9.4) Hypothesis Testing about the population Mean (M) when 6 is Unknown.

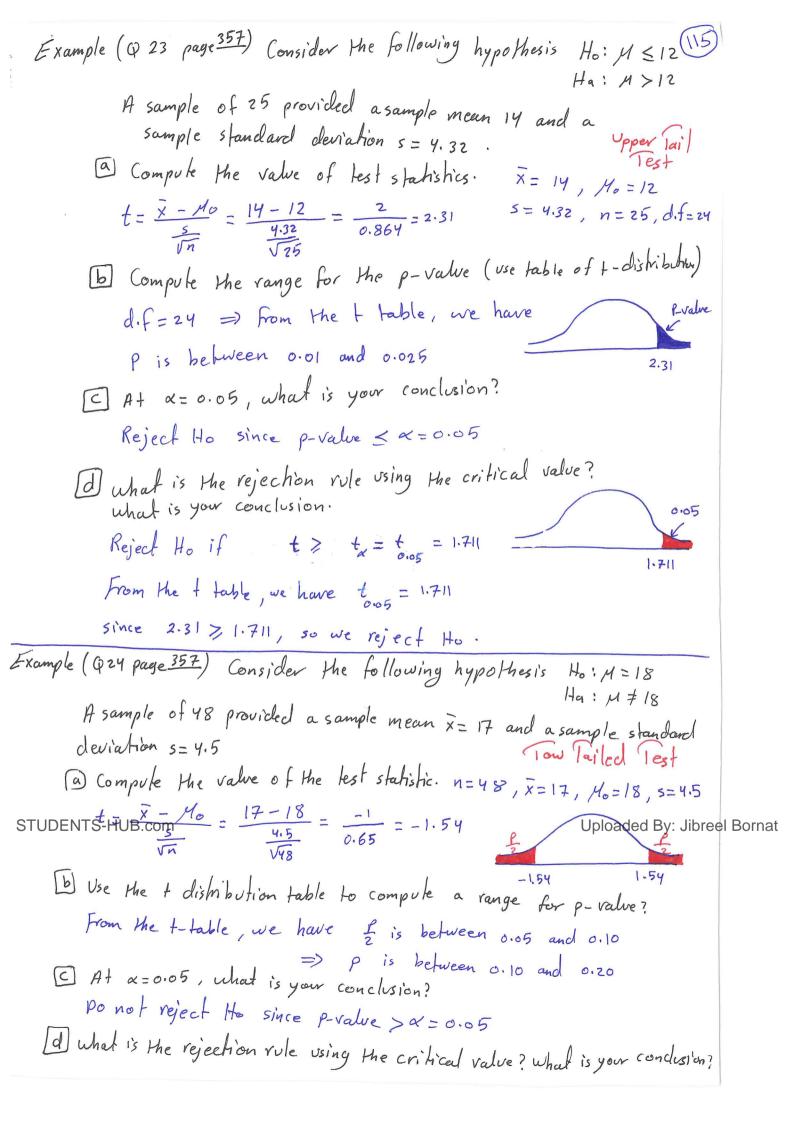
(114)

* When 6 is Known, the sampling distribution of the test statistic z has a standard normal distribution. see pages 581-582

* when 6 is unknown, the sampling distribution of the test statistic t has a t distribution see pages 583-585

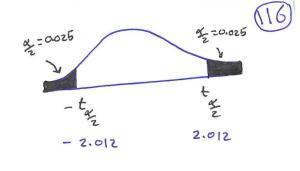
=> The test statistic for hypothesis tests about the population mean M when 6 is unknown is

	meant /1	-	t-distribution
= <u>x</u>	- Mo		t


	5 Vn		ŧ	
	lower Tail Test	Upper Pail Test	Two Tailed Test	
Hypo thesi's	Ho: M > Mo Ha: M < Mo	Ho: M & Mo Ha: M > Mo	Ho: M = Mo Ha: M = Mo	
Test statistic	t= x-Mo	t = \frac{\times - Mo}{\sqrt{\times}}	$t = \frac{\bar{x} - M_0}{\frac{s}{\sqrt{n}}}$	
Rejection Rule using p-value approach		Reject to if f-value < x	Reject Ho if Pralue SX	
· Rejection Rule using Critical value approach STUDENTS-HUB.com	Reject Ho if $t \leq -t_{\alpha}$	Reject to if t > ta	Reject Ho if t <- t <= or + > t <= t <= or + > t <= o	Bornat

* when the population is normally distributed, the hypothesis tests provide exact results * c c = approximation.

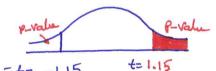
* If n >,30, then the hypothesis tests provid a good results.


* If the population is approximately normal, then small sample sizes (1215) will provid acceptable results.

* If the population is highly skewed or contains outliers, then n > 50 is recommended.

From the table, we have t = t = 2.012

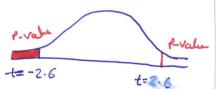
• Reject Ho if
$$t \le -\frac{t}{x_2} = -2.012$$
 or $t > t = 2.012$


· since t = -1.54>-2.012, we do not reject Ho.

Example (Q25 page 357) Consider the following hypothesis lest Ho: M = 45

A sample of 36 is used. Identify the p-value and state your conclusion the following sample results: (Use & = 0.01) lower Tail Test

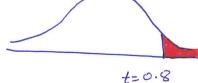
[a]
$$\bar{x} = 44$$
 and $s = 5.2$ $n = 36$, $d.f = 35$, $H_0 = 45$


$$t = \frac{x - M_0}{\frac{5}{\sqrt{n}}} = \frac{44 - 45}{\frac{5 \cdot 2}{\sqrt{36}}} = \frac{-1}{0.87} = -1.15$$

From the +-table we have P is between 0.10 and 0.20 P2 0.1+0.2 = 0.15

pont reject to since p-value = 0.15 > 0.01

$$t - \frac{\bar{x} - H_0}{\frac{5}{\sqrt{n}}} = \frac{43 - 45}{\frac{4.6}{\sqrt{3}6}} = \frac{-2}{0.77} = -2.6$$



From the +-table, we have P is between 0.005 and 0.01 P= 0.0075

reject He since p-value = 0.0075 < 0.01 STUDENTS-HUB.com

(c) x = 46 and s = 5

$$t = \frac{\bar{x} - M_0}{\frac{5}{\sqrt{n}}} = \frac{46 - 45}{\frac{5}{\sqrt{36}}} = \frac{1}{1.25} = 0.8$$

From the t-table, we have p is between 0.20 and more Pon't reject to since p-value > 0.01