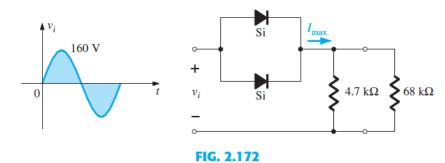

ENEE236 CH2 Homework Problems


5. Determine the current *I* for each of the configurations of Fig. 2.155 using the approximate equivalent model for the diode.

*26. For the network of Fig. 2.171, sketch v_o and i_R .

- *27. a. Given $P_{\text{max}} = 14 \text{ mW}$ for each diode at Fig. 2.172, determine the maximum current rating of each diode (using the approximate equivalent model).
 - **b.** Determine I_{max} for the parallel diodes.
 - ${\bf c.}~$ Determine the current through each diode at $V_{i_{\rm max}}$ using the results of part (b).
 - **d.** If only one diode were present, which would be the expected result?

*31. Sketch v_o for the network of Fig. 2.175 and determine the dc voltage available.

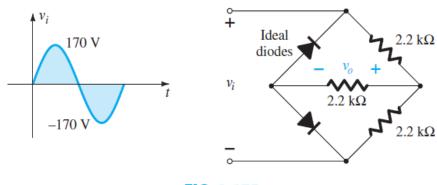
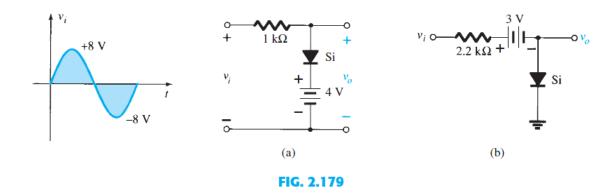



FIG. 2.175

*35. Determine v_o for each network of Fig. 2.179 for the input shown.

*40. Design a clamper to perform the function indicated in Fig. 2.184.

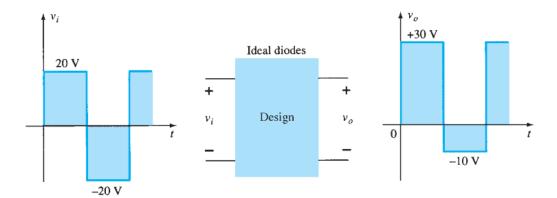
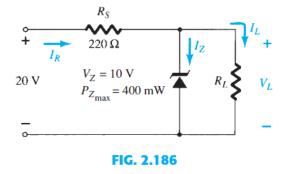



FIG. 2.184

- *42. a. Determine V_L , I_L , I_Z , and I_R for the network of Fig. 2.186 if $R_L=180~\Omega$.
 - **b.** Repeat part (a) if $R_L = 470 \Omega$.
 - ${\bf c.}$ Determine the value of R_L that will establish maximum power conditions for the Zener diode.
 - **d.** Determine the minimum value of R_L to ensure that the Zener diode is in the "on" state.

