
+ Chapter 3 (9th ed.)
CPU Organization - Functions 

and Interconnections

1

Uploaded By: anonymousSTUDENTS-HUB.com



Program Concept

• Hardwired systems are inflexible

• General purpose hardware can do 
different tasks, given correct control 
signals

• Instead of re-wiring, supply a new set of 
control signals

Uploaded By: anonymousSTUDENTS-HUB.com



What is a program?

• A sequence of steps

• For each step, an arithmetic or logical 
operation is done

• For each operation, a different set of 
control signals is needed

Uploaded By: anonymousSTUDENTS-HUB.com



CPU Basics

• A typical CPU has three major 
components:

—Register Set,

– The register set is usually a combination of general-
purpose and special-purpose registers.

– General-purpose registers are used for any purpose.

– Special-purpose registers have specific functions 
within the CPU.

—Arithmetic Logic Unit, and

—Control Unit (CU).

Uploaded By: anonymousSTUDENTS-HUB.com



CPU Basics

• The Control Unit and the Arithmetic and 
Logic Unit constitute the Central 
Processing Unit

• Data and instructions need to get into the 
system and results out

—Input/output

• Temporary storage of code and results is 
needed

—Main memory

Uploaded By: anonymousSTUDENTS-HUB.com



Function of Control Unit

• For each operation a unique code is 
provided

—e.g. ADD, MOVE

• A hardware segment accepts the code and 
issues the control signals

• We have a computer!

Uploaded By: anonymousSTUDENTS-HUB.com



CPU Basics

Uploaded By: anonymousSTUDENTS-HUB.com



Computer Components: Top Level View

Uploaded By: anonymousSTUDENTS-HUB.com



Registers

•Contains a word to be stored in memory or sent to the  I/O unit

•Or is used to receive a word from memory or from the I/O unit

Memory buffer 
register (MBR)

•Specifies the address in memory of the word to be written from 
or read into the MBR

Memory address 
register (MAR)

•holds the instruction currently being executed or decoded.
Instruction 

register (IR)

•Contains the address of the next instruction pair to be fetched 
from memory

Program counter 
(PC)

•Employed to temporarily hold operands and results of ALU 
operations

Accumulator (AC) 
and multiplier 
quotient (MQ)

Uploaded By: anonymousSTUDENTS-HUB.com



CPU Basics: Instruction Cycle

• A typical and simple execution cycle in a CPU is as follows:

— The next instruction to be executed, whose address is 
obtained from the PC, is fetched from the memory and stored 
in the IR.

— Instruction is decoded.

— Operands are fetched from the memory and stored in CPU 
registers, if needed.

— Instruction is executed.

— Results are transferred from CPU registers to the memory, if 
needed.

• The execution cycle is repeated as long as there are more 
instructions to execute.

• A check for pending interrupts is usually included in the 
cycle.

Uploaded By: anonymousSTUDENTS-HUB.com



Instruction Cycle

• Two steps:

—Fetch

—Execute

Uploaded By: anonymousSTUDENTS-HUB.com



Registers

• CPU must have some working space (temporary 
storage) Called registers

• Number and function vary between processor 
designs

• One of the major design decisions

• Top level of memory hierarchy

• User Visible Registers

—General Purpose

—Data

—Address

—Condition Codes

Uploaded By: anonymousSTUDENTS-HUB.com



General Purpose Registers

• Make them general purpose

—Increase flexibility and programmer options

—Increase instruction size & complexity

• Make them specialized

—Smaller (faster) instructions

—Less flexibility

• How Many GP Registers?

• How big?

Uploaded By: anonymousSTUDENTS-HUB.com



Register Set

Uploaded By: anonymousSTUDENTS-HUB.com



Register Set

Uploaded By: anonymousSTUDENTS-HUB.com



Register Set

Sign of last result, Zero, Carry, Equal, Overflow, Interrupt 

enable/disable, Supervisor

Uploaded By: anonymousSTUDENTS-HUB.com



Register Set

Uploaded By: anonymousSTUDENTS-HUB.com



Register Set

Uploaded By: anonymousSTUDENTS-HUB.com



CPU Instruction Cycle

Uploaded By: anonymousSTUDENTS-HUB.com



CPU Instruction Cycle

Uploaded By: anonymousSTUDENTS-HUB.com



CPU Instruction Cycle

Uploaded By: anonymousSTUDENTS-HUB.com



CPU Instruction Cycle

Uploaded By: anonymousSTUDENTS-HUB.com



Format of Instructions and Data

Uploaded By: anonymousSTUDENTS-HUB.com



Example of Program Execution

Fetch Execute

Three 

Instruction 

Cycles

Uploaded By: anonymousSTUDENTS-HUB.com



Example of Program Execution

1. PC contains address of first instruction: 300h

2. PC value moved to AR or MAR

3. Instruction 1940h (hex) is loaded into IR (IR  

M[AR])

4. Increment PC.

5. The “1” value in IR means LOAD AC.

6. The “940” value is the memory address for data 

to be read and loaded to AC: AC  M[AR]

7. AC gets the value of 3h. Increment PC

8. Next inst. is 5941h: the value “5” means add to 

AC from memory location “941”. Increment PC

9. Next inst. is 2941h: the value “2” means store AC 

to memory location “941”

Uploaded By: anonymousSTUDENTS-HUB.com



Instruction Cycle State Diagram

Execution cycle may reference memory more than once. The operation could be an I/O type. For some 

instruction, some states may be null and others may be accessed more than once.

From memory or I/O Into memory or out to I/O

Uploaded By: anonymousSTUDENTS-HUB.com



An Abstract (Simplified) View:

Uploaded By: anonymousSTUDENTS-HUB.com



Interrupts

• Mechanism by which other modules (e.g. 
I/O) may interrupt normal sequence of 
processing. Improves process efficiency.

Classes:

• Program (condition occurs as a result of instruction execution)

—e.g. Arithmetic overflow, division by zero

• Timer
—Generated by internal processor timer

—Used in pre-emptive multi-tasking

• I/O (from I/O controller)
—to signal normal completion or error

• Hardware failure
—e.g. memory parity error, power failure

Uploaded By: anonymousSTUDENTS-HUB.com



Program Flow Control

Uploaded By: anonymousSTUDENTS-HUB.com



Program Flow Control

1. User program executes codes 1, 2, and 3 that 

do not involve the I/O. 

2. It interleaves the codes with WRITE calls to 

an I/O program.

3. The IO program has a sequence of 

instructions, 4, to prep for the I/O operation. It 

has the actual IO command, and a sequence 

of instructions, 5, to complete the operation 

(i.e. set flag for success or failure).

4. Since no interrupt, the IO command may take 

long, and the program has to wait for the IO 

device to perform what it was asked to do.

5. In this case, the IO program is hung up 

waiting, and the user program is stopped at 

WRITE call location.

Uploaded By: anonymousSTUDENTS-HUB.com



Program Flow Control

1. With interrupts, Processor can execute other 

inst. While an IO operation is in progress.

2. A WRITE call is made and the IO preparation 

code,4, and the I/O command are executed.

3. User program resumes execution while the 

external device is busy doing what it was told 

to do via the I/O command (print data).

4. When external device is ready to be serviced 

again, its I/O module sends an Interrupt 

Request signal to the processor.

5. Processor suspends operations to handle the 

Interrupt (point  X) (interrupt handler). Normal 

operation then resumes.

6. Interrupt handling code is not part of the user 

code.

7. Interrupt handling is the responsibility of the 

Processor and OS.

Uploaded By: anonymousSTUDENTS-HUB.com



Interrupt Cycle

• Added to instruction cycle

• Processor checks for interrupt

—Indicated by an interrupt signal

• If no interrupt, fetch next instruction

• If interrupt pending:

—Suspend execution of current program 

—Save context

—Set PC to start address of interrupt handler 
routine

—Process interrupt

—Restore context and continue interrupted 
program

Uploaded By: anonymousSTUDENTS-HUB.com



Transfer of Control via Interrupts

When the interrupt 

processing is completed, 

normal execution resumes
Uploaded By: anonymousSTUDENTS-HUB.com



Instruction Cycle with Interrupts

If Interrupt is pending:

-Suspend execution of current program and save address of next instruction.

- Set the PC to the starting address of an Interrupt Handler Routine and then 

fetch the first instruction in the handler program

Uploaded By: anonymousSTUDENTS-HUB.com



Instruction Cycle (with Interrupts) -  

State Diagram

Uploaded By: anonymousSTUDENTS-HUB.com



Multiple Interrupts

• Disable interrupts

—Processor will ignore further interrupts whilst 
processing one interrupt

—Interrupts remain pending and are checked 
after first interrupt has been processed

—Interrupts handled in sequence as they occur

• Define priorities

—Low priority interrupts can be interrupted by 
higher priority interrupts

—When higher priority interrupt has been 
processed, processor returns to previous 
interrupt

Uploaded By: anonymousSTUDENTS-HUB.com



Multiple Interrupts - Sequential

No priority 

considerations btw 

Interrupts.

Uploaded By: anonymousSTUDENTS-HUB.com



Multiple Interrupts – Nested

Uploaded By: anonymousSTUDENTS-HUB.com



Time Sequence of Multiple Interrupts

Increasing Priority: 

Printer: 2

Disk: 4

Comm Line: 5

Disk Interrupt 

occurs at t=20

Uploaded By: anonymousSTUDENTS-HUB.com



Connecting

• All the units must be 
connected

• Different type of 
connection for different 
type of unit

—Memory

—Input/Output

—CPU

Uploaded By: anonymousSTUDENTS-HUB.com



CPU Connection

• Reads instruction and data

• Writes out data (after processing)

• Sends control signals to other units

• Receives (& acts on) interrupts

Uploaded By: anonymousSTUDENTS-HUB.com



Memory Connection

• Receives and sends data

• Receives addresses (of locations)

• Receives control signals 

—Read

—Write

—Timing

Uploaded By: anonymousSTUDENTS-HUB.com



Input/Output Connection

• Similar to memory from computer’s viewpoint

—Output

– Receive data from computer

– Send data to peripheral

—Input

– Receive data from peripheral

– Send data to computer

• Receive control signals from computer

• Send control signals to peripherals

—e.g. spin disk

• Receive addresses from computer

—e.g. port number to identify peripheral

• Send interrupt signals (control)

Uploaded By: anonymousSTUDENTS-HUB.com



Buses

• There are a number of possible 
interconnection systems

• Single and multiple BUS structures are 
most common

• e.g. Control/Address/Data bus (PC)

• e.g. Unibus (DEC-PDP)

Uploaded By: anonymousSTUDENTS-HUB.com



What is a Bus?

• A communication pathway connecting two 
or more devices

• Usually broadcast 

• Often grouped

—A number of channels in one bus

—e.g. 32 bit data bus is 32 separate single bit 
channels

• Power lines may not be shown

Uploaded By: anonymousSTUDENTS-HUB.com



Computer System Buses

• What do buses look like?

—Parallel lines on circuit boards

—Ribbon cables

—Strip connectors on mother boards

—Sets of wires

Uploaded By: anonymousSTUDENTS-HUB.com



Bus Types

• Dedicated

—Separate data & address lines

• Multiplexed

—Shared lines

—Address valid or data valid control line

—Advantage - fewer lines

—Disadvantages

– More complex control

– Ultimate performance

Uploaded By: anonymousSTUDENTS-HUB.com



Data Bus

• Carries data

—Remember that there is no difference between 
“data” and “instruction” at this level

• Width is a key determinant of 
performance

—8, 16, 32, 64 bit

Uploaded By: anonymousSTUDENTS-HUB.com



Address bus

• Identify the source or destination of data

• e.g. CPU needs to read an instruction 
(data) from a given location in memory

• Bus width determines maximum memory 
capacity of system

—e.g. 8080 has 16 bit address bus giving 64k 
address space

Uploaded By: anonymousSTUDENTS-HUB.com



Control Bus

• Control and timing information

—Memory read/write signal

—Interrupt request

—Clock signals

Uploaded By: anonymousSTUDENTS-HUB.com



Bus Interconnection Scheme

Uploaded By: anonymousSTUDENTS-HUB.com



CPU local (internal) Bus Organization

• One-Bus Organization
—Using one bus, the CPU registers and the ALU 

use a single bus to move outgoing and 
incoming data. 

—Since a bus can handle only a single data 
movement within one clock cycle, two-
operand operations will need two cycles to 
fetch the operands

—Additional registers may be needed to 
buffer data for the ALU

—This bus organization is the simplest and 
least expensive, but it limits the amount of 
data transfer that can be done in the same 
clock cycle, which will slow down the overall 
performance. 

Uploaded By: anonymousSTUDENTS-HUB.com



Single Bus Problems

• Lots of devices on one bus leads to:

—Propagation delays

– Long data paths mean that co-ordination of bus 
use can adversely affect performance

– If aggregate data transfer approaches bus capacity

• Most systems use multiple buses to 
overcome these problems

Uploaded By: anonymousSTUDENTS-HUB.com



CPU local Bus Organization

Uploaded By: anonymousSTUDENTS-HUB.com



CPU local Bus Organization

• Two-Bus Organization
—Using two buses is a faster solution than the one-bus 

organization.

—  In this case, general-purpose registers are connected 
to both buses. 

—Data can be transferred from two different registers 
to the ALU at the same time. 

—Therefore, a two operand operation can fetch both 
operands in the same clock cycle. 

—An additional buffer register may be needed to hold 
the output of the ALU when the two buses are busy 
carrying the two operands. 

—In some cases, one of the buses may be dedicated for 
moving data into registers (in-bus), while the other is 
dedicated for transferring data out of the registers 
(out-bus). 

Uploaded By: anonymousSTUDENTS-HUB.com



CPU local Bus Organization

Uploaded By: anonymousSTUDENTS-HUB.com



CPU local Bus Organization

• Three-Bus Organization
—In a three-bus organization, two buses may 

be used as source buses while the third is 
used as destination. 

—The source buses move data out of registers 
(out-bus), and the destination bus may 
move data into a register (in-bus). 

—Each of the two out-buses is connected to an 
ALU input. 

—The output of the ALU is connected directly to 
the in-bus. 

—The more buses we have, the more data we 
can move within a single clock cycle.

— However, increasing the number of buses will 
also increase the complexity of the hardware. 

Uploaded By: anonymousSTUDENTS-HUB.com



CPU local Bus Organization

Uploaded By: anonymousSTUDENTS-HUB.com



Bus Arbitration

• More than one module controlling the bus

—e.g. CPU and DMA controller

• Only one module may control bus at one 
time

• Arbitration may be centralised or 
distributed

—Centralised :Only one module (bus controller 
or arbiter) may control bus at one time

—Distributed :More than one module 
controlling the bus

– e.g. CPU and DMA controller

Uploaded By: anonymousSTUDENTS-HUB.com



Timing

• Co-ordination of events on bus

• Bus use either synchronous or 
asynchronous timing. 

• Synchronous

—Events determined by clock signals

—Control Bus includes clock line

—A single 1-0 transition is referred to as is a 
bus cycle or clock cycle

—All devices on the bus can read clock line

—Usually sync on leading edge

—Usually a single cycle for an event

Uploaded By: anonymousSTUDENTS-HUB.com



Control Unit

• The control unit is the main component that 
directs the system operations by sending control 
signals to the datapath. 

• Datapath: The data section, which contains the 
registers and the ALU.

• These signals control the flow of data within the 
CPU and between the CPU and external units such 
as memory and I/O. 

• Control buses generally carry signals between the 
control unit and other computer components in a 
clock-driven manner. 

• The system clock produces a continuous sequence 
of pulses (timing signals) in a specified duration 
and frequency. 

Uploaded By: anonymousSTUDENTS-HUB.com



Control Unit

• A sequence of steps t0 , t1 , t2 , . . . , (t0 < t1 < 
t2 , . . .) are used to execute a certain 
instruction. 

• The op-code field of a fetched instruction is 
decoded to provide the control signal generator 
with information about the instruction to be 
executed. 

• Step information generated by a logic circuit 
module is used with other inputs to generate 
control signals. 

• The signal generator can be specified simply by a 
set of Boolean equations for its output in terms 

of its inputs. 

Uploaded By: anonymousSTUDENTS-HUB.com



Control Signal Generator

Uploaded By: anonymousSTUDENTS-HUB.com



Control Unit

Uploaded By: anonymousSTUDENTS-HUB.com



Hardwired Implementation

• In hardwired control, a direct 
implementation is accomplished using 
logic circuits.

• For each control line, one must find the 
Boolean expression in terms of the input 
to the control signal generator

• Let us explain the implementation using 
simple example.

Uploaded By: anonymousSTUDENTS-HUB.com



Hardwired Implementation example

• Assume that the instruction set of a 
machine has the three instructions: Inst-
x, Inst-y, and Inst-z; 

• and A, B, C, D, E, F, G, and H are control 
lines. 

• The following table shows the control lines 
that should be activated for the three 
instructions at the three steps t0 , t1 , 
and t2 .

Uploaded By: anonymousSTUDENTS-HUB.com



Hardwired Implementation example

Boolean expressions for the rest of the control lines can be 

obtained in a similar way. Uploaded By: anonymousSTUDENTS-HUB.com



Hardwired Implementation example

Logic Circuit for 

control lines A, B 

and C

The Boolean 

expression for 

control lines A, B 

and C

Uploaded By: anonymousSTUDENTS-HUB.com



Microprogrammed Control Unit

• Microprogramming was motivated by the desire to 

reduce the complexities involved with hardwired 

control. 

• An instruction is implemented using a set of micro-

operations. 

• Associated with each micro-operation is a set of 

control lines that must be activated to carry out the 

corresponding microoperation.

• The idea of microprogrammed control is to store the 

control signals associated with the implementation of 

a certain instruction as a microprogram in a special 

memory called a control memory (CM). 
Uploaded By: anonymousSTUDENTS-HUB.com



Microprogrammed Control Unit

• A microprogram consists of a sequence of 

microinstructions.

— A microinstruction is a vector of bits, where each bit 

is a control signal, condition code, or the address of 

the next microinstruction.

—Microinstructions are fetched from CM the same way 

program instructions are fetched from main memory

• When an instruction is fetched from memory, the op-

code field of the instruction will determine which 

microprogram is to be executed.

Uploaded By: anonymousSTUDENTS-HUB.com



Example#1

Uploaded By: anonymousSTUDENTS-HUB.com



Example#1

• a) Fill in the table above with the values for PC, IR, R0, R1 and 
R2 registers? Initial values mean the values of the registers prior 
to fetching the first instruction from memory.

• b) What is the range of the signed integer values that can be 
stored in this memory?

Uploaded By: anonymousSTUDENTS-HUB.com



Example#1

• c) write the machine code for the instruction ADD R0, [105H].

• d) Using the available above four instructions, write an assembly 
code to perform Mem[105]=Mem[106]+Mem[107]

Uploaded By: anonymousSTUDENTS-HUB.com


	Slide 1: Chapter 3 (9th ed.)
	Slide 2: Program Concept
	Slide 3: What is a program?
	Slide 4: CPU Basics
	Slide 5: CPU Basics
	Slide 6: Function of Control Unit
	Slide 7: CPU Basics
	Slide 8: Computer Components: Top Level View
	Slide 9: Registers
	Slide 10: CPU Basics: Instruction Cycle
	Slide 11: Instruction Cycle
	Slide 12: Registers
	Slide 13: General Purpose Registers
	Slide 14: Register Set
	Slide 15: Register Set
	Slide 16: Register Set
	Slide 17: Register Set
	Slide 18: Register Set
	Slide 19: CPU Instruction Cycle
	Slide 20: CPU Instruction Cycle
	Slide 21: CPU Instruction Cycle
	Slide 22: CPU Instruction Cycle
	Slide 23: Format of Instructions and Data
	Slide 24: Example of Program Execution
	Slide 25: Example of Program Execution
	Slide 26: Instruction Cycle State Diagram
	Slide 27: An Abstract (Simplified) View:
	Slide 28: Interrupts
	Slide 29: Program Flow Control
	Slide 30: Program Flow Control
	Slide 31: Program Flow Control
	Slide 32: Interrupt Cycle
	Slide 33: Transfer of Control via Interrupts
	Slide 34: Instruction Cycle with Interrupts
	Slide 35: Instruction Cycle (with Interrupts) -  State Diagram
	Slide 36: Multiple Interrupts
	Slide 37: Multiple Interrupts - Sequential
	Slide 38: Multiple Interrupts – Nested
	Slide 39: Time Sequence of Multiple Interrupts
	Slide 40: Connecting
	Slide 41: CPU Connection
	Slide 42: Memory Connection
	Slide 43: Input/Output Connection
	Slide 44: Buses
	Slide 45: What is a Bus?
	Slide 46: Computer System Buses
	Slide 47: Bus Types
	Slide 48: Data Bus
	Slide 49: Address bus
	Slide 50: Control Bus
	Slide 51: Bus Interconnection Scheme
	Slide 52: CPU local (internal) Bus Organization
	Slide 53: Single Bus Problems
	Slide 54: CPU local Bus Organization
	Slide 55: CPU local Bus Organization
	Slide 56: CPU local Bus Organization
	Slide 57: CPU local Bus Organization
	Slide 58: CPU local Bus Organization
	Slide 59: Bus Arbitration
	Slide 60: Timing
	Slide 61: Control Unit
	Slide 62: Control Unit
	Slide 63: Control Signal Generator
	Slide 64: Control Unit
	Slide 65: Hardwired Implementation
	Slide 66: Hardwired Implementation example
	Slide 67: Hardwired Implementation example
	Slide 68: Hardwired Implementation example
	Slide 69: Microprogrammed Control Unit
	Slide 70: Microprogrammed Control Unit
	Slide 71: Example#1
	Slide 72: Example#1
	Slide 73: Example#1

