ENCS3340 - Artificial Intelligence

Adversarial Search & Games

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid



Game Playing and Al

* Why would game playing be a good problem for Al research?

* Game-playing is non-trivial
* Need to display “human-like” intelligence
* Some games (such as chess) are very complex
* Requires decision-making within a time-limit

* Games are played in a controlled environment
* Can do experiments, repeat games, etc
* Good for evaluating research systems

e Can compare humans and computers directly
* Can evaluate percentage of wins/losses to quantify performance

e All the information is available

* Human and computer have equal information
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How Does a Computer Play a Game?

e A way to play a game is to:

e Consider all the legal moves you can make

Compute the new position resulting from each move

Evaluate each resulting position and determine which is best

Make that move

Wait for your opponent to move and repeat

* Key problems are:
e Representing the “board”
* Generating all next legal boards
e Evaluating a position
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Game Playing: Adversarial Search

* Adversarial: involving two people or two sides who oppose each other

* Different kinds of games:

Deterministic Chance
Perfect Chess, Checkers Backgammon,
Information Go, Othello Monopoly
Imperfect . :
, Battleship Bridge, Poker, Scrabble,
Information

* Games with perfect information. No randomness is involved.

* Games with imperfect information. Random factors are part of the game.
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Games as Adversarial Search

* many games can be formulated as search problems

Zero sum: my win is your loss, my loss is your win!

the zero-sum utility function leads to an adversarial situation
* in order for one agent to win, the other necessarily has to lose

» factors complicating the search task
* potentially huge search spaces
* elements of chance
* multi-person games, teams
* time limits
* imprecise rules
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Difficulties with Games

e games can be very hard search problems
* vyet reasonably easy to formalize

* finding the optimal solution may be impractical
e asolution that beats the opponent is “good enough”

e unforgiving

* asolution that is “not good enough” not only leads to higher costs, but to a loss to
the opponent

e example: chess
 size of the search space
e branching factor around 35
e about 50 moves per player
* about 35 or 10'>* nodes

» about 10%° distinct nodes (size of the search graph)
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Single-Person Game

e conventional search problem

 identify a sequence of moves that leads to a winning state
* examples: Solitaire, dragons and dungeons, Rubik’s cube

e |ittle attention in Al

* some games can be quite challenging

* some versions of solitaire

 a heuristic for Rubik’s cube was found by the Absolver program
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Searching in a two player game

* Traditional (single agent) search methods only consider how close the agent
is to the goal state (e.g. best first search).

* In two player games, decisions of both agents have to be taken into account:
a decision made by one agent will affect the resulting search space that the
other agent would need to explore.

* Question: Do we have randomness here since the decision made by the
opponent is NOT known in advance?

* No. Not if all the moves or choices that the opponent can make are finite and
can be known in advance.
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Searching in a two player game: Strategies

* Your Strategy for a move: you use the best strategy you can think of:
depends on how “smart” you are

* What about opponent strategy?
 We don’t know exactly: could be a NOVICE, could be a MASTER
* Which is safer:

* To assume that the opponent is a novice and may make dumb moves?
* To assume that the opponent is very smart?

e Which is safer in a war:

* To assume your opponent is weak
* To assume your opponent is very strong?

* We assume that the opponent is as smart as possible, or as smart as we can
think

* The opponent uses my own strategy for search (but in reverse):
* Ifltryto future choices in XO he tries to minimize MY chances.
* |am , he is MIN
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Two Player Games: Evaluation Functions

* What an evaluation function could be: an assessment of my chances to win:
e Chess: # of my figures — # of opponent figures (maybe weighted)
e Tic_tac_Toe: number of open chances for me — number of opponent’s chances

* General: Something that is good for me when higher and good for opponent

when lower; recall: | am MAX and he is MIN and we have ONLY ONE Evaluation
Function!

* Evaluation function is supposed to give an impression of how close MAX is to
the goal: the higher the closer:
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Two Player Games: Evaluation Functions

* The deeper you go: the more steps you imagine searching, the more accurate
your evaluation function gets (getting closer to goal).

e Soitis good to do the computation (of evaluation function) at the deepest
possible level and then see how to act now to reach there: but that is costly
and time consuming

* We need a compromise! Look ahead at a limited depth!: modest
computation, modest knowledge about position:
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Searching in a two player game

* To formalize a two player game as a search problem an agent can be called MAX
and the opponent can be called MIN.

* Problem Formulation:
* |nitial state: board configurations and the player to move.

* Successor function: list of pairs (move, state) specifying legal moves and their
resulting states. (moves + initial state = game tree)

* Aterminal test: decide if the game has finished.

* A utility function: produces a numerical value for (only) the terminal states. Example:
In chess, outcome = win/loss/draw, with values +1, -1, O respectively.

If you stop at non-terminal states, use an evaluation function to indicate the chances

of winning

* Players need search tree to determine next move.
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Partial game tree for Tic-Tac-Toe

MAX (x) [j‘_ﬁ
____:-:-:‘i’f’;’/%?-\%";“;}‘:*—;-_ —
e e ~ R e "-l(‘::; B
MIN© P HEH A meH B fe o o B
L1 L) L] | 1 x| ] [Ix] ] X
: ,\\T\“\\ * Root node represents the current board
Xi0| X| (0] (X]| | s . . .
MAX (x) i T 1 [ol configuration; player must decide
| L] the best single move to make next
X\x\“\“\\—-\\ e Each level of search nodes in the tree corresponds
xlolx] xiol 1 ol 1 to all possible board configurations for a particular
MIN (o) ] [Ix] ] player MAX or MIN.
— L . * Ifiitis my turn to move, then the root is labeled a
i S e "MAX" node; otherwise it is labeled a "MIN"
node, indicating opponent's turn.
| e Utility values found at the end can be returned
XToTX] x%,x XToTx] o back to their parent nodes.
TERMINAL lolx] [ofolx] [ x| ] * Idea: MAX chooses the board with the max utility
ol | [x[x]o] [xlo]o| value, MIN the minimum.
Uahty -1 0 +1
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MiniMax (MinMax, MM) Algorithm

* An algorithm to search trees representing two-player zero-sum (my gain your
loss) games.

* Goal: minimizing the possible loss for a worst case (maximum loss) scenario.

* Or maximize the minimum gain. Guaranteed; no matter what; how opponent
plays; worst case scenario; gain can be MORE, never less

* Result: one move (one level down) then the process starts again.

* For this one move you may explore as many nodes as you have time for!
* MIN works in opposite direction to MAX

* Then work is repeated
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MiniMax Algorithm

Create start node as a MAX node with current board configuration

Expand nodes down to some depth of lookahead in the game

Apply the evaluation function at each of the leaf nodes

“Back up” values for each of the non-leaf nodes until a value is computed for
the root node

* At MIN nodes, the backed-up value is the minimum of the values associated with its
children

* At MAX nodes, the backed-up value is the maximum of the values associated with its
children

* Pick the operator associated with the child node whose backed-up value
determined the value at the root
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MiniMax Example

Min

Max eee

Min

eoo
7 9 6 9

terminal nodes: values calculated from the utility function
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MiniMax Example

000
1 2 54X 1 2 6% 3 4 3
Min
[ONON©] [ONON©] [ONON©]
6 7 5 2

3 2 5 4 9

7 6 2 N 3 4N
eoeo

eoo
7 9 6 9 8 8 5

other nodes: values calculated via minimax algorithm
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MiniMax Example

7 6 5 000 5 6 X
Max
oo0o0
4 6 2 0 2 5 4 1 2 6 3 4 3
Min
eo0o eo0o0 eo0o0 eo0o0 eo0o0
7 9 6 9 7 5 2 3 2 5 4 9

STUDENTS-HUB.com Uploaded By: Malak Df}l? Obaid



MiniMax Example

5 .
3 4 Min
7 6 5 000 5 6 A
Max
000
7 6 2 5 2 5% 4 1 2 6% 3 4 3
Min
[ONON0©] [ONON©] [ONON©] [ONON©] [ONON©]

7 9 6 9 7 5 2 3 2 5 4 9
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MiniMax Example

5
Max
5
3 4 Min
7 6 5 000 5 6 A
Max
000
7 6 2 5 2 5% 4 1 2 6% 3 4 3
Min
[ONON0©] [ONON©] [ONON©] [ONON©] [ONON©]
7 9 6 9 7 5 2 3 2 5 4 9
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MiniMax Example

5
Max
5
3 4 Min
7 6 5 000 5 6 A
Max
000
7 6 2 5 4N 1 2 5% 4 1 2 6% 3 4 3
Min
[ONON0©] [ONON©] [ONON©] [ONON©] [ONON©]
7 9 6 9 8 8 5 6 7 5 2 3 2 5 4 9 3

moves by Max and countermoves by Min

Question: can | gain less than 5 if | take a move?
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MiniMax Exercise

A
MAX
D (,
MIN
SO G
MAX
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MiniMax Exercise Solution

A (3
WMAX
D (2,

MIN

SO0
MaX

E g/ v
MIN @9 @0 O @&
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Evaluation Function

* Complete search until reaching terminal states is impractical for most games

* Alternative: search the tree only to a certain depth

* Requires a cutoff-test to determine where to stop (e.g. # of levels)

* Replaces the terminal test
 The nodes at that level effectively become terminal leaf nodes

* Uses a heuristics-based evaluation function to estimate the expected utility of
the game from those leaf nodes (a measure of closeness to the goal)

* Must be consistent with the utility function. (values for terminal nodes, or at least
their order, must be the same)
* Tradeoff between accuracy and time cost
* Frequently weighted linear functions are used
e E=wyf; +w,fr + ... +w,f,
* Combination of features, weighted by their relevance
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Example: Tic-Tac-Toe

* simple evaluation function

E(s) = (rx + cx + dx) - (ro + co + do)

(number of rows, columns, and diagonals open for MAX) - (number of
rows, columns, and diagonals open for MIN )

e 1-ply lookahead
 start at the top of the tree
 evaluate all 9 choices for player 1
e pick the maximum E-value

e 2-ply lookahead
 also looks at the opponents possible move
e assuming that the opponents picks the minimum E-value
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Tic-Tac-Toe 1-Ply

STUDENTS-HUB.com

E(s0) = Max{E(s11), E(s1n)} = Max{2,3,4}=4

———%G1a) | ERB) 6] E(s18) E(s19)
3 : 8
x -6 -5 -6 -5
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Tic-Tac-Toe 2-Ply

E(s0) = Max{E(s11), E(s1n)} = Max{2,3,4} =4

E(s1:9)

1
w

E(s21)

6
a1 -5
=1

E(s22)

5
-5

=0

E(s23)

6
-5
=1

STUDENTS-HUB.com Uploaded By: Malak Dé? Obaid



MiniMax Properties

Assume lookahead to depth d

e Space complexity

* Depth-first search, so O(bd)

* Time complexity

* Given branching factor b, so O(b9)

* Time complexity is a major problem!

* Computer typically only has a finite amount of time to make a move.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid



Pruning

Discard parts of the search tree
* Guaranteed not to contain good moves

* Guarantee that the solution is not in that branch or sub-tree (if both players make optimal
decisions, they will never end up in that part of the tree)

Use pruning to ignore those branches

Certain moves are not considered
* Won’t result in a better evaluation value than a move further up in the tree
* They would lead to a less desirable outcome

Applies to moves by both players

* « (alpha) indicates the best choice for MAX so far, never decreases (initialize to -infinity)
* [ (beta) indicates the best choice for MIN so far, never increases (initialize to +infinity
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Alpha-Beta Pruning

O Beta cutoff pruning occurs when maximizing
if child’s alpha >= parent's beta
Stop expanding children. Why?

< Opponent won't allow computer to take this move

O Alpha cutoff pruning occurs when minimizing
if parent's alpha >= child’s beta
Stop expanding children. Why?

o Computer has a better move than this
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a-B Pruning Example

MAX

MIN
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a-B Pruning Example

M AX

MM
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a-B Pruning Example

I AK

MM

MAX

MIN
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a-B Pruning Example

I AK

MIN £14

MAX

MIN
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a-B Pruning Example

Il A

1M

MAX

MIN
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a-B Pruning Example

AKX

TN

MAX

MIN
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Alpha-Beta Pruning

Rules of Thumb

* ais the best ( highest) found so far along the path for Max

* Bis the best (lowest) found so far along the path for Min

* Search below a MIN node may be alpha-pruned if its B < a of some MIAX
ancestor

* Search below a MAX node may be beta-pruned if its o = 3 of some MIN
ancestor
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a - Search Algorithm

1. If terminal state, compute e(n) and return the result.
2. Otherwise, If the level is a minimizing level,
- Until no more childrenor B<a

- v, < a— B search on a child

- Ifo <fB,pB<«v.
»  Return min(v; )

3. Otherwise, the level is a maximizing level: _
« Until no more children or a > g,
— U, <—a— B search on a child.
— If U >a, Set a <0,

+  Return Max(v:)

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid



Consider this Example

5
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Alpha-Beta Example

[-ool +°°]

o best choice for Max
B best choice for Min  ?

e we assume a depth-first, left-to-right search as basic strategy
* the range of the possible values for each node are indicated

* initially [-oo, +00]

* from Max’s or Min’s perspective

* these local values reflect the values of the sub-trees in that node;
the global values a and B are the best overall choices so far for Max or Min
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Alpha-Beta Example

[-ool +°°]

o best choice for Max °?
B best choice for Min 7

* Min obtains the first value from a successor node
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Alpha-Beta Example

[-ool +°°]

o best choice for Max °?
B best choice for Min 6

* Min obtains the second value from a successor node
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Alpha-Beta Example

[5, +<]

o best choice for Max 5
B best choice for Min 5

* Min obtains the third value from a successor node
* this is the last value from this sub-tree, and the exact value is known

* Max now has a value for its first successor node, but hopes that something
better might still come
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Alpha-Beta Example

[5, +<]

o best choice for Max 5
B best choice for Min 3

* Min continues with the next sub-tree, and gets a better value

* Max has a better choice from its perspective, however, and will not consider
a move in the sub-tree currently explored by Min

* initially [-oo, +00]
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Alpha-Beta Example

[5, +o°]
Max

o best choice for Max 5
B best choice for Min 3

* Min knows that Max won’t consider a move to this sub-tree, and abandons
it

* this is a case of pruning, indicated by ®
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Alpha-Beta Example

[5, +o°]
Max

5 [_oo’ 3] [_oo’ 6] M|n

o best choice for Max 5
B best choice for Min 3

* Min explores the next sub-tree, and finds a value that is worse than the
other nodes at this level

* if Min is not able to find something lower, then Max will choose this branch,
so Min must explore more successor nodes
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Alpha-Beta Example

[5, +o°]
Max
5 [_oo’ 3] [_oo’ 5] M|n
6 5 3 6 5

o best choice for Max 5
B best choice for Min 3

* Min is lucky, and finds a value that is the same as the current worst value at
this level

* Max can choose this branch, or the other branch with the same value

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid



Alpha-Beta Example

Max

e, 3] Min

o best choice for Max 5
B best choice for Min 3

* Min could continue searching this sub-tree to see if there is a value that is
less than the current worst alternative in order to give Max as few choices

as possible
* this depends on the specific implementation
* Max knows the best value for its sub-tree
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Alpha-Beta Example Overview

Max

<=3 Min

o best choice for Max 5
B best choice for Min 7->6->5->3

* some branches can be pruned because they would never be considered

» after looking at one branch, Max already knows that they will not be of interest since Min
would choose a value that is less than what Max already has at its disposal
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Properties of Alpha-Beta Pruning

in the ideal case, the best successor node is examined first
* results in O(b9/2) nodes to be searched instead of O(b9)
* alpha-beta can look ahead twice as far as minimax
* in practice, simple ordering functions are quite useful

e assumes an idealized tree model
* uniform branching factor, path length
* random distribution of leaf evaluation values

transpositions tables can be used to store permutations

* sequences of moves that lead to the same position

requires additional information for good players
* game-specific background knowledge
* empirical data
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Alpha-Beta Pruning Example

1.Search below a MIN
node may be alpha-
pruned if the beta MAX
valueis<=tothe |  =-=-=------mmmmmmmmmm -
alpha value of some
MAX ancestor.

2. Search below a MAX
node may be beta-
pruned if the alpha
value is >= to the beta
value of some MIN
ancestor.
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Alpha-Beta Pruning Example

1.Search below a MIN
node may be alpha-
pruned if the beta MAX
valueis<=tothe W |  ====-=---smmmmmmmmmeee e
alpha value of some
MAX ancestor.

2. Search below a MAX
node may be beta-
pruned if the alpha
value is >= to the beta
value of some MIN
ancestor.
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Alpha-Beta Pruning Example

1.Search below a MIN
node may be alpha-
pruned if the beta MAX
valueis<=tothe W |  ====-=---smmmmmmmmmeee e
alpha value of some
MAX ancestor.

2. Search below a MAX
node may be beta-
pruned if the alpha
value is >= to the beta
value of some MIN
ancestor.
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Alpha-Beta Pruning Example

1.Search below a MIN
node may be alpha-
pruned if the beta MAX
valueis<=tothe W |  ====-=---smmmmmmmmmeee e
alpha value of some
MAX ancestor.

2. Search below a MAX
node may be beta-
pruned if the alpha
value is >= to the beta
value of some MIN
ancestor.
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Alpha-Beta Pruning Example

1.Search below a MIN
node may be alpha-
pruned if the beta MAX
valueis<=tothe W |  ====-=---smmmmmmmmmeee e
alpha value of some
MAX ancestor.

2. Search below a MAX
node may be beta-
pruned if the alpha
value is >= to the beta
value of some MIN
ancestor.
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Checkers Case Study

* how to play: https://www.youtube.com/watch?v=yFrAN-LFZRU

* initial board configuration

e Black single on 20
single on 21
king on 31

* Red single on 23
king on 22

 evaluation function

E(s)=(5x;+x;) - (5r;+13)
where

x; = black king advantage,
X, = black single advantage,
r; = red king advantage,

r, = red single advantage
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https://www.youtube.com/watch?v=yFrAN-LFZRU

Checkers MiniMax Example
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Checkers Alpha-Beta Example

— O

T

212 _
205160 %
NZ ®

o0
20->16

p2t-dy
oT<oz WY
gy o

Ay
| o
97T <- 0z . =

MIN

>
<
=

57
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Checkers Alpha-Beta Example

—

T

212 _
205160 %
NZ ®

o0
20->16

p2t-dy
oT<oz WY
gy o

Ay
| o
97T <- 0z . =

MIN

58
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Checkers Alpha-Beta Example

a 1
B 1 2
o 7
N N
MAX 2] NN\
Q B- cutoff: no need to AR
: .
examine further branches = ¢
1 0 4
V)
S s,
MIN D\, y AR 2,
N X ‘go (5
o
2 0 4 8 8
O \P 9 \\» AP ol\e o R
\\\V) N A \)‘\l N\ <Q e Sl \y
> W g 2 ] \2 Y MRS
- ‘ (o)) m‘
111 2 o000 -4 -4 -8 -8 -8 -8

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid



Checkers Alpha-Beta Example

o

T

212 _
205160 %
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o0
20->16

p2t-dy
oT<oz WY
gy o
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| o
97T <- 0z . =
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Checkers Alpha-Beta Example

a 1
B 1 2
o 7
N N
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examine further branches = ¢
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Checkers Alpha-Beta Example

o

T

MIN

62
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Checkers Alpha-Beta Example

63
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Checkers Alpha-Beta Example

a 1
B -4 2
o 7
A\ N
MAX - 2 A
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Checkers Alpha-Beta Example

a 1
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Search Limits

* search must be cut off because of time or space limitations

 strategies like depth-limited or iterative deepening search can be used

e don’t take advantage of knowledge about the problem

* more refined strategies apply background knowledge
* quiescent search

» cut off only parts of the search space that don’t exhibit big changes in the
evaluation function
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Horizon Problem

* moves may have disastrous consequences in the future, but the
consequences are not visible

* the corresponding change in the evaluation function will only become evident at
deeper levels

* they are “beyond the horizon”

* determining the horizon is an open problem without a general solution

* only some pragmatic approaches restricted to specific games or situation
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Games with Chance

* in many games, there is a degree of unpredictability through random
elements

* throwing dice, card distribution, roulette wheel, ...

* this requires chance nodes in addition to the MAX and MIN nodes

* branches indicate possible variations

* each branch indicates the outcome and its likelihood
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Expected Minimax

MAX

v= > P(n)xMinimax(n)

chance nodes
 »
3=05x4+05bx2 CHANCE 3

0.5

Interleave chance nodes MIN 2

with min/max nodes

Again, the tree is constructed
bottom-up
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Decisions with Chance

* the utility value of a position depends on the random element

* the definite minimax value must be replaced by an expected value

 calculation of expected values

 utility function for terminal nodes
* for all other nodes

e calculate the utility for each chance event
* weigh by the chance that the event occurs

e add up the individual utilities
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Multi-player Non-Zero-Sum Games

* Similar to minimax:

 Utilities are now tuples

Each player maximizes
their own entry at each

node

Propagate (or back up)

nodes from children

Can give rise to
cooperation and
competition

4,3,2

1,5,2

1,5,2

7,7,1

dynamically...

1,2,6

4,3,2

6,1,2

7,4,1

5,1,1

1,5,2

7,7,1

54,5
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Chapter Summary

* many game techniques are derived from search methods

e the minimax algorithm determines the best move for a player by calculating
the complete game tree

* alpha-beta pruning dismisses parts of the search tree that are provably
irrelevant

* an evaluation function gives an estimate of the utility of a state when a
complete search is impractical

* chance events can be incorporated into the minimax algorithm by
considering the weighted probabilities of chance events
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