Virtual Memory

SSSSSSSSSSSSSSSS

https://students-hub.com

Virtual Memory Concepts

* What is Virtual Memory?
#* Uses disk as an extension to memory system
* Main memory acts like a cache to hard disk
#* Each process has its own virtual address space

% Page: a virtual memory block

“ Page fault: a memory miss
#* Page is not in main memory = transfer page from disk to memory

*» Address translation:

#* CPU and OS translate virtual addresses to physical addresses
** Page Size:

* Size of a page in memory and on disk

#* Typical page size = 4KB — 16KB

STUDENTS-HUB.com

https://students-hub.com

Virtual Memory Concepts

* A program’s address space is divided into pages
#* All pages have the same fixed size (simplifies their allocation)

Pages are either in main
memory or on in secondary
storage (hard disk)

STUDENTS-HUB.com

Program 1

virtual address space

N
AN

main memory

AN
PR N

AN

N

o
| _______—@

Program 2

virtual address spa

o%
S
o
o
e

https://students-hub.com

Issues in Virtual Memory

* Page Size
#* Small page sizes ranging from 4KB to 16KB are typical today
* Large page size can be 1MB to 4MB (reduces page table size)
#* Recent processors support multiple page sizes
* Placement Policy and Locating Pages
* Fully associative placement is typical to reduce page faults
#* Pages are located using a structure called a page table
#* Page table maps virtual pages onto physical page frames
*» Handling Page Faults and Replacement Policy
#* Page faults are handled in software by the operating system
#* Replacement algorithm chooses which page to replace in memory
“* Write Policy
* \Write-through will not work, since writes take too long
* Instead, virtual memory systems use write-back

STUDENTS-HUB.com

https://students-hub.com

Three Advantages of Virtual Memory

“ Memory Management:
#* Programs are given contiguous view of memory
#* Pages have the same size = simplifies memory allocation
* Physical page frames need not be contiguous
#* Only the “Working Set” of program must be in physical memory
#* Stacks and Heaps can grow
< Use only as much physical memory as necessary
“* Protection:
* Different processes are protected from each other
* Different pages can be given special behavior (read only, etc)
#* Kernel data protected from User programs
* Protection against malicious programs
“* Sharing:
#* Can map same physical page to multiple users “Shared memory”

STUDENTS-HUB.com

https://students-hub.com

Page Table and Address Mapping

Page table register

P_age Table maps Virtual address
Vlrtual page numbers 31 30 29 28 27 ccccc et 15 14 13 12 11 10 9 8 « e« 3210
to phySICaI frames Virtual page number Page offset
_ J20 d12
Page Table ReQISter Valid Physical page number
contains the address]
of the page table
Virtual page number Page table
IS used as an index
Into the page table
v \\18

If O then page is not
Page Table Entry present in memory
(PTE): describes the 20 28 27 +eerrenereenrnees - 1514131211008--]---3210
page and |tS usage Physical page number Page offset

Phvsical address

STUDENTS-HUB.com

https://students-hub.com

Page Table - cont'd

s Each process has a page table
#* The page table defines the address space of a process
#* Address space: set of page frames that can be accessed
* Page table is stored in main memory
#* Can be modified only by the Operating System

*» Page table reqister
* Contains the physical address of the page table in memory
#* Processor uses this register to locate page table

*» Page table entry
#* Contains information about a single page
#* Valid bit specifies whether page is in physical memory
#* Physical page number specifies the physical page address
* Additional bits are used to specify protection and page use

STUDENTS-HUB.com

https://students-hub.com

Size of the Page Table

Virtual Page Number 20

Page Offset 12

“ One-level table is simplest to implement

“» Each page table entry is typically 4 bytes

“* With 4K pages and 32-bit virtual address space, we need:
232[212 = 220 entries x 4 bytes = 4 MB

“* With 4K pages and 48-bit virtual address space, we need:
248212 = 236 entries x 4 bytes = 238 bytes = 256 GB !

* Cannot keep whole page table in memory!

“* Most of the virtual address space is unused

STUDENTS-HUB.com

https://students-hub.com

Reducing the Page Table Size

¢ Use a limit register to restrict the size of the page table
* If virtual page number > limit register, then page is not allocated

#* Requires that the address space expand in only one direction

“ Divide the page table into two tables with two limits
#* One table grows from lowest address up and used for the heap
* One table grows from highest address down and used for stack

#* Does not work well when the address space is sparse
*» Use a Multiple-Level (Hierarchical) Page Table
* Allows the address space to be used in a sparse fashion

#* Sparse allocation without the need to allocate the entire page table

* Primary disadvantage is multiple level address translation

STUDENTS-HUB.com

https://students-hub.com

Multi-Level Page Table

Virtual Address

31 2221 1211 0 :
pl p2 offset
\ A)
10-Bit 10> bit
L1l index L2 index 77, %
Root of the Current
Page Table 7 p2
pl '
(Processor Level 1
Register) Page Table
Level 2
page in primary memory Page Tables

page in secondary memory

PTE of a nonexistent page Data Pages

STUDENTS-HUB.com

https://students-hub.com

Variable-Sized Page Support

Virtual Address
31 2221 1211 0

pl p2 offset
\ v A v)

10-bit 10-bit

L1l index L2 index

A

Root of the Current __s
Page Table 72
2
(Processor Level 1
Register) Page Table

Level 2

page in primary memory Page Tables

XX large page in primary memory
page in secondary memory
PTE of a nonexistent page

Data Pages

STUDENTS-HUB.com

https://students-hub.com

Hashed Page Table

Virtual Address

VPN

offset

PID

l

hash

Index — PA of PTE

N\

Hashed Page Table

s

A

Base of Table

*» One table for all processes
* Table is only small fraction of memory

#* Number of entries is 2 to 3 times number of
page frames to reduce collision probability

+» Hash function for address translation

#* Search through a chain of page table entries

STUDENTS-HUB.com

.[VPN

PID

PPN

link

VPN

PID

PPN

02,

https://students-hub.com

Handling a Page Fault

*» Page fault: requested page is not in memory
#* The missing page is located on disk or created
#* Page is brought from disk and Page table is updated

* Another process may be run on the CPU while the first process
waits for the requested page to be read from disk

“*If no free pages are left, a page is swapped out
#* Pseudo-LRU replacement policy
#* Reference bit for each page each page table entry
#* Each time a page is accessed, set reference bit =1
#* OS periodically clears the reference bits
s+ Page faults are handled completely in software by the OS

* |t takes milliseconds to transfer a page from disk to memory

STUDENTS-HUB.com

https://students-hub.com

Write Policy

*» Write through does not work

#* Takes millions of processor cycles to write disk

» Write back

#* Individual writes are accumulated into a page

* The page is copied back to disk only when the page is replaced

¢ Dirty bit
* 1 if the page has been written

* 0 if the page never changed

STUDENTS-HUB.com

https://students-hub.com

TLB = Translation Lookaside Buffer

* Address translation is very expensive
#* Must translate virtual memory address on every memory access

#* Multilevel page table, each translation is several memory accesses

«» Solution: TLB for address translation

#* Keep track of most common translations in the TLB

«» TLB = Cache for address translation

VA PA miss
CPU : ' 1 Mai
TLB Cache ain
Core) Memory
) hit

data

STUDENTS-HUB.com

https://students-hub.com

Translation Lookaside Buffer

TLB hit:

Fast single cycle translation

TLB miss: Slow page table translation
Must update TLB on a TLB miss

loffset

SSSSSSSSSSSSSSSS

virtual address VPN
]
v R Wip V‘IVDN PPN (VPN = virtual page number)
(PPN = physical page number)
! | |
hit? physical address PPN

offset

https://students-hub.com

Address Translation & Protection

Virtual Address| Virtual Page No. (VPN) offset

Kernel/User Mode

Exception?
Physical Address | Physical Page No. (PPN) | offset

Every instruction and data access needs address translation and
protection checks

Check whether page is read only, writable, or executable

Check whether it can be accessed by the user or kernel only

STUDENTS-HUB.com

https://students-hub.com

Handling TLB Misses and Page Faults

% TLB miss: No entry in the TLB matches a virtual address

“ TLB miss can be handled in software or in hardware
#* Lookup page table entry in memory to bring into the TLB
* If page table entry is valid then retrieve entry into the TLB

* If page table entry is invalid then page fault (page is not in memory)

* Handling a Page Fault

* Interrupt the active process that caused the page fault
<> Program counter of instruction that caused page fault must be saved

<> Instruction causing page fault must not modify registers or memory
* Transfer control to the operating system to transfer the page

* Restart later the instruction that caused the page fault

STUDENTS-HUB.com

https://students-hub.com

Handling a TLB Miss

% Software (MIPS, Alpha)

#* TLB miss causes an exception and the operating system
walks the page tables and reloads TLB

* A privileged addressing mode is used to access page tables

% Hardware (SPARC v8, x86, PowerPC)

#* A memory management unit (MMU) walks the page tables
and reloads the TLB

* If @ missing (data or PT) page is encountered during the
TLB reloading, MMU gives up and signals a Page-Fault
exception for the original instruction. The page fault is
handled by the OS software.

STUDENTS-HUB.com

https://students-hub.com

Address Translation Summary
1

[hardware
EE hardware or software

[] software

Restart instruction

the| page i)
¢ memory € memory denied permitted
Page Fault Update TLB| |Protection| Physical
(OS |OadS page) .. Fault Address
‘ (to cache)
SEGFAULT

STUDENTS-HUB.com

https://students-hub.com

TLB, Page Table, Cache Combinations

TLB | Page Table | Cache |Possible? Under what circumstances?
Hit Hit Hit Yes — what we want!
. : : Yes — although the page table is not
Hit Hit Miss checked if the TLB hits
Miss Hit Hit Yes — TLB miss, PA in page table
Miss Hit Miss Yes - TLB miss, PA in page table, but
data is not in cache
Miss Miss Miss Yes — page fault (page is on disk)
Hit Miss Hit/Miss Impo_SS|b_Ie — TLI_3 trans_latlon IS not
possible if page is not in memory
Miss Miss it Impos:smle - data not allowed in cache if
page is not in memory

STUDENTS-HUB.com

https://students-hub.com

Address Translation in CPU Pipeline

Inst Inst. Decode Data Data

TLB || Cache >+ TLB []Cache
TLB miss? Page Fault? TLB miss? Page Fault?
Protection violation? Protection violation?

s»Software handlers need restartable exception on page fault
“*Handling a TLB miss needs a hardware or software mechanism to refill TLB
**Need mechanisms to cope with the additional latency of a TLB

#* Slow down the clock

* Pipeline the TLB and cache access

* Virtual address caches

#* Parallel TLB/cache access

STUDENTS-HUB.com

https://students-hub.com

Physical versus Virtual Caches

*» Physical caches are addressed with physical addresses

* Virtual addresses are generated by the CPU
#* Address translation is required, which may increase the hit time

+* Virtual caches are addressed with virtual addresses

#* Address translation is not required for a hit (only for a miss)

VA

CPU
Core

data

STUDENTS-HUB.com

hit

TLB

PA (on miss)

Cache

Main
Memory

https://students-hub.com

Physical versus Virtual Caches

PA
Memory

Alternative: place the cache before the TLB
VA

PA Primary

“* one-step process in case of a hit (+)

* cache needs to be flushed on a context switch unless
process identifiers (PIDs) included in tags (-)

% Aliasing problems due to the sharing of pages (-)
“* maintaining cache coherence (-)

SSSSSSSSSSSSSSSS

https://students-hub.com

Drawbacks of a Virtual Cache

+»» Protection bits must be associated with each cache block

#* \Whether it is read-only or read-write

“* Flushing the virtual cache on a context switch
#* To avoid mixing between virtual addresses of different processes
#* Can be avoided or reduced using a process identifier tag (PID)
* Aliases
#* Different virtual addresses map to same physical address

#* Sharing code (shared libraries) and data between processes

#* Copies of same block in a virtual cache

< Updates makes duplicate blocks inconsistent

#* Can't happen in a physical cache

STUDENTS-HUB.com

https://students-hub.com

Aliasing in Virtual-Address Caches

Page Table
VA,—

PA

VAZ_’

Data Pages

Two virtual pages share
one physical page

Tag Data
VA, 1st Copy of Data at PA
VA, 2nd Copy of Data at PA

Virtual cache can have two
copies of same physical data.

Writes to one copy not visible

to reads of other!

General Solution: Disallow aliases to coexist in cache
OS Software solution for direct-mapped cache
VAs of shared pages must agree in cache index bits; this

ensures all VAs accessing same PA will conflict in direct-
mapped cache

STUDENTS-HUB.com

https://students-hub.com

Address Translation during Indexing

“* To lookup a cache, we can distinguish between two tasks
* Indexing the cache — Physical or virtual address can be used
#* Comparing tags — Physical or virtual address can be used

** Virtual caches eliminate address translation for a hit
#* However, cause many problems (protection, flushing, and aliasing)

+s» Best combination for an L1 cache

* Index the cache using virtual address

<> Address translation can start concurrently with indexing

< The page offset is same in both virtual and physical address

< Part of page offset can be used for indexing = limits cache size
#* Compare tags using physical address

<> Ensure that each cache block is given a unique physical address

STUDENTS-HUB.com

https://students-hub.com

Concurrent Access to TLB & Cache

Index

Direct-map Cache
2L blocks
2b-byte block

VA VPN L b
/
TLB J[k
PA PPN Page Offset
. /
Tag NN

D

Physical Tag Data

Index L is available without consulting the TLB

= cache and TLB accesses can begin simultaneously

Tag comparison is made after both accesses are completed

Cases: L < k-b, L > k-b (aliasing problem)

STUDENTS-HUB.com

https://students-hub.com

VA

PA

Problem with L1 Cache size > Page size

Virtual Index = L bits
|

/ \ L1 cache
VPN a k-b b Direct-map
1 \ / \ 4
TLB 4+ k VA1 PPN Data
l VA,|PPN | Data
PPN ? Page Offset
N / .
I :@_’ hit?

Tag

Virtual Index now uses the lower a bits of VPN

VA,; and VA, can map to same PPN

Aliasing Problem: Index bits = L > k-b

Can the OS ensure that lower a bits of VPN are same in PPN?

STUDENTS-HUB.com

https://students-hub.com

Anti-Aliasing with Higher Associativity

Set Associative Organization

>a Virtual
oo e Index
2L blocks 2L blocks
Tag\ Tag\

VA VPN L =k-b
TLB +4 k
PA PPN Page Offset
\
|
Physical Tag

Using higher associativity: cache size > page size l Data
22 physical tags are compared in parallel
Cache size = 22 x 2L x 2P > page size (2k bytes)

STUDENTS-HUB.com

https://students-hub.com

Anti-Aliasing via Second Level Cache

Memory
Memory
CPU
Memory
RF Memory

Usually a common L2 cache backs up both
Instruction and Data L1 caches

L2 is typically “inclusive” of both Instruction and

Data caches

STUDENTS-HUB.com

https://students-hub.com

Anti-Aliasing Using L2: MIPS R10000

L-bit index| L1 cache

yd

\

VA VPN a k-b b
1 /
TLB Tk
) |
PA PPN Page Offset
AN /

Direct-map

VA, |PPN

Data

VA,|[PPN

Data

s Suppose VAl and VA2 (VA1 # VA2) both map to
same PPN and VAl is already In L1, L2

% After VA2 is resolved to PA, a collision will be
detected in L2.

* VA1 will be purged from L1 and L2, and VA2 will
be loaded = no aliasing !

STUDENTS-HUB.com

Tag <L=>—> hit?

| PPN

Data

Direct-Mapped L2

https://students-hub.com

TLB Organization

“» TLB keeps track of recently accessed pages

#* Virtual and Physical page numbers
#* Valid, Dirty, and Reference bits
#* Access hits: whether page is read-only or read-write

#* PID: process ID — which process is currently using TLB entry

* Some Typical Values for a TLB

STUDENTS-HUB.com

#* TLB size = 16 — 512 entries

#* Small TLBs are fully associative, while big ones are set-associative
* Hit time = 0.5 — 1 clock cycle

#* TLB Miss Penalty = 10 — 100s clock cycles

#* Miss Rate = 0.01% — 1%

https://students-hub.com

Examples on TLB Parameters

Intel P4

AMD Opteron

1 TLB for instructions

1 TLB for data

Both TLBs are 4-way set associative
Both use ~LRU replacement

Both have 128 entries

TLB misses are handled in hardware

2 TLBs for instructions (L1 and L2)

2 TLBs for data (L1 and L2)

Both L1 TLBs are fully associative

Both L1 TLBs have 40 entries

Both L1 TLBs use ~LRU replacement
Both L2 TLBs are 4-way set associative
Both L2 TLBs have 512 entries

Both L2 LTBs use round-robin LRU

TBL misses are handled in hardware

STUDENTS-HUB.com

https://students-hub.com

Putting It All Together: AMD Opteron

[Virtual address <48> L1 TLB: 40 entries

!

, Fully Associative
[Virtual page number <36 Page offset <12> .
[L2 TLB: 512 entries
- L1 cache index <9> | Block offset <6> 4-w ay Set Associative
1 TLB tag <36> TLB data <28> ‘
- To CPU

/
L2 TLB tag compare address <29> | L2 TLB index <7>

= L1 cache tag <25> L1 data <512>

0 = O, ‘,l. i)
0 To CPU
=% L2 TLB tag <29> L2 TLB data <28> _t=?'_

T
1

A A
Physical address <40

T : A \ A
. L2 tag compare address <24> l L2 cache index <10> | Block of;set <G> I
VA = 48 bits [To CPU
PA = 40 bits =
L1: 64KB, 64-byte blocks
2-way set associative, LRU = L2 cache tag <24> L2 data <512>

Virtual index, Physical tag
L2: 1MB, 64-byte blocks -

16-way set associative, PLRU e To L1 cache or CPU

STUDENTS-HUB.com

https://students-hub.com

AMD Opteron Memory Hierarchy

“* AMD Opteron has an exclusion policy between L1 and L2
#* Block can exist in L1 or L2 but not in both
* Better use of cache resources
#* Both the D-cache and L2 use write-back with write-miss allocation

¢ L1 cache is pipelined, latency of hit is 2 clock cycles

¢+ Miss in L1 goes to L2 and to memory controller
* Lower the miss penalty in case the L2 cache misses

¢ L1 cache is virtually indexed and physically tagged

** On a miss, cache controller must check for aliases in L1

»* 23 = 8 L1 cache tags per way are examined for aliases in parallel
during an L2 cache lookup.

* If it finds an alias, the offending block is invalidated.

*» Victim Buffer: used when replacing modified blocks

STUDENTS-HUB.com

https://students-hub.com

&)
, Qo . ;
AQ@V AV@V m L
o z LR R o
12485040 Lowew "I @ Y
dpo weshs v 2
Wow {oepu [e | f
F<pg> A<61> <216 <pg> <iz<i> <> <ve>
@ ® eeq Bel O A ®
<|ZL>
1Bjnq
{ | | wyon
s
215> 60| <Be> SSaIppy ” _ EF 5w BueiRd
@ ® o
(83001 21 Jo sdnoib) @%ﬁus Jo sdnoub 2)
K:E ﬁN e J g “N 6. LER] J
w e O..o “ll, - * e .-.o “nl @ -
E] , — E|
H H
] 9 ~=1l0) ® 9
v Y
<215 <G> <|><|> 9 <2I6> <Gg> <|»<|> 9
eeq bey Q A a weQ a A |
.oo_.oﬁo_m_ f xoucqr_ 9 .S:oxoo_m_ xoocﬂ
<9> 446> <Q> §4<G>
(631d 821 J0 (s31d 82110 (2
sdnoib v) a sdnoib v) R f
[1 v | 1
1 ‘ : 1
A~ a s |
<> Amv
ssaippe @asfyd D8l A 10id al ssaippe(edsiyd Doy A 10id ¢l
“Rg> <60> <i> <> <> <G> <I> <>
) S B <gz>’ Raiion
g ® f
1 <—®)] 1
1 1
a - _
ssaippe eaishd | 0eL A loid ssappe(edisfyd | beL A 1oid
Q7> 9> <> <> <@z A8v3 <|> <p>
L
| ©
— | Se—
1 1
U| Bje
Db N | [| sw.w.vs Samwm___ { i | 0d
<ZI>1BSI0 <ge> Jasquinu fananb 2,01) <gL>18s)0 <9E> lsquiny
abeg abed jenui ereg Ndd afieg abed fenp

STUDENTS-HUB.com

https://students-hub.com

