
Structural Steel Buildings

STUDENTS-HUB.com

Structural Steel

Structural steel is construction material fabricated with a specific shape and chemical composition to suit a project's applicable specifications.

Structural Steel

Due to the widespread use of steel in many applications, there are a wide variety of systems for identifying or designating steel, based on grade, type and class. Virtually every country with an industrial capacity has specifications for steel.

			Fy ¹	= 1	Minimum	Typical Chemical Composition ³ (%)									
Steel Type	ASTM D	ASTM Designation		Fu ¹ (ksi)	Elonga- tion ² (%)	С	Cu ⁵	Mn	Ρ	S	Ni	Cr	Si	Мо	V
	Α	\36	36	58-80	23	0.26	0.2	0.8-1.26	0.04	0.05					
	A53	Gr. B	35	60		0.25	0.4	0.95	0.05	0.045	0.4	0.4		0.15	0.08
Carbon	A500	Gr. B	42 46	58 58	23	0.3	0.18		0.045	0045					
	A500	Gr. C	46 50	62 62	21	0.27	0.18	1.4	0.045	0.045					
	A	A501		58	23	0.3	0.18		0.045	0.045					
	A529	Gr.50 Gr.55	50 55	65-100 70-100	19	0.27	0.2	1.35	0.04	0.05					
		Gr. 42	42	60	24	0.21	-	1.35	0.04	0.05			0.15-0.4		
	A572	Gr. 50	50	65	21	0.23	-	1.35	0.04	0.05			0.15-0.4		
		Gr. 55	55	70		0.25	•	1.35	0.04	0.05			0.15-0.5		
		Gr. 60	60	75	18	0.26	-	1.35	0.04	0.05			0.4		
High-strength		Gr. 65	65	80	17	0.23		1.65	0.04	0.05			0.4		
Low-alloy	A618	Gr. I&II	50	70	22	0.2	0.2	1.35	0.04	0.05					
	A010	Gr. III	46	67	22	0.23	-	1.35	0.04	0.05			0.3		
	A913	50	50	65	21	0.12	0.45	1.6	0.04	0.03	0.25	0.25	0.4	0.07	0.06
	A915	65	65	80	17	0.16	0.35	1.6	0.03	0.03	0.25	0.25	0.4	0.07	0.06
	A992 ⁴		50-65	65	18	0.23	0.6	0.5-1.5	0.04	0.05			0.4	0.15	0.11
Corrosion	A242	50	50	70	21	0.15	0.2	1	0.15	0.05					
resistant High-strength low-alloy	A588		50	70	21	0.19	0.25- 0.4	0.8-1.25	0.04	0.05	0.4	0.4- 0.65		0.02- 0.1	

The principal types of structural steel in the US identified and specified by ASTM

¹Minimum values unless range or other control noted

²Two inch gauge length

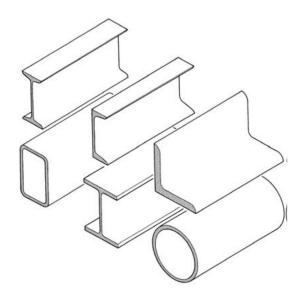
³Maximum values unless range or other control noted

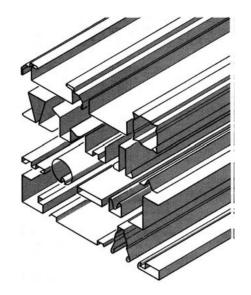
⁴A maximium yield to tensile strength ratio of 0.85 and carbon equivalent formula are included as mandatory in ASTM A992

⁵Several steel specifications can include a minimum copper content to provide weather resistance

⁶Range for plate given in table, bar range 0.6–0.9

Structural Steel


Structural steel grades – European standards

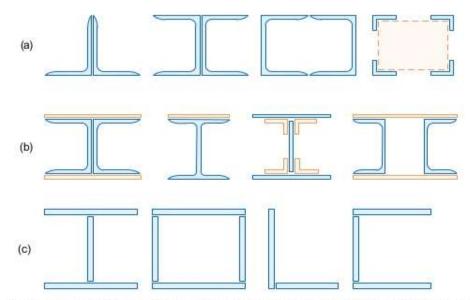

Desig	nation	Method of deoxi- dation b	C in % max. for nominal product thickness in mm		Si % max.	Mn % max.	P % max. ₫	S % max. ª.e	N % max. r	Cu % max. 9	Other % max.	Steel grades and	N	Minimum yield strength R _{cH} (MPa)			Tensile strength R _m (MPa)		Minimum percentage elongation after fracture $L_o = 5.65 \sqrt{S_0}$		after	
According EN 10027-1 and CR 10260	According EN 10027-2		≤ 16	> 16 ≤ 40	> 40 ^c								qualities	No ≤16	(m	thickne (m) >40 ≤ 63	>63 ≤ 80		thickness mm) ≥ 3 ≤ 100	Nom ≥3 ≤ 40	inal this (mm) >40 ≤ 63	
S235JR S235J0 S235J2	1.0038 1.0114 1.0117	FN FN FF	0.17 0.17 0.17	0,17 0,17 0,17	0.20 0.17 0.17	•	1,40 1,40 1,40	0,035 0,030 0,025	0,035 0,030 0,025	0,012 0,012 -	0,55 0,55 0,55		\$235JR \$235J0 \$235J2	235 235 235	225 225 225	215 215 215	215 215 215	360 to 510 360 to 510 360 to 510	360 to 510 360 to 510 360 to 510	26 24	25 23	24 22
S275JR S275J0 S275J2	1.0044 1.0143 1.0145	FN FN FF	0.21 0,18 0,18	0,21 0,18 0,18	0.22 0,18 0,18	•	1,50 1,50 1,50	0,035 0,030 0,025	0,035 0,030 0,025	0,012 0,012 -	0,55 0,55 0,55	-	\$275JR \$275J0 \$275J2	275 275 275	265 265 265	255 255 255	245 245 245	430 to 580 430 to 580 430 to 580	410 to 560 410 to 560 410 to 560	23 21	22 20	21 19
S355JR S355J0 S355J2 S355K2 S450J0 ¹	1.0045 1.0553 1.0577 1.0596 1.0590	FN FN FF FF	0,24 0,20 ⁱ 0,20 ⁱ 0,20 ^j 0,20	0,24 0,20* 0,20* 0,20*	0,24 0,22 0,22 0,22 0,22	0,55 0,55 0,55 0,55 0,55	1,60 1,60 1,60 1,60 1,70	0,035 0,030 0,025 0,025 0,030	0,035 0,030 0,025 0,025 0,030	0,012 0,012 - - 0,025	0,55 0,55 0,55 0,55 0,55		\$355JR \$355J0 \$355J2 \$355K2 \$450J0	355 355 355 335 335 450	345 345 345 345 345 430	335 335 335 335 335 410	325 325 325 325 325 325	510 to 680 510 to 680 510 to 680 510 to 680	470 to 630 470 to 630 470 to 630 470 to 630 550 to 720	22 20 17	21 19 17	20 18 17

Typical grades are described as 'S275J2' or 'S355K2W'. In these examples, 'S' denotes structural; 275 or 355 denotes the yield strength in newton's per square millimeter; J2 or K2 denotes the materials toughness; and the 'W' denotes weathering steel.

Structural Steel sections

 Depending on each project's applicable specifications, the steel sections might have various shapes, sizes and gauges made by hot or cold rolling, others are made by casting or welding together flat or bent plates.

Fabrication by casting

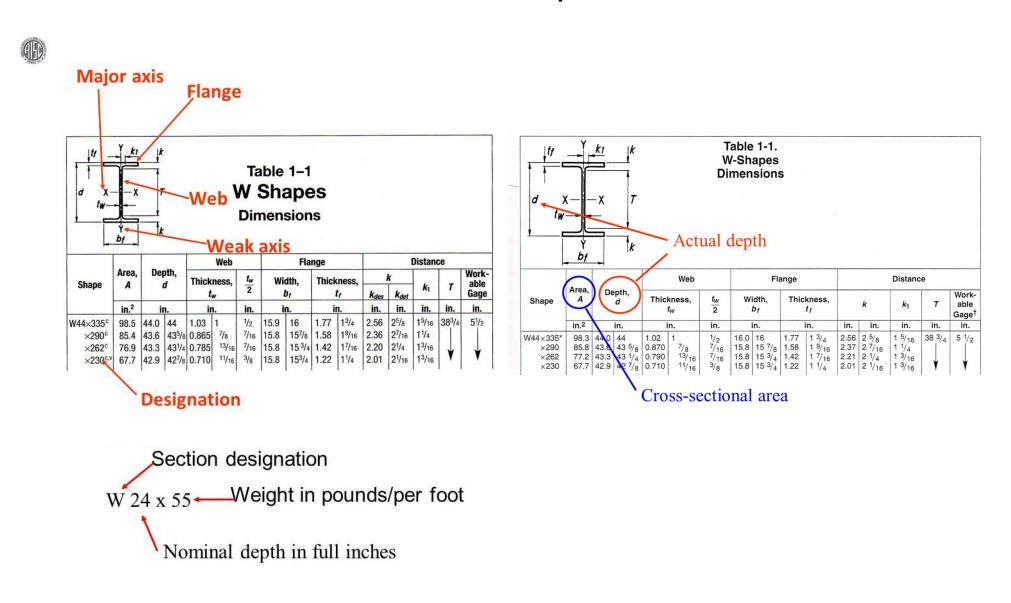

Hot-rolled steel elements Cold-formed sections

Hot-Rolled Shapes

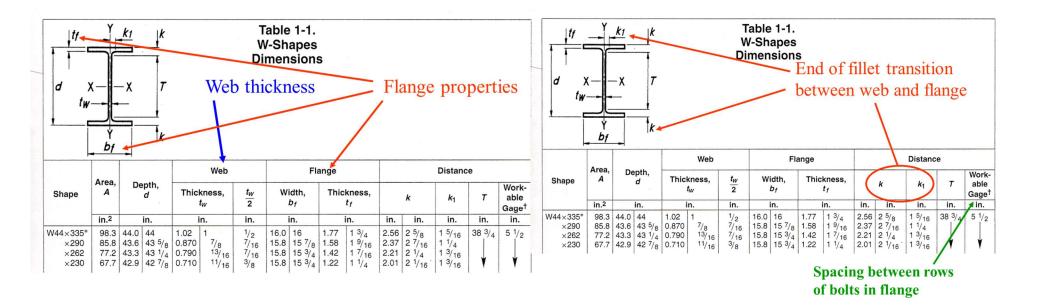
- Hot-rolling is a primary shaping process in which massive red-hot billets of steel are rolled between several sets of profiled rollers.
- I- and H-shapes of cross-section are common for the large elements that form the beams and columns of structural frameworks. Theses shapes have a high second moment of area in relation to the total area.
- Channel and angle shapes are suitable for smaller elements such as secondary cladding supports and sub-elements in triangulated frameworks
- Square, circular and rectangular hollow sections (HSS) are efficient forms for members subjected to multi-axes loading as the crosssectional axes are symmetrical and thus exhibit uniform strength features. They also have good torsional resistance.
- Details of the dimensions and geometric properties of the sections are available from manufacturers.

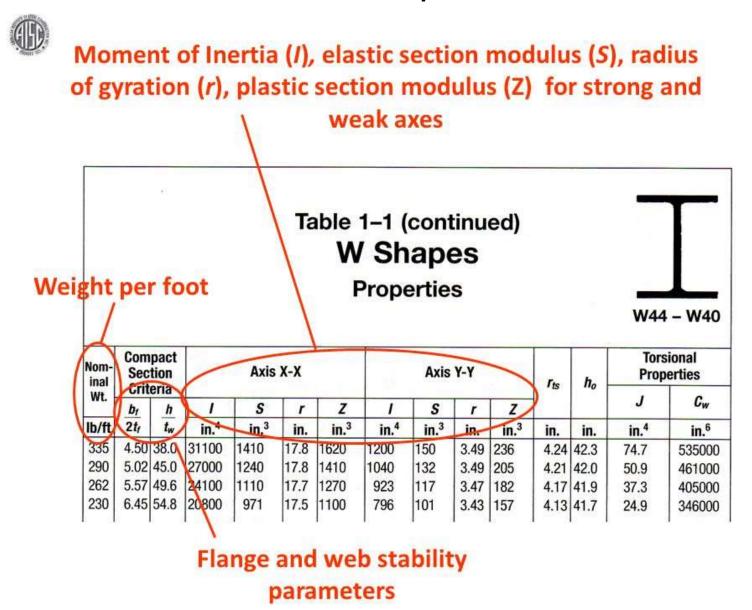
Built Up Sections

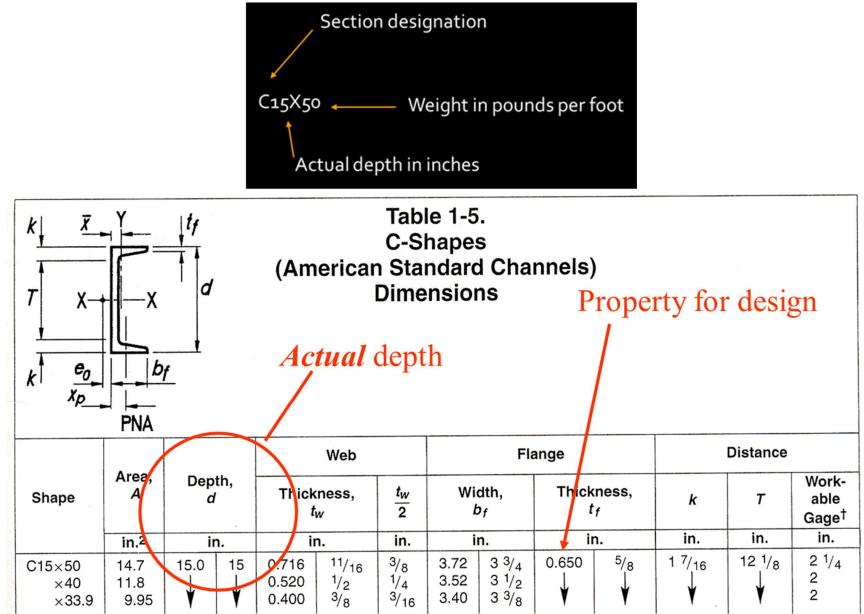
Alternatively to standard sections it is possible to form welded sections with various cross section configurations using standard sections and plates or from welding different plates together.

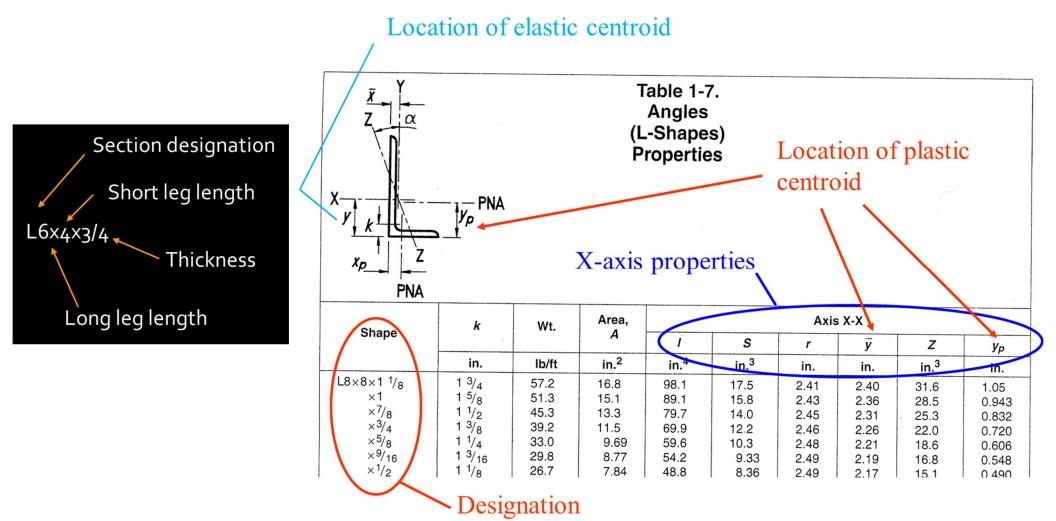


Some typical built-up shapes and sections (a) made from standard shapes, (b) made from standard shapes and plates, (c)made from plates

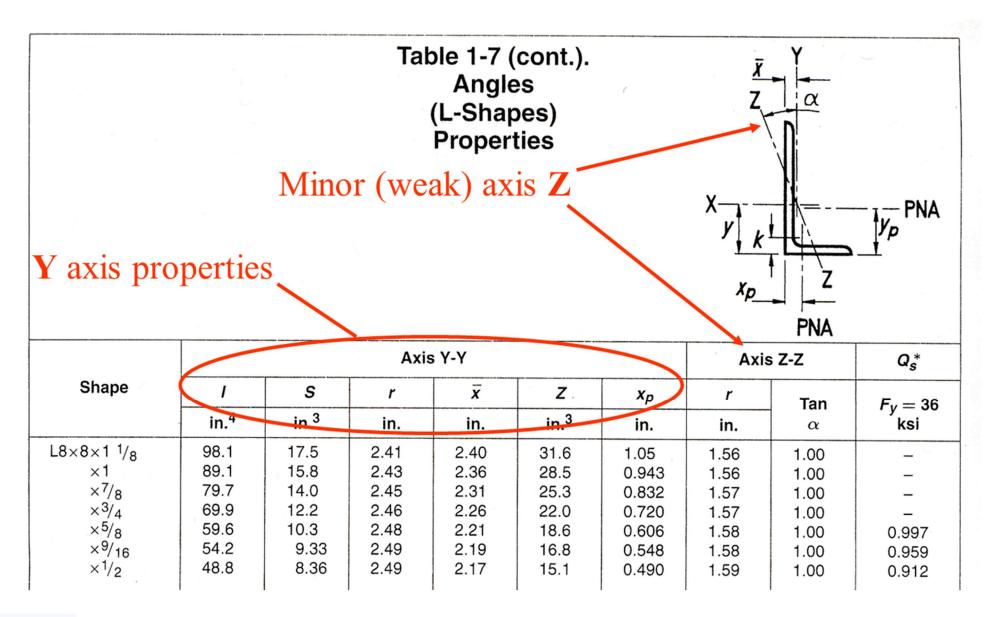



Dimensions and Section Properties - W Sections

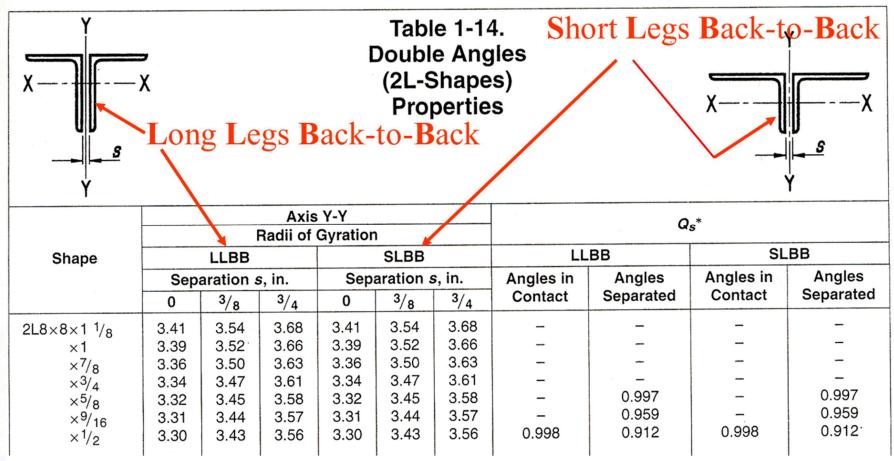

Dimensions and Section Properties - W Sections


Dimensions and Section Properties - W Sections

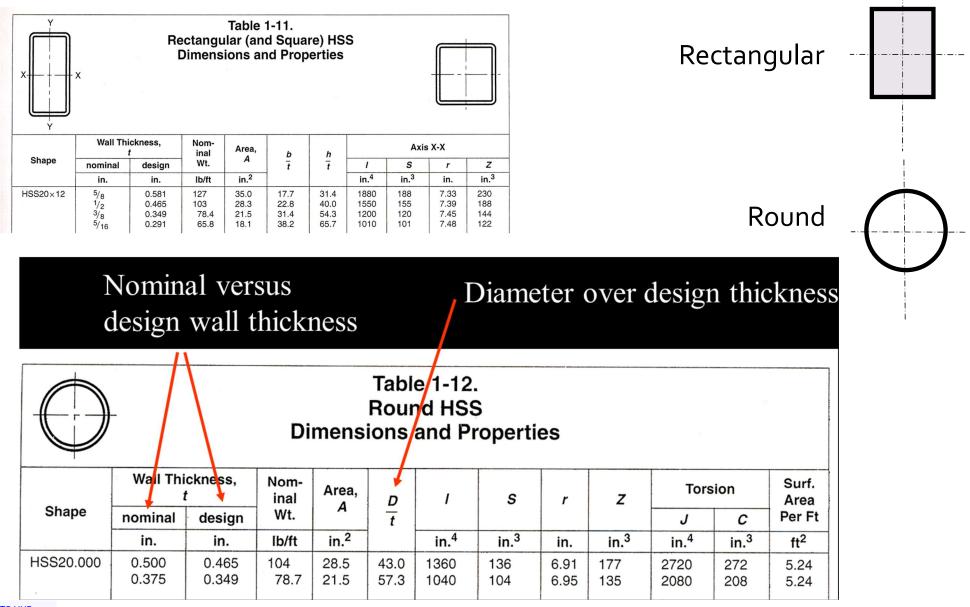
Dimensions and Section Properties - Channels Sections



Dimensions and Section Properties – Angles Sections

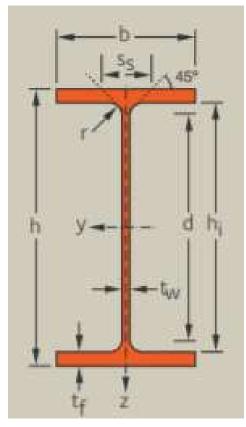

STUDENTS-HUB.com

Dimensions and Section Properties – Angles Sections



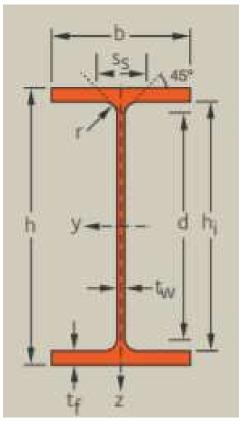
Dimensions and Section Properties - Double Angles

- X-axis properties of double angles may be obtained from x-axis properties of a single angle
- Y-axis properties depend on separation between backs of angles and whether LLBB (Long Legs Back to Back) or SLBB (Short Legs Back to Back)


Dimensions and Section Properties - HSS (Hollow Structural Shape)

STUDENTS-HUB.com

Hot-Rolled Shapes - European standards


Désignation Designation Bezeichnung					Surface Oberfläche							
		G kg/m	h mm	b mm	t _w mm	t _r mm	r mm	h, mm	d mm	A cm²	Ą m²/m	A _c m²/t
IPE O 360	40	66,0	364,0	172,0	9,2	14,7	18	334,6	298,6	84,1	1,367	20,69
IPE 360		57,1	360,0	170,0	8,0	12,7	18	334,6	298,6	72,7	1,353	23,70
IPE A 360		50,2	357,6	170,0	6,6	11,5	18	334,6	298,6	64,0	1,351	26,91
IPE AA 360	6	47,0	356,4	170,0	6,0	10,9	18	334,6	298,6	59,9	1,350	28,70
IPE O 330	40	57,0	334,0	162,0	8,5	13,5	18	307,0	271,0	72,6	1,268	22,24
IPE 330		49,1	330,0	160,0	7,5	11,5	18	307,0	271,0	62,6	1,254	25,52
IPE A 330		43,0	327,0	160,0	6,5	10,0	18	307,0	271,0	54,7	1,250	29,09
IPE O 300	40	49,3	304,0	152,0	8,0	12,7	15	278,6	248,6	62,8	1,174	23,81
IPE 300		42,2	300,0	150,0	7,1	10,7	15	278,6	248,6	53,8	1,160	27,46
IPE A 300		36,5	297,0	150,0	6,1	9,2	15	278,6	248,6	46,5	1,156	31,65
IPE O 270	40	42,3	274,0	136,0	7,5	12,2	15	249,6	219,6	53,8	1,051	24,88
IPE 270		36,1	270,0	135,0	6,6	10,2	15	249,6	219,6	45,9	1,041	28,86
IPE A 270		30,7	267.0	135,0	5,5	8,7	15	249,6	219,6	39,2	1,037	33,75

Parallel Flange I Section (IPE)

Hot-Rolled Shapes - European standards

Déciona	tion			Va	leurs sta	tiques / Se	ection pro	operties /	Statische	Kennwer	te		
Désignation Designation Bezeichnung			str	xe fort y- ong axis y 'ke Achse	-у		5	axe fail weak a schwache	xis y-y				
	G	Ļ	W _{ely}	W _{ply}	i _y	A _{vz}	l,	Welz	W _{plz}	i,	S _s	l,	l,
	kg/m	cm⁴	cm ³	cm ³	cm	cm ²	cm⁴	cm ³	cm ³	cm	cm	cm4	cm6
													x10 ³
IPE O 360	66,0	19050	1047	1186	15,1	40,20	1251	146,0	227,0	3,9	6,0	55,74	380,0
IPE 360	57,1	16270	904,0	1019	15,0	35,10	1043	123,0	191,0	3,8	5,5	37,44	314,0
IPE A 360	50,2	14520	812,0	907,0	15,1	29,80	944,0	111,0	172,0	3,8	5,1	27,37	282,0
IPE AA 360	47,0	13680	767,6	853,6	15,1	27,44	894,8	105,30	162,5	3,9	4,9	23,37	266,4
IPE O 330	57,0	13910	833,0	943,0	13,8	34,90	960,0	119,0	185,0	3,6	5,7	42,20	246,0
IPE 330	49,1	11770	713,0	804,0	13,7	30,80	788,0	98,50	154,0	3,6	5,2	28,06	199,0
IPE A 330	43,0	10230	626,0	702,0	13,7	27,00	685,0	85,60	133,0	3,5	4,8	19,64	172,0
IPE O 300	49,3	9994	658,0	744,0	12,6	29,10	746,0	98,10	153,0	3,5	5,1	30,98	158,0
IPE 300	42,2	8356	557,0	628,0	12,5	25,70	604,0	80,50	125,0	3,4	4,6	19,92	126,0
IPE A 300	36,5	7173	483,0	542,0	12,4	22,30	519,0	69,20	107,0	3,3	4,2	13,35	107,0
IPE O 270	42,3	6947	507,0	575,0	11,4	25,20	514,0	75,50	118,0	3,1	5,0	24,99	87,60
IPE 270	36,1	5790	429,0	484,0	11,2	22,10	420,0	62,20	97,00	3,0	4,5	15,90	70,60
IPE A 270	30,7	4917	368,0	413,0	11,2	18,80	358,0	53,00	82,30	3,0	4,1	10,41	59,50
IPE O 240	34,3	4369	361,0	410,0	10,0	21.40	329,0	52.00	84,40	27	4.5	17.00	42.70
IPE 0 240	34,3	3892	301,0	367,0	10,0	21,40	284,0	53,90 47,30	73,90	2,7	4,6 4,3	17,09 12,95	43,70
IPE 240	26,2	3290	278,0	312,0	9,9	19,10 16,30	284,0	47,30	62,40	2,7	4,3	8,503	31,30
IPE A 240	26,2	3154	278,0	298,0	9,9	15,30	231,0	38,60	60,00	2,7	3,9	7,608	30,10

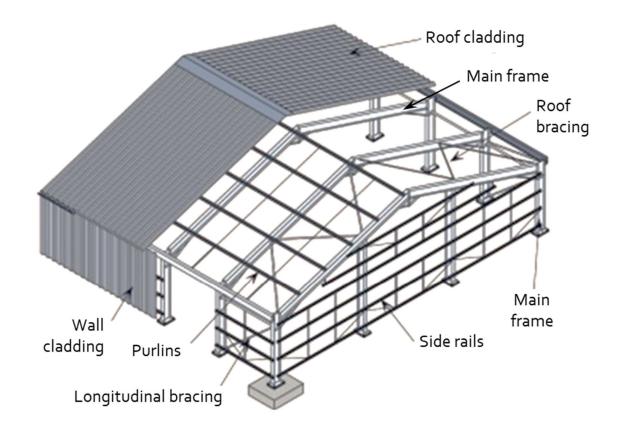
Parallel Flange I Section (IPE)

Connecting Structural Steel

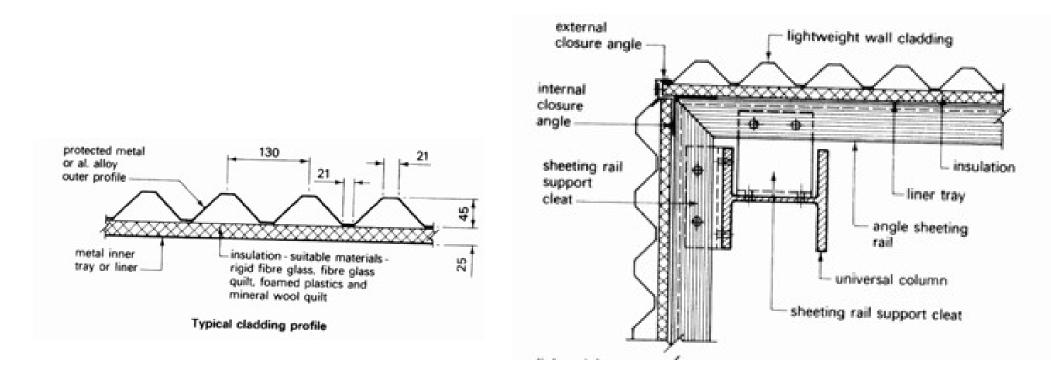
- Proper connection of steel members is crucial for the structure's strength and stability.
- The primary connection methods for structural steel are bolting and welding.
- Connections made in a fabrication shop are called shop connections, while connections made in the field by the steel erector are called field connections.
- Bolting and welding may be used for shop and field connections. However, field connections are typically bolted, and shop connections are typically welded.

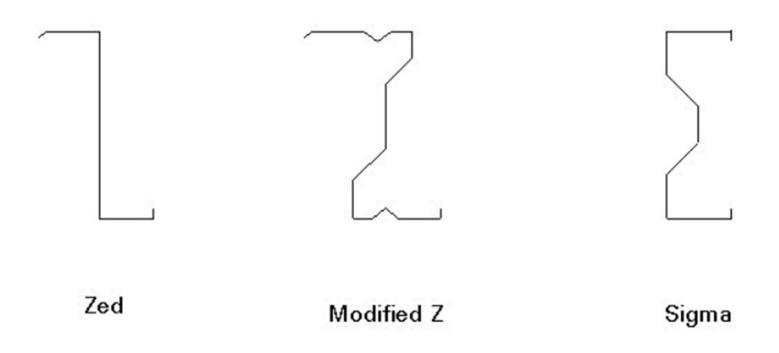
Bolted connection

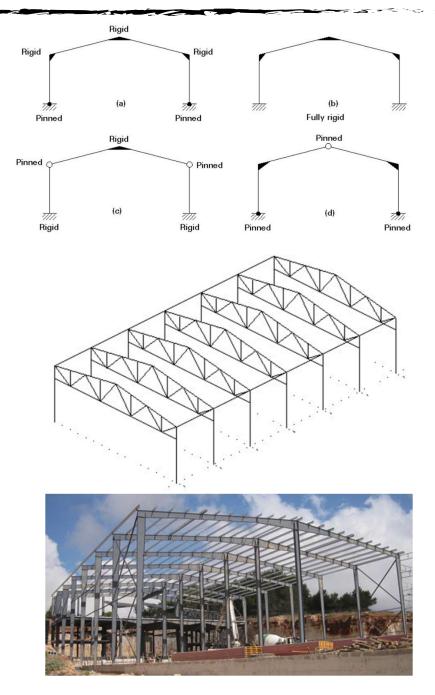
Welded connection


Steel Buildings

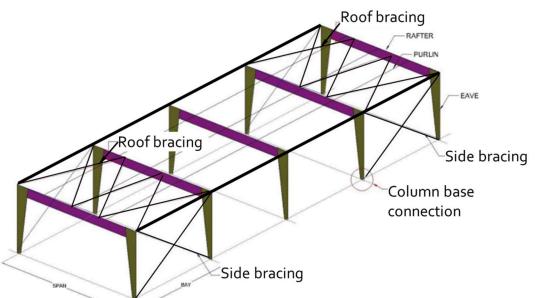
- A steel building is a metal structure that is made of structural steel components connected to carry loads and provide rigidity.
- Steel buildings are categorized as
 - Single-story/ industrial buildings
 - Multi-story buildings moment resisting (Rigid) or braced frames.




- The skeleton of a typical single-story building consists of three major elements:
 - Cladding for both roof and walls.
 - Secondary elements to support the cladding (purlins; rails).
 - Main frame of the structure, including all necessary bracing.


 Cladding. Cladding is the outer skin of the building to provide, Weather protection; Daylight/Ventilation, and Aesthetic value. They are made from Fiber cement; Coated steel sheets and Aluminum alloy sheets.

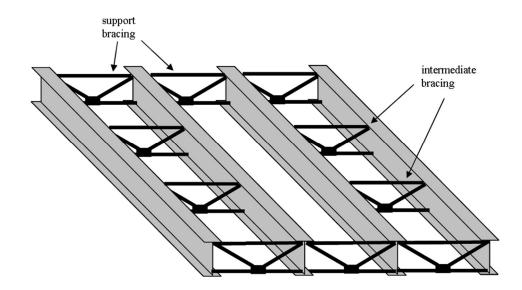
 Secondary Elements. In the normal single-story building the cladding is supported on secondary members, which transmit the loads back to main structural steel frames. There are three main types of these members namely, Zed, Modified Zed and Sigma

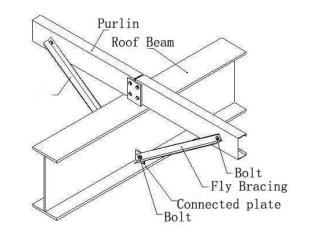


- The Main Frame of the Structure. The building frame can be portal frame eighter Pre-Engineered or Conventional Steel frame. Additionally, trusses are widely used in this type of construction.
- A pre-engineered steel building is a modern technology where the complete design is done at the factory using customized built-up sections. An efficiently designed pre-engineered frame can be lighter than the conventional frame by up to 30%.

Bracing

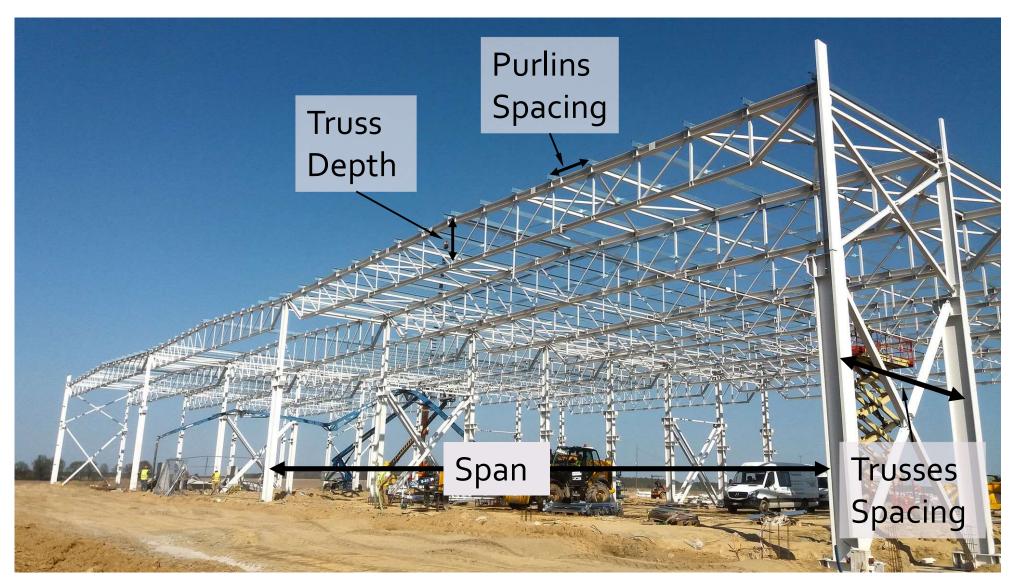
- The longitudinal structural rigidity of portal steel frame structure is relatively weak in the length direction, so it is necessary to set up bracings along the longitudinal direction to ensure its longitudinal rigidity and longitudinal stability.
- The bracing system of light portal steel frame structure includes roof horizontal bracing and inter-column bracing.





Bracing

 Lateral buckling can be induced in a steel beam by compressive stresses acting on a slender portion insufficiently rigid in the lateral direction. Accordingly lateral support as shown shall be provided.

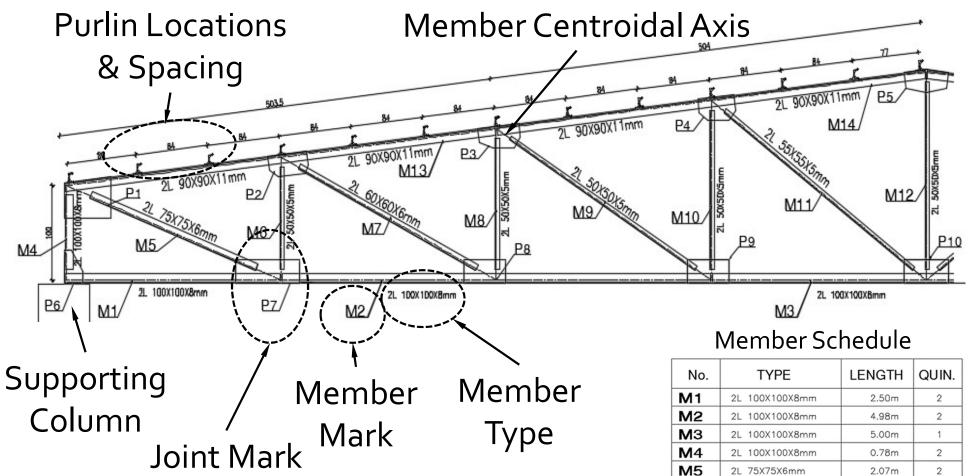


Steel Trusses

- A truss is an assemblage of straight members connected at their ends by pin connections to form a rigid configuration either in space (space truss) or plane (2D truss).
- The main characteristic of trusses is that they are composed of axially loaded members. The internal forces are either purely tensile or purely compressive. Bending is not present, nor can it be developed, as long as external loads are applied at nodal points.

Important Dimensional Variables

Designers aim to minimize the lengths of Compression members.


Steel Trusses

Trusses are very efficient structures for single-story buildings. However, for long spans, the required depth of the truss significantly increases.

Table 1 Approximate depths and span ranges for trusses of hot-rolled sections in single-storey steel frames

	Depth of main frame (mm)									
Span (m)	Solid web	Plane truss	Space truss							
10	450	1000	1000							
15	600	1200	1200							
20	700	1400	1400							
30	900	1800	1600							
40	1200	2500	2200							
50	_	3000	2800							
60	_	4000	3800							
70	_	5000	4800							
80	_	6000	5500							
100	-	8000	6000							

Trusses Details - Elevation

M6

M7

M8

M9

M10

M11

M12

M13

M14

2L 50X50X5mm

2L 60X60X6mm

2L 50X50X5mm

2L 50X50X5mm

2L 50X50X5mm

2L 55X55X5mm

2L 50X50X5mm

2L 90X90X11mm

2L 90X90X11mm

• Note that the centroidal axis of all members meeting at the same joint should intersect in the joint center.

2	u
1	
2	EAD EACH TRUCC / NA AE TRUICCEC _ E
2	ā
2	F L
2	
2	
2	
2 2 2 2 2 2 2 2	
2	
2 2 2 2	
2	
2	ù

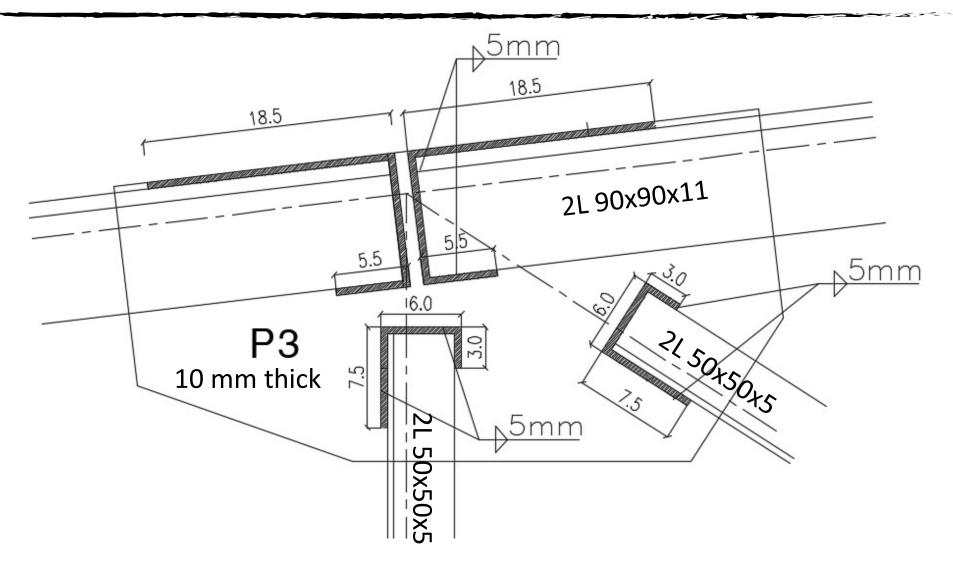
1.08m

2.33m

1.38m

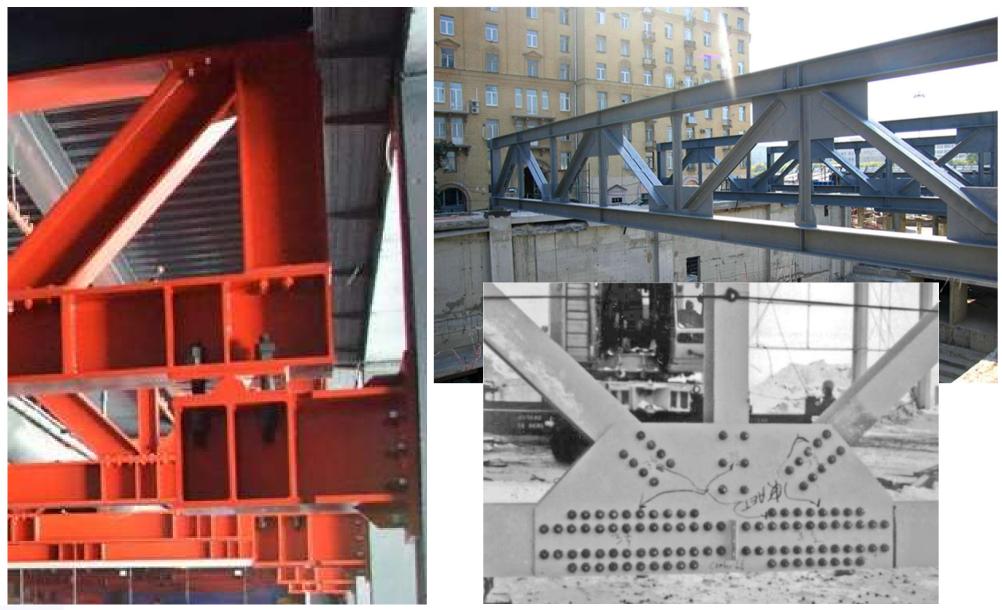
2.56m

1.68m


2.75m

1.98m

5.04m

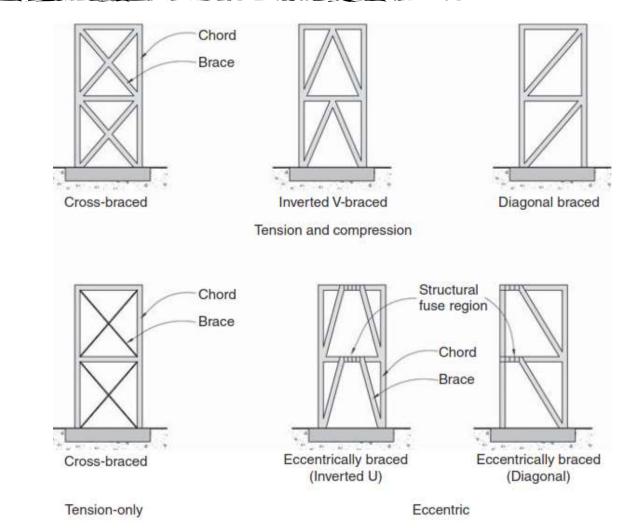

5.04m

Truss Joint Detail

• Note that the centroidal axis of each member coincides with the line connecting the centers of the adjacent joints.

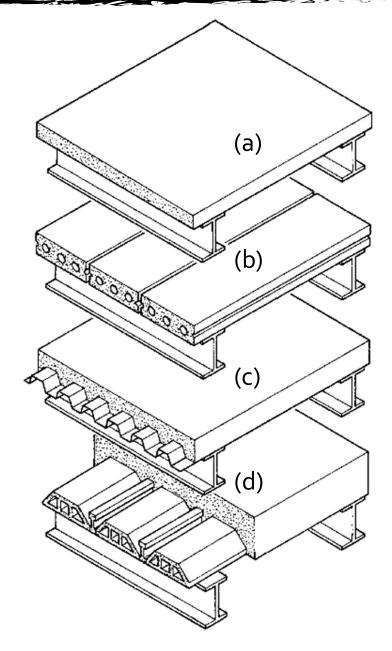
Truss - Joints & Supports

STUDENTS-HUB.com

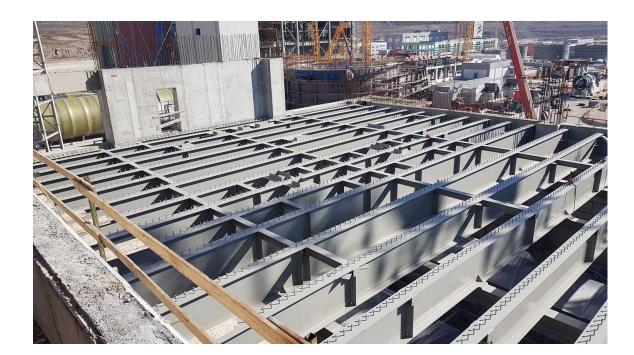

Braced Frames

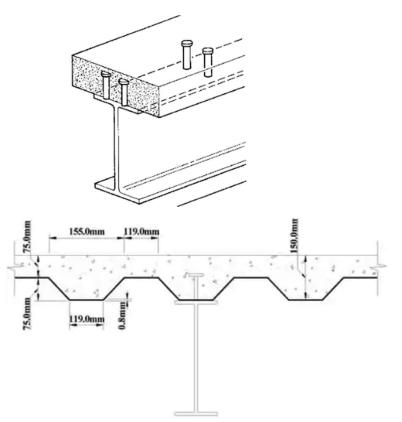
- Braced frames are essentially pinjointed structures (a pin connections are used to make beam-column joints & connection).
- Braced frames are effective structural solution for resisting lateral loads due to wind and earthquakes.
- Most of their horizontal load-carrying capability is achieved by their members working in either pure compression or tension. They can be visualized as vertical trusses.
- Braced frames are popular in industrial countries where steel is affordable.

Types of Braced Frames


- There are two general types of braced frames: conventional concentric and eccentric.
- In the concentric frame, the center lines of the bracing members meet the horizontal beam at a single point.

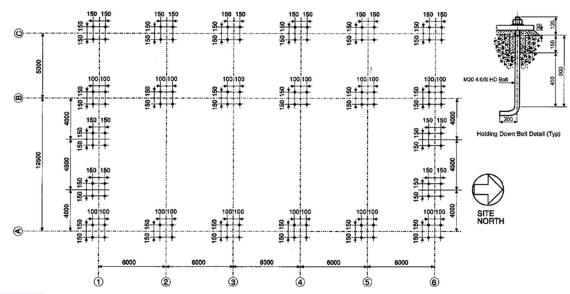
 In the eccentric-braced frame, the braces are deliberately designed to meet the beam some distance apart from one another.


Flooring systems of Steel structures


- Typical floor slab systems for steel frameworks include:
- a) In situ reinforced concrete flat slab.
- b) Precast concrete floor units.
- c) In situ concrete on profiled steel permanent formwork.
- d) Composite precast and in situ concrete.
- All of these systems are normally oneway-spanning and require to be supported on a parallel arrangement of steel beams. However, system (a) can be a two-way-spanning structure.

Flooring systems of Steel structures

 To increase efficiency and therefore reduce the size of the beams, shear studs are usually welded to the floor beams which allow composite action to be developed between the beams and the floor slabs.

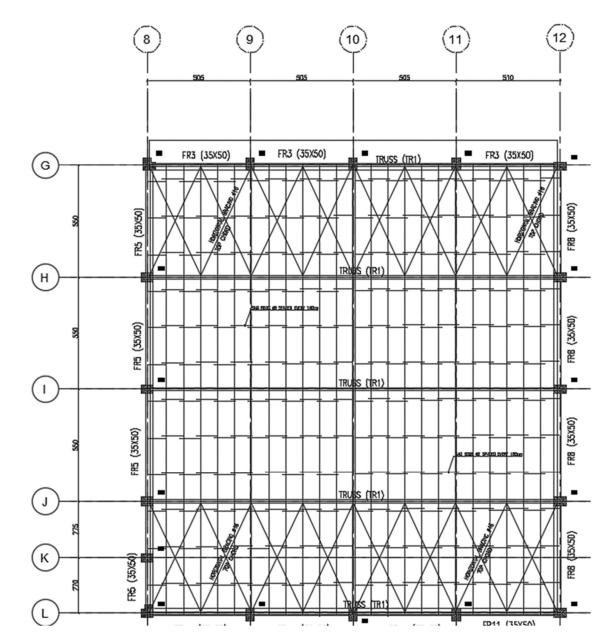

Detailing of Steel Buildings

Steel structural drawings have different levels of details including:

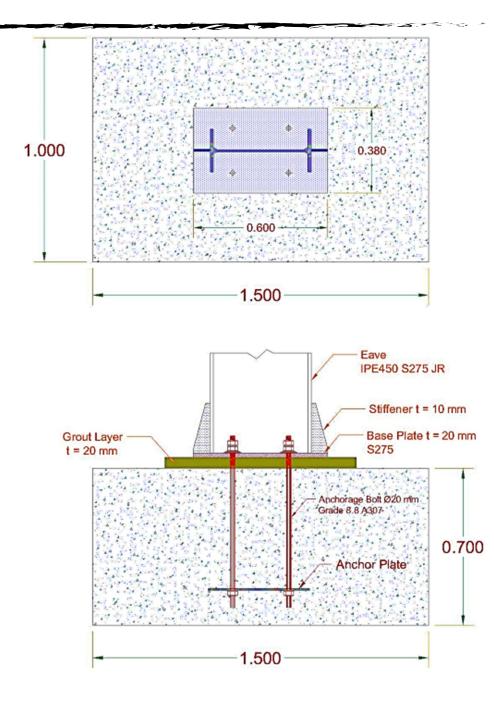
- A. General drawings such as general notes and foundation plans.
- B. layout of the whole structures (floor plans) for which the steel works are to form. Usually consists of plans and elevations when needed.
- C. Layout of the steelworks (e.g. a truss, columns, girders, ...) usually represented by plans, elevations and sections.
- D. Details of connections of the steelworks represented by plans, elevations and sections, even sometimes by isometric views.

Foundation plan

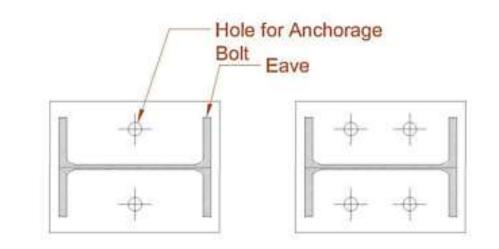
- Steel buildings usually have concrete foundations designed and details as explained for the concrete buildings. After constructing the foundations, steel structure is fixed using the anchor bolts installed in the footings
- The foundation plan and grid line plan of a steel structure is similar to that of concrete buildings. However the plans usually shows the anchorage bolts locations on the concrete footing.



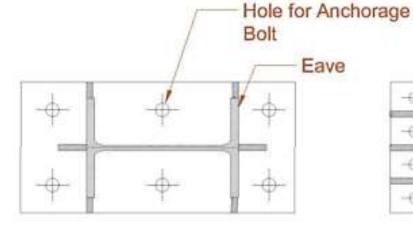
General layout (Floor) plan

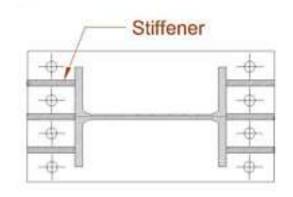

The plans show

- The general dimensions of the steelworks
- 2. The nominal size of the members
- The center lines (or line of centroid) of members forming the framework.
- 4. The arrangements of connection (referred to enlarged details where necessary)

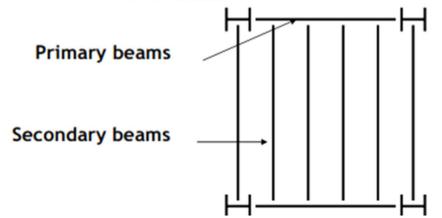

Column Base Plate

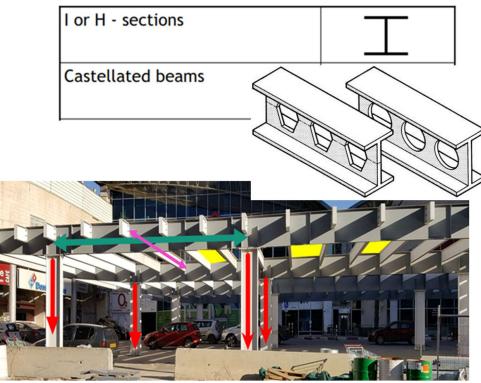
- Typical column bases consist of a single plate fillet welded to the end of the column and attached to the foundation with holding down bolts. A layer of grout is used for leveling of the plate and setting it at the specified elevation.
- The plate is designed to transfer the column loads (axial, shear and moment) to the foundation through the anchor bolts.


Column Base Plate

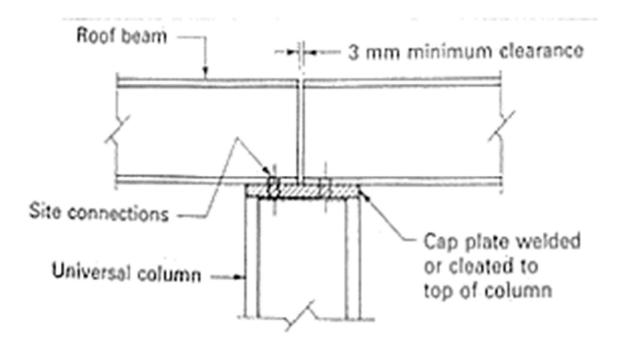

The distribution of the anchor bolts determine the transferred loads or type of the connection (pin or fixed).

Pinned Connection

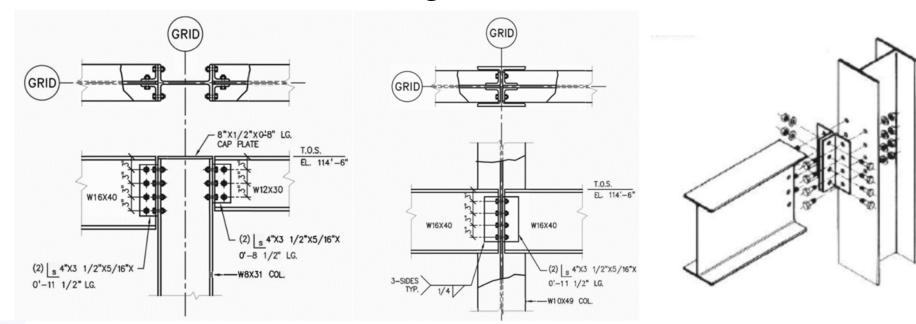


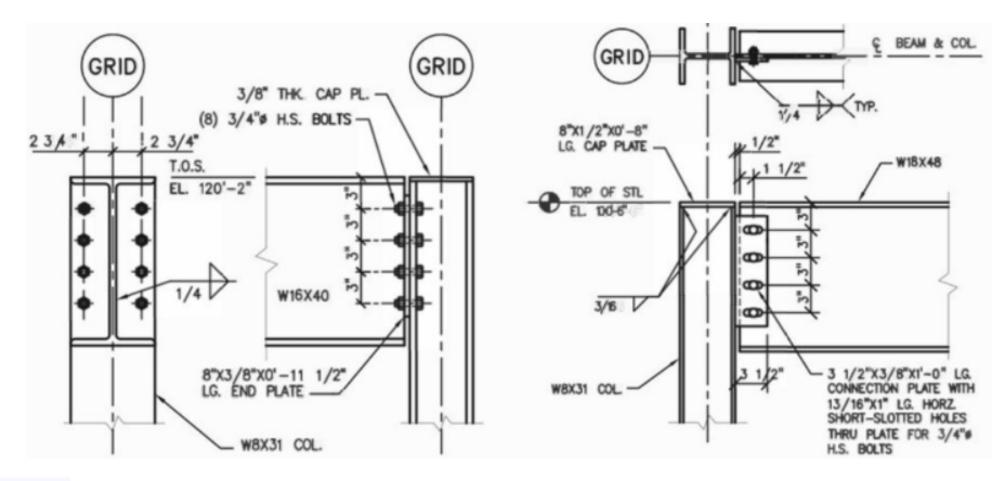


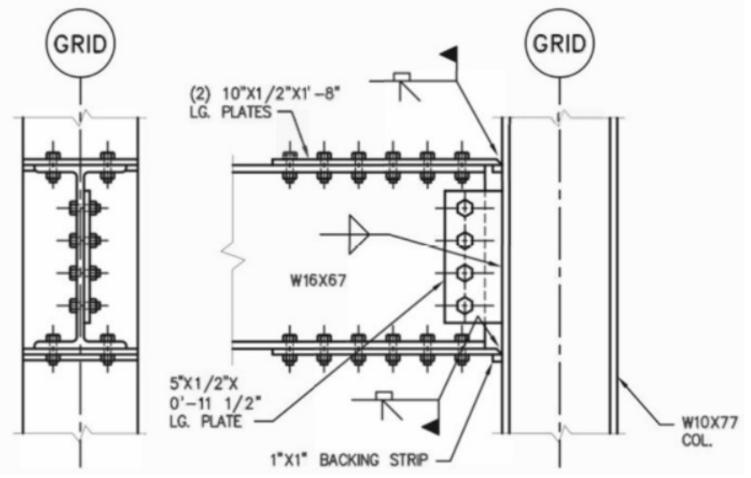
Fixed Connection


Beams & Beam Connections

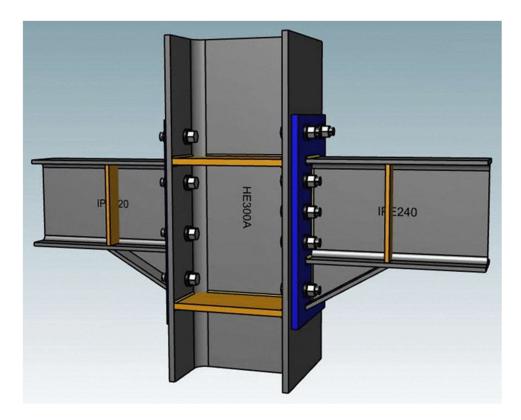
- Structural steel floors are laid on repetitive grid which establishes a standard structural bay. The most efficient floor plan is rectangular, in which 'main' or 'primary' beams span the shorter distance between columns and closely-spaced 'secondary' beams span the longer distance between primary beams.
- Typical beams cross sections are I, H or castellated beams to improve the structural efficiency.

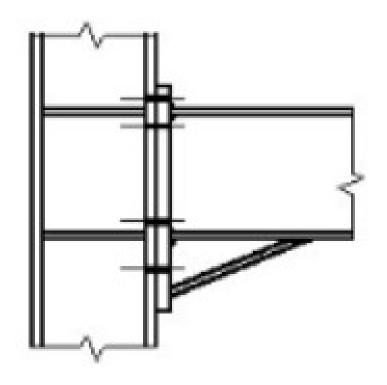



 Cap Plate Connection. One of the most common types of beamto-column connections in commercial and industrial buildings. A cap plate connection calls for a steel plate, commonly called a cap plate, to be welded to the top end of a W-shape, pipe, or HSS column at the fabricating shop. The beam will be attached to the plate at the site, as shown.


Standard Framed Beam-to Column Connection. Beams are fastened to columns by means of framing angles. This usually consists of two structural steel angles, one on either side of the beam, which are either welded or bolted to the beam web in the fabricator's shop and then fastened to a column at the job site with high strength bolts. This type of connections is assumed to transfer end reaction only where only the Web of the beam is connected with no connection for the flanges

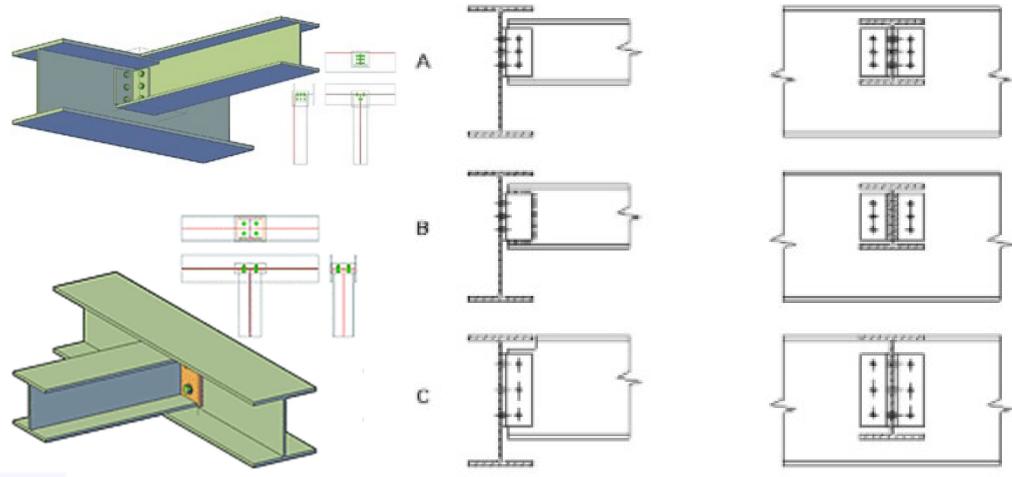
 Standard Framed Beam-to Column Connection: other types of these connections include the end plate sheer connection (left) and the single plate shear connection (right).

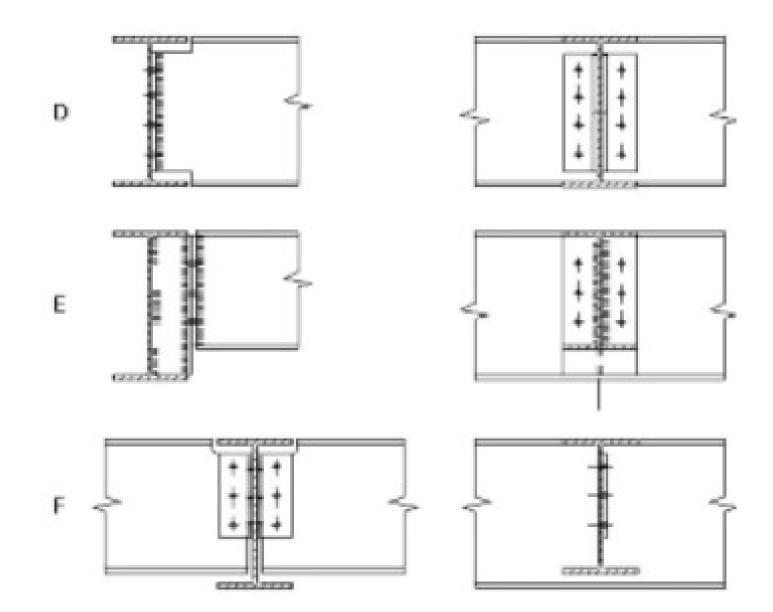

Beam to Column Rigid Joints: this is a connection that designed to transfer moment from beam to columns, here web as well as flange of the beam shall be connected to the column as shown below.



Beam-to-column moment-resisting connection detail

Beam to Column Rigid Joints

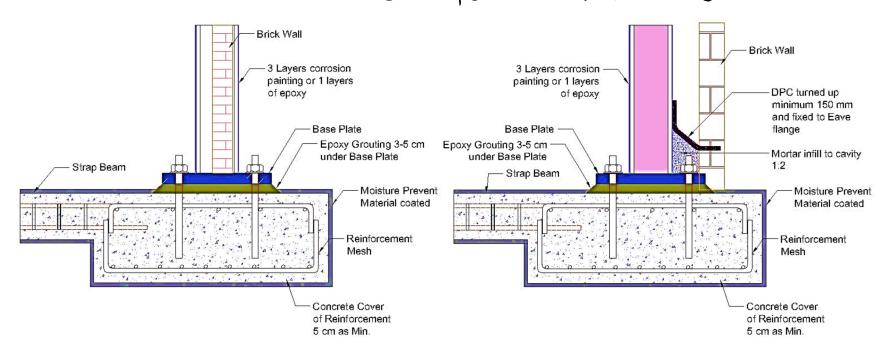

 Some times Stiffener plates are used to 'shore up' the column flanges against the forces transmitted by the beam flanges. The stiffeners may be full length or may extend only part of the column web depth.



Beam-to-Beam Connections

Those are simple connections that connect secondary beams to girders, they are usually designed to transfer shear only. They have several arrangement based on the level and sizes of the secondary beams relative to the girders.

Beam-to-Beam Connections


Steel Protection

- Two problems associated with steel are
- 1. Its poor performance in fire, due to the loss of mechanical properties at relatively low temperatures.
- 2. Its high chemical instability, which makes it susceptible to corrosion.
- Both of these have been overcome to some extent by the development of fireproof and corrosion protection materials, especially paints, but the exposure of steel structures, either internally, where fire must be considered, or externally, where durability is an issue, is always problematic.

الحماية من التأكل – عزل الرطوبة

تتركز الحماية من التأكل على ما يلي 1. منع اختراق الرطوبة للمبنى بإجراءات الحماية المتعارف عليها في كل المباني. 2. حماية الأعضاء الإنشائية الملامسة للتربة مثل الأسس والأجزاء الإنشائية المرتبطة معها مثل صفيحة القاعدة. 3. تنظيم الرطوبة داخل المبنى لمنع تكثف البخار على العناصر المعدنية عن

طريق التكييف. 4. دهان العناصر المعدنية بطلاء مقاوم للتأكل.

الحماية من الحريق

1. الطلاءات المنتفخة (Thin film intumescent coatings)

وهي مواد شبيهة بالطلاء تكون خاملة عند درجات حرارة منخفضة ولكنها توفر العزل نتيجة لتفاعل كيميائي معقد عند درجات حرارة تتراوح عادة بين 200 و 250 درجة مئوية. في درجات الحرارة هذه لن تتأثر خصائص الفولاذ. ونتيجة لهذا التفاعل فإنها تنتفخ وتوفر طبقة موسعة من الفحم منخفض التوصيل.

يعتبر التداخل بين الألواح والطلاءات الرقيقة المنتفخة أمرًا شائعًا جدًا

الحماية من الحريق

3. الرش بالمواد الأسمنتية العازلة (Spray protection)

تستخدم الحماية بالرش على نطاق واسع في الولايات المتحدة. تتميز بإمكانية استخدامها لتغطية الأشكال والتفاصيل المعقدة. يمكن أيضًا استخدام بعضها في التطبيقات الخارجية وتطبيقات الحرائق الهيدروكربونية.

4. أنظمة البطانيات المرنة (Flexible blanket systems) تم تطوير هذه الأنظمة للحماية من الحرائق كاستجابة للحاجة إلى مادة حماية سهلة التطبيق يمكن استخدامها في الأشكال والتفاصيل المعقدة. خفيفة الوزن وسهلة التركيب وتمتلك مقاومة جيدة للحرارة تصل الى حماية مدتها 90 دقيقة للجمالية وتثبيت التشطيبات.

STUDENTS-HUB.com