Chapter 7.1, Problem 40E

Problem

Let *X* and *Y* be sets, let *A* and *B* be any subsets of *X*, and let *F* be a function from *X* to *Y*. Fill in the blanks in the following proof that $F(A) \cup \cup F(B) \subseteq F(A \cup B)$.

Proof: Let *y* be any element in $F(A) \cup F(B)$. [We must show that *y* is in $F(A \cup B)$.] By definition of union, (*a*).

Case 1, $y \in F(A)$: In this case, by definition of F(A), y = F(x) for $(b)x \in A$. Since $A \subseteq A \cup B$, it follows from the definition of union that $x \in (c)$. Hence, y = F(x) for some $x \in A \cup B$, and thus, by definition of $F(A \cup B)$, $y \in (d)$.

Case 2, $y \in F(B)$ *:* In this case, by definition of F(B), (e) $x \in B$. Since $B \subseteq A \cup B$ it follows from the definition of union that (*f*).

Therefore, regardless of whether $y \in F(A)$ or $y \in F(B)$, we have that $y \in F(A \cup B)$ [as was to be shown].

Step-by-step solution

Step 1 of 2

The function *F* is defined from X to Y and $A, B \subseteq X$.

The objective is to complete the proof of $F(A) \cup F(B) \subseteq F(A \cup B)$.

Let $y \in F(A) \cup F(B)$.

By definition of union, either $y \in F(A)$ or $y \in F(B)$

Case 1, $y \in F(A)$:

By the definition of the image set $F(A) = \{f(x) | x \in A\}$, there is a y = F(x) for some $x \in A$

In this case, by the definition of union and $A \subseteq A \cup B$, it implies that $x \in B$.

Hence, y = F(x) for some $x \in A \cup B$.

Thus, $y \in F(A \cup B)$.

Step 2 of 2

Case 2, $y \in F(B)$:

By the definition of the image set $F(B) = \{f(x) | x \in B\}$, there is a y = F(x) for some $x \in B$. In this case, by the definition of union and $B \subseteq A \cup B$, it implies that $x \in A$. Hence, y = F(x) for some $x \in A \cup B$. Thus, $y \in F(A \cup B)$. Therefore, regardless of whether $y \in F(A)$ or $y \in F(B)$, the element $y \in F(A \cup B)$. The blue highlighted expressions fill the given blanks.

STUDENTS-HUB.com

Uploaded By: anonymous