

Network Security: Firewall: stateful and zone-based filtering

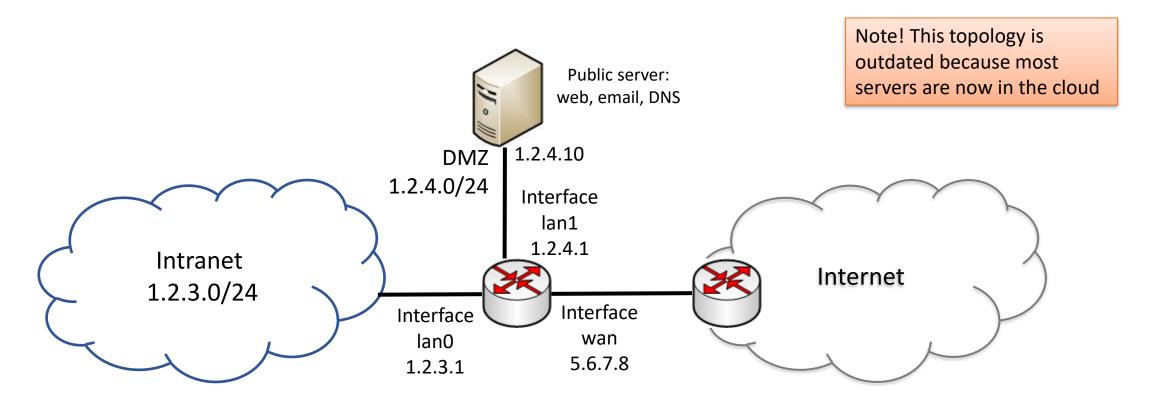
Tuomas Aura

CS-E4300 Network security
Aalto University

Stateful packet filter example: TCP

Stateful filter that passes only outbound connections:

Input interface	Protocol	Src IP	Src port	Dst IP	Dst port	Flags	Other	Action	Comment
lan	ТСР	1.2.3.0/24	*	*	80			Pass, <mark>create state</mark>	Outbound HTTP requests
wan	ТСР	*	80	1.2.3.0/24	*		state	Pass	Inbound HTTP responses
*	*	*	*	*	*			Drop	Default rule


- Good firewalls only create a small pinhole: the state is stored in a connection table that remembers the protocol, local IP address, local port, remote IP address, remote port
- Some firewalls might only remember the rule (pair) that was matched, but that is less secure (why?)

Dynamic firewall

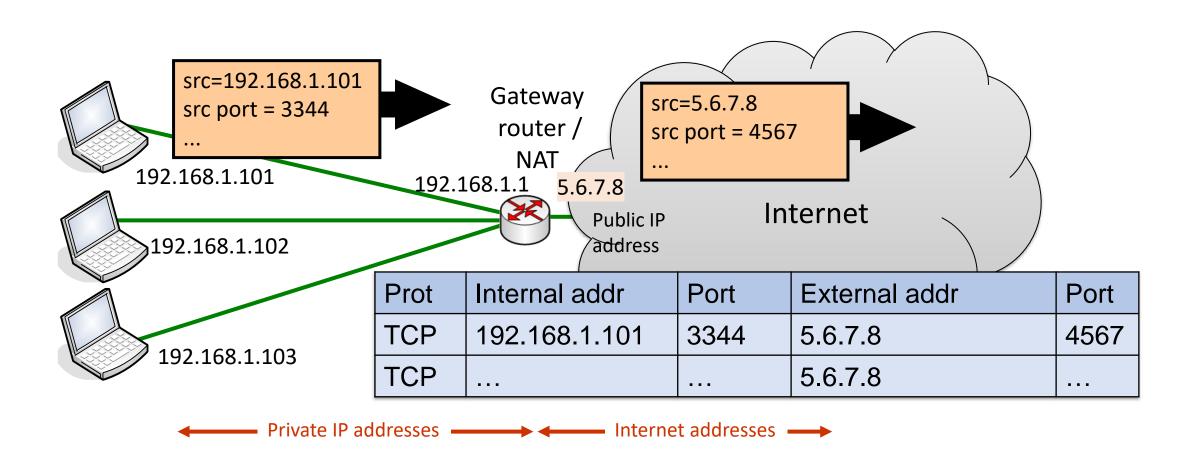
- Stateful packet inspection (SPI) detects packets that start new connections or belong to an old one
- Outbound TCP or UDP packet creates a pinhole for inbound packets of the same connection
 - TCP pinhole is closed when connection closes or after timeout; UDP after timeout (1 s - 30 min)
- Firewalls may support stateless filtering of additional protocols:
 - ICMP errors that match previous outbound packets
 - FTP and X Windows open TCP connections in reverse direction
- Stateful filtering may significantly lower firewall/router throughput and increase latency if the processing is done in software

Network topology with DMZ

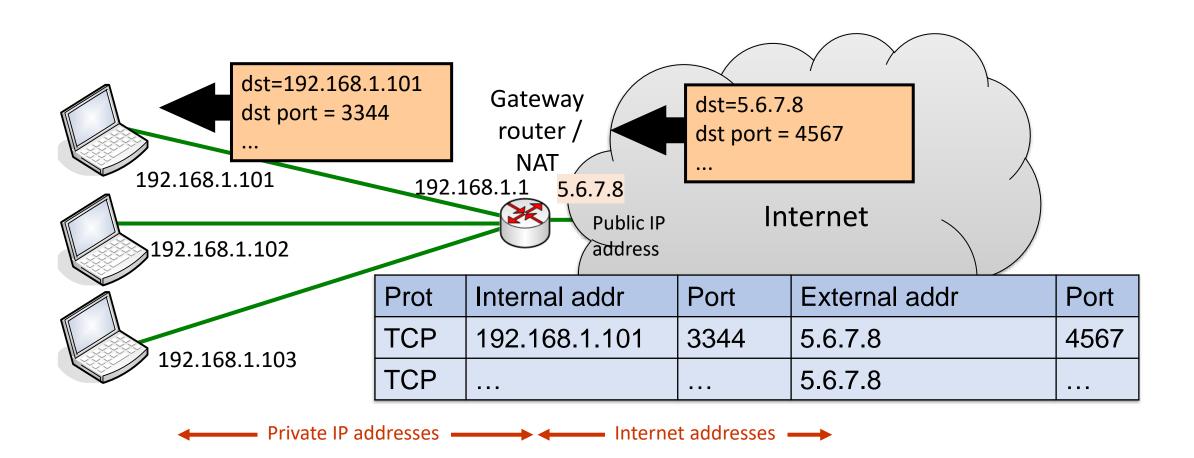
- Services accessible from the Internet are isolated to a demilitarized zone (DMZ), i.e., in a separate subnetwork
- The DMZ is typically a virtual LAN (VLAN) instead of a physical network



Input if	Protocol	Src IP	Port	Dst IP	Port	Other	Action	Comment
wan, lan1	*	1.2.3.0/24	*	*	*		Drop	Anti-spoofing (LAN)
wan, lan0	*	1.2.4.0/24	*	*	*		Drop	Anti-spoofing (DMZ)
*	*	{1.2.3.1, 1.2.4.1, 5.6.7.8}	*	*	*		Drop	Anti-spoofing (router addresses)
wan, lan0	UDP	*	*	1.2.4.10	53		Pass, create state	DNS query to local server
lan1	UDP	1.2.4.10	53	*	*	State	Pass	DNS response from local server
lan1	UDP	1.2.4.10	*	*	53		Pass, create state	DNS query to ISP
wan	UDP	*	53	1.2.4.10		State	Pass	DNS response from ISP
wan	TCP	*	*	1.2.4.10	22,25,80,443		Pass	Server access from Internet
lan0	TCP	1.2.3.0/24	*	1.2.4.10	22,25,80,443		Pass, create state	Server access from intranet
lan1	TCP	1.2.4.10	22,25,80,443	1.2.3.0/24	*	State	Pass	Responses
lan0	*	1.2.3.0/24	*	1.2.4.0/24	*		Drop	Unnecessary LAN-DMZ traffic
lan1	*	1.2.4.0/24	*	1.2.3.0/24	*		Drop	Unnecessary LAN-DMZ traffic
lan0	*	1.2.3.0/24	*	*	*		Pass, create state	Outbound to Internet
wan	*	*	*	*	*	State	Pass	Responses from Internet
lan0	ТСР	1.2.3.0/24	*	1.2.3.1	22		Pass, create state	Router management
local	ТСР	1.2.3.1	22	1.2.3.0/24	*	State	Pass	Router management
*	*	*	*	*	*		Drop	Default rule


Will this work? What happens if the rules are in wrong order? What kind of state is stored in each case?

NAT


- Network address translation (NAT) is a mechanisms for sharing one IPv4 address between multiple hosts
- Hosts in intranet use a private address space
 - -10.0.0.0/8, 172.16.0.0/12, 192.168.0.0/16
 - 100.64.0.0/10 for carrier-grade NAT, e.g., ISPs and mobile operators
- Hosts behind NAT can only act as TCP or UDP clients, not as servers

NAT

NAT

NAT as a firewall

- NAT maps internal <private IP addr, port> pairs to external <public IP addr, port> pairs and back
 - NAT creates the mapping based on an outbound packet
 - → a node on the intranet must initiate each connection
 - → NAT acts as a dynamic firewall
- NAT may remember additional connection parameters:
 - Remote IP address and port, TCP protocol state
 - The more connection parameters it remembers and filters, the more like a stateful firewall it becomes
- The example on previous slide is a full cone NAT: does not even remember remote address or port → worst for security, best for NAT traversal

Implementation terminology

Endpoints:

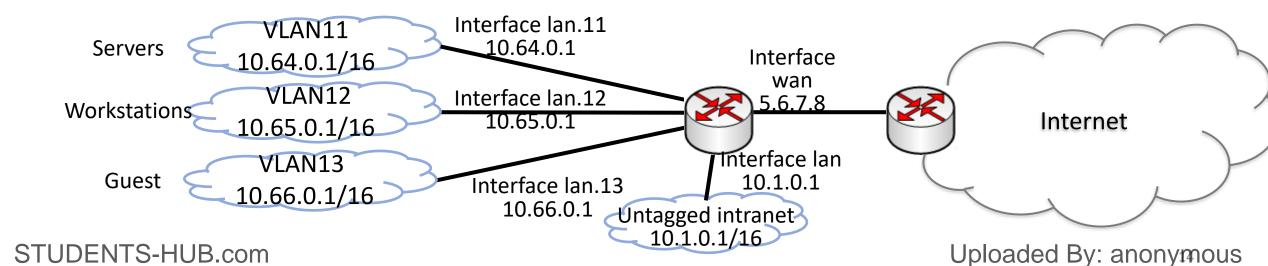
- Source destination,
- Local remote
- Inbound outbound

Direction of connection:

- Existing connections = state exists
- Mirror rule = pass packets also in the other direction

Port forwarding and UPnP

- Port forwarding: firewall administrator creates a permanent
 NAT table entry or firewall hole
 - Inbound connections to the firewall are routed to a specific host and port in the intranet
 - Internet client can connect to a servers behind the NAT or firewall,
 e.g., Minecraft server or personal media server at home
- Universal plug and play (UPnP):
 - Discovery protocol with which intranet hosts can request the firewall to set up port forwarding
 - Security-aware users generally disable UPnP in their router


iptables

- Firewall implementation for Unix/Linux
- Complex policies can be defined as multiple chains of rules:
 - Action can be a reference to another chain
 - Provides modularity ("subroutines") for firewall policies
- Lots of good examples:
 - http://fwbuilder.sourceforge.net/4.0/docs/users_guide5/cookbook.shtml
 (browse the subsections for iptables, PF and PIX examples)

FILTERING BETWEEN NETWORK SEGMENTS

Filtering between VLANs

Input if	Prot	Src IP	Src port	Dst IP	Dst por t	Flags	Action	Comment
lan.11	ТСР	10.64.0.0/16	*	not 10.0.0.0/8	*		Pass	Outbound from server VLAN11
lan.12	ТСР	10.65.0.0/16	*	not 10.0.0.0/8	*		Pass	Outbound from workstation VLAN12
lan.13	ТСР	10.66.0.0/16	*	not 10.0.0.0/8	*		Pass	Outbound from guest VLAN13
wan	ТСР	*	*	10.64.0.0/10	*	<mark>ACK</mark>	Pass	Inbound from WAN to VLANs
lan.11	ТСР	10.65.0.0/16	*	10.64.0.0/16	*		Pass	Workstations to servers
lan.12	ТСР	10.64.0.0/16	*	10.65.0.0/16	*	ACK		Servers to workstations
*	*	*	*	*	*		Drop	Default rule

Zone-based filtering

 What we often want is to limit access between network zones, i.e., LANs or VLANs. Should work for IPv4/IPv6. Something like this:

Client if	Server if Action		Comment				
lan.11	wan Pass		Outbound connections from servers in VLAN11				
lan.12	wan	Pass	Outbound connections from workstations in VLAN12				
lan.13	wan	Pass	Outbound connections from guest in VLAN13				
lan.12	lan.11	Pass	Connections from workstations to servers				
*	*	Drop	Default rule				

- How to implement zone-based firewall rules? Some solutions:
 - Each zone has a different IP subnet. Filter inbound packets at each source interface based on their destination IP address. Define separate rules for IPv4 and IPv6. (Fails with IPv6 PD.)
 - Mark packet at input interface, filter based on the mark at the output interface. (Works even after network renumbering, e.g., by IPv6 prefix delegation.)
 - Iptables FORWARD chain can filter by combination of input and output interface
- Still need stateless or stateful implementation of connection direction