Analysis of Bode Plots

Informal definitions:

= The gain margin is the factor by which the gain can
be increased before instability results.

= The phase margin is the amount of phase by which
G(jw) exceeds -180 degrees when |KG(jw)|=1

= These are easily measured on Bode diagrams.
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Steady-State Error Characteristics
from Frequency Response

TABLE 7.2 Relationships between input, system type, static error constants, and steady-state errors

Type 0 Type 1 Type2
Steady-state Static error Static error Static error
Input error formula constant Error constant Error constant Error
1 1
Step, u(t} 7K, K, = Constant 7K, Ky =00 0 Ky =00 0
1
Ramp, ru(t) kl— K, =0 00 K, = Constant ' K, =00 0
Parabola, %rzu(r] KL,, K, =0 ) K,=0 ) K, = Constant Klu

To find K, consider the following Type 0 system:

=

(s + zi)
Gis)=KE——
1(S+pf)

s|I

(10.74)

i

A typical unnormalized and unscaled Bode log-magnitude plot is shown in
Figure 10.51(a). The initial value is

n

H Zi
201log M = 20 log K =1 (10.75)

m

[1p

i=1

But for this system

H

Iz
K,=KZ! (10.76)

m

[1p:

i=]

which is the same as the value of the low-frequency axis. Thus, for an unnormalized
and unscaled Bode log-magnitude plot, the low-frequency magnitude is 20 log K, for
a Type 0 system.
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Velocity Constant
To find K, for a Type 1 system, consider the following open-loop transfer function of
a Type 1 system:

n

[1(s + zi)
G(s) = K-S— (10.77)
sTI(s +pi)

i=1

A typical unnormalized and unscaled Bode log-magnitude diagram is shown in
Figure 10.51(b) for this Type 1 system. The Bode plot starts at

n

[l
20log M = 20log K = (10.78)

n

wo [] p;
i=1

The initial —20 dB/decade slope can be thought of as originating from a function,

H Zi
G'(s) = K= (10.79)
s[1pi
i=1
G'(s) intersects the frequency axis when
fl=
w=K=l (10.80)
[1p:
i=1
But for the original system (Eq. (10.77)),
n
flz
K, = KZ! (10.81)
[1p:

i=1

which is the same as the frequency-axis intercept, Eq. (10.80). Thus, we can find X,
by extending the initial —20 dB/decade slope to the frequency axis on an unnor-
malized and unscaled Bode diagram. The intersection with the frequency axis is K.
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Acceleration Constant
To find K, for a Type 2 system, consider the following:

ﬁ(s + zi)
G(s) =K —— (10.82)
s? T1(s +p;)

t‘:l

A typical unnormalized and unscaled Bode plot for a Type 2 system is shown in
Figure 10.51(c). The Bode plot starts at

n
1z
20log M = 20 log K =L (10.83)
w§ [1p;

i=1

The initial —40 dB/decade slope can be thought of as coming from a function,

n
[Tz
G'(s) = K-=5 (10.84)
52 1__[1 Pi

G'(s) intersects the frequency axis when

(10.85)
But for the original system (Eq. (10.82)),
n
Iz
K,=KE! (10.86)
[1p:
i=1

Thus, the initial —40 dB/decade slope intersects the frequency axis at /K.
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FIGURE 10.51 Typical unnormalized and unscaled Bode log-magnitude plots showing the
value of static error constants: a. Type 0; b. Type 1; ¢. Type 2

Relation Between Closed-Loop Transient and
Closed-Loop Frequency Responses

Consider the following second order system

R(s) + E(s)_| ©; C(s)
s(is+2¢@w,)

FIGURE 10.38 Second-order closed-loop

system
C(s) _ o?
o) T(s) == 2t + @ (10.49)
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Let us now find the frequency response of Eq. (10.49), define characteristics of
this response, and relate these characteristics to the transient response. Substituting
s = jw into Eq. (10.49), we evaluate the magnitude of the closed-loop frequency
response as

2
n (10.51)
V(@2 — ) + 420207

M = |T(jw)| = -

A representative sketch of the log plot of Eq. (10.51) is shown in Figure 10.39.

We now show that a relationship exists between the peak value of the closed-
loop magnitude response and the damping ratio. Squaring Eq. (10.51), differentiat-
ing with respect to w?, and setting the derivative equal to zero yields the maximum
value of M, M, where

M,=——— (10.52)
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at a frequency, wj, of

wp = wp/1 - 202 (10.53)
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Response Speed and Closed-Loop Frequency Response
Another relationship between the frequency response and time response is between
the speed of the time response (as measured by settling time, peak time, and rise
time) and the bandwidth of the closed-loop frequency response, which is defined
here as the frequency, wgw, at which the magnitude response curve is 3 dB down
from its value at zero frequency (see Figure 10.39).
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The bandwidth of a two-pole system can be found by finding that frequency for
which M = 1/+/2 (that is, =3 dB) in Eq.(10.51). The derivation is left as an exercise
for the student. The result is

! wWBW = wp \/ (1-282) +/4¢4 - 42 + 2 (10.54)

L—

To relate wpw to settling time, we substitute w, = 4/7¢ into Eq. (10.54) and obtain

(1-222) +\/4r4 — 422 42 (10.55)

sC

[
| woaw
|
L

Similarly, since, w, = 7/(T,\/1 - £?),

VALt — 48 + (10.56)

(1-222)+
WBwW Tp\/l—?—\/ :)

To relate the bandwidth to rise time, T,, we use Figure 4.16, knowing the desired ¢ and 7.
For example, assume ¢ = 0.4 and 7, = 0.2 second. Using Figure 4.16, the ordinate
T,w, = 1.463, from which w, = 1.463/0.2 = 7.315 rad/s. Using Eq. (10.54), wpw =
10.05 rad/s. Normalized plots of Egs. (10.55) and (10.56) and the relationship between
bandwidth normalized by rise time and damping ratio are shown in Figure 10.41.
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FIGURE 10.41 Normalized bandwidth vs. damping ratio for a. settling time; b, peak time;
c. rise time

Relation Between Closed-Loop
Transient and Open-Loop
Frequency Responses

Damping Ratio from Phase Margin

Let us now derive the relationship between the phase margin and the damping ratio.
This relationship will enable us to evaluate the percent overshoot from the phase
margin found from the open-loop frequency response.

STUDENTS-HUB.com Uploaded By: anonymous



The difference between the angle of Eq. (10.72) and —180° is the phase margin, ¢,,. Thus,

. \/-2;:2 + /1 +4c4
2
2¢

\/-28 + /1 +4¢4

@y =90 — tan

(10.73)

= tan~ !

Equation (10.73), plotted in Figure 10.48, shows the relationship between phase
margin and damping ratio.
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Transient Response Design via Gain Adjustment

PROBLEM: For the position control system shown in Figure 11.2, find the value of
preamplifier gain, K, to yield a 9.5% overshoot in the transient response for a step
input. Use only frequency response methods.

SOLUTION: We will now follow the previously described gain adjustment design
procedure.
1. Choose K = 3.6 to start the magnitude plot at 0 dB at @ = 0.1 in Figure 11.3.

2. Using Eq. (4.39), a 9.5% overshoot implies ¢ = 0.6 for the closed-loop dominant
poles. Equation (10.73) yields a 59.2° phase margin for a damping ratio of 0.6.

Motor
Desired Power and Shall Shalt
position Preamplifier amplifier load  velocity positon
R(s)  + | 100 1 | 1 Cts)
K "1 (s + 100) e (s +36) s "

FIGURE 11.2 System for Example 11.1
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3. Locate on the phase plot the frequency that yields a 59.2° phase margin. This
frequency is found where the phase angle is the difference between —180° and
59.2°, or —120.8°. The value of the phase-margin frequency is 14.8 rad’s.

4. Atafrequency of 14.8 rad/s on the magnitude plot, the gain is found to be —44.2 dB.
This magnitude has to be raised to 0 dB to yield the required phase margin. Since
the log-magnitude plot was drawn for K = 3.6, a 44.2 dB increase, or K = 3.6 x
162.2 = 583.9, would yield the required phase margin for 9.48% overshoot.

The gain-adjusted open-loop transfer function is
58,390
G6) = 5T 36) 6 1 100)

Table 11.1 summarizes a computer simulation of the gain-compensated system.

(11.1)

TABLE 11.1 Characteristic of gain-compensated system of Example 11.1

Parameter Proposed specification Actual value
K, - 16.22

Phase margin 59.2° 59.2°
Phase-margin frequency — 14.8 rad/s
Percent overshoot 9.5 10

Peak time — 0.18 second
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