B1 cosφ1, etc. This form has the same interpretation of traveling waves.
The sines and cosines are simply 90◦ out of phase.

• If we use the trig sum formulas again and expand the previous expression, we obtain

ξ(x, t) = D1 cos kx cosωt+D2 sin kx sinωt+D3 sin kx cosωt+D4 cos kx sinωt

(92)
where D1 = C1+C3, etc. These four terms are four different standing waves. For each
term, the masses all oscillate in phase. All the masses reach their maximum position
at the same time (the cosωt terms at one time, and the sinωt terms at another), and
they all pass through zero at the same time. As a function of time, the plot of each
term just grows and shrinks as a whole. The equality of Eqs. (91) and (92) implies
that any traveling wave can be written as the sum of standing waves, and vice versa.
This isn’t terribly obvious; we’ll talk about it below.

• If we collect the cosωt terms together in the previous expression, and likewise for the
sinωt terms, we obtain

ξ(x, t) = E1 cos(kx+ β1) cosωt+ E2 cos(kx+ β2) sinωt (93)

where E1 cosβ1 = D1, etc. This form represents standing waves (the cosωt one is 90◦

ahead of the sinωt one in time), but they’re shifted along the x axis due to the β
phases. The spatial functions here could just as well be written in terms of sines, or
one sine and one cosine. This would simply change the phases by π/2.
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• If we collect the cos kx terms together in Eq. (92) and likewise for the sin kx terms,
we obtain

ξ(x, t) = F1 cos(ωt+ γ1) cos kx+ F2 cos(ωt+ γ2) sin kx (94)

where F1 cos γ1 = D1, etc. This form represents standing waves, but they’re not 90◦

separated in time in this case, due to the γ phases. They are, however, separated by
90◦ (a quarter wavelength) in space. The time functions here could just as well be
written in terms of sines.

Remarks:

1. If there are no walls and the system extends infinitely in both directions (actually, infinite
extent in just one direction is sufficient), then ω can take on any value. Eq. (84) then says that

k is related to ω via k = ω
√

ρ/E. We’ll look at the various effects of boundary conditions in
Chapter 4.

2. The fact that each of the above forms requires four parameters is probably most easily
understood by looking at the first form given in Eq. (90). The most general wave with a
given frequency ω consists of two oppositely-traveling waves, each of which is described by
two parameters (magnitude and phase). So two times two is four.

You will recall that for each of the modes in the N = 2 and N = 3 cases we discussed earlier
(and any other value of N , too), only two parameters were required: an overall factor in the
amplitudes, and a phase in time. Why only two there, but four now? The difference is due
to the fact that we had walls in the earlier cases, but no walls now. (The difference is not
due to the fact that we’re now dealing with infinite N .) The effect of the walls (actually, only
one wall is needed) is most easily seen by working with the form given in Eq. (92). Assuming
that one wall is located at x = 0, we see that the two cos kx terms can’t be present, because
the displacement must always be zero at x = 0. So D1 = D4 = 0, and we’re down to two
parameters. We’ll have much more to say about such matters in Chapter 4.

3. Remember that the above expressions for ξ(x, t), each of which contains four parameters,
represent the general solution for a given mode with frequency ω. If the system is undergoing
arbitrary motion, then it is undoubtedly in a linear combination of many different modes,
perhaps even an infinite number. So four parameters certainly don’t determine the system.
We need four times the number of modes, which might be infinite. ♣

Traveling waves

Consider one of the terms in Eq. (91), say, the cos(kx − ωt) one. Let’s draw the plot of
cos(kx − ωt), as a function of x, at two times separated by ∆t. If we arbitrarily take the
lesser time to be t = 0, the result is shown in Fig. 16. Basically, the left curve is a plot of
cos kx, and the right curve is a plot of cos(kx−φ), where φ happens to be ω∆t. It is shifted
to the right because it takes a larger value of x to obtain the same phase.

2 4 6 8
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plots of cos(kx-ωt)ω
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Figure 16

What is the horizontal shift between the curves? We can answer this by finding the
distance between the maxima, which are achieved when the argument kx − ωt equals zero
(or a multiple of 2π). If t = 0, then we have kx−ω · 0 = 0 =⇒ x = 0. And if t = ∆t, then
we have kx− ω ·∆t = 0 =⇒ x = (ω/k)∆t. So (ω/k)∆t is the horizontal shift. It takes a
time of ∆t for the wave to cover this distance, so the velocity of the wave is

v =
(ω/k)∆t

∆t
=⇒ v =

ω

k
(95)

Likewise for the sin(kx−ωt) function in Eq. (91). Similarly, the velocity of the cos(kx+ωt)
and sin(kx+ ωt) curves is −ω/k.

We see that the wave cos(kx−ωt) keeps its shape and travels along at speed ω/k. Hence
the name “traveling wave.” But note that none of the masses are actually moving with this
speed. In fact, in our usual approximation of small amplitudes, the actual velocities of the
masses are very small. If we double the amplitudes, then the velocities of the masses are
doubled, but the speed of the waves is still ω/k.

As we discussed right after Eq. (92), the terms in that equation are standing waves.
They don’t travel anywhere; they just expand and contract in place. All the masses reach
their maximum position at the same time, and they all pass through zero at the same
time. This is certainly not the case with a traveling wave. Trig identities of the sort,
cos(kx−ωt) = cos kx cosωt+ sin kx sinωt, imply that any traveling wave can be written as
the sum of two standing waves. And trig identities of the sort, cos kx cosωt =

(
cos(kx −

ωt) + cos(kx + ωt)
)
/2, imply that any standing wave can be written as the sum of two

opposite traveling waves. The latter of these facts is reasonably easy to visualize, but the
former is trickier. You should convince yourself that it works.

A more general solution

We’ll now present a much quicker method of finding a much more general solution (compared
with our sinusoidal solutions above) to the wave equation in Eq. (80). This is a win-win
combination.

From Eq. (84), we know that k = ω
√
ρ/E. Combining this with Eq. (95) gives

√
E/ρ =

ω/k = v =⇒ E/ρ = v2. In view of this relation, if we divide the wave equation in Eq. (80)
by ρ, we see that it can be written as

∂2ξ(x, t)

∂t2
= v2

∂2ξ(x, t)

∂x2
(96)

Consider now the function f(x − vt), where f is an arbitrary function of its argument.
(The function f(x + vt) will work just as well.) There is no need for f to even vaguely
resemble a sinusoidal function. What happens if we plug ξ(x, t) ≡ f(x− vt) into Eq. (96)?
Does it satisfy the equation? Indeed it does, as we can see by using the chain rule. In
what follows, we’ll use the notation f ′′ to denote the second derivative of f . In other words,
f ′′(x − vt) equals d2f(z)/dz2 evaluated at z = x − vt. (Since f is a function of only one
variable, there is no need for any partial derivatives.) Eq. (96) then becomes (using the
chain rule on the left, and also on the right in a trivial sense)

∂2f(x− vt)

∂t2
?
= v2

∂2f(x− vt)

∂x2

⇐⇒ (−v)2f ′′(x− vt)
?
= v2 · (1)2f ′′(x− vt), (97)
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which is indeed true.

There is a fairly easy way to see graphically why any function of the form f(x − vt)
satisfies the wave equation in Eq. (96). The function f(x− vt) represents a wave moving to
the right at speed v. This is true because f(x0 − vt0) = f

(
(x0 + v∆t)− v(t0 +∆t)

)
, which

says that if you increase t by ∆t, then you need to increase x by v∆t in order to obtain the
same value of f . This is exactly what happens if you take a curve and move it to the right
at speed v. This is basically the same reasoning that led to Eq. (95).

We now claim that any curve that moves to the right (or left) at speed v satisfies the
wave equation in Eq. (96). Consider a closeup view of the curve near a given point x0, at
two nearby times separated by ∆t. The curve is essentially a straight line in the vicinity of
x0, so we have the situation shown in Fig. 17.

v ∆t

-∆f

wave at t
wave at t + ∆t

v

x0

f (x0-vt)

f (x0-v(t+∆t))

Figure 17

The solid line shows the curve at some time t, and the dotted line shows it at time t+∆t.
The slope of the curve, which is by definition ∂f/∂x, equals the ratio of the lengths of the
legs in the right triangle shown. The length of the vertical leg equals the magnitude of the
change ∆f in the function. Since the change is negative here, the length is −∆f . But by
the definition of ∂f/∂t, the change is ∆f = (∂f/∂t)∆t. So the length of the vertical leg is
−(∂f/∂t)∆t. The length of the horizontal leg is v∆t, because the curve moves at speed v.
So the statement that ∂f/∂x equals the ratio of the lengths of the legs is

∂f

∂x
=

−(∂f/∂t)∆t

v∆t
=⇒ ∂f

∂t
= −v

∂f

∂x
. (98)

If we had used the function f(x + vt), we would have obtained ∂f/∂t = v(∂f/∂x). Of
course, these results follow immediately from applying the chain rule to f(x± vt). But it’s
nice to also see how they come about graphically.

Eq. (98) then implies the wave equation in Eq. (96), because if we take ∂/∂t of Eq. (98),
and use the fact that partial differentiation commutes (the order doesn’t matter), we obtain

∂

∂t

(
∂f

∂t

)
= −v

∂

∂t

(
∂f

∂x

)

=⇒ ∂2f

∂t2
= −v

∂

∂x

(
∂f

∂t

)

= −v
∂

∂x

(
−v

∂f

∂x

)

= v2
∂2f

∂x2
, (99)

where we have used Eq. (98) again to obtain the third line. This result agrees with Eq. (96),
as desired.
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Another way of seeing why Eq. (98) implies Eq. (96) is to factor Eq. (96). Due to the
fact that partial differentiation commutes, we can rewrite Eq. (96) as

(
∂

∂t
− v

∂

∂x

)(
∂

∂t
+ v

∂

∂x

)
f = 0. (100)

We can switch the order of these “differential operators” in parentheses, so either of them
can be thought of acting on f first. Therefore, if either operator yields zero when applied
to f , then the lefthand side of the equation equals zero. In other words, if Eq. (98) is true
(with either a plus or a minus on the right side), then Eq. (96) is true.

We have therefore seen (in various ways) that any arbitrary function that takes the
form of f(x − vt) satisfies the wave equation. This seems too simple to be true. Why did
we go through the whole procedure above that involved guessing a solution of the form
ξ(x, t) = a(x)eiωt? Well, that has always been our standard procedure, so the question we
should be asking is: Why does an arbitrary function f(x− vt) work?

Well, we gave a few reasons in Eqs. (97) and (98). But here’s another reason, one
that relates things back to our original sinusoidal solutions. f(x − vt) works because of a
combination of Fourier analysis and linearity. Fourier analysis says that any (reasonably
well-behaved) function can be written as the integral (or discrete sum, if the function is
periodic) of exponentials, or equivalently sines and cosines. That is,

f(z) =

∫ ∞

−∞
C(r)eirzdr. (101)

Don’t worry about the exact meaning of this; we’ll discuss it at great length in the following
chapter. But for now, you just need to know that any function f(z) can be considered to
be built up out of eirz exponential functions. The coefficient C(r) tells you how much of
the function comes from a eirz term with a particular value of r.

Let’s now pretend that we haven’t seen Eq. (97), but that we do know about Fourier
analysis. Given the result in Eq. (101), if someone gives us the function f(x− vt) out of the
blue, we can write it as

f(x− vt) =

∫ ∞

−∞
C(r)eir(x−vt)dr. (102)

But eir(x−vt) can be written as ei(kx−ωt), where k ≡ r and ω ≡ rv. Since these values of
k and ω satisfy ω/k = v, and hence satisfy Eq. (84) (assuming that v has been chosen to
equal

√
E/ρ), we know that all of these eir(x−vt) terms satisfy the wave equation, Eq. (80).

And since the wave equation is linear in ξ, it follows that any sum (or integral) of these
exponentials also satisfies the wave equation. Therefore, in view of Eq. (102), we see that
any arbitrary function f(x− vt) satisfies the wave equation. As stated above, both Fourier
analysis and linearity are essential in this result.

Fourier analysis plays an absolutely critical role in the study of waves. In fact, it is so
important that we’ll spend all of Chapter 3 on it. We’ll then return to our study of waves
in Chapter 4. We’ll pick up where we left off here.
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