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Background and Definitions

The ordinary differential equation referred to as Legendre’s differential equation is frequently
encountered in physics and engineering. In particular, it occurs when solving Laplace’s
equation in spherical coordinates.

Adrien-Marie Legendre (September 18, 1752 - January 10, 1833) began using, what are now
referred to as Legendre polynomials in 1784 while studying the attraction of spheroids and
ellipsoids. His work was important for geodesy.

1. Legendre’s Equation and Legendre Functions

The second order differential equation given as

d*y

1—x2?) —=2 —
1 —a) -3

d
2:vd—y—|—n(n—|—1)y:0 n>0, |z|]<1
x

is known as Legendre’s equation. The general solution to this equation is given as a function
of two Legendre functions as follows

y = AP, (z) + BQn,(x) x| <1
where
1 dv . .
P.(x) = —(x* —1)" Legendre function of the first kind
2nn! dzm

1 1
Qn(x) = EPn(m) In 1 R

Legendre function of the second kind

2. Legendre’s Associated Differential Equation

Legendre’s associated differential equation is given as

d2y dy 2
1—a2?)—= — 22—~ 1) —
( * )daz2 wdw +|n(n+1) 1 — 2

y=0

STUDENTS-HUB.com


https://students-hub.com

If we set m = 0 in this equation the differential equation reduces to Legendre’s equation.

The general solution to Legendre’s associated equation is given as

y=APlz)+ B Qr(x)

where P () and Q*(x) are called the associated Legendre functions of the first and second
kind given as

dm
P™(z) = (1—2°)™? —— P,(x)
dx™

dm
Qr(@) = (1—a)™ —— Qu(x)
€T
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Legendre’s Equation and Its Solutions

Legendre’s differential equations is

d? d
(1—w2)d—ag—2w£—|—n(n—|—1)y:0 n>0, |z|]<1

or equivalently

d

dx

d
[(1—m2)£}—|—n(n—|—1)y20 n>0 |r/<1

Solutions of this equation are called Legendre functions of order . The general solution can
be expressed as

y = AP, (x) + BQ,(x) lz| <1

where P, (x) and Q,(x) are Legendre Functions of the first and second kind of order n.

Ifn=0,1,2,3,... the P,(x) functions are called Legendre Polynomials or order n and
are given by Rodrigue’s formula.

1 dr
(@ — 1)
27n! dxm

Pn(z) =

Legendre functions of the first kind (P,(x) and second kind (Q,(x) of order n = 0,1,2,3
are shown in the following two plots

STUDENTS-HUB.com


https://students-hub.com

The first several Legendre polynomials are listed below

Po(z) = 1 P3(x) = %(5:133 — 3x)
Pi(x) = = P3(x) = %(353}4 — 3022 + 3)
1 1
Py(z) = 5(3:;:2 —1) P3(xz) = g(639135 — 7023 + 15x)

The recurrence formula is

2 1
P (z) —

Pn+1(:v): n+1 n+1

P,_1(x)

P:z+1(w) — P, _,(z) = (2n + 2)P,(z)

can be used to obtain higher order polynomials. In all cases P, (1) = 1 and

Pn(=1) = (=1)"

Orthogonality of Legendre Polynomials

The Legendre polynomials P,,(x) and P,(x) are said to be orthogonal in the interval
—1 < x < 1 provided

/ P..(z) P,(x) de =0 m#mn

—1

and as a result we have

1 2
P,.(x)]? dz = —
/_1[ @) do= o~ m=n
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Figure 5.1: Legendre function of the first kind, P, (x)
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Figure 5.2: Legendre function of the second kind, Q. ()
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Orthogonal Series of Legendre Polynomials

Any function f(a) which is finite and single-valued in the interval —1 < @ < 1, and which
has a finite number or discontinuities within this interval can be expressed as a series of
Legendre polynomials.

We let
f(x) = AoPo(x) + A1P1(x) + AsPy(x) + ... —1<z<1
= Y A.Pn(z)
n=0
Multiplying both sides by P,,(x) dx and integrating with respect to  from * = —1 to

x = 1 gives

1

B f(@)Pp(z) dz =) A, / P ()P (z) do

-1

By means of the orthogonality property of the Legendre polynomials we can write

_ 2n+1 1

An
2 Ja

f(x)Pnp(x) dx n=20,1,2,3...

Since P, () is an even function of  when n is even, and an odd function when n is odd, it
follows that if f(«) is an even function of & the coefficients A,, will vanish when n is odd;
whereas if f(x) is an odd function of x, the coefficients A,, will vanish when n is even.

Thus for and even function f(x) we have
0 n is odd

An = (2n + 1)/1f(m)Pn(a:) dx n is even
0

whereas for an odd function f(x) we have

A, =] @n+ 1)/01f(w)Pn(w) da n is odd

0 n is even
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When & = cos 0 the function f(0) can be written

£(6) =) A,P,(cosb) 0<0<m
where

An:2n—|—1

/ f(O)P,,(cos0)sin O do n=0,1,2,3...
0

Some Special Results Legendre Polynomials

Integral form

P,.(x) = %/0 [m—|— Va2 —1 cost}n dt

Values of P, (x) at « = 0 and & = £1
(=1)"T(n +1/2)

Pzn(O) ﬁr(n+1) P2n+1(0) = 0

, _ _ (=pr2l(n +3/2)
P, (0) = 0 P (0) = O S
P.(1) = 1 Pn.(-1) = (-1~

, _ n(n 1) , B oy n(n+1)
Py = " P(-1) = (- MR
[Pn(z)] < 1

The primes denote differentiation with respect to @ therefore

dP,(x)

P =

at =1
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Generating Function for Legendre Polynomials

If A is a fixed point with coordinates (x1,y1,21) and P is the variable point (x, y, z) and
the distance AP is denoted by R, we have

R*=(x—x1)°+ (y —y1)* + (z — z1)°

From the theory of Newtonian potential we know that the potential at the point P due to
a unit mass situated at the point A is given by

x| Q

where C' is some constant. It can be shown that this function is a solution of Laplace’s
equation.

In some circumstances, it is desirable to expand ¢ in powers of r or r~! where r =
V&2 + y2 + 22 is the distance from the origin O to the point P.

Z
A(X,Y,2)
oY, AP
o B(x.y.2)
e —>
OB y

X

Figure 5.3: Generating Function for Legendre Polynomials

a:)OA‘
r:)O_B‘
5 C C

R - Vr2 4+ a2 —2cos 16
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Through substitution we can write

C _
¢=—[1—2xt+2]
T
where
a
t=—, x = cos B
r
Therefore
C
¢ = ? g(a:, t)

We introduce the angle 8 between the vectors OA and OP and write

R’=7r*4+a%>—2 cos™ !0

where a = |OA|. If we let r/R = t and @ = cos 0, then

g(z,t) = (1 — 2zt + t2)~1/2

is defined as the generating function for P, (x). Expanding by the binomial expansion we
have

> 71\ (2zt — 2)"
t) = E — I
where the symbol (a),, is defined by

(@)p = a(a+1)(a+2)...(a+n—1) =T} (a+ k)

(a)o = 1

10
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() is referred to as the Pochammer symbol and (a,n) is the Appel’s symbol.

Thus we have

n!(2x) " ktrmk(—t2)*

ol t) = Y HAnyn

= P k!(n — k)!
which can be written as
(z,t) = (1 — 2at + t2)~1/2 Z S D 2n — 2kt ¢n
g\r, - — 4T - n
= iz 2kl (n — 2k)!(n — k)!
The coefficient of ¢™ is the Legendre polynomial P, (), therefore
g(x,t) = (1 — 2zt + t3)"V2 = ZPn(m)t” le] <1, |t] <1

Legendre Functions of the Second Kind

A second and linearly independent solution of Legendre’s equation for n=positive integers
are called Legendre functions of the second kind and are defined by

Qn(z) = —P () In 1 J_r i = Wo_i(z)

where

n

Wooi(z) = ) %Pm_l(w)Pn_m(ax)

m=1

is a polynomial of the (n — 1) degree. The first term of Q,, () has logarithmic singularities
at « = £1 or @ = 0 and 7.

11
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The first few polynomials are listed below

1 1+«x

Qo(m) - glnl—w

Qi(z) = Pi(x)Qo(xz) — 1

Qz2(z) = P2(x)Qo(x) — ga:

Qs(z) = Ps(x)Qo(x) — ;:ﬁ + g

showing the even order functions to be odd in & and conversely.

The higher order polynomials Q,(x) can be obtained by means of recurrence formulas
exactly analogous to those for P, (x).

Numerous relations involving the Legendre functions can be derived by means of complex
variable theory. One such relation is an integral relation of Qy(x)

—n—1

Qn(x) = /00 [az + Va2 -1 Coshe} de lz| > 1
0

and its generating function

t—x

1—2xt+t>)"?cosh™ ——— = n(x)t"
( ) Sy = 1)

Some Special Values of Q,(x)

4.6.---2n
1-3:5-.-(2n —1)

Q2.(0) = 0 Q2n11(0) = (=1)"*

Qn(l) = oo Qn(—x) = (_1)n+1Qn(w)

12
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Legendre’s Associated Differential Equation

The differential equation

d2y dy 2
1—2%)— — 2= nn-+1) — =0
( )da:2 dx +|nn+ 1) 1— x2 Y
is called Legendre’s associated differential equation. If m = 0, it reduces to Legendre’s

equation. Solutions of the above equation are called associated Legendre functions. We will
restrict our discussion to the important case where m and m are non-negative integers. In
this case the general solution can be written

y=APHz)+ B Q(z)

where P™(x) and Q*(x) are called the associated Legendre functions of the first and second
kind respectively. They are given in terms of ordinary Legendre functions.

dm
P™(z) = (1—a°)™? — Py(x)
dx™

dm
Qr@) = (1—ah)™2 —— Qu()
€r

The P™(x) functions are bounded within the interval —1 < @ < 1 whereas Q7*(x)
functions are unbounded at x = £1.

Special Associated Legendre Functions of the First Kind
P (z) = Pn(x)

(1 _ m2)m/2 dm+n

P™(z) = Py pr—— (z>—1)"=0 m>n
P(x) = (1- a2 Pya) = (527~ 1)(1—a?)"?
P,(z) = 3z(1— z?)Y/? P2(x) = 15z(1 — x?)
Pi(z) = 3(1—=x?) Pi(x) = 15(1 — x?)3/2
13
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Other associated Legendre functions can be obtained by the recurrence formulas.

Recurrence Formulas for P (x)

(n+1-mP,(@) = 2n+1DaPP(z) - (n+m)PL ()

2(m +1)

A —omyin C R —(n—m)(ndm+ DP(@)

P ()

Orthogonality of P (x)

As in the case of Legendre polynomials, the Legendre functions P () are orthogonal in
the interval —1 < x <1

/1 P (x)P*(x) de =0 n#k

—1

and also

Orthogonality Series of Associated Legendre Functions

Any function f(a) which is finite and single-valued in the interval —1 < x < 1 can be
expressed as a series of associated Legendre functions

f(x) = AnPT () + AmiP (%) + Amp2Pr o(2) + .0

14
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where the coefficients are determined by means of

_ 2k+1(k—m)! 1 -
=T (kim) _11‘(:11:)P,c (x) dx

Ay,

15
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Assigned Problems
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Problem Set for Legendre Functions and Polynomials

. Obtain the Legendre polynomial Py(x) from Rodrigue’s formula

1 d

Pr(x) = 2nn! dx™

[(@* —1)7]

. Obtain the Legendre polynomial Py(x) directly from Legendre’s equation of order 4

by assuming a polynomial of degree 4, i.e.

y=a:c4—|—b:1:3+ca:2+da:—|—e

. Obtain the Legendre polynomial Pg(x) by application of the recurrence formula

nP,(x) = (2n — 1)zP,_1(x) — (n — 1)P,_»(x)

assuming that Py(x) and Ps(x) are known.

. Obtain the Legendre polynomial Pe(x) from Laplace’s integral formula

1 ™
P,(x) = ;/o (x + a2 — 1cost)™ dt

. Find the first three coefficients in the expansion of the function

0 -1<x<0
f(x) =
T 0<z<1

in a series of Legendre polynomials P, (x) over the interval (—1,1).
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6.

10.

11.

12.
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Find the first three coefficients in the expansion of the function

cos 6 0<0< /2

f(0) =
0 w/2<60<m

in a series of the form

f() = iAnPn(cos 0) 0<6<n

Obtain the associated Legendre functions Py (x), PZ(x) and P2(x).

Verify that the associated Legendre function P () is a solution of Legendre’s associ-
ated equation for m = 2, n = 3.

. Verify the result

/IP;"(m) P"(x) dc =0 n#k

—1

for the associated Legendre functions Py (z) and Py (x).

Verify the result

L 2 2 (n+m)!
/_1 Pr(@)]" dw = 2n+1 (n —m)!

for the associated Legendre function P} (z).

Obtain the Legendre functions of the second kind Qo(x) and Q1 (x) by means of

Qn(z) = Py(z) / B (1 5

Obtain the function Qs(x) by means of the appropriate recurrence formula assuming
that Qo(x) and Q1 (x) are known.

17
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