
 Page 1 of 2

SJF

Process Priority Arrival Time 1st CPU Burst I/O Burst 2nd CPU Burst
P1 2 0 4 4 4
P2 1 3 3 3 5
P3 0 8 6 2 3

Using Shortest Job First algorithm, show the Gantt chart of processes executing in the CPU.
Also, calculate the average waiting time.

Solution:

Gantt Chart:
P1 P2 - P1 P2 P3 -- P3

0 4 7 8 12 17 23 25 28

Ready Queue:
-- P2 -- P3 P2,

P3
P3

0 3 4 8 10 12 17

Waiting Queue:
-- P1 P1,

P2
P2 -- P3

0 4 7 8 10 23 25

Waiting time: P1 = 0
 P2 = (4-3) + (12-10) = 3
 P3 = 17-8 = 9
Average = (0 + 3 + 9) / 3 = 4

Ch 5

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

 Page 2 of 2

PP

Process Priority Arrival Time 1st CPU Burst I/O Burst 2nd CPU Burst
P1 2 0 4 4 4
P2 1 3 3 3 5
P3 0 8 6 2 3

Using Preemptive Priority scheduling algorithm, show the Gantt chart of processes executing in the
CPU. Also, calculate the average waiting time.

Solution:

Gantt Chart:
P1 P2 P1 -- P3 P2 P3 P2 P1

0 3 6 7 8 14 16 19 22 26

Ready Queue:
-- P1 -- P2 P2,

P1
P1 P1, P2 P1

0 3 6 9 11 14 16 19 22

Waiting Queue:
-- P2 P1,

P2
P1 -- P3

0 6 7 9 11 14 16

Waiting time: P1 = (6-3) + (22-11) = 14
 P2 = (14-9) + (19-16) = 8
 P3 = 0
Average = (14 + 8 + 0) / 3 = 7.33

Ch 5

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

CS3331 Concurrent Computing Exam 2 Solutions – Spring 2014 7

(b) [20 points] A unisex bathroom is shared by men and women. A man or a woman may be using
the room, waiting to use the room, or doing something else. They work, use the bathroom and
come back to work. The rule of using the bathroom is very simple: there must never be a man
and a woman in the room at the same time; however, people with the same gender can use the
room at the same time.

Man Thread Woman Thread
void Man(void)
{

while (1) {
// working
// use the bathroom

}

void Woman(void)
{

while (1) {
// working
// use the bathroom

}

Declare semaphores and other variables with initial values, and add Wait() and Signal() calls
to the threads so that the man threads and woman threads will run properly and meet the re-
quirement. Your implementation should not have any busy waiting, race condition, and deadlock,
and should aim for maximum parallelism.
A convincing correctness argument is needed. Otherwise, you will receive no credit
for this problem.
Answer: This is a simple variation of the reader-priority readers-writers problem. More precisely,
we allow the “writers” to write simultaneously. Therefore, the writers have the same structures as
the readers. We need to maintain two counters, one for the males MaleCounter and the other for
the females FemaleCounter. Of course, we need two Mutexes MaleMutex and FemaleMutex for
mutual exclusion. In addition, there is a semaphore BathRoom to block the males (resp., females)
if the room is being used by the females (reap., males). Note that the male thread and female
thread are symmetric.

int MaleCounter = 0, FemaleCounter = 0; // male and female counters
Semaphore MaleMutex = 1, FemaleMutex = 1; // male and female counters
Semaphore BathRoom = 1; // the bathroom is empty initially

Male Thread Female Thread

while (1) { while(1) {
// working // working

MaleMutex.Wait(); FemaleMutex().Wait(); // update counter
MaleCounter++; FemaleCounter--;
if (MaleCounter == 1) if (FemaleCounter == 1) // if I am the first

BathRoom.Wait(); BathRoom.Wait(); // yield to other
MaleMutex.Signal(); FemaleMutex.Signal();

// use the bathroom // use the bathroom

MaleMutex.Wait(); FemaleMutex.Wait(); // update counter
MaleCounter--; FemaleCounter--;
if (MaleCounter == 0) if (FemaleCounter == 0) // if I am the last one

BathRoom.Signal(); BathRoom.Signal(); // let the other group know
MaleMutex.Signal(); FemaleMutex.Signal();

} }

Refer to the class note for the solution to the reader-priority version of the readers-writers problem
for the details.

Ch 6 Semaphore Coding

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

5

Exercise 3
Assume that there are three resources, A, B, and C. There are 4 processes P0 to P3. At T0
we have the following snapshot of the system:

 Allocation Max Available

 A B C A B C A B C

P0 1 0 1 2 1 1 2 1 1
P1 2 1 2 5 4 4
P2 3 0 0 3 1 1
P3 1 0 1 1 1 1

1.Create the need matrix.
 Need
 A B C

P0 1 1 0
P1 3 3 2
P2 0 1 1
P3 0 1 0

2. Is the system in a safe state? Why or why not?
In order to check this, we should run the safety algorithm. Let’s create the work vector
and finish matrix:

Work vector Finish
matrix

2 P0 False
1 P1 False
1 P2 False
 P3 False

Need0 (1,1,0) is less than work, so let’s go
ahead and update work and finish:

Work vector Finish
matrix

3 P0 True
1 P1 False
2 P2 False
 P3 False

Need1 (3,3,2) is not less than work, so we have to move on to P2.
Need2 (0,1,1) is less than work, let’s
update work and finish:

Work vector Finish matrix
6 P0 True
1 P1 False
2 P2 True
 P3 False

Need3 (0,1,0) is less than work, we
can update work and finish:

Work vector Finish matrix
7 P0 True
1 P1 False
3 P2 True
 P3 True

We now need to go back to P1. Need1 (3,3,2) is not less than work, so we cannot continue.
Thus, the system is not in a safe state.

Ch 8 DL Avoidance (Banker)

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

Ch 8 DL Detection

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

3 ENCS339 Operating Systems, Final Exam, Second Semester, 2018-2019, June 2, 2019 Instructor: Dr. Adnan Yahya,
--- ----------------------------
Question 3 (15%) Consider the following page reference string (15 memory references) in a demand paging
virtual memory environment (repeated in tables):
1 2 3 4 2 1 5 6 2 1 2 3 7 5 3 2 1 2 3 6

16% Calculate how many page faults would occur, the success rate and failure rate for each of the following
replacement algorithms, We have 3 frames F1-F3 and all frames are initially empty.

a. Optimal (OPT) replacement (5%):

Page#➔ 1 2 3 4 2 1 5 6 2 1 2 3 7 5 3 2 1 2 3 6

Frame1 1 1 1 1 1 1 1 7 5 1 6

Frame2 2 2 2 2 2 2 2 2 2 2

Frame3 3 4 5 6 3 3 3 3 3

Fault? + + + + + + + + + + +

Success Rate S= 9/20=45 % Failure Rate F= 11/20=55 %

b. LRU replacement (5%)

Page#➔ 1 2 3 4 2 1 5 6 2 1 2 3 7 5 3 2 1 2 3 6

Frame1 1 1 1 4 4 4 6 6 3 3 3 3 3 3

Frame2 2 2 2 2 2 2 2 2 2 5 5 1 6

Frame3 3 3 3 5 5 1 1 7 7 2 2 2

Fault? + + + + + + + + + + + + + +

Success Rate S=5/20=25 % Failure Rate F= 15/20=75 %

3. FIFO with 3 frames: (5%)

Page#➔ 1 2 3 4 2 1 5 6 2 1 2 3 7 5 3 2 1 2 3 6

Frame1 1 1 3 3 2 2 5 5 2 2 3 3 5 5 2 2 3 3

Frame2 2 2 4 4 1 1 6 6 1 1 7 7 3 3 1 1 6

Fault? + + + + + + + + + + + + + + + + + +

Success Rate S= 2/20=10 % Failure Rate F= 18/20=90 %

www.lib-go.com
Uploaded by Jenan Mohammad to Lib-Go.com

Ch 10 Replacement Algorithm

11 Faults

14 Faults

18 Faults

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

