

Physics Lab 211

Experiment No. 3

Newton's Laws of Motion

Name: Laith Marzouka Partners: Ahmed Awawda Lamia' Abu Awwad

ID: 1160827**ID:** 1163113**ID:** 1150993

Advisor: Dr. Areej Abdel Rahman Date: July 28, 2018

STUDENTS-HUB.com

Uploaded By: Jibreel Bornat

Data Sheet:

Part I:

Attempt	Δt_1 (s)	Δt_2 (s)	<i>V</i> ₁ (<i>m/s</i>)	<i>V</i> ₂ (<i>m/s</i>)	$\frac{V_2 - V_1}{(m/s)}$	<i>V_{avg}</i> (<i>m/s</i>)	$\frac{V_2 - V_1}{V_{avg}}$
1	0.019	0.019	0.947	0.947	0.000	0.947	0.000
2	0.016	0.016	1.125	1.125	0.000	1.125	0.000
3	0.011	0.012	1.636	1.500	0.136	1.568	0.087
4	0.021	0.020	0.857	0.900	0.043	0.879	0.049
5	0.014	0.014	1.286	1.286	0.000	1.286	0.000

 $\varDelta x = (0.018 \pm 0.001)m$

Part II-A:

$\Delta t(s)$	t (s)	v(m/s)	d (m)
0.021	0.869	0.857	1.4
0.019	0.938	0.947	1.3
0.017	1.231	1.059	1.2
0.016	1.302	1.125	1.1
0.015	1.455	1.200	1.0

Part II-B:

$d = \frac{1}{2}at^2 \to a = \frac{2d}{t^2}$, where $d = 0.445 m$					
$\Delta t(s)$	<i>t</i> (<i>s</i>)	M (g)	M `(g)	$a (m/s^2)$	
0.021	0.946	216	20	0.995	
0.019	0.868	212	24	1.181	
0.018	0.813	208	28	1.347	
0.017	0.786	204	32	1.441	
0.016	0.673	200	36	1.965	

Calculations:

1- Graph I (log v vs. log t):	
$slope = (0.60 \pm 0.06)$	
2- Graph II-A (log d vs. log t):	
$slope = (1.1 \pm 0.14)$	
<u>3- Graph II-B (<i>M`g vs.a</i>):</u>	
$slope = (0.161 \pm 0.030)kg$	

Result & Conclusion:

 $slope_1 = (0.60 \pm 0.06)$ $slope_2 = (1.1 \pm 0.14)$

 $slope_3 = (0.161 \pm 0.030) kg$

In the first part, the first law of motion was demonstrated by proving that the velocity of an object stays constant unless an external force acts on it. From the data obtained, we can see that in almost all situations, the cart has the same velocity at two different times. Some deviations occurred of course, this is due to the friction that slows the cart down.

From the first graph (log v vs. log t):

 $v = \frac{M'g}{M'+M}t \to \log v = \log \frac{C}{M'+M} + \log t$, the slope from the first graph should equal 1 according to the equation.

 $slope = (0.60 \pm 0.06)$, By using the Discrepancy test:

 $D = |slope_{real} - slope_{exp}| = |1 - 0.60| = 0.40$

 $2 \times error > ?D \rightarrow 0.12 < 0.40$, this means the result is not accepted.

From the second graph $(\log d \ vs. \log t)$:
$\frac{d}{2} = \frac{1}{2} \frac{(M'g)}{M' + M} t^2 \rightarrow \log d = \log \frac{1}{2} \frac{(M'g)}{M' + M} + 2\log t$, the slope must equal to 2 according to the equation.
$slope = (1.12 \pm 0.14)$, By using the Discrepancy test:
$D = slope_{real} - slope_{exp} = 2 - 1.12 = 0.88$
$2 \times error > ?D \rightarrow 0.28 < 0.879$, this means the result is not accepted.
From the third graph $(M`g vs. a)$:
M`g = (M` + M)a, from the third graph, the slope must equal to $(M` + M)$ according to the above equation.
$slope = (0.161 \pm 0.030)kg$, the theoretical value of $(M' + M) = 0.236$. By using the Discrepancy test:
$D = slope_{real} - slope_{exp} = 0.236 - 0.161 = 0.075$
$2 \times error > ?D \rightarrow 0.060 < 0.075$, this means the result is not accepted.
Our results were not accepted due to reasonable reasons. The error in the apparatus is very high in many aspects such as the poor wire connections

the apparatus is very high in many aspects such as the poor wire connections and the old half-working timers. Most of the time, the timer starts working before the cart started moving due to the poor sensors. Moreover, the distance is not very precise due to the normal random errors.

4

GRAPH I

t (s)	$v(m/s^2)$
0.869	0.857
0.938	0.947
1.231	1.059
1.302	1.125
1.455	1.200

	slope	y-intercept
	0.602229	-0.020653
error	0.058317	0.0059642

STUDENTS-HUB.com

GRAPH II

log d	log t
-0.352	-0.061
-0.264	-0.028
-0.190	0.090
-0.128	0.115
-0.073	0.163

	slope	y-intercept
	1.121017	-0.263877
error	0.143141	0.0146393

STUDENTS-HUB.com

GRAPH III

$a (m/s^2)$	$M^{G}(N)$
0.995	0.196
1.181	0.235
1.347	0.274
1.441	0.314
1.965	0.353

	slope	y-intercept
	0.161234	0.0509984
error	0.030159	0.0429368

STUDENTS-HUB.com