

$$(S_f)_{10^3} = f S_{ut}.$$

f 0.9

0.88

0.86

0.84

0.82

0.8

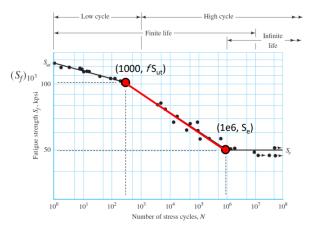
0.78

0.76 70

80

100 110 120

90


130 140 150

S_{ut}, kpsi

160 170

180

190 200

$$N = \left(\frac{\sigma_{\rm rev}}{a}\right)^{1/b}$$

$$a = \frac{(fS_{ut})^2}{S_e}$$
$$b = -\frac{1}{3}\log\left(\frac{fS_{ut}}{S_e}\right)$$

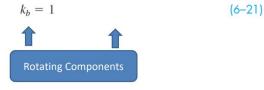
 $S_e = k_a k_b k_c k_d k_e k_f S'_e$

where $k_a =$ surface condition modification factor

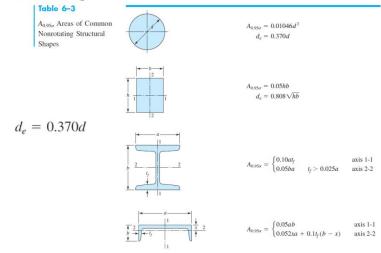
- k_b = size modification factor
- $k_c = load modification factor$
- k_d = temperature modification factor
- k_e = reliability factor¹³
- k_f = miscellaneous-effects modification factor
- S'_e = rotary-beam test specimen endurance limit
- S_e = endurance limit at the critical location of a machine part in the geometry and condition of use

Surface Factor k_a

$$k_a = aS_{ut}^b$$

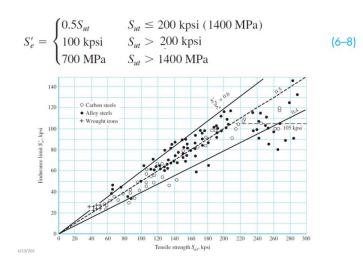

	Fact	Exponent	
Surface Finish	S _{ut} , kpsi	S _{ut} , MPa	Ь
Ground	1.34	1.58	-0.085
Machined or cold-drawn	2.70	4.51	-0.265
Hot-rolled	14.4	57.7	-0.718
As-forged	39.9	272.	-0.995

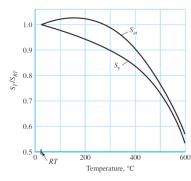
Size Factor k_b


> The results for bending and torsion may be expressed as:

$$k_b = \begin{cases} (d/0.3)^{-0.107} = 0.879d^{-0.107} & 0.11 \le d \le 2 \text{ in} \\ 0.91d^{-0.157} & 2 < d \le 10 \text{ in} \\ (d/7.62)^{-0.107} = 1.24d^{-0.107} & 2.79 \le d \le 51 \text{ mm} \\ 1.51d^{-0.157} & 51 < d \le 254 \text{ mm} \end{cases}$$
(6-20)

> For axial loading there is no size effect, so


Size Factor k_b


$$k_c = \begin{cases} 1 & \text{bending} \\ 0.85 & \text{axial} \\ 0.59 & \text{torsion} \end{cases}$$
(6–26)

When torsion is combined with other loading, such as bending, set $k_{\rm c}$ = 1, and the combined loading is managed by using the effective von Mises stress as described in Sec. 6-14

Temperature Factor k_d

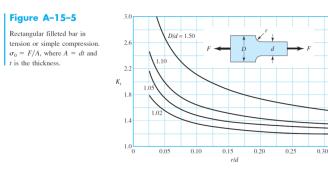
A fourth-order polynomial curve fit to the data underlying Fig. 2–9 gives $\begin{aligned} k_d &= 0.975 + 0.432(10^{-3})T_F - 0.115(10^{-5})T_F^2 \\ &+ 0.104(10^{-8})T_F^3 - 0.595(10^{-12})T_F^4 \end{aligned} \tag{6-27}$

Temperature, °C	S _T /S _{RT}	Temperature, °F	S _T /S _{RT}
20	1.000	70	1.000
50	1.010	100	1.008
100	1.020	200	1.020
150	1.025	300	1.024
200	1.020	400	1.018
250	1.000	500	0.995
300	0.975	600	0.963
350	0.943	700	0.927
400	0.900	800	0.872
450	0.843	900	0.797
500	0.768	1000	0.698
550	0.672	1100	0.567
600	0.549		

Reliability Factor k

$$k_e = 1 - 0.08 z_a$$

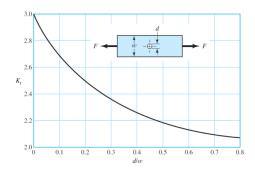
Reliability, %	Transformation Variate z_a	Reliability Factor k		
50	0	1.000		
90	1.288	0.897		
95	1.645	0.868		
99	2.326	0.814		
99.9	3.091	0.753		
99.99	3.719	0.702		
99.999	4.265	0.659		
99.9999	4.753	0.620		


Stress Concentration factors:

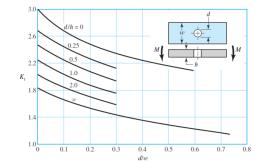
- This index at stress concentration is referred as the stress concentration factor \mathbf{K}_t or \mathbf{K}_{ts}

$$K_t = rac{\sigma_{\max}}{\sigma_0}$$
 $K_{ts} = rac{\tau_{\max}}{\tau_0}$

• The stress concentration factors \mathbf{K}_{t} or \mathbf{K}_{ts} are taken from experiments

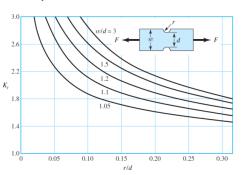

Stress Concentration Factor k_t

Stress Concentration Factor k_t

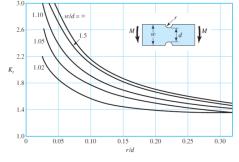


Bar in tension or simple compression with a transverse hole. $\sigma_0 = F/A$, where A = (w - d)t and t is the thickness.

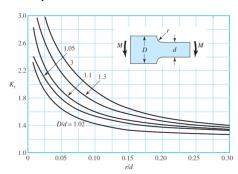
Stress Concentration Factor k_t



Stress Concentration Factor k,


Notched rectangular bar in tension or simple compression. $\sigma_0 = F/A$, where A = dtand t is the thickness.

Stress Concentration Factor k_t



Notched rectangular bar in bending, $\sigma_0 = Mc/I$, where c = d/2, $I = td^3/12$, and t is the thickness.

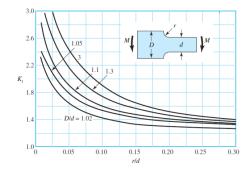

Stress Concentration Factor k_t

Figure A-15-6 Rectangular filleted bar in bending. $\sigma_0 = Mc/I$, where c = d/2, $I = td^3/12$, *t* is the thickness.

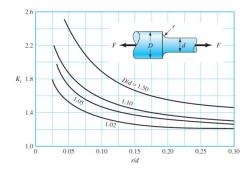
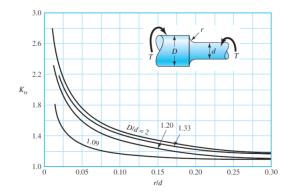

Stress Concentration Factor k,

Figure A–15–6 Rectangular filleted bar in bending. $\sigma_0 = Mc/I$, where c = d/2, $I = td^3/12$, *t* is the thickness.

Stress Concentration Factor k,

Figure A-15-7 Round shaft with shoulder fillet in tension. $\sigma_0 = F/A$, where $A = \pi d^2/4$.

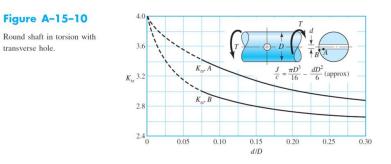


STUDENTS-HUB.com

Stress Concentration Factor k_{ts}

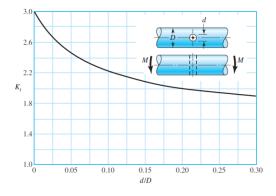
Figure A-15-8

Round shaft with shoulder fillet in torsion. $\tau_0 = Tc/J$, where c = d/2 and $J = \pi d^4/32$.


Stress Concentration Factor k,

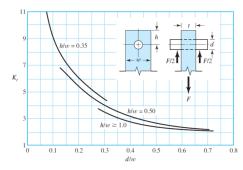
Round shaft with shoulder fillet in bending. $\sigma_0 = Mc/I$, where c = d/2 and $I = \pi d^4/64$.

3.0 2.6 M 2.2 Κ. 1.8 1.3 1.4 1.10 1.00 1.05 1.0 L 0.05 0.15 0.20 0.25 0.10 0.30 rld


Stress Concentration Factor k_{ts}

Stress Concentration Factor k_t

Figure A-15-11 Round shaft in bending with a transverse hole. $\sigma_0 =$


with a transverse noise $\sigma_0 = M/[(\pi D^3/32) - (dD^2/6)],$ approximately.

Stress Concentration Factor k_t

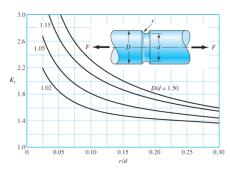
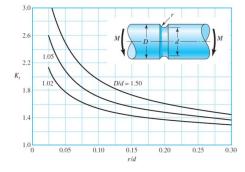
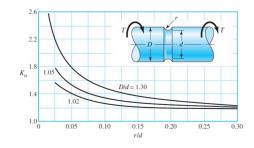

Figure A-15-12

Plate loaded in tension by a pin through a hole. $\sigma_0 = F/A$, where A = (w - d)t. When clearance exists, increase K_i 35 to 50 percent. (M. M. Frocht and H. N. Hill, "Stress-Concentration Factors around a Central Circular Hole in a Plate Loaded through a Pin in Hole," J. Appl. Mechanics, vol. 7, no. 1, March 1940, p. A-5.)

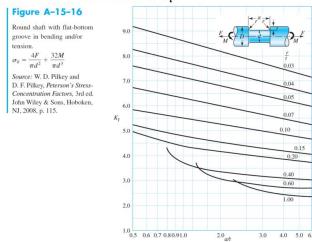
Stress Concentration Factor k_t


Figure A-15-13 Grooved round bar in tension. $\sigma_0 = F/A$, where $A = \pi d^2/4$.

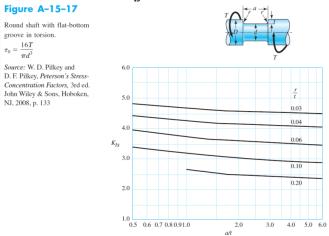
Stress Concentration Factor k_t


Figure A-15-14

Grooved round bar in bending. $\sigma_0 = Mc/I$, where c = d/2and $I = \pi d^4/64$.



Stress Concentration Factor k_{ts}


Figure A-15-15 Grooved round bar in torsion. $\tau_0 = Tc/J$, where c = d/2and $J = \pi d^4/32$.

Stress Concentration Factor k_t

Stress Concentration Factor k_{ts}

2.0_{a/t}

Stress Concentration Factor k,

Table A-16

Approximate Stress-Concentration Factor K, of a Round Bar or Tube with a Transverse Round Hole and Loaded in Bending Source: R. E. Peterson, Stress-Concentration Factors, Wiley, New York, 1974, pp. 146, 235.

The nominal bending stress is $\sigma_0 = M/Z_{net}$ where Z_{net} is a reduced value of the section modulus and is defined by

4.0 5.0 6.0

3.0

 $Z_{\text{net}} = \frac{\pi A}{32D} (D^4 - d^4)$

Values of A are listed in the table. Use d = 0 for a solid bar

			d	/D		
	0.9		0	.6		
a/D	А	K,	А	K,	А	K,
0.050	0.92	2.63	0.91	2.55	0.88	2.42
0.075	0.89	2.55	0.88	2.43	0.86	2.35
0.10	0.86	2.49	0.85	2.36	0.83	2.27
0.125	0.82	2.41	0.82	2.32	0.80	2.20
0.15	0.79	2.39	0.79	2.29	0.76	2.15
0.175	0.76	2.38	0.75	2.26	0.72	2.10
0.20	0.73	2.39	0.72	2.23	0.68	2.07
0.225	0.69	2.40	0.68	2.21	0.65	2.04
0.25	0.67	2.42	0.64	2.18	0.61	2.00
0.275	0.66	2.48	0.61	2.16	0.58	1.97
0.30	0.64	2.52	0.58	2.14	0.54	1.94

Stress Concentration Factor k_{ts}

Table A-16 (Continued)

Approximate Stress-Concentration Factors Kis for a Round Bar or Tube Having a Transverse Round Hole and Loaded in Torsion Source: R. E. Peterson, Stress-Concentration Factors, Wiley, New York, 1974, pp. 148, 244.

curs on the inside of the hole, slightly below the shaft surface. The nominal shear stress is $\tau_0 = TD/2J_{met}$ where J_{met} e second polar moment of area and is defined by The maximum stress oc is a reduced value of the

 $J_{\rm net} = \frac{\pi A (D^4 - d^4)}{32}$

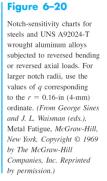
Values of A are listed in the table. Use d = 0 for a solid bar.

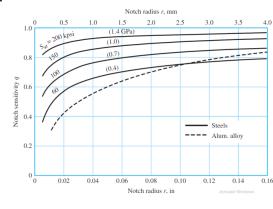
	0	•	•	.8		/D .6	•	.4	(
a/D	A	.7 K _{ts}	A	K _{ts}	A	.0 K _{ts}	A	K _{ts}	A	, к,
0.05	0.96	1.78							0.95	1.7
0.075	0.95	1.82							0.93	1.7
0.10	0.94	1.76	0.93	1.74	0.92	1.72	0.92	1.70	0.92	1.6
0.125	0.91	1.76	0.91	1.74	0.90	1.70	0.90	1.67	0.89	1.6
0.15	0.90	1.77	0.89	1.75	0.87	1.69	0.87	1.65	0.87	1.6
0.175	0.89	1.81	0.88	1.76	0.87	1.69	0.86	1.64	0.85	1.6
0.20	0.88	1.96	0.86	1.79	0.85	1.70	0.84	1.63	0.83	1.5
0.25	0.87	2.00	0.82	1.86	0.81	1.72	0.80	1.63	0.79	1.5
0.30	0.80	2.18	0.78	1.97	0.77	1.76	0.75	1.63	0.74	1.5
0.35	0.77	2.41	0.75	2.09	0.72	1.81	0.69	1.63	0.68	1.4
0.40	0.72	2.67	0.71	2.25	0.68	1.89	0.64	1.63	0.63	1.4

Stress Concentration factors:

- This index at stress concentration is referred as the stress concentration factor \mathbf{K}_t or \mathbf{K}_{ts}

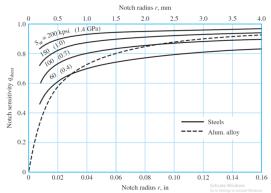
$$K_t = rac{\sigma_{ ext{max}}}{\sigma_0} \qquad K_{ts} = rac{ au_{ ext{max}}}{ au_0}$$


- The stress concentration factors K_t or K_{ts} are taken from experiments
- The Fatigue stress concentration factors K_f or K_{fs}


$$K_f = \frac{\text{maximum stress in notched specimen}}{\text{stress in notch-free specimen}}$$

Notch sensitivity q is defined by the equation

$$q = \frac{K_f - 1}{K_t - 1} \qquad \text{or} \qquad q_{\text{shear}} = \frac{K_{fs} - 1}{K_{ts} - 1}$$


Notch Sensitivity q

Notch Sensitivity q_s

Figure 6–21 Notch-sensitivity curves for materials in reversed torsion. For larger notch radii, use the values of q_{shear} corresponding to r = 0.16 in (4 mm).

Notch Sensitivity

Figure 6-20 has as its basis the Neuber equation, which is given by

$$K_f = 1 + \frac{K_t - 1}{1 + \sqrt{a/r}} \tag{6-33}$$

where \sqrt{a} is defined as the *Neuber constant* and is a material constant. Equating Eqs. (6–31) and (6–33) yields the notch sensitivity equation

$$q = \frac{1}{1 + \frac{\sqrt{a}}{\sqrt{r}}} \tag{6-34}$$

correlating with Figs. 6-20 and 6-21 as

Bending or axial: $\sqrt{a} = 0.246 - 3.08(10^{-3})S_{ut} + 1.51(10^{-5})S_{ut}^2 - 2.67(10^{-8})S_{ut}^3$ (6-35a) Torsion: $\sqrt{a} = 0.190 - 2.51(10^{-3})S_{ut} + 1.35(10^{-5})S_{ut}^2 - 2.67(10^{-8})S_{ut}^3$ (6-35b)

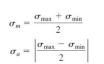
 $(\boldsymbol{\sigma}_{\text{rev}})_{\text{max}} = K_f(\boldsymbol{\sigma}_{\text{rev}})_{\text{nom}}$

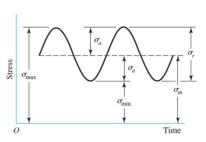
STUDENTS-HUB.com

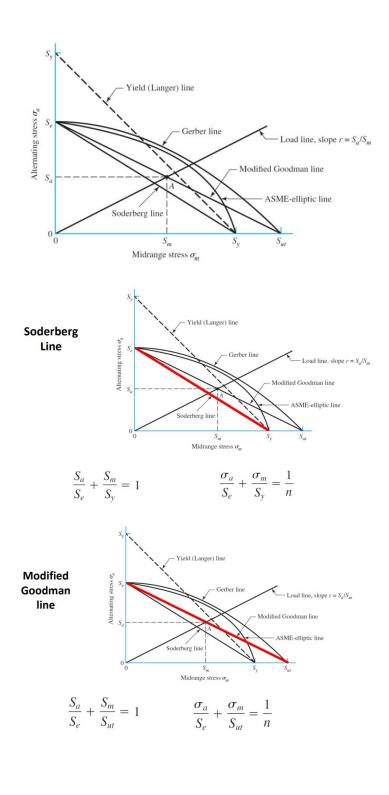
Mechanical Properties of Three Non-Steel Metals

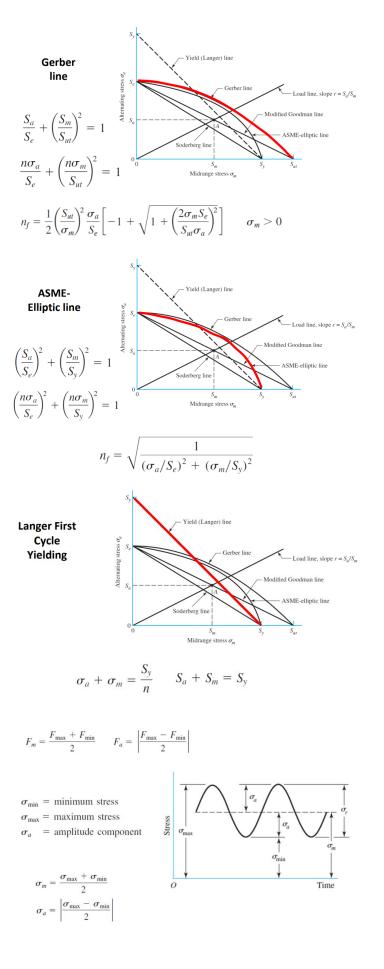
(a) Typical Properties of Gray Cast Iron

ASTM	Tensile Strength	Compressive Strength	Shear Modulus of Rupture	Modul Elasticity		Endurance Limit*	Brinell Hardness	Fatigue Stress- Concentration Factor
Number	Sut kpsi	Suce kpsi	S _{su} , kpsi	Tension [†]	Torsion	S _e , kpsi	H _B	K _f
20	22	83	26	9.6-14	3.9-5.6	10	156	1.00
25	26	97	32	11.5-14.8	4.6-6.0	11.5	174	1.05
30	31	109	40	13-16.4	5.2-6.6	14	201	1.10
35	36.5	124	48.5	14.5-17.2	5.8-6.9	16	212	1.15
40	42.5	140	57	16-20	6.4-7.8	18.5	235	1.25
50	52.5	164	73	18.8-22.8	7.2-8.0	21.5	262	1.35
60	62.5	187.5	88.5	20.4-23.5	7.8-8.5	24.5	302	1.50


(b) Mechanical Properties of Some Aluminum Alloys


Aluminum Association Number	Temper	Yield, S _y , MPa (kpsi)	Strength Tensile <i>, S_u,</i> MPa (kpsi)	Fatigue <i>, S_f,</i> MPa (kpsi)	Elongation in 2 in, %	Brinell Hardness H _B
Wrought:						
2017	0	70 (10)	179 (26)	90 (13)	22	45
2024	0	76 (11)	186 (27)	90 (13)	22	47
	T3	345 (50)	482 (70)	138 (20)	16	120
3003	H12	117 (17)	131 (19)	55 (8)	20	35
	H16	165 (24)	179 (26)	65 (9.5)	14	47
3004	H34	186 (27)	234 (34)	103 (15)	12	63
	H38	234 (34)	276 (40)	110 (16)	6	77
5052	H32	186 (27)	234 (34)	117 (17)	18	62
	H36	234 (34)	269 (39)	124 (18)	10	74
Cast:						
319.0*	T6	165 (24)	248 (36)	69 (10)	2.0	80
333.0 [†]	T5	172 (25)	234 (34)	83 (12)	1.0	100
	T6	207 (30)	289 (42)	103 (15)	1.5	105
335.0*	T6	172 (25)	241 (35)	62 (9)	3.0	80
	T7	248 (36)	262 (38)	62 (9)	0.5	85


1	2	3	4 Tensile	5 Yield	6	7	8
UNS No.	SAE and/or AISI No.	Process- ing	Strength, MPa (kpsi)	Strength,	Elongation in 2 in, %	Reduction in Area, %	Brinell Hardness
G10060	1006	HR	300 (43)	170 (24)	30	55	86
		CD	330 (48)	280 (41)	20	45	95
G10100	1010	HR	320 (47)	180 (26)	28	50	95
		CD	370 (53)	300 (44)	20	40	105
G10150	1015	HR	340 (50)	190 (27.5)	28	50	101
		CD	390 (56)	320 (47)	18	40	111
G10180	1018	HR	400 (58)	220 (32)	25	50	116
		CD	440 (64)	370 (54)	15	40	126
G10200	1020	HR	380 (55)	210 (30)	25	50	111
		CD	470 (68)	390 (57)	15	40	131
G10300	1030	HR	470 (68)	260 (37.5)	20	42	137
		CD	520 (76)	440 (64)	12	35	149
G10350	1035	HR	500 (72)	270 (39.5)	18	40	143
		CD	550 (80)	460 (67)	12	35	163
G10400	1040	HR	520 (76)	290 (42)	18	40	149
		CD	590 (85)	490 (71)	12	35	170
G10450	1045	HR	570 (82)	310 (45)	16	40	163
		CD	630 (91)	530 (77)	12	35	179
G10500	1050	HR	620 (90)	340 (49.5)	15	35	179
		CD	690 (100)	580 (84)	10	30	197


$$F_m = \frac{F_{\max} + F_{\min}}{2} \qquad F_a = \left| \frac{F_{\max} - F_{\min}}{2} \right|$$

 σ_{\min} = minimum stress σ_{\max} = maximum stress σ_a = amplitude component

$$\frac{S_a}{S_e} = \frac{1 - S_m / S_{ut}}{1 + S_m / S_{ut}}$$
(6-50)

$$\frac{n\sigma_a}{S_e} = \frac{1 - n\sigma_m/S_{ut}}{1 + n\sigma_m/S_{ut}}$$
(6–51)

$$S_{a} = \frac{rS_{ut} + S_{e}}{2} \left[-1 + \sqrt{1 + \frac{4rS_{ut}S_{e}}{\left(rS_{ut} + S_{e}\right)^{2}}} \right]$$
(6-52)

6-13 Torsional Fatigue Strength under Fluctuating Stresses

 $S_{su} = 0.67S_{ut}$ (6–54)

Also, from Chap. 5, $S_{sy} = 0.577S_{yt}$ from distortion-energy theory, and the mean load factor k_c is given by Eq. (6–26), or 0.577.

$$k_c = \begin{cases} 1 & \text{bending} \\ 0.85 & \text{axial} \\ 0.59 & \text{torsion} \end{cases}$$


$$k_f = \frac{1}{2} \left(\frac{S_{ut}}{\sigma_m} \right)^2 \frac{\sigma_a}{S_e} \left[-1 + \sqrt{1 + \left(\frac{2\sigma_m S_e}{S_{ut} \sigma_a} \right)^2} \right] \qquad \sigma_m > 0$$

Load Factor k_c

K

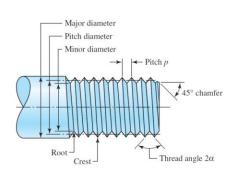
ſ	1	bending	
$k_c = \left\{ \right.$	0.85	axial	(6-26)
		torsion	

When torsion is combined with other loading, such as bending, set $k_{\rm c}$ = 1, and the combined loading is managed by using the effective von Mises stress as described in Sec. 6-14

6-14 Combinations of Loading Modes

$$\sigma' = (\sigma_x^2 + 3\tau_{xy}^2)^{1/2}.$$

$$\sigma_{a}' = \left\{ \left[(K_{f})_{\text{bending}}(\sigma_{a})_{\text{bending}} + (K_{f})_{\text{axial}} \frac{(\sigma_{a})_{\text{axial}}}{0.85} \right]^{2} + 3\left[(K_{fs})_{\text{torsion}}(\tau_{a})_{\text{torsion}} \right]^{2} \right\}^{1/2}$$


$$(6-55)$$

$$\sigma_{m}' = \left\{ \left[(K_{f})_{\text{bending}}(\sigma_{m})_{\text{bending}} + (K_{f})_{\text{axial}}(\sigma_{m})_{\text{axial}} \right]^{2} + 3\left[(K_{fs})_{\text{torsion}}(\tau_{m})_{\text{torsion}} \right]^{2} \right\}^{1/2}$$

STUDENTS-HUB.com

Figure 8-1

Terminology of screw threads. Sharp vee threads shown for clarity; the crests and roots are actually flattened or rounded during the forming operation.

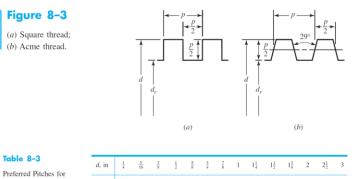


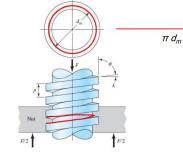
Table 8-1	Nominal	c	oarse-Pitch	Series		Fine-Pitch S	eries
Diameters and Areas of Coarse-Pitch and Fine- Pitch Metric Threads.*	Major Diameter d mm	Pitch <i>P</i> mm	Tensile- Stress Area A, mm ²	Minor- Diameter Area A, mm ²	Pitch P mm	Tensile- Stress Area A, mm ²	Minor- Diamete Area A mm ²
	1.6	0.35	1.27	1.07			
	2	0.40	2.07	1.79			
	2.5	0.45	3.39	2.98			
	3	0.5	5.03	4.47			
	3.5	0.6	6.78	6.00			
	4	0.7	8.78	7.75			
	5	0.8	14.2	12.7			
	6	1	20.1	17.9			
	8	1.25	36.6	32.8	1	39.2	36.0
	10	1.5	58.0	52.3	1.25	61.2	56.3
	12	1.75	84.3	76.3	1.25	92.1	86.0
	14	2	115	104	1.5	125	116
	16	2	157	144	1.5	167	157
	20	2.5	245	225	1.5	272	259
	24	3	353	324	2	384	365
	30	3.5	561	519	2	621	596
	36	4	817	759	2	915	884
	42	4.5	1120	1050	2	1260	1230
	48	5	1470	1380	2	1670	1630
	56	5.5	2030	1910	2	2300	2250
	64	6	2680	2520	2	3030	2980
	72	6	3460	3280	2	3860	3800
	80	6	4340	4140	1.5	4850	4800
	90	6	5590	5360	2	6100	6020
	100	6	6990	6740	2	7560	7470
	110				2	9180	9080

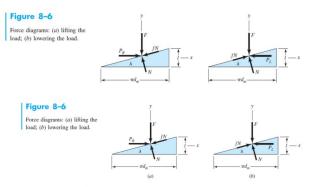
Table 8-2

Diameters and Area of Unified Screw Threads UNC and UNF*

		Coo	irse Series-	UNC	Fin	e Series-U	NF
Size Designation	Nominal Major Diameter in	Threads per Inch N	Tensile- Stress Area A, in ²	Minor- Diameter Area A _r in ²	Threads per Inch N	Tensile- Stress Area A, in ²	Minor- Diameter Area A, in ²
0	0.0600				80	0.001 80	0.001 51
1	0.0730	64	0.002 63	0.002 18	72	0.002 78	0.002 37
2	0.0860	56	0.003 70	0.003 10	64	0.003 94	0.003 39
3	0.0990	48	0.004 87	0.004 06	56	0.005 23	0.004 51
4	0.1120	40	0.006 04	0.004 96	48	0.006 61	0.005 66
5	0.1250	40	0.007 96	0.006 72	44	0.008 80	0.007 16
6	0.1380	32	0.009 09	0.007 45	40	0.010 15	0.008 74
8	0.1640	32	0.014 0	0.011 96	36	0.014 74	0.012 85
10	0.1900	24	0.017 5	0.014 50	32	0.020 0	0.017 5
12	0.2160	24	0.024 2	0.020 6	28	0.025 8	0.022 6
$\frac{1}{4}$	0.2500	20	0.031 8	0.026 9	28	0.036 4	0.032 6
5	0.3125	18	0.052 4	0.045 4	24	0.058 0	0.052 4
38	0.3750	16	0.077 5	0.067 8	24	0.087 8	0.080 9
7	0.4375	14	0.106 3	0.093 3	20	0.118 7	0.109 0
1/2	0.5000	13	0.141 9	0.125 7	20	0.159 9	0.148 6
9 16	0.5625	12	0.182	0.162	18	0.203	0.189
58	0.6250	11	0.226	0.202	18	0.256	0.240
34	0.7500	10	0.334	0.302	16	0.373	0.351
78	0.8750	9	0.462	0.419	14	0.509	0.480
1	1.0000	8	0.606	0.551	12	0.663	0.625
$1\frac{1}{4}$	1.2500	7	0.969	0.890	12	1.073	1.024
$1\frac{1}{2}$	1.5000	6	1.405	1.294	12	1.581	1.521

 $\frac{1}{4}$ 1 1


 $\frac{1}{4}$


 $\frac{1}{16}$ $\frac{1}{14}$ $\frac{1}{12}$ $\frac{1}{10}$ $\frac{1}{8}$ 1 1 1 1 $\frac{1}{4}$

p, in

Acme Threads

Figure 8-5 Portion of a power screw

for raising the load, we have

$$\sum F_x = P_R - N \sin \lambda - f N \cos \lambda = 0$$
$$\sum F_y = -F - f N \sin \lambda + N \cos \lambda = 0$$

In a similar manner, for lowering the load, we have

$$\sum F_x = -P_L - N \sin \lambda + f N \cos \lambda = 0$$

$$\sum F_y = -F + f N \sin \lambda + N \cos \lambda = 0$$

Next, divide the numerator and the denominator of these equations by $\cos \lambda$ and use the relation tan $\lambda = l/\pi d_m$ (Fig. 8–6). We then have, respectively,

$$P_{R} = \frac{F(\sin \lambda + f \cos \lambda)}{\cos \lambda - f \sin \lambda}$$

$$P_{R} = \frac{F[(l/\pi d_{m}) + f]}{1 - (fl/\pi d_{m})}$$

$$P_{L} = \frac{F(f \cos \lambda - \sin \lambda)}{\cos \lambda + f \sin \lambda}$$

$$P_{L} = \frac{F[f] - (l/\pi d_{m})}{1 + (fl/\pi d_{m})}$$

STUDENTS-HUB.com

x mean radius $d_m/2$,

$$P_{R} = \frac{F[(l/\pi d_{m}) + f]}{1 - (fl/\pi d_{m})}$$

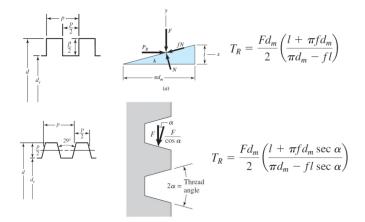
$$P_{L} = \frac{F[f| - (l/\pi d_{m})]}{1 + (fl/\pi d_{m})}$$

$$T_{L} = \frac{Fd_{m}}{2} \left(\frac{l + \pi fd_{m}}{\pi d_{m} - fl}\right)$$

$$T_{L} = \frac{Fd_{m}}{2} \left(\frac{\pi fd_{m} - l}{\pi d_{m} + fl}\right)$$

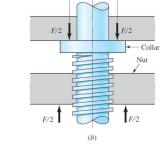
$$T_L = \frac{Fd_m}{2} \left(\frac{\pi f d_m - l}{\pi d_m + fl} \right)$$

This is the torque required to overcome a part of the friction in lowering the load. It may turn out, in specific instances where the lead is large or the friction is low, that the load will lower itself by causing the screw to spin without any external effort. In such cases, the torque T_L from Eq. (8–2) will be negative or zero. When a positive torque is obtained from this equation, the screw is said to be self-locking. Thus the condition for self-locking is


 $\pi f d_m > l$

Power Screw Efficiency - Raising the load

$$T_R = \frac{Fd_m}{2} \left(\frac{l + \pi fd_m}{\pi d_m - fl} \right) \qquad \text{ With Friction}$$


$$T_0 = \frac{Fl}{2\pi} \qquad \qquad \text{Without Friction } f=0$$

$$e = \frac{T_0}{T_R} = \frac{Fl}{2\pi T_R}$$

When the screw is loaded axially, a thrust or collar bearing must be employed between the rotating and stationary members in order to carry the axial component. The right figure shows a typical thrust collar in which the load is assumed to be concentrated at the mean collar diameter dc. If fc is the coefficient of collar friction, the torque required is

Table

Table 8–5	Screw		Nut M	aterial	
Coefficients of Friction f	Material	Steel	Bronze	Brass	Cast Iron
for Threaded Pairs	Steel, dry	0.15-0.25	0.15-0.23	0.15-0.19	0.15-0.25
Source: H. A. Rothbart and	Steel, machine oil	0.11-0.17	0.10-0.16	0.10-0.15	0.11-0.17
T. H. Brown, Jr., Mechanical Design Handbook, 2nd ed.,	Bronze	0.08-0.12	0.04-0.06	—	0.06-0.09
McGraw-Hill, New York, 2006.					

Table 8–6	Combination	Running
Thrust-Collar Friction	Soft steel on cast iron	0.12
Coefficients	Hard steel on cast iron	0.09
Source: H. A. Rothbart and	Soft steel on bronze	0.08
T. H. Brown, Jr., Mechanical Design Handbook, 2nd ed.,	Hard steel on bronze	0.06
McGraw-Hill, New York, 2006.		

The maximum nominal shear stress τ in torsion of the screw body can be expressed as 167

$$\tau = \frac{16I}{\pi d_r^3} \tag{8-7}$$

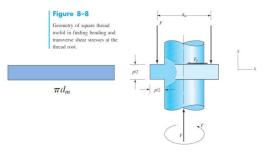
0.17

0.15

0.10 0.08

The axial stress σ in the body of the screw due to load F is

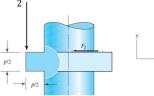
$$\sigma = \frac{F}{A} = \frac{4F}{\pi d_r^2} \tag{8-8}$$


in the absence of column action. For a short column the J. B. Johnson buckling formula is given by Eq. (4-43), which is

$$\left(\frac{F}{A}\right)_{\rm crit} = S_y - \left(\frac{S_y}{2\pi}\frac{l}{k}\right)^2 \frac{1}{CE}$$
(8-9)

Nominal thread stresses in power screws can be related to thread parameters as follows. The bearing stress in Fig. 8–8, σ_B , is

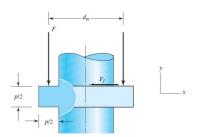
$$\sigma_B = -\frac{F}{\pi d_m n_l p/2} = -\frac{2F}{\pi d_m n_l p}$$
(8-10)


where n_t is the number of engaged threads.

STUDENTS-HUB.com

The bending stress at the root of the thread σ_b is found from

$$Z = \frac{I}{c} = \frac{(\pi d_r n_t)(p/2)^2}{6} = \frac{\pi}{24} d_r n_t p^2 \qquad M = \frac{Fp}{4} \qquad M = \frac{Fp}{22}$$
$$\sigma_b = \frac{M}{Z} = \frac{Fp}{4} \frac{24}{\pi d_r n_t p^2} = \frac{6F}{\pi d_r n_t p}$$
(8-11)
$$\frac{F}{2} = \frac{Fp}{4} \frac{24}{\pi d_r n_t p^2} = \frac{6F}{\pi d_r n_t p}$$



5/5/2021

The transverse shear stress τ at the center of the root of the thread due to load F is

$$\tau = \frac{3V}{2A} = \frac{3}{2} \frac{F}{\pi d_r n_t p/2} = \frac{3F}{\pi d_r n_t p}$$
(8-12)

and at the top of the root it is zero.

