Ch5

SIE
Process Priority Arrival Time | 1st CPU Burst I/O Burst 2nd CPU Burst
P1 2 0 4 4 4
P2 1 3 3 3 5
P3 0 8 6 2 3

Using Shortest Job First algorithm, show the Gantt chart of processes executing in the CPU.
Also, calculate the average waiting time.

Solution:

Gantt Chart:

| P1 ;2 |-|P1 | P2 | P3 |- |P3 |
0 4 7 8 12 17 23 25 28
Ready Queue:
- | P2]- P3 P2, |P3
P3
0 3 4 8 10 12 17
Waiting Queue:
- P1 |P1, | P2 - P3
P2
0 4 7 8 10 23 25
Waiting time: P1 =0
P2 = (4-3) + (12-10) =3
P3=17-8=9
Average=(0+3+9)/3=4
Page 1 of 2

STUDENTS-HUB.com Uploaded By: Mohammed Saada

Ch5

PP
Process Priority Arrival Time | 1st CPU Burst I/O Burst 2nd CPU Burst
P1 2 0 4 4 4
P2 1 3 3 3 5
P3 0 8 6 2 3

Using Preemptive Priority scheduling algorithm, show the Gantt chart of processes executing in the
CPU. Also, calculate the average waiting time.

Solution:
Gantt Chart:
(Pt [P2 [P1[-][P3 P2 [P3 | P2 | P1 |
0 3 6 7 8 14 16 19 22 26
Ready Queue:
- P1 - | P2 P2, |P1 |P1,P2 P1
P1
0 3 6 9 11 14 16 19 22
Waiting Queue:
- P2 |PL | P1 - P3
P2
0 6 7 9 11 14 16
Waiting time: P1 = (6-3) + (22-11) = 14
P2 = (14-9) + (19-16) = 8
P3=0
Average=(14+8+0)/3=733
Page 2 of 2

STUDENTS-HUB.com

Uploaded By: Mohammed Saada

Semaphore Coding Ché6

A unisex bathroom is shared by men and women. A man or a woman may be using
the room, waiting to use the room, or doing something else. They work, use the bathroom and
come back to work. The rule of using the bathroom is very simple: there must never be a man
and a woman in the room at the same time; however, people with the same gender can use the

room at the same time.

Man Thread Woman Thread
void Man(void) void Woman(void)
{ {
while (1) { while (1) {
// working // working

// use the bathroom

}

// use the bathroom

3

Declare semaphores and other variables with initial values, and add Wait() and Signal() calls
to the threads so that the man threads and woman threads will run properly and meet the re-
quirement. Your implementation should not have any busy waiting, race condition, and deadlock,
and should aim for maximum parallelism.

A convincing correctness argument is needed. Otherwise, you will receive no credit
for this problem.

Answer: This is a simple variation of the reader-priority readers-writers problem. More precisely,
we allow the “writers” to write simultaneously. Therefore, the writers have the same structures as
the readers. We need to maintain two counters, one for the males MaleCounter and the other for
the females FemaleCounter. Of course, we need two Mutexes MaleMutex and FemaleMutex for
mutual exclusion. In addition, there is a semaphore BathRoom to block the males (resp., females)
if the room is being used by the females (reap., males). Note that the male thread and female
thread are symmetric.

// male and female counters
// male and female counters
// the bathroom is empty initially

int MaleCounter = 0, FemaleCounter = 0;
Semaphore MaleMutex = 1, FemaleMutex = 1;
Semaphore BathRoom = 1;

Male Thread Female Thread

while (1) { while(1) {
// working // working
MaleMutex.Wait(); FemaleMutex () .Wait(); // update counter
MaleCounter++; FemaleCounter—-;

if (MaleCounter == 1) if (FemaleCounter == 1) // if 1 am the first

BathRoom.Wait() ;
MaleMutex.Signal() ;

// use the bathroom

MaleMutex.Wait();
MaleCounter--;
if (MaleCounter == 0)
BathRoom.Signal();
MaleMutex.Signal();

STUDENTS-HUB.com

BathRoom.Wait () ;
FemaleMutex.Signal();

// use the bathroom

FemaleMutex.Wait();
FemaleCounter—-;
if (FemaleCounter ==
BathRoom.Signal();
FemaleMutex.SignalQ);

Uploaded By: Mohammed Saada

0)

//

yield to other

// update counter

// if I am the last one

/7

let the other group know

DL Avoidance (Banker) Chs

Assume that there are three resources, A, B, and C. There are 4 processes Po to P3. At To
we have the following snapshot of the system:

Allocation Max Available || 1.Create the need matrix.
Need
A |[B |C |[A|B|C|A|B|C A B C
P |1 o |1 |2 1|1 Po | 1 0
P, |2 |1 |2 |5 |4 |4 112 (3) ? f
P, |3 0 0 3 11 P, 0 1o
P; |1 0 1 1 |1 |1

2. Is the system in a safe state? Why or why not?
In order to check this, we should run the safety algorithm. Let’s create the work vector
and finish matrix:

Work vector Finish Needo (1,1,0) is less than work, so let’s go
matrix ahead and update work and finish:
2 P, | False Work vector Finish
1 Py | False mafrix
1 P> | False 3 Po | True
P; | False 1 P | False
2 P, | False
P; | False
Need; (3,3,2) is not less than work, so we have to move on to P».
Need> (0,1,1) is less than work, let’s Needs (0,1,0) is less than work, we
update work and finish: can update work and finish:
Work vector | Finish matrix Work vector | Finish matrix
6 Py | True 7 Py | True
1 P | False 1 P, | False
2 P> | True 3 P> | True
P; | False P; | True

We now need to go back to P1. Need; (3,3,2) is not less than work, so we cannot continue.
Thus, the system is not in a safe state.

STUDENTS-HUB.com Uploaded By: Mohammed Saada

DL Detection Chs8

To illustrate this algorithm, we consider a system with five threads T
through T, and three resource types A, B, and C. Resource type A has seven
instances, resource type B has two instances, and resource type C has six
instances. The following snapshot represents the current state of the system:

Allocation Request Available

ABC ABC ABC
T, 010 000 000
T, 200 202
T, 303 000
T, 211 100
T, 002 002

We claim that the system is not in a deadlocked state. Indeed, if we execute
our algorithm, we will find that the sequence <T,, T,, T;, T;, T,> results in
Finish(i] == true for all i.

Suppose now that thread T, makes one additional request for an instance
of type C. The Request matrix is modified as follows:

Request

ABC
T, 000
T, 202
T, 001
T, 100
T, 002

We claim that the system is now deadlocked. Although we can reclaim the
resources held by thread T, the number of available resources is not sufficient
to fulfill the requests of the other threads. Thus, a deadlock exists, consisting
of threads Ty, T,, T5, and T}.

STUDENTS-HUB.com Uploaded By: Mohammed Saada

Replacement Algorithm Ch10

1 Consider the following page reference string (15 memory references) in a demand paging
virtual memory environment (repeated in tables):
(1[2]3f4f2 1 [sfef2 1f2[3]7]5[3 [2 [t [2 [3 [6 |
16% Calculate how many page faults would occur, the success rate and failure rate for each of the following
replacement algorithms, We have 3 frames F1-F3 and all frames are initially empty.

a. Optimal (OPT) replacement (5%):

Paget> 1(2(3 (42 |1 (5 |6 2 (1|2 |3 |7 |5 32|12 3]6
Framel |1 |1 |1 |1 1 1 1 |7 |5 1 6
Frame2 212 |2 2 |2 2 |2 |2 2 2
Frame3 3 |4 516 3 |3 13 3 3
Fault? |+ |+ |+ |+ + |+ + |+ |+ + +
11 Faults

b. LRU replacement (5%)

Page#> 1{2|3 (4 (2 |1 (5§ (6 2 (1|2 (3 |7 |5 |3 |2 (12|36
Framel |1 |1 |1 |4 4 (4 |6 6 3 (3 |3 313 3
Frame2 212 |2 2 |2 |2 2 2 |2 |5 511 6
Frame3 313 3 |5 |5 1 1 |7 |7 2 |2 2
Fault? |+ |+ |+ |+ + |+ |+ + + |+ |+ + |+ +
14 Faults

3. FIFO with 3 frames: (5%)

Page#=> 12 (3 |4 |2 1 5 6 |2 1 (2 3 7 5 312 (112|316
Framel |1 |1 |3 |3 |2 2 5 512 2 3 3 5 512 |2 313
Frame2 212 |4 |4 1 1 6 |6 1 1 7 7 313 |1 116
Fault> |T|FH [T |+ |F |+ [+ |+ |+ |+ + |+ |+ |+ |+ |+ + |4
18 Faults

STUDENTS-HUB.com Uploaded By: Mohammed Saada

