
Instruction Level Parallelism

STUDENTS-HUB.com

https://students-hub.com

Outline

• ILP

• Compiler techniques to increase ILP

• Loop Unrolling

• Static Branch Prediction

• Dynamic Branch Prediction

• Overcoming Data Hazards with Dynamic Scheduling

• (Start) Tomasulo Algorithm

• Conclusion

STUDENTS-HUB.com

https://students-hub.com

Recall from Pipelining Review

• Pipeline CPI = Ideal pipeline CPI + Structural Stalls + Data
Hazard Stalls + Control Stalls
– Ideal pipeline CPI: measure of the maximum performance

attainable by the implementation

– Structural hazards: HW cannot support this combination of
instructions

– Data hazards: Instruction depends on result of prior instruction
still in the pipeline

– Control hazards: Caused by delay between the fetching of
instructions and decisions about changes in control flow
(branches and jumps)

STUDENTS-HUB.com

https://students-hub.com

Instruction Level Parallelism

• Instruction-Level Parallelism (ILP): overlap the
execution of instructions to improve performance

• 2 approaches to exploit ILP:
1) Rely on hardware to help discover and exploit the parallelism

dynamically (e.g., Pentium 4, AMD Opteron, IBM Power) , and

2) Rely on software technology to find parallelism, statically at compile-
time (e.g., Itanium 2)

STUDENTS-HUB.com

https://students-hub.com

• InstrJ is data dependent (aka true dependence) on InstrI:

1. InstrJ tries to read operand before InstrI writes it

2. or InstrJ is data dependent on InstrK which is dependent on InstrI

• If two instructions are data dependent, they cannot execute
simultaneously or be completely overlapped

• Data dependence in instruction sequence
 data dependence in source code  effect of original data
dependence must be preserved

• If data dependence caused a hazard in pipeline,
called a Read After Write (RAW) hazard

Data Dependence and Hazards

I: add r1,r2,r3

J: sub r4,r1,r3

STUDENTS-HUB.com

https://students-hub.com

ILP and Data Dependencies,Hazards

• HW/SW must preserve program order:
order instructions would execute in if executed sequentially as
determined by original source program
– Dependences are a property of programs

• Presence of dependence indicates potential for a hazard, but
actual hazard and length of any stall is property of the pipeline

• Importance of the data dependencies
1) indicates the possibility of a hazard

2) determines order in which results must be calculated

3) sets an upper bound on how much parallelism can possibly be exploited

• HW/SW goal: exploit parallelism by preserving program order
only where it affects the outcome of the program

STUDENTS-HUB.com

https://students-hub.com

• Name dependence: when 2 instructions use same register
or memory location, called a name, but no flow of data
between the instructions associated with that name; 2
versions of name dependence

• InstrJ writes operand before InstrI reads it

Called an “anti-dependence” by compiler writers.
This results from reuse of the name “r1”

• If anti-dependence caused a hazard in the pipeline, called a
Write After Read (WAR) hazard

I: sub r4,r1,r3

J: add r1,r2,r3

K: mul r6,r1,r7

Name Dependence #1: Anti-dependence

STUDENTS-HUB.com

https://students-hub.com

Name Dependence #2: Output dependence

• InstrJ writes operand before InstrI writes it.

• Called an “output dependence” by compiler writers
This also results from the reuse of name “r1”

• If anti-dependence caused a hazard in the pipeline, called a
Write After Write (WAW) hazard

• Instructions involved in a name dependence can execute
simultaneously if name used in instructions is changed so
instructions do not conflict
– Register renaming resolves name dependence for regs

– Either by compiler or by HW

I: sub r1,r4,r3

J: add r1,r2,r3

K: mul r6,r1,r7

STUDENTS-HUB.com

https://students-hub.com

Control Dependencies

• Every instruction is control dependent on some set
of branches, and, in general, these control
dependencies must be preserved to preserve
program order

if p1 {

S1;

};

if p2 {

S2;

}

• S1 is control dependent on p1, and S2 is control
dependent on p2 but not on p1.

STUDENTS-HUB.com

https://students-hub.com

Control Dependence Ignored

• Control dependence need not be preserved
– willing to execute instructions that should not have been

executed, thereby violating the control dependences, if can do so
without affecting correctness of the program

• Instead, 2 properties critical to program
correctness are

1) exception behavior and

2) data flow

STUDENTS-HUB.com

https://students-hub.com

Exception Behavior

• Preserving exception behavior
 any changes in instruction execution order must not
change how exceptions are raised in program
( no new exceptions)

• Example:
DADDU R2,R3,R4

BEQZ R2,L1

LW R1,0(R2)

L1:

– (Assume branches not delayed)

• Problem with moving LW before BEQZ?

STUDENTS-HUB.com

https://students-hub.com

Data Flow

• Data flow: actual flow of data values among instructions
that produce results and those that consume them
– branches make flow dynamic, determine which instruction is supplier of

data

• Example:

DADDU R1,R2,R3

BEQZ R4,L

DSUBU R1,R5,R6

L: …

OR R7,R1,R8

• OR depends on DADDU or DSUBU?
Must preserve data flow on execution

STUDENTS-HUB.com

https://students-hub.com

Ideas to Reduce Stalls

Technique Reduces

Dynamic scheduling Data hazard stalls

Dynamic branch

prediction

Control stalls

Issuing multiple

instructions per cycle

Ideal CPI

Speculation Data and control stalls

Dynamic memory

disambiguation

Data hazard stalls involving

memory

Loop unrolling Control hazard stalls

Basic compiler pipeline

scheduling

Data hazard stalls

Compiler dependence

analysis

Ideal CPI and data hazard stalls

Software pipelining and

trace scheduling

Ideal CPI and data hazard stalls

Compiler speculation Ideal CPI, data and control stalls

Hardware

Software

STUDENTS-HUB.com

https://students-hub.com

Dynamic Scheduling

STUDENTS-HUB.com

https://students-hub.com

Advantages of Dynamic Scheduling

• Dynamic scheduling - hardware rearranges the
instruction execution to reduce stalls while maintaining
data flow and exception behavior

• It handles cases when dependences unknown at compile
time
– it allows the processor to tolerate unpredictable delays such as cache

misses, by executing other code while waiting for the miss to resolve

• It allows code that compiled for one pipeline to run
efficiently on a different pipeline

• It simplifies the compiler

• Hardware speculation, a technique with significant
performance advantages, builds on dynamic scheduling
(next lecture)

STUDENTS-HUB.com

https://students-hub.com

HW Schemes: Instruction Parallelism

• Key idea: Allow instructions behind stall to proceed
DIVD F0,F2,F4

ADDD F10,F0,F8

SUBD F12,F8,F14

• Enables out-of-order execution and allows out-of-order
completion (e.g., SUBD)
– In a dynamically scheduled pipeline, all instructions still pass through issue

stage in order (in-order issue)

• Will distinguish when an instruction begins execution and
when it completes execution; between 2 times, the
instruction is in execution

• Note: Dynamic execution creates WAR and WAW hazards
and makes exceptions harder

STUDENTS-HUB.com

https://students-hub.com

Example on WAR and WAW Hazards

DIV.D F0, F2, F4

ADD.D F6, F0, F8

S.D F6, 0(R1)

SUB.D F8, F10, F14

MUL.D F6, F10, F8

WAR and RAW hazards are caused by out-of-order
execution, but can be eliminated with register
renaming

DIV.D F0, F2, F4

ADD.D F6, F0, F8

S.D F6, 0(R1)

SUB.D T1, F10, F14

MUL.D T2, F10, T1

Anti-dependence between

ADD.D and SUB.D

WAR hazard on F8

Output dependence

between ADD.D and

MUL.D WAW hazard on F6

Use temporary registers T1

and T2 to eliminate name

dependences

Register renaming can be

done statically by the compiler

or dynamically by the pipeline

STUDENTS-HUB.com

https://students-hub.com

Dynamic Scheduling: Tomasulo

• Fast IBM 360/91 for scientific code
– Completed in 1967

– Before cache memories

– Implemented complex memory system

• Pipelined floating point units
– FP Adder

– FP Multiplier (Divide done in multiplier)

• Dynamic scheduling in FP unit (Tomasulo)

• The descendants of Tomasulo are found in
– Alpha 21264, Pentium 4, AMD Opteron, Power 5, etc

STUDENTS-HUB.com

https://students-hub.com

Tomasulo’s

Organization

STUDENTS-HUB.com

https://students-hub.com

Tomasulo Algorithm

• Buffers & Control distributed with Function Units

– FU buffers are called “reservation stations” and have pending
operands

• Registers in instructions are replaced by values or by pointers to
reservation stations, called tags

– Reservation stations provide renaming to avoid WAR & WAW hazards

• Results are broadcast on the Common Data Bus to all reservation
stations, not through registers
– Avoids RAW hazards by executing an instruction only when its operands are available

• Load and Stores treated as Function Units (FU) with Reservation
Stations (RS) as well

STUDENTS-HUB.com

https://students-hub.com

Generalized Tomasulo’s Organization

• Enhance parallel pipeline architecture

• Apply Tomasulo's algorithm to all pipelined units

– Not just floating point

– Biggest difference: handle loads/stores like other instructions

• Use "tags" to identify data values

– Both tags and register designators can name data

• Reservation Stations (RS) distribute control

– Set of Reservation Stations per functional unit

– Tag identifies result of instruction in RS

• Common Data Bus (CDB) broadcasts all results

STUDENTS-HUB.com

https://students-hub.com

Generalized Tomasulo’s Organization

C
o

m
m

o
n

 D
a

ta
 B

u
s

I-cache

access Decode

Regs

WRITE-BACK

Mult. 1 Mult. 2 Mult. 3

Address

Unit

D-Cache 1 D-Cache 2

Integer

Mult. 4

ISSUE EXECUTE

Load Queue

Store QueueALU

RS ALU

Load/Store

RS

MULT

RS

FP adder unit

and reservation

stations should

also be added

to this diagram

STUDENTS-HUB.com

https://students-hub.com

1. ISSUE

– Get next instruction from fetch unit

– Check for available reservation station

– If not available, stall due to structural hazard

– If RS available, issue
» Copy ready registers to RS

» Copy tags for all non-ready

registers to RS

Three Stages of Tomasulo’s Algorithm
C

o
m

m
o

n
 D

a
ta

 B
u

s

I-cache
access Decode

Regs

WRITE-BACK

Mult. 1 Mult. 2 Mult. 3

Address

Unit

D-Cache 1 D-Cache 2

Integer

Mult. 4

ISSUE EXECUTE

LQ

SQ

M RS

LS RS

A RS

STUDENTS-HUB.com

https://students-hub.com

2. Execute
– If input operands available, issue and begin execution

– If not, monitor CDB for necessary input operands

C
o

m
m

o
n

 D
a

ta
 B

u
s

I-cache
access Decode

Regs

WRITE-BACK

Mult. 1 Mult. 2 Mult. 3

Address

Unit

D-Cache 1 D-Cache 2

Integer

Mult. 4

ISSUE EXECUTE

LQ

SQ

M RS

LS RS

A RS

If several instructions

become ready for the

same functional unit in

the same clock cycle,

one of them is chosen

for execution

Three Stages of Tomasulo’s Algorithm

STUDENTS-HUB.com

https://students-hub.com

3. Write Back
– If CDB available, write result on CDB

» All destinations with matching tags receive data

» CDB broadcasts results to all reservation stations

– If not, wait for CDB to

become available

C
o

m
m

o
n

 D
a

ta
 B

u
s

I-cache

access Decode

Regs

WRITE-BACK

Mult. 1 Mult. 2 Mult. 3

Address

Unit

D-Cache 1 D-Cache 2

Integer

Mult. 4

ISSUE EXECUTE

LQ

SQ

M RS

LS RS

A RS

Three Stages of Tomasulo’s Algorithm

STUDENTS-HUB.com

https://students-hub.com

Reservation Station Components

Op: Operation to perform in the unit (e.g., + or –)

Vj, Vk: Value of Source operands
– Store buffers has V field, result to be stored

Qj, Qk: Reservation stations producing source registers (value to be written)

– Note: Qj,Qk=0 => ready

– Store buffers only have Qi for RS producing result

Busy: Indicates reservation station or FU is busy

A Address information for loads or stores. Initially immediate field of
instruction then effective address when calculated.

Register result status—Indicates which functional unit will write each
register, if one exists. Blank when no pending instructions that will write
that register.

STUDENTS-HUB.com

https://students-hub.com

Dependency Graph For Example Code

L.D F6, 34(R2)

L.D F2, 45(R3)

MUL.D F0, F2, F4

SUB.D F8, F6, F2

DIV.D F10, F0, F6

ADD.D F6, F8, F2

1

2

3

4

5

6

L.D F6, 34 (R2)

1

L.D F2, 45 (R3)

2

MUL.D F0, F2, F4

3

DIV.D F10, F0, F6

5

SUB.D F8, F6, F2

4

ADD.D F6, F8, F2

6

Date Dependence:

(1, 4) (1, 5) (2, 3) (2, 4)

(2, 6) (3, 5) (4, 6)

Output Dependence:

(1, 6)

Anti-dependence:

(5, 6)

Example Code

The same code used is the scoreboard example
STUDENTS-HUB.com

https://students-hub.com

Tomasulo Example
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 Load1 No

LD F2 45+ R3 Load2 No

MULTD F0 F2 F4 Load3 No

SUBD F8 F6 F2

DIVD F10 F0 F6

ADDD F6 F8 F2

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

Add1 No

Add2 No

Add3 No

Mult1 No

Mult2 No

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
0 FU

Clock cycle
counter

FU count
down

Instruction stream

3 Load/Buffers

3 FP Adder R.S.
2 FP Mult R.S.

Assume the following latencies: load is 1

clock cycle, add is 2 clock cycles, multiply is

6 clock cycles, and divide is 12 clock cycles.
STUDENTS-HUB.com

https://students-hub.com

Tomasulo Example Cycle 1
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 1 Load1 Yes 34+R2

LD F2 45+ R3 Load2 No

MULTD F0 F2 F4 Load3 No

SUBD F8 F6 F2

DIVD F10 F0 F6

ADDD F6 F8 F2

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

Add1 No

Add2 No

Add3 No

Mult1 No

Mult2 No

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
1 FU Load1

STUDENTS-HUB.com

https://students-hub.com

Tomasulo Example Cycle 2
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 1 Load1 Yes 34+R2

LD F2 45+ R3 2 Load2 Yes 45+R3

MULTD F0 F2 F4 Load3 No

SUBD F8 F6 F2

DIVD F10 F0 F6

ADDD F6 F8 F2

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

Add1 No

Add2 No

Add3 No

Mult1 No

Mult2 No

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
2 FU Load2 Load1

Note: Can have multiple loads outstanding

STUDENTS-HUB.com

https://students-hub.com

Tomasulo Example Cycle 3
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 1 3 Load1 Yes 34+R2

LD F2 45+ R3 2 Load2 Yes 45+R3

MULTD F0 F2 F4 3 Load3 No

SUBD F8 F6 F2

DIVD F10 F0 F6

ADDD F6 F8 F2

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

Add1 No

Add2 No

Add3 No

Mult1 Yes MULTD R(F4) Load2

Mult2 No

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
3 FU Mult1 Load2 Load1

• Note: registers names are removed (“renamed”) in Reservation
Stations; MULT issued

• Load1 completing; what is waiting for Load1?
STUDENTS-HUB.com

https://students-hub.com

Tomasulo Example Cycle 4
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 1 3 4 Load1 No

LD F2 45+ R3 2 4 Load2 Yes 45+R3

MULTD F0 F2 F4 3 Load3 No

SUBD F8 F6 F2 4

DIVD F10 F0 F6

ADDD F6 F8 F2

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

Add1 Yes SUBD M(A1) Load2

Add2 No

Add3 No

Mult1 Yes MULTD R(F4) Load2

Mult2 No

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
4 FU Mult1 Load2 M(A1) Add1

• Load2 completing; what is waiting for Load2?

STUDENTS-HUB.com

https://students-hub.com

Tomasulo Example Cycle 5
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 1 3 4 Load1 No

LD F2 45+ R3 2 4 5 Load2 No

MULTD F0 F2 F4 3 Load3 No

SUBD F8 F6 F2 4

DIVD F10 F0 F6 5

ADDD F6 F8 F2

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

2 Add1 Yes SUBD M(A1) M(A2)

Add2 No

Add3 No

10 Mult1 Yes MULTD M(A2) R(F4)

Mult2 Yes DIVD M(A1) Mult1

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
5 FU Mult1 M(A2) M(A1) Add1 Mult2

• Timer starts down for Add1, Mult1

STUDENTS-HUB.com

https://students-hub.com

Tomasulo Example Cycle 6
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 1 3 4 Load1 No

LD F2 45+ R3 2 4 5 Load2 No

MULTD F0 F2 F4 3 Load3 No

SUBD F8 F6 F2 4

DIVD F10 F0 F6 5

ADDD F6 F8 F2 6

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

1 Add1 Yes SUBD M(A1) M(A2)

Add2 Yes ADDD M(A2) Add1

Add3 No

9 Mult1 Yes MULTD M(A2) R(F4)

Mult2 Yes DIVD M(A1) Mult1

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
6 FU Mult1 M(A2) Add2 Add1 Mult2

• Issue ADDD here despite name dependency on F6?

STUDENTS-HUB.com

https://students-hub.com

Tomasulo Example Cycle 7
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 1 3 4 Load1 No

LD F2 45+ R3 2 4 5 Load2 No

MULTD F0 F2 F4 3 Load3 No

SUBD F8 F6 F2 4 7

DIVD F10 F0 F6 5

ADDD F6 F8 F2 6

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

0 Add1 Yes SUBD M(A1) M(A2)

Add2 Yes ADDD M(A2) Add1

Add3 No

8 Mult1 Yes MULTD M(A2) R(F4)

Mult2 Yes DIVD M(A1) Mult1

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
7 FU Mult1 M(A2) Add2 Add1 Mult2

• Add1 (SUBD) completing; what is waiting for it?

STUDENTS-HUB.com

https://students-hub.com

Tomasulo Example Cycle 8
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 1 3 4 Load1 No

LD F2 45+ R3 2 4 5 Load2 No

MULTD F0 F2 F4 3 Load3 No

SUBD F8 F6 F2 4 7 8

DIVD F10 F0 F6 5

ADDD F6 F8 F2 6

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

Add1 No

2 Add2 Yes ADDD (M-M) M(A2)

Add3 No

7 Mult1 Yes MULTD M(A2) R(F4)

Mult2 Yes DIVD M(A1) Mult1

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
8 FU Mult1 M(A2) Add2 (M-M) Mult2

STUDENTS-HUB.com

https://students-hub.com

Tomasulo Example Cycle 9
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 1 3 4 Load1 No

LD F2 45+ R3 2 4 5 Load2 No

MULTD F0 F2 F4 3 Load3 No

SUBD F8 F6 F2 4 7 8

DIVD F10 F0 F6 5

ADDD F6 F8 F2 6

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

Add1 No

1 Add2 Yes ADDD (M-M) M(A2)

Add3 No

6 Mult1 Yes MULTD M(A2) R(F4)

Mult2 Yes DIVD M(A1) Mult1

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
9 FU Mult1 M(A2) Add2 (M-M) Mult2

STUDENTS-HUB.com

https://students-hub.com

Tomasulo Example Cycle 10
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 1 3 4 Load1 No

LD F2 45+ R3 2 4 5 Load2 No

MULTD F0 F2 F4 3 Load3 No

SUBD F8 F6 F2 4 7 8

DIVD F10 F0 F6 5

ADDD F6 F8 F2 6 10

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

Add1 No

0 Add2 Yes ADDD (M-M) M(A2)

Add3 No

5 Mult1 Yes MULTD M(A2) R(F4)

Mult2 Yes DIVD M(A1) Mult1

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
10 FU Mult1 M(A2) Add2 (M-M) Mult2

• Add2 (ADDD) completing; what is waiting for it?

STUDENTS-HUB.com

https://students-hub.com

Tomasulo Example Cycle 11
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 1 3 4 Load1 No

LD F2 45+ R3 2 4 5 Load2 No

MULTD F0 F2 F4 3 Load3 No

SUBD F8 F6 F2 4 7 8

DIVD F10 F0 F6 5

ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

Add1 No

Add2 No

Add3 No

4 Mult1 Yes MULTD M(A2) R(F4)

Mult2 Yes DIVD M(A1) Mult1

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
11 FU Mult1 M(A2) (M-M+M)(M-M) Mult2

• Write result of ADDD here?

• All quick instructions complete in this cycle!

STUDENTS-HUB.com

https://students-hub.com

Tomasulo Example Cycle 12
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 1 3 4 Load1 No

LD F2 45+ R3 2 4 5 Load2 No

MULTD F0 F2 F4 3 Load3 No

SUBD F8 F6 F2 4 7 8

DIVD F10 F0 F6 5

ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

Add1 No

Add2 No

Add3 No

3 Mult1 Yes MULTD M(A2) R(F4)

Mult2 Yes DIVD M(A1) Mult1

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
12 FU Mult1 M(A2) (M-M+M)(M-M) Mult2

STUDENTS-HUB.com

https://students-hub.com

Tomasulo Example Cycle 13
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 1 3 4 Load1 No

LD F2 45+ R3 2 4 5 Load2 No

MULTD F0 F2 F4 3 Load3 No

SUBD F8 F6 F2 4 7 8

DIVD F10 F0 F6 5

ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

Add1 No

Add2 No

Add3 No

2 Mult1 Yes MULTD M(A2) R(F4)

Mult2 Yes DIVD M(A1) Mult1

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
13 FU Mult1 M(A2) (M-M+M)(M-M) Mult2

STUDENTS-HUB.com

https://students-hub.com

Tomasulo Example Cycle 14
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 1 3 4 Load1 No

LD F2 45+ R3 2 4 5 Load2 No

MULTD F0 F2 F4 3 Load3 No

SUBD F8 F6 F2 4 7 8

DIVD F10 F0 F6 5

ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

Add1 No

Add2 No

Add3 No

1 Mult1 Yes MULTD M(A2) R(F4)

Mult2 Yes DIVD M(A1) Mult1

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
14 FU Mult1 M(A2) (M-M+M)(M-M) Mult2

STUDENTS-HUB.com

https://students-hub.com

Tomasulo Example Cycle 15
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 1 3 4 Load1 No

LD F2 45+ R3 2 4 5 Load2 No

MULTD F0 F2 F4 3 15 Load3 No

SUBD F8 F6 F2 4 7 8

DIVD F10 F0 F6 5

ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

Add1 No

Add2 No

Add3 No

0 Mult1 Yes MULTD M(A2) R(F4)

Mult2 Yes DIVD M(A1) Mult1

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
15 FU Mult1 M(A2) (M-M+M)(M-M) Mult2

• Mult1 (MULTD) completing; what is waiting for it?

STUDENTS-HUB.com

https://students-hub.com

Tomasulo Example Cycle 16
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 1 3 4 Load1 No

LD F2 45+ R3 2 4 5 Load2 No

MULTD F0 F2 F4 3 15 16 Load3 No

SUBD F8 F6 F2 4 7 8

DIVD F10 F0 F6 5

ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

Add1 No

Add2 No

Add3 No

Mult1 No

40 Mult2 Yes DIVD M*F4 M(A1)

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
16 FU M*F4 M(A2) (M-M+M)(M-M) Mult2

• Just waiting for Mult2 (DIVD) to complete

STUDENTS-HUB.com

https://students-hub.com

Faster than light computation
(skip a couple of cycles)

STUDENTS-HUB.com

https://students-hub.com

Tomasulo Example Cycle 55
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 1 3 4 Load1 No

LD F2 45+ R3 2 4 5 Load2 No

MULTD F0 F2 F4 3 15 16 Load3 No

SUBD F8 F6 F2 4 7 8

DIVD F10 F0 F6 5

ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

Add1 No

Add2 No

Add3 No

Mult1 No

1 Mult2 Yes DIVD M*F4 M(A1)

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
55 FU M*F4 M(A2) (M-M+M)(M-M) Mult2

STUDENTS-HUB.com

https://students-hub.com

Tomasulo Example Cycle 56
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 1 3 4 Load1 No

LD F2 45+ R3 2 4 5 Load2 No

MULTD F0 F2 F4 3 15 16 Load3 No

SUBD F8 F6 F2 4 7 8

DIVD F10 F0 F6 5 56

ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

Add1 No

Add2 No

Add3 No

Mult1 No

0 Mult2 Yes DIVD M*F4 M(A1)

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
56 FU M*F4 M(A2) (M-M+M)(M-M) Mult2

• Mult2 (DIVD) is completing; what is waiting for it?

STUDENTS-HUB.com

https://students-hub.com

Tomasulo Example Cycle 57
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 1 3 4 Load1 No

LD F2 45+ R3 2 4 5 Load2 No

MULTD F0 F2 F4 3 15 16 Load3 No

SUBD F8 F6 F2 4 7 8

DIVD F10 F0 F6 5 56 57

ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

Add1 No

Add2 No

Add3 No

Mult1 No

Mult2 Yes DIVD M*F4 M(A1)

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
56 FU M*F4 M(A2) (M-M+M)(M-M) Result

• Once again: In-order issue, out-of-order execution and
out-of-order completion.

STUDENTS-HUB.com

https://students-hub.com

Tomasulo’s scheme offers 2 major
advantages

1. Distribution of the hazard detection logic
– distributed reservation stations and the CDB

– If multiple instructions waiting on single result, & each
instruction has other operand, then instructions can be
released simultaneously by broadcast on CDB

– If a centralized register file were used, the units would have to
read their results from the registers when register buses are
available

2. Elimination of stalls for WAW and WAR hazards

STUDENTS-HUB.com

https://students-hub.com

Tomasulo Drawbacks

• Complexity
– delays of 360/91, MIPS 10000, Alpha 21264,

IBM PPC 620 in CA:AQA 2/e, but not in silicon!

• Many associative stores (CDB) at high speed

• Performance limited by Common Data Bus
– Each CDB must go to multiple functional units
high capacitance, high wiring density

– Number of functional units that can complete per cycle limited to one!

» Multiple CDBs more FU logic for parallel assoc stores

• Non-precise interrupts!
– We will address this later

STUDENTS-HUB.com

https://students-hub.com

Tomasulo Loop Example

Loop: LD F0 0 R1

MULTD F4 F0 F2

SD F4 0 R1

SUBI R1 R1 #8

BNEZ R1 Loop

• Assume FP Multiply takes 4 execution clock cycles.
• Assume first load takes 8 cycles (possibly due to a cache miss),

second load takes 4 cycles (cache hit).
• Assume R1 = 80 initially.
• Assume SUBI only takes one cycle (issue)
• Assume branch resolved in issue stage (no EX or CDB write)
• Assume branch is predicted taken and no branch misprediction.
• No branch delay slot is used in this example.
• Stores take 3 cycles (ex, mem) and do not write on CDB
• We’ll go over the execution to complete first two loop iterations.

STUDENTS-HUB.com

https://students-hub.com

Tomasulo Loop Example Dependency Graph (First
three iterations shown)

L.D F0, 0 (R1)

MUL.D F4, F0, F2

S.D F4, 0(R1)

L.D F0, 0(R1)

MUL.D F4, F0, F2

S.D F4, 0(R1)

L.D F0, 0(R1)

MUL.D F4, F0, F2

S.D F4, 0(R1)

1

2

3

4

5

6

7

8

9

Example Code

Loop maintenance (DADDUI)

and branches (BNE) not shown

L.D F0, 0 (R1)

1

MUL.D F4, F0, F2

2

S.D F4, 0(R1)

3

MUL.D F4, F0, F2

5
L.D F0, 0 (R1)

4

S.D F4, 0 (R1)

6

First

Iteration

Second

Iteration

MUL.D F4, F0, F2

8
L.D F0, 0 (R1)

7

S.D F4, 0 (R1)

9

Third

Iteration

Name dependencies between iteration 3 instructions

and iteration 1 instructions are not shown in graph

STUDENTS-HUB.com

https://students-hub.com

Loop Example
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 Load1 No

1 MULTD F4 F0 F2 Load2 No

1 SD F4 0 R1 Load3 No

2 LD F0 0 R1 Store1 No

2 MULTD F4 F0 F2 Store2 No

2 SD F4 0 R1 Store3 No

Reservation Stations: S1 S2 RS

Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1

Add2 No MULTD F4 F0 F2

Add3 No SD F4 0 R1

Mult1 No SUBI R1 R1 #8

Mult2 No BNEZ R1 Loop

Register result status

Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

0 80 Fu

Added Store Buffers

Value of Register used for address, iteration control

Instruction Loop

Iter-
ation
Count

STUDENTS-HUB.com

https://students-hub.com

Loop Example Cycle 1
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu

1 LD F0 0 R1 1 Load1 Yes 80

Load2 No

Load3 No

Store1 No

Store2 No

Store3 No

Reservation Stations: S1 S2 RS

Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1

Add2 No MULTD F4 F0 F2

Add3 No SD F4 0 R1

Mult1 No SUBI R1 R1 #8

Mult2 No BNEZ R1 Loop

Register result status

Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

1 80 Fu Load1

STUDENTS-HUB.com

https://students-hub.com

Loop Example Cycle 2
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu

1 LD F0 0 R1 1 Load1 Yes 80

1 MULTD F4 F0 F2 2 Load2 No

Load3 No

Store1 No

Store2 No

Store3 No

Reservation Stations: S1 S2 RS

Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1

Add2 No MULTD F4 F0 F2

Add3 No SD F4 0 R1

Mult1 Yes Multd R(F2) Load1 SUBI R1 R1 #8

Mult2 No BNEZ R1 Loop

Register result status

Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

2 80 Fu Load1 Mult1

STUDENTS-HUB.com

https://students-hub.com

Loop Example Cycle 3
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu

1 LD F0 0 R1 1 Load1 Yes 80

1 MULTD F4 F0 F2 2 Load2 No

1 SD F4 0 R1 3 Load3 No

Store1 Yes 80 Mult1

Store2 No

Store3 No

Reservation Stations: S1 S2 RS

Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1

Add2 No MULTD F4 F0 F2

Add3 No SD F4 0 R1

Mult1 Yes Multd R(F2) Load1 SUBI R1 R1 #8

Mult2 No BNEZ R1 Loop

Register result status

Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

3 80 Fu Load1 Mult1

• Implicit renaming sets up data flow graph
STUDENTS-HUB.com

https://students-hub.com

Loop Example Cycle 4
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu

1 LD F0 0 R1 1 Load1 Yes 80

1 MULTD F4 F0 F2 2 Load2 No

1 SD F4 0 R1 3 Load3 No

Store1 Yes 80 Mult1

Store2 No

Store3 No

Reservation Stations: S1 S2 RS

Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1

Add2 No MULTD F4 F0 F2

Add3 No SD F4 0 R1

Mult1 Yes Multd R(F2) Load1 SUBI R1 R1 #8

Mult2 No BNEZ R1 Loop

Register result status

Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

4 80 Fu Load1 Mult1

• Dispatching SUBI Instruction (not in FP queue)
STUDENTS-HUB.com

https://students-hub.com

Loop Example Cycle 5
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu

1 LD F0 0 R1 1 Load1 Yes 80

1 MULTD F4 F0 F2 2 Load2 No

1 SD F4 0 R1 3 Load3 No

Store1 Yes 80 Mult1

Store2 No

Store3 No

Reservation Stations: S1 S2 RS

Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1

Add2 No MULTD F4 F0 F2

Add3 No SD F4 0 R1

Mult1 Yes Multd R(F2) Load1 SUBI R1 R1 #8

Mult2 No BNEZ R1 Loop

Register result status

Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

5 72 Fu Load1 Mult1

• And, BNEZ instruction (not in FP queue)
STUDENTS-HUB.com

https://students-hub.com

Loop Example Cycle 6
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu

1 LD F0 0 R1 1 Load1 Yes 80

1 MULTD F4 F0 F2 2 Load2 Yes 72

1 SD F4 0 R1 3 Load3 No

2 LD F0 0 R1 6 Store1 Yes 80 Mult1

Store2 No

Store3 No

Reservation Stations: S1 S2 RS

Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1

Add2 No MULTD F4 F0 F2

Add3 No SD F4 0 R1

Mult1 Yes Multd R(F2) Load1 SUBI R1 R1 #8

Mult2 No BNEZ R1 Loop

Register result status

Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

6 72 Fu Load2 Mult1

• Notice that F0 never sees Load from location 80
STUDENTS-HUB.com

https://students-hub.com

Loop Example Cycle 7
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu

1 LD F0 0 R1 1 Load1 Yes 80

1 MULTD F4 F0 F2 2 Load2 Yes 72

1 SD F4 0 R1 3 Load3 No

2 LD F0 0 R1 6 Store1 Yes 80 Mult1

2 MULTD F4 F0 F2 7 Store2 No

Store3 No

Reservation Stations: S1 S2 RS

Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1

Add2 No MULTD F4 F0 F2

Add3 No SD F4 0 R1

Mult1 Yes Multd R(F2) Load1 SUBI R1 R1 #8

Mult2 Yes Multd R(F2) Load2 BNEZ R1 Loop

Register result status

Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

7 72 Fu Load2 Mult2

• Register file completely detached from computation
• First and Second iteration completely overlapped

STUDENTS-HUB.com

https://students-hub.com

Loop Example Cycle 8
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 Load1 Yes 80

1 MULTD F4 F0 F2 2 Load2 Yes 72

1 SD F4 0 R1 3 Load3 No

2 LD F0 0 R1 6 Store1 Yes 80 Mult1

2 MULTD F4 F0 F2 7 Store2 Yes 72 Mult2

2 SD F4 0 R1 8 Store3 No

Reservation Stations: S1 S2 RS

Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1

Add2 No MULTD F4 F0 F2

Add3 No SD F4 0 R1

Mult1 Yes Multd R(F2) Load1 SUBI R1 R1 #8

Mult2 Yes Multd R(F2) Load2 BNEZ R1 Loop

Register result status

Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

8 72 Fu Load2 Mult2

STUDENTS-HUB.com

https://students-hub.com

Loop Example Cycle 9
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu

1 LD F0 0 R1 1 9 Load1 Yes 80

1 MULTD F4 F0 F2 2 Load2 Yes 72

1 SD F4 0 R1 3 Load3 No

2 LD F0 0 R1 6 Store1 Yes 80 Mult1

2 MULTD F4 F0 F2 7 Store2 Yes 72 Mult2

2 SD F4 0 R1 8 Store3 No

Reservation Stations: S1 S2 RS

Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1

Add2 No MULTD F4 F0 F2

Add3 No SD F4 0 R1

Mult1 Yes Multd R(F2) Load1 SUBI R1 R1 #8

Mult2 Yes Multd R(F2) Load2 BNEZ R1 Loop

Register result status

Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

9 72 Fu Load2 Mult2

• Load1 completing: who is waiting?
• Note: Dispatching SUBI

STUDENTS-HUB.com

https://students-hub.com

Loop Example Cycle 10
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 9 10 Load1 No

1 MULTD F4 F0 F2 2 Load2 Yes 72

1 SD F4 0 R1 3 Load3 No

2 LD F0 0 R1 6 10 Store1 Yes 80 Mult1

2 MULTD F4 F0 F2 7 Store2 Yes 72 Mult2

2 SD F4 0 R1 8 Store3 No

Reservation Stations: S1 S2 RS

Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1

Add2 No MULTD F4 F0 F2

Add3 No SD F4 0 R1

4 Mult1 Yes Multd M[80] R(F2) SUBI R1 R1 #8

Mult2 Yes Multd R(F2) Load2 BNEZ R1 Loop

Register result status

Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

10 64 Fu Load2 Mult2

• Load2 completing: who is waiting?
• Note: Dispatching BNEZ

STUDENTS-HUB.com

https://students-hub.com

Loop Example Cycle 11
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 9 10 Load1 No

1 MULTD F4 F0 F2 2 Load2 No

1 SD F4 0 R1 3 Load3 Yes 64

2 LD F0 0 R1 6 10 11 Store1 Yes 80 Mult1

2 MULTD F4 F0 F2 7 Store2 Yes 72 Mult2

2 SD F4 0 R1 8 Store3 No

Reservation Stations: S1 S2 RS

Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1

Add2 No MULTD F4 F0 F2

Add3 No SD F4 0 R1

3 Mult1 Yes Multd M[80] R(F2) SUBI R1 R1 #8

4 Mult2 Yes Multd M[72] R(F2) BNEZ R1 Loop

Register result status

Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

11 64 Fu Load3 Mult2

• Next load in sequence

STUDENTS-HUB.com

https://students-hub.com

Loop Example Cycle 12
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 9 10 Load1 No

1 MULTD F4 F0 F2 2 Load2 No

1 SD F4 0 R1 3 Load3 Yes 64

2 LD F0 0 R1 6 10 11 Store1 Yes 80 Mult1

2 MULTD F4 F0 F2 7 Store2 Yes 72 Mult2

2 SD F4 0 R1 8 Store3 No

Reservation Stations: S1 S2 RS

Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1

Add2 No MULTD F4 F0 F2

Add3 No SD F4 0 R1

2 Mult1 Yes Multd M[80] R(F2) SUBI R1 R1 #8

3 Mult2 Yes Multd M[72] R(F2) BNEZ R1 Loop

Register result status

Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

12 64 Fu Load3 Mult2

• Why not issue third multiply?

STUDENTS-HUB.com

https://students-hub.com

Loop Example Cycle 13
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 9 10 Load1 No

1 MULTD F4 F0 F2 2 Load2 No

1 SD F4 0 R1 3 Load3 Yes 64

2 LD F0 0 R1 6 10 11 Store1 Yes 80 Mult1

2 MULTD F4 F0 F2 7 Store2 Yes 72 Mult2

2 SD F4 0 R1 8 Store3 No

Reservation Stations: S1 S2 RS

Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1

Add2 No MULTD F4 F0 F2

Add3 No SD F4 0 R1

1 Mult1 Yes Multd M[80] R(F2) SUBI R1 R1 #8

2 Mult2 Yes Multd M[72] R(F2) BNEZ R1 Loop

Register result status

Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

13 64 Fu Load3 Mult2

• Why not issue third store?

STUDENTS-HUB.com

https://students-hub.com

Loop Example Cycle 14
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu

1 LD F0 0 R1 1 9 10 Load1 No

1 MULTD F4 F0 F2 2 14 Load2 No

1 SD F4 0 R1 3 Load3 Yes 64

2 LD F0 0 R1 6 10 11 Store1 Yes 80 Mult1

2 MULTD F4 F0 F2 7 Store2 Yes 72 Mult2

2 SD F4 0 R1 8 Store3 No

Reservation Stations: S1 S2 RS

Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1

Add2 No MULTD F4 F0 F2

Add3 No SD F4 0 R1

0 Mult1 Yes Multd M[80] R(F2) SUBI R1 R1 #8

1 Mult2 Yes Multd M[72] R(F2) BNEZ R1 Loop

Register result status

Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

14 64 Fu Load3 Mult2

• Mult1 completing. Who is waiting?

STUDENTS-HUB.com

https://students-hub.com

Loop Example Cycle 15
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 9 10 Load1 No

1 MULTD F4 F0 F2 2 14 15 Load2 No

1 SD F4 0 R1 3 Load3 Yes 64

2 LD F0 0 R1 6 10 11 Store1 Yes 80 [80]*R2

2 MULTD F4 F0 F2 7 15 Store2 Yes 72 Mult2

2 SD F4 0 R1 8 Store3 No

Reservation Stations: S1 S2 RS

Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1

Add2 No MULTD F4 F0 F2

Add3 No SD F4 0 R1

Mult1 No SUBI R1 R1 #8

0 Mult2 Yes Multd M[72] R(F2) BNEZ R1 Loop

Register result status

Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

15 64 Fu Load3 Mult2

• Mult2 completing. Who is waiting?

STUDENTS-HUB.com

https://students-hub.com

Loop Example Cycle 16
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu

1 LD F0 0 R1 1 9 10 Load1 No

1 MULTD F4 F0 F2 2 14 15 Load2 No

1 SD F4 0 R1 3 Load3 Yes 64

2 LD F0 0 R1 6 10 11 Store1 Yes 80 [80]*R2

2 MULTD F4 F0 F2 7 15 16 Store2 Yes 72 [72]*R2

2 SD F4 0 R1 8 Store3 No

Reservation Stations: S1 S2 RS

Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1

Add2 No MULTD F4 F0 F2

Add3 No SD F4 0 R1

4 Mult1 Yes Multd R(F2) Load3 SUBI R1 R1 #8

Mult2 No BNEZ R1 Loop

Register result status

Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

16 64 Fu Load3 Mult1

STUDENTS-HUB.com

https://students-hub.com

Loop Example Cycle 17
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 9 10 Load1 No

1 MULTD F4 F0 F2 2 14 15 Load2 No

1 SD F4 0 R1 3 Load3 Yes 64

2 LD F0 0 R1 6 10 11 Store1 Yes 80 [80]*R2

2 MULTD F4 F0 F2 7 15 16 Store2 Yes 72 [72]*R2

2 SD F4 0 R1 8 Store3 Yes 64 Mult1

Reservation Stations: S1 S2 RS

Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1

Add2 No MULTD F4 F0 F2

Add3 No SD F4 0 R1

Mult1 Yes Multd R(F2) Load3 SUBI R1 R1 #8

Mult2 No BNEZ R1 Loop

Register result status

Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

17 64 Fu Load3 Mult1

STUDENTS-HUB.com

https://students-hub.com

Loop Example Cycle 18
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu
1 LD F0 0 R1 1 9 10 Load1 No

1 MULTD F4 F0 F2 2 14 15 Load2 No

1 SD F4 0 R1 3 18 Load3 Yes 64

2 LD F0 0 R1 6 10 11 Store1 Yes 80 [80]*R2

2 MULTD F4 F0 F2 7 15 16 Store2 Yes 72 [72]*R2

2 SD F4 0 R1 8 Store3 Yes 64 Mult1

Reservation Stations: S1 S2 RS

Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1

Add2 No MULTD F4 F0 F2

Add3 No SD F4 0 R1

Mult1 Yes Multd R(F2) Load3 SUBI R1 R1 #8

Mult2 No BNEZ R1 Loop

Register result status

Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

18 64 Fu Load3 Mult1

STUDENTS-HUB.com

https://students-hub.com

Loop Example Cycle 19
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu

1 LD F0 0 R1 1 9 10 Load1 No

1 MULTD F4 F0 F2 2 14 15 Load2 No

1 SD F4 0 R1 3 18 19 Load3 Yes 64

2 LD F0 0 R1 6 10 11 Store1 No

2 MULTD F4 F0 F2 7 15 16 Store2 Yes 72 [72]*R2

2 SD F4 0 R1 8 19 Store3 Yes 64 Mult1

Reservation Stations: S1 S2 RS

Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1

Add2 No MULTD F4 F0 F2

Add3 No SD F4 0 R1

Mult1 Yes Multd R(F2) Load3 SUBI R1 R1 #8

Mult2 No BNEZ R1 Loop

Register result status

Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

19 56 Fu Load3 Mult1

STUDENTS-HUB.com

https://students-hub.com

Loop Example Cycle 20
Instruction status: Exec Write

ITER Instruction j k Issue CompResult Busy Addr Fu

1 LD F0 0 R1 1 9 10 Load1 Yes 56

1 MULTD F4 F0 F2 2 14 15 Load2 No

1 SD F4 0 R1 3 18 19 Load3 Yes 64

2 LD F0 0 R1 6 10 11 Store1 No

2 MULTD F4 F0 F2 7 15 16 Store2 No

2 SD F4 0 R1 8 19 20 Store3 Yes 64 Mult1

Reservation Stations: S1 S2 RS

Time Name Busy Op Vj Vk Qj Qk Code:

Add1 No LD F0 0 R1

Add2 No MULTD F4 F0 F2

Add3 No SD F4 0 R1

Mult1 Yes Multd R(F2) Load3 SUBI R1 R1 #8

Mult2 No BNEZ R1 Loop

Register result status

Clock R1 F0 F2 F4 F6 F8 F10 F12 ... F30

20 56 Fu Load1 Mult1

• Once again: In-order issue, out-of-order execution
and out-of-order completion.

STUDENTS-HUB.com

https://students-hub.com

Why can Tomasulo overlap
iterations of loops?

• Register renaming
– Multiple iterations use different physical destinations for registers (dynamic

loop unrolling).

• Reservation stations
– Permit instruction issue to advance past integer control flow operations

– Also buffer old values of registers - totally avoiding the WAR stall that we
saw in the scoreboard.

• Other perspective: Tomasulo building data flow dependency
graph on the fly.

STUDENTS-HUB.com

https://students-hub.com

Explicit Register Renaming

• Make use of a physical register file that is larger than number of
registers specified by ISA

• Keep a translation table:
– ISA register => physical register mapping

– When register is written, replace table entry with new register from freelist.

– Physical register becomes free when not being used by any instructions in
progress.

• Pipeline can be exactly like “standard” DLX pipeline
– IF, ID, EX, etc….

• Advantages:
– Removes all WAR and WAW hazards

– Like Tomasulo, good for allowing full out-of-order completion

– Allows data to be fetched from a single register file

– Makes speculative execution/precise interrupts easier:

» All that needs to be “undone” for precise break point
is to undo the table mappings

STUDENTS-HUB.com

https://students-hub.com

Explicit Renaming Support Includes:

• Rapid access to a table of translations

• A physical register file that has more registers than
specified by the ISA

• Ability to figure out which physical registers are free.
– No free registers  stall on issue

• Thus, register renaming doesn’t require reservation
stations. However:
– Many modern architectures use explicit register renaming + Tomasulo-like

reservation stations to control execution.

STUDENTS-HUB.com

https://students-hub.com

What about Precise Exceptions/Interrupts?

• Both Scoreboard and Tomasulo have:
– In-order issue, out-of-order execution, out-of-order completion

• Recall: An interrupt or exception is precise if there is a
single instruction for which:
– All instructions before that have committed their state

– No following instructions (including the interrupting instruction) have
modified any state.

• Need way to resynchronize execution with instruction stream
(I.e. with issue-order)
– Easiest way is with in-order completion (i.e. reorder buffer)

– Other Techniques: Future File, History Buffer

STUDENTS-HUB.com

https://students-hub.com

HW support for precise interrupts

• Concept of Reorder Buffer (ROB):
– Holds instructions in FIFO order, exactly as they were issued

» Each ROB entry contains PC, dest reg, result, exception status

– When instructions complete, results placed into ROB

» Supplies operands to other instruction between execution
complete & commit  more registers like RS

» Tag results with ROB buffer number instead of reservation station

– Instructions commit values at head of ROB placed in registers

– As a result, easy to undo
speculated instructions
on mispredicted branches
or on exceptions

Reorder

BufferFP

Op

Queue

FP Adder FP Adder

Res Stations Res Stations

FP Regs

Commit path

STUDENTS-HUB.com

https://students-hub.com

Adding Speculation to Tomasulo

• Must separate execution from allowing instruction to
finish or “commit”

• This additional step called instruction commit

• When an instruction is no longer speculative, allow it to
update the register file or memory

• Requires additional set of buffers to hold results of
instructions that have finished execution but have not
committed

• This reorder buffer (ROB) is also used to pass results
among instructions that may be speculated

STUDENTS-HUB.com

https://students-hub.com

Reorder Buffer (ROB)

• In Tomasulo’s algorithm, once an instruction writes its
result, any subsequently issued instructions will find
result in the register file

• With speculation, the register file is not updated until
the instruction commits
– (we know definitively that the instruction should execute)

• Thus, the ROB supplies operands in interval between
completion of instruction execution and instruction
commit
– ROB is a source of operands for instructions, just as reservation stations

(RS) provide operands in Tomasulo’s algorithm

– ROB extends architectured registers like RS

STUDENTS-HUB.com

https://students-hub.com

Tomasulos with Speculation

STUDENTS-HUB.com

https://students-hub.com

Reorder Buffer Entry

• Each entry in the ROB contains four fields:

1. Instruction type
• a branch (has no destination result), a store (has a memory address

destination), or a register operation (ALU operation or load, which has
register destinations)

2. Destination
• Register number (for loads and ALU operations) or

memory address (for stores)
where the instruction result should be written

3. Value
• Value of instruction result until the instruction commits

4. Ready
• Indicates that instruction has completed execution, and the value is

ready

STUDENTS-HUB.com

https://students-hub.com

Recall: 4 Steps of Speculative Tomasulo
Algorithm

1. Issue—get instruction from FP Op Queue
If reservation station and reorder buffer slot free, issue instr & send operands &
reorder buffer no. for destination (this stage sometimes called “dispatch”)

2. Execution—operate on operands (EX)
When both operands ready then execute; if not ready, watch CDB for result;
when both in reservation station, execute; checks RAW (sometimes called
“issue”)

3. Write result—finish execution (WB)
Write on Common Data Bus to all awaiting FUs
& reorder buffer; mark reservation station available.

4. Commit—update register with reorder result
When instr. at head of reorder buffer & result present, update register with
result (or store to memory) and remove instr from reorder buffer. Mispredicted
branch flushes reorder buffer (sometimes called “graduation”)

STUDENTS-HUB.com

https://students-hub.com

Tomasulo With Reorder buffer:

To
Memory

FP adders FP multipliers

Reservation
Stations

FP Op
Queue

ROB7

ROB6

ROB5

ROB4

ROB3

ROB2

ROB1F0 LD F0,10(R2) N

Done?

Dest
Dest

Oldest

Newest

from
Memory

1 10+R2
Dest

Reorder Buffer

Registers

STUDENTS-HUB.com

https://students-hub.com

2 ADDD R(F4),ROB1

Tomasulo With Reorder buffer:

To
Memory

FP adders FP multipliers

Reservation
Stations

FP Op
Queue

ROB7

ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

F10

F0

ADDD F10,F4,F0

LD F0,10(R2)

N

N

Done?

Dest
Dest

Oldest

Newest

from
Memory

1 10+R2
Dest

Reorder Buffer

Registers

STUDENTS-HUB.com

https://students-hub.com

3 DIVD ROB2,R(F6)
2 ADDD R(F4),ROB1

Tomasulo With Reorder buffer:

To
Memory

FP adders FP multipliers

Reservation
Stations

FP Op
Queue

ROB7

ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

F2

F10

F0

DIVD F2,F10,F6

ADDD F10,F4,F0

LD F0,10(R2)

N

N

N

Done?

Dest
Dest

Oldest

Newest

from
Memory

1 10+R2
Dest

Reorder Buffer

Registers

STUDENTS-HUB.com

https://students-hub.com

3 DIVD ROB2,R(F6)
2 ADDD R(F4),ROB1
6 ADDD ROB5, R(F6)

Tomasulo With Reorder buffer:

To
Memory

FP adders FP multipliers

Reservation
Stations

FP Op
Queue

ROB7

ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

F0 ADDD F0,F4,F6 N

F4 LD F4,0(R3) N

-- BNE F2,<…> N

F2

F10

F0

DIVD F2,F10,F6

ADDD F10,F4,F0

LD F0,10(R2)

N

N

N

Done?

Dest
Dest

Oldest

Newest

from
Memory

1 10+R2
Dest

Reorder Buffer

Registers

5 0+R3

STUDENTS-HUB.com

https://students-hub.com

3 DIVD ROB2,R(F6)
2 ADDD R(F4),ROB1
6 ADDD ROB5, R(F6)

Tomasulo With Reorder buffer:

To
Memory

FP adders FP multipliers

Reservation
Stations

FP Op
Queue

ROB7

ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

--

F0

ROB5 ST 0(R3),F4

ADDD F0,F4,F6

N

N

F4 LD F4,0(R3) N

-- BNE F2,<…> N

F2

F10

F0

DIVD F2,F10,F6

ADDD F10,F4,F0

LD F0,10(R2)

N

N

N

Done?

Dest
Dest

Oldest

Newest

from
Memory

Dest

Reorder Buffer

Registers

1 10+R2
5 0+R3

STUDENTS-HUB.com

https://students-hub.com

3 DIVD ROB2,R(F6)

Tomasulo With Reorder buffer:

To
Memory

FP adders FP multipliers

Reservation
Stations

FP Op
Queue

ROB7

ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

--

F0

M[10] ST 0(R3),F4

ADDD F0,F4,F6

Y

N

F4 M[10] LD F4,0(R3) Y

-- BNE F2,<…> N

F2

F10

F0

DIVD F2,F10,F6

ADDD F10,F4,F0

LD F0,10(R2)

N

N

N

Done?

Dest
Dest

Oldest

Newest

from
Memory

1 10+R2
Dest

Reorder Buffer

Registers

2 ADDD R(F4),ROB1
6 ADDD M[10],R(F6)

STUDENTS-HUB.com

https://students-hub.com

3 DIVD ROB2,R(F6)
2 ADDD R(F4),ROB1

Tomasulo With Reorder buffer:

To
Memory

FP adders FP multipliers

Reservation
Stations

FP Op
Queue

ROB7

ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

--

F0

M[10]

<val2>

ST 0(R3),F4

ADDD F0,F4,F6

Y

Ex

F4 M[10] LD F4,0(R3) Y

-- BNE F2,<…> N

F2

F10

F0

DIVD F2,F10,F6

ADDD F10,F4,F0

LD F0,10(R2)

N

N

N

Done?

Dest
Dest

Oldest

Newest

from
Memory

1 10+R2
Dest

Reorder Buffer

Registers

STUDENTS-HUB.com

https://students-hub.com

--

F0

M[10]

<val2>

ST 0(R3),F4

ADDD F0,F4,F6

Y

Ex

F4 M[10] LD F4,0(R3) Y

-- BNE F2,<…> N

3 DIVD ROB2,R(F6)
2 ADDD R(F4),ROB1

Tomasulo With Reorder buffer:

To
Memory

FP adders FP multipliers

Reservation
Stations

FP Op
Queue

ROB7

ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

F2

F10

F0

DIVD F2,F10,F6

ADDD F10,F4,F0

LD F0,10(R2)

N

N

N

Done?

Dest
Dest

Oldest

Newest

from
Memory

1 10+R2
Dest

Reorder Buffer

Registers

What about memory
hazards???

STUDENTS-HUB.com

https://students-hub.com

Avoiding Memory Hazards

• WAW and WAR hazards through memory are
eliminated with speculation because actual updating of
memory occurs in order, when a store is at head of the
ROB, and hence, no earlier loads or stores can still be
pending

• RAW hazards through memory are maintained by two
restrictions:
1. not allowing a load to initiate the second step of its execution if any

active ROB entry occupied by a store has a Destination field that
matches the value of the A field of the load, and

2. maintaining the program order for the computation of an effective
address of a load with respect to all earlier stores.

• these restrictions ensure that any load that accesses a
memory location written to by an earlier store cannot
perform the memory access until the store has written
the data

STUDENTS-HUB.com

https://students-hub.com

Memory Disambiguation:
Sorting out RAW Hazards in memory

• Question: Given a load that follows a store in program order, are
the two related?
– (Alternatively: is there a RAW hazard between the store and the load)?

Eg: st 0(R2),R5

ld R6,0(R3)

• Can we go ahead and start the load early?
– Store address could be delayed for a long time by some calculation that leads to R2

(divide?).

– We might want to issue/begin execution of both operations in same cycle.

– Today: Answer is that we are not allowed to start load until we know that address
0(R2)  0(R3)

– Next : We might guess at whether or not they are dependent (called “dependence
speculation”) and use reorder buffer to fix up if we are wrong.

STUDENTS-HUB.com

https://students-hub.com

Hardware Support for Memory
Disambiguation

• Need buffer to keep track of all outstanding stores to memory, in
program order.
– Keep track of address (when becomes available) and value (when becomes

available)

– FIFO ordering: will retire stores from this buffer in program order

• When issuing a load, record current head of store queue (know
which stores are ahead of you).

• When have address for load, check store queue:
– If any store prior to load is waiting for its address, stall load.

– If load address matches earlier store address (associative lookup), then we have a
memory-induced RAW hazard:

» store value available  return value

» store value not available  return ROB number of source

– Otherwise, send out request to memory

• Actual stores commit in order, so no worry about WAR/WAW
hazards through memory.

STUDENTS-HUB.com

https://students-hub.com

-- LD F4, 10(R3) N

Memory Disambiguation:

To
Memory

FP adders FP multipliers

Reservation
Stations

FP Op
Queue

ROB7

ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

F2

F0

--

R[F5]

<val 1>

ST 10(R3), F5

LD F0,32(R2)

ST 0(R3), F4

N

N

Y

Done?

Dest
Dest

Oldest

Newest

from
Memory

2 32+R2

4 ROB3

Dest

Reorder Buffer

Registers

STUDENTS-HUB.com

https://students-hub.com

How much to speculate?

• Speculation Pro: uncover events that would otherwise stall
the pipeline (cache misses)

• Speculation Con: speculate costly if exceptional event occurs
when speculation was incorrect

• Typical solution: speculation allows only low-cost exceptional
events (1st-level cache miss)

• When expensive exceptional event occurs, (2nd-level cache
miss or TLB miss) processor waits until the instruction causing
event is no longer speculative before handling the event

• Assuming single branch per cycle: future may speculate across
multiple branches!

STUDENTS-HUB.com

https://students-hub.com

Loop unrolling

STUDENTS-HUB.com

https://students-hub.com

Software Techniques - Example

• This code, add a scalar to a vector:

for (i=1000; i>0; i=i–1)

x[i] = x[i] + s;

• Assume following latencies for all examples
– Ignore delayed branch in these examples

Instruction Instruction Latency stalls between
producing result using result in cycles in cycles

FP ALU op Another FP ALU op 4 3

FP ALU op Store double 3 2

Load double FP ALU op 1 1

Load double Store double 1 0

Integer op Integer op 1 0

STUDENTS-HUB.com

https://students-hub.com

FP Loop: Where are the Hazards?

Loop: L.D F0,0(R1);F0=vector element

ADD.D F4,F0,F2;add scalar from F2

S.D 0(R1),F4;store result

DADDUI R1,R1,-8;decrement pointer 8B (DW)

BNEZ R1,Loop ;branch R1!=zero

• First translate into MIPS code:
-To simplify, assume 8 is lowest address

STUDENTS-HUB.com

https://students-hub.com

FP Loop Showing Stalls

• 9 clock cycles: Rewrite code to minimize stalls?

Instruction Instruction Latency in
producing result using result clock cycles

FP ALU op Another FP ALU op 3

FP ALU op Store double 2

Load double FP ALU op 1

1 Loop: L.D F0,0(R1) ;F0=vector element

2 stall

3 ADD.D F4,F0,F2 ;add scalar in F2

4 stall

5 stall

6 S.D 0(R1),F4 ;store result

7 DADDUI R1,R1,-8 ;decrement pointer 8B (DW)

8 stall ;assumes can’t forward to branch

9 BNEZ R1,Loop ;branch R1!=zero

STUDENTS-HUB.com

https://students-hub.com

Revised FP Loop Minimizing Stalls

7 clock cycles, but just 3 for execution (L.D, ADD.D,S.D), 4 for loop overhead;
How make faster?

Instruction Instruction Latency in
producing result using result clock cycles

FP ALU op Another FP ALU op 3

FP ALU op Store double 2

Load double FP ALU op 1

1 Loop: L.D F0,0(R1)

2 DADDUI R1,R1,-8

3 ADD.D F4,F0,F2

4 stall

5 stall

6 S.D 8(R1),F4 ;altered offset when move DSUBUI

7 BNEZ R1,Loop

Swap DADDUI and S.D by changing address of S.D

STUDENTS-HUB.com

https://students-hub.com

Unroll Loop Four Times (straightforward way)

Rewrite loop to
minimize stalls?

1 Loop:L.D F0,0(R1)

3 ADD.D F4,F0,F2

6 S.D 0(R1),F4 ;drop DSUBUI & BNEZ

7 L.D F6,-8(R1)

9 ADD.D F8,F6,F2

12 S.D -8(R1),F8 ;drop DSUBUI & BNEZ

13 L.D F10,-16(R1)

15 ADD.D F12,F10,F2

18 S.D -16(R1),F12 ;drop DSUBUI & BNEZ

19 L.D F14,-24(R1)

21 ADD.D F16,F14,F2

24 S.D -24(R1),F16

25 DADDUI R1,R1,#-32 ;alter to 4*8

26 BNEZ R1,LOOP

27 clock cycles, or 6.75 per iteration

(Assumes R1 is multiple of 4)

1 cycle stall

2 cycles stall

STUDENTS-HUB.com

https://students-hub.com

Unrolled Loop That Minimizes Stalls

1 Loop:L.D F0,0(R1)

2 L.D F6,-8(R1)

3 L.D F10,-16(R1)

4 L.D F14,-24(R1)

5 ADD.D F4,F0,F2

6 ADD.D F8,F6,F2

7 ADD.D F12,F10,F2

8 ADD.D F16,F14,F2

9 S.D 0(R1),F4

10 S.D -8(R1),F8

11 S.D -16(R1),F12

12 DSUBUI R1,R1,#32

13 S.D 8(R1),F16 ; 8-32 = -24

14 BNEZ R1,LOOP

14 clock cycles, or 3.5 per iteration

STUDENTS-HUB.com

https://students-hub.com

Unrolled Loop Detail

• Do not usually know upper bound of loop

• Suppose it is n, and we would like to unroll the loop to make k
copies of the body

• Instead of a single unrolled loop, we generate a pair of consecutive
loops:
– 1st executes (n mod k) times and has a body that is the original loop

– 2nd is the unrolled body surrounded by an outer loop that iterates (n/k) times

• For large values of n, most of the execution time will be spent in the
unrolled loop

STUDENTS-HUB.com

https://students-hub.com

5 Loop Unrolling Decisions

• Requires understanding how one instruction depends on another
and how the instructions can be changed or reordered given the
dependences:

1. Determine loop unrolling useful by finding that loop iterations
were independent (except for maintenance code)

2. Use different registers to avoid unnecessary constraints forced by
using same registers for different computations

3. Eliminate the extra test and branch instructions and adjust the loop
termination and iteration code

4. Determine that loads and stores in unrolled loop can be
interchanged by observing that loads and stores from different
iterations are independent
• Transformation requires analyzing memory addresses and finding that they do

not refer to the same address

5. Schedule the code, preserving any dependences needed to yield
the same result as the original code

STUDENTS-HUB.com

https://students-hub.com

3 Limits to Loop Unrolling

1. Decrease in amount of overhead amortized with each
extra unrolling
• Amdahl’s Law

2. Growth in code size
• For larger loops, concern it increases the instruction cache miss rate

3. Register pressure: potential shortfall in registers
created by aggressive unrolling and scheduling
• If not be possible to allocate all live values to registers, may lose some

or all of its advantage

• Loop unrolling reduces impact of branches on pipeline;
another way is branch prediction

STUDENTS-HUB.com

https://students-hub.com

Branch Prediction

STUDENTS-HUB.com

https://students-hub.com

Branch Prediction

• Guess the direction of a branch

• Guess its target if necessary

• Fetch instructions from there

• Execute Speculatively
– Without knowing whether we should

• Eventually, verify if prediction was correct
– If correct, good for us

– if not, well, discard and execute down the right path

STUDENTS-HUB.com

https://students-hub.com

For Example

while (l)

if (l->data == 0)

l->data++;

l = l->next

loop: beq r1, r0, done

ld r2, 0(r1)

bne r2, r0, noinc

inc: add r2, r2, 1

st r2, 0(r1)

noinc: ld r1, 4(r1)

bra loop

done:

STUDENTS-HUB.com

https://students-hub.com

Branch Prediction Steps

• Elements of Branch Prediction
– Start with branch PC and answer:

– Why just PC? Early in the pipeline!

– Q1? Branch taken or not?

– Q2? Where to?

– Q3? Target Instruction

• All must be done to be successful

• Let’s consider these separately

STUDENTS-HUB.com

https://students-hub.com

Static Branch Prediction

• Static:
– Decisions do not take into account dynamic behavior

– Non-adaptive can be another term

• Always Taken

• Always Not-Taken

• Forward NT Backward T

• If X then T but if Y then NT but if Z then T
– More elaborate schemes are possible

• Bottom line
– Accuracy is high but not high enough

– Say it’s 60%

STUDENTS-HUB.com

https://students-hub.com

• Predict branch statically when we compile the program

• Simplest scheme is to predict all branches as taken

– Untaken branch frequency = 34% of all branch instructions (SPEC
programs)

– Or predict backward branches as taken and forward branches as
not taken

• Some processors allow branch prediction hints to be inserted in code

112

12%

22%

18%

11% 12%

4%
6%

9% 10%

15%

0%

5%

10%

15%

20%

25%

P
ro

fi
le

-B
a
s
e
d

M
is

p
re

d
ic

ti
o

n
 R

a
te

Static Branch Prediction

More accurate static
scheme predicts
branches using
profile information
collected from earlier
runs, and modify
prediction based on
last run

Integer Floating PointSTUDENTS-HUB.com

https://students-hub.com

Dynamic Branch Prediction

• Why? Larger window -> More opportunity for
parallelism

• Basic Idea:
– hardware guesses whether a branch will be taken, and if so where it

will go

• What makes these work?
– Past Branch Behavior STRONG indicator of future branch behavior

• Branches tend to exhibit regular behavior

STUDENTS-HUB.com

https://students-hub.com

Dynamic Branch Prediction

• Why does prediction work?
– Underlying algorithm has regularities

– Data that is being operated on has regularities

– Instruction sequence has redundancies that are artifacts of way that
humans/compilers think about problems

• Is dynamic branch prediction better than static branch
prediction?
– Seems to be

– There are a small number of important branches in programs which
have dynamic behavior

STUDENTS-HUB.com

https://students-hub.com

Dynamic Branch Prediction

• Performance = ƒ(accuracy, cost of misprediction)

• Branch History Table (BHT)

• Lower bits of PC address = index to BHT table
– Each entry consists of few bits

– Says whether or not branch is predicted to be taken

– No address check

• 1-bit BHT is simplest to implement
– Record last branch outcome and uses it to predict future

– Problem: in a loop, 1-bit BHT will cause two mispredictions

– End of loop case, when it exits instead of looping as before

– First time through loop on next time through code, when it predicts exit instead of
looping

STUDENTS-HUB.com

https://students-hub.com

• 2-bit scheme change prediction only if we get two
mispredictions

2-bit Predictors

10

11

00

01

. . .

11

11

00

00

T

T NT

NT

T

NT

T

NT

Weakly

Not Taken

Strongly

Not Taken

Strongly

Taken

Weakly

Taken

BHT = 2n entries

Program Counter

n bitsUpper bits
Branch

Prediction

STUDENTS-HUB.com

https://students-hub.com

18%

5%

12%
10%

9%

5%

9% 9%

0%
1%

0%
2%

4%
6%

8%
10%
12%

14%
16%

18%
20%

eq
nt

ot
t

es
pr

es
so gc

c li

sp
ic
e

do
du

c

sp
ic
e

fp
pp

p

m
at

rix
30

0

na
sa

7

M
is

p
re

d
ic

ti
o

n
 R

a
te

BHT Accuracy

• Mispredict because either:
– Wrong guess for that branch

– Got branch history of wrong branch when index the table

• 4096 entry table:

Integer
Floating Point

STUDENTS-HUB.com

https://students-hub.com

Correlating Predictors

• Branches from different instructions may be
correlated

if (aa < 0) aa = 0;

if (bb < 0) bb = 0;

if (aa != bb) { . . . }

• If the first two conditions are true, then the third one
will be false

• Save history of all recent branch outcomes

• Global Branch History Register is a m-bit shift register

– Holds most recent m branch outcomes

– Approximation to path followed

STUDENTS-HUB.com

https://students-hub.com

Correlating Predictors

• Here is the MIPS code:
– Assuming that aa and bb are assigned to registers R1 and R2:

– The key observation is that the behavior of branch b3 is correlated with
the behavior of branches b1 and b2.

– A predictor that uses only the behavior of a single branch to predict the
outcome of that branch can never capture this behavior.

STUDENTS-HUB.com

https://students-hub.com

Correlated Branch Prediction

• Idea: record m most recently executed branches as
taken or not taken, and use that pattern to select the
proper n-bit branch history table

• In general, (m,n) predictor means record last m branches
to select between 2m history tables, each with n-bit
counters
– Thus, old 2-bit BHT is a (0,2) predictor

• Global Branch History: m-bit shift register keeping T/NT
status of last m branches.

• Each entry in table has m n-bit predictors.

STUDENTS-HUB.com

https://students-hub.com

Correlating Branches

(2,2) predictor

– Behavior of recent

branches selects

between four

predictions of next

branch, updating just

that prediction

Branch address

2-bits per branch predictor

Prediction

2-bit global branch history

4

STUDENTS-HUB.com

https://students-hub.com

0%

F
re

q
u

en
cy

 o
f

 M
is

p
re

d
ic

ti
o
n

s

0%
1%

5%
6% 6%

11%

4%

6%
5%

1%
2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

4,096 entries: 2-bits per entry Unlimited entries: 2-bits/entry 1,024 entries (2,2)

Accuracy of Different Schemes

4096 Entries 2-bit BHT

Unlimited Entries 2-bit BHT

1024 Entries (2,2) BHT

n
as

a7

m
at

ri
x

3
0
0

d
o
d
u
cd

sp
ic

e

fp
p

p
p

g
cc

ex
p
re

ss
o

eq
n
to

tt li

to
m

ca
tv

STUDENTS-HUB.com

https://students-hub.com

Tournament Predictors

• Multilevel branch predictor

• Use n-bit saturating counter to select between predictors

• Usual choice between global and local predictors

• Ability to select the right predictor for a particular branch

STUDENTS-HUB.com

https://students-hub.com

Tournament Predictors

• Example of a tournament predictor using 29K bits and
used in Alpha 21264, Pentium 4, and Power 5.

• Uses 4K 2-bit counters indexed by local branch address
to select between:

• Global predictor
– 4K entries indexed by history of last 12 branches (212 = 4K)

– Each entry is a standard 2-bit predictor

• Local predictor is a 2-level predictor
– Local history table: 1024 10-bit entries recording last 10

branch outcomes, indexed by branch address

– The pattern of the last 10 occurrences of that particular
branch used to index table of 1K entries with 3-bit saturating
counters

STUDENTS-HUB.com

https://students-hub.com

Example of a Tournament Predictor

10

11

00

01

.

.

.

GBHR = 12 bits

Global Branch

History Register

Updated on each

branch outcome

4K × 2-bit

entries

Global Predictor

12

1K × 10-bit

entries

1K × 3-bit

entries

Program Counter 1011100110

0000110000

1010101010

0100000111

.

.

.

10 bits

2-Level Local

Predictor

10

101

000

100

011

.

.

.

10

10

11

00

01

.

.

.

4K × 2-bit

entries

12

Program Counter

12 bits

Tournament

Predictor Final Prediction

Select Predictor

Global

Prediction

Local

Prediction

STUDENTS-HUB.com

https://students-hub.com

0

1023

PC

10 bits

(LSB)

Local History Table

(1024 x 10 bits)

Selector MSB of Choice Predictor

12 bits

(Global) Path History

1 bit

1 bit

1 bit

Branch

Prediction

Global

Predictor
4096 x 2 bits

Choice

Predictor
4096 x 2 bits

Local

Predictor
1024 x 3 bits10 bits

12 bits

Keeps the history of branch

globally

Only the most significant bit is

used 0=NT, 1=T

For each NT branch, it is

decremented and for each T branch,

it is incremented

Shift left

Shift left at every

local branch—

collecting local

history

Keep history of

choices between

Local or Global

Predictor

STUDENTS-HUB.com

https://students-hub.com

Example of a Tournament Predictor

• The value of the saturating counter determines whether
to choose the local or global predictor.

• How does the choice predictor determine this?
– Whenever the local counter is correct and the global counter is

incorrect, the choice predictor’s corresponding counter is decremented.

– Whenever the local counter is incorrect and the global counter is
correct, the choice predictor’s corresponding counter is incremented.

– If the counters are both correct, or both incorrect, the choice
predictor’s corresponding counter is not changed.

STUDENTS-HUB.com

https://students-hub.com

128

Comparing Predictors

• Advantage of tournament predictor is ability to select the
right predictor for a particular branch

– Particularly crucial for integer benchmarks.

– A typical tournament predictor will select the global predictor
almost 40% of the time for the SPEC integer benchmarks and less
than 15% of the time for the SPEC FP benchmarks

STUDENTS-HUB.com

https://students-hub.com

Pentium 4 Misprediction Rate
(per 1000 instructions, not per branch)

11

13

7

12

9

1
0 0 0

5

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

16
4.
gz
ip

17
5.
vp
r

17
6.
gc
c

18
1.
m
cf

18
6.
cr
af
ty

16
8.
w
up
w
is
e

17
1.
sw
im

17
2.
m
gr
id

17
3.
ap
pl
u

17
7.
m
es
a

B
r
a
n

c
h

 m
is

p
r
e
d

ic
ti

o
n

s
 p

e
r
 1

0
0

0
 I

n
s
tr

u
c
ti

o
n

s

SPECint2000 SPECfp2000

 6% misprediction rate per branch SPECint

(19% of SPECINT instructions are branch)

 2% misprediction rate per branch SPECfp

(5% of SPECFP instructions are branch)

STUDENTS-HUB.com

https://students-hub.com

• Branch target calculation is costly and stalls the
instruction fetch.

• BTB stores PCs the same way as caches

• The PC of a branch is sent to the BTB

• When a match is found the corresponding
Predicted PC is returned

• If the branch was predicted taken, instruction
fetch continues at the returned predicted PC

Branch Target Buffers (BTB)

STUDENTS-HUB.com

https://students-hub.com

Branch Target Buffers

STUDENTS-HUB.com

https://students-hub.com

Branch
Target
Buffers

STUDENTS-HUB.com

https://students-hub.com

Branch Target Cache

• Similar to BTB, but we also want to get the target instruction!

– Prediction returns not just the target address, but also the instruction
stored there

– Allows zero-cycle unconditional branches (branch-folding)

• Send target-instruction to ID rather than branch

• Branch is not even sent into pipe

» For conditional branches? Read Branch Target

Cache

Target

instruction

s stored

here

Target instruction

STUDENTS-HUB.com

http://tab.computer.org/tcca/NEWS/dec97/kavi.pdf
https://students-hub.com

Return Address Predictors

• Included in many recent processors

– Alpha 21264 => 12 entry RAS (Return Address Stack)

• Procedure returns account for ~85% of indirect jumps (jumps
whose address varies at run time). It will then return to many
different locations—BTB may not predict accurately,

• Therefore, small buffer of Return Addresses=cache of the
most recent return addresses

• Like a hardware stack, LIFO

– At Procedure Call => Push Return address onto stack

– Procedure Return => Prediction off of top of stack, Pop it

• RAS tends to work quite well since call depths are typically
not large

STUDENTS-HUB.com

https://students-hub.com

Relationship between precise
interrupts and speculation:

• Speculation is a form of guessing.

• Important for branch prediction:
– Need to “take our best shot” at predicting branch direction.

– If we issue multiple instructions per cycle, lose lots of potential instructions
otherwise:

» Consider 4 instructions per cycle

» If take single cycle to decide on branch, waste from 4 - 7 instruction slots!

• If we speculate and are wrong, need to back up and restart
execution to point at which we predicted incorrectly:
– This is exactly same as precise exceptions!

• Technique for both precise interrupts/exceptions and
speculation: in-order completion or commit

STUDENTS-HUB.com

https://students-hub.com

Speculation to greater ILP

• 3 components of HW-based speculation:

1. Dynamic branch prediction to choose which
instructions to execute

2. Speculation to allow execution of instructions before
control dependences are resolved

+ ability to undo effects of incorrectly speculated sequence

3. Dynamic scheduling to deal with scheduling of
different combinations of basic blocks

STUDENTS-HUB.com

https://students-hub.com

Getting CPI < 1:
Issuing Multiple Instructions/Cycle

• Vector Processing: Explicit coding of independent loops as
operations on large vectors of numbers

– Multimedia instructions being added to many processors

• Superscalar: varying no. instructions/cycle (1 to 8), scheduled
by compiler or by HW (Tomasulo)

– IBM PowerPC, Sun UltraSparc, DEC Alpha, Pentium III/4

• (Very) Long Instruction Words (V)LIW:
fixed number of instructions (4-16) scheduled by the compiler;
put ops into wide templates
– Intel Architecture-64 (IA-64) 64-bit address

» Renamed: “Explicitly Parallel Instruction Computer (EPIC)”

• Anticipated success of multiple instructions lead to
Instructions Per Clock cycle (IPC) vs. CPI

STUDENTS-HUB.com

https://students-hub.com

Getting CPI < 1: Issuing Multiple
Instructions/Cycle

• Superscalar MIPS: 2 instructions, 1 FP & 1 anything
– Fetch 64-bits/clock cycle; Int on left, FP on right

– Can only issue 2nd instruction if 1st instruction issues

– More ports for FP registers to do FP load & FP op in a pair

Type Pipe Stages

Int. instruction IF ID EX MEM WB

FP instruction IF ID EX MEM WB

Int. instruction IF ID EX MEM WB

FP instruction IF ID EX MEM WB

Int. instruction IF ID EX MEM WB

FP instruction IF ID EX MEM WB

• 1 cycle load delay expands to 3 instructions in SS
– instruction in right half can’t use it, nor instructions in next slot

STUDENTS-HUB.com

https://students-hub.com

Multiple Issue Issues

• issue packet: group of instructions from fetch unit that
could potentially issue in 1 clock
– If instruction causes structural hazard or a data hazard either due to

earlier instruction in execution or to earlier instruction in issue packet,
then instruction does not issue

– 0 to N instruction issues per clock cycle, for N-issue

• Performing issue checks in 1 cycle could limit clock cycle
time:
– => issue stage usually split and pipelined

– 1st stage decides how many instructions from within this packet can
issue, 2nd stage examines hazards among selected instructions and those
already been issued

– => higher branch penalties => prediction accuracy important

STUDENTS-HUB.com

https://students-hub.com

Multiple Issue Challenges

• While Integer/FP split is simple for the HW, get CPI of 0.5 only for
programs with:
– Exactly 50% FP operations AND No hazards

• If more instructions issue at same time, greater difficulty of
decode and issue:
– Even 2-scalar => examine 2 opcodes, 6 register specifiers, & decide if 1 or 2

instructions can issue

– Register file: need 2x reads and 1x writes/cycle

– Rename logic: must be able to rename same register multiple times in one cycle!
For instance, consider 4-way issue:

add r1, r2, r3 add p11, p4, p7
sub r4, r1, r2  sub p22, p11, p4
lw r1, 4(r4) lw p23, 4(p22)
add r5, r1, r2 add p12, p23, p4

Imagine doing this transformation in a single cycle!

– Result buses: Need to complete multiple instructions/cycle

» So, need multiple buses with associated matching logic at every reservation
station.

» Or, need multiple forwarding paths
STUDENTS-HUB.com

https://students-hub.com

Superscalar Dynamic Scheduling

• The Tomasulo dynamic scheduling algorithm is extended to issue more
than one instruction per cycle.

• However the restriction that instructions must issue in program order still
holds to avoid violating instruction dependencies (construct correct
dependency graph dynamically).
– The result of issuing multiple instructions in one cycle should be the same as if they were

single-issued, one instruction per cycle.

• How to issue two instructions and keep in-order instruction issue for
Tomasulo?

• Simplest Method: Restrict Type of Instructions Issued Per Cycle

• To simplify the issue logic, issue one one integer + one floating-point
instruction per cycle (for a 2-way superscalar).
– 1 Tomasulo control for integer, 1 for floating point.

• FP loads/stores might cause a dependency between integer and FP issue:
– Replace load reservation stations with a load queue; operands must be read in the order

they are fetched (program order).

– Replace store reservation stations with a store queue; operands must be written in the
order they are fetched.

» Load checks addresses in Store Queue to avoid RAW violation

• (get load value from store queue if memory address matches)
» Store checks addresses in Load Queue to avoid WAR, and checks Store Queue to avoid WAW.STUDENTS-HUB.com

https://students-hub.com

Three techniques can be used to support multiple instruction issue in Tomasulo

without putting restrictions on the type of instructions issued per cycle:

1 Issue at a higher clock rate so that issue remains in order.
– For example for a 2-Issue supercalar issue at 2X Clock Rate.

2 Widen the issue logic to handle multiple instruction issue
– All possible dependencies between instructions to be issues are detected at once and the result of the multiple issue

matches in-order issue

Superscalar Dynamic Scheduling

Issue

First

Instruction

Issue

Second

Instruction

One Cycle

Check

Instruction

Dependencies

Issue

Both

Instructions

One Cycle

0, 1 or 2 instructions issued per cycle

for either method

2-Issue superscalar

For correct dynamic construction of dependency graph:

The result of issuing multiple instructions in one cycle should

be the same as if they were single-issued, one instruction per cycle.

Why?

STUDENTS-HUB.com

https://students-hub.com

3 To avoid increasing the CPU clock cycle time in the last two approaches,
multiple instruction issue can be spilt into two pipelined issue stages:

– Issue Stage One: Decide how many instructions can issue simultaneously
checking dependencies within the group of instructions to be issued + available
RSs, ignoring instructions already issued.

– Issue Stage Two: Examine dependencies among the selected instructions from
the group and the those already issued.

• This approach is usually used in dynamically-scheduled wide superscalars
that can issue four or more instructions per cycle.

• Splitting the issue into two pipelined staged increases the CPU pipeline
depth and increases branch penalties

– This increases the importance of accurate dynamic branch prediction
methods.

• Further pipelining of issue stages beyond two stages may be necessary as
CPU clock rates are increased.

• The dynamic scheduling/issue control logic for superscalars is generally
very complex growing at least quadratically with issue width.

– e.g 4 wide superscalar -> 4x4 = 16 times complexity of single issue CPU

Superscalar Dynamic Scheduling

STUDENTS-HUB.com

https://students-hub.com

Superscalar Dynamic Scheduling with Dual-issue

STUDENTS-HUB.com

https://students-hub.com

Superscalar Dynamic Scheduling with Dual-issue
and speculation

STUDENTS-HUB.com

https://students-hub.com

Limits to ILP

• Conflicting studies of amount
– Benchmarks (vectorized Fortran FP vs. integer C programs)

– Hardware sophistication

– Compiler sophistication

• How much ILP is available using existing mechanisms with
increasing HW budgets?

• Do we need to invent new HW/SW mechanisms to keep on
processor performance curve?
– Intel MMX, SSE (Streaming SIMD Extensions): 64 bit ints

– Intel SSE2: 128 bit, including 2 64-bit Fl. Pt. per clock

– Motorola AltaVec: 128 bit ints and FPs

– Supersparc Multimedia ops, etc.

STUDENTS-HUB.com

https://students-hub.com

Limits to ILP

Initial HW Model here; MIPS compilers.

Assumptions for ideal/perfect machine to start:

1. Register renaming – infinite virtual registers
=> all register WAW & WAR hazards are avoided

2. Branch prediction – perfect; no mispredictions

3. Jump prediction – all jumps perfectly predicted
2 & 3 => machine with perfect speculation & an unbounded
buffer of instructions available

4. Memory-address alias analysis – addresses are known & a
store can be moved before a load provided addresses not
equal

Also:
unlimited number of instructions issued/clock cycle; perfect
caches;
1 cycle latency for all instructions (FP *,/);

STUDENTS-HUB.com

https://students-hub.com

