E Data Structure: Binary Trees 2016/2017 Prepared by: Dr. Mamoun Nawahdah

e ‘*‘%) X
BIRZEIT UNIVERSITY

COMP242
Data Structure

Lectures Note:Binary Trees

Prepared by: Dr. Mamoun Nawahdah
2016/2017

1

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Binary Trees 2016/2017 Prepared by: Dr. Mamoun Nawahdah

Trees
Revision:
Sorted Arrays Sorted Linked List
Search Fast O(logn) Slow O(n)
Insert Slow O(n) Slow O(n)
Delete slow O(n) Slow O(n)
Tree
ROOU ——— (A oo Level 1
Siblings:

children of node A

Subtree of -

node B Level 3

g Level 4

.......................

e Atreeis a collection of N nodes, one of which is the root, and N 1 edges.

e Every node except the root has one parent.

e Nodes with no children are known as leaves.

e Aninternal node (parent) is any node that has at least one non-empty child.

e Nodes with the same parent are siblings.

® The depth of a node in a tree is the length of the path from the root to the node.

® The height of a tree is the number of levels in the tree.

Example 1: Family Trees (one parent)
Example 2: File system tree

—

myStuff

home work play school

<& dprtab
In1 S PO

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Binary Trees 2016/2017 Prepared by: Dr. Mamoun Nawahdah
Binary Trees

e A binary tree is a tree in which no node can have more than two children:
Root

rlcfl Trighl

where }"1efl and T

Gl
/

Y \ Reference to another node, if any

-

Data object

are binary trees.

e Binary Tree Node:

(a) Full tree (b) Complete tree (¢) Tree that is not full
and not complete

(2) (i)
® (© (1) ()
OE ®6 ® OO o
Left children: B, D, F
Right children: C,E, G
@ ® ©

(a) Each node in a full binary tree is either:

(1) an internal node with exactly two non-empty children or

(2) a leaf.
(b) A complete binary tree has a restricted shape obtained by starting at the root and filling the tree by
levels from left to right.

e e

(a) This tree is full (b) This tree is complete
(but not complete). (but not full).

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Binary Trees 2016/2017 Prepared by: Dr. Mamoun Nawahdah

h
e The maximum number of nodes in a full binary tree as a function of the tree’s height = 2 -1

Full Tree Height Number
of Nodes
O 1 1=21-1

— T : s

=22-1
3 7=23-1
4 15 =24 -1
Number of
nodes per level
5 31 =251

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Binary Trees 2016/2017 Prepared by: Dr. Mamoun Nawahdah
Implementation:

public class TNode<T extends Comparable<T>> {
T data;
TNode left;
TNode right;

public TNode(T data){ this.data = data; }

public void setData(T data) { this.data=data; }
public T getData() { returndata; }

public TNode getLeft() { return left; }

public void setLeft(TNode left) { this.left = left; }
public TNode getRight() { return right; }

public void setRight(TNode right) { this.right = right;}
public boolean isLeaf(){ return (left == null && right == null); }
public boolean hasLeft(){ return left |=null; }

public boolean hasRight(){ return right != null; }
public String toString() { return "[" + data +"]"; }

Tree Traversal
Definition: visit, or process, each data item exactly once.
= In-Order Traversal: Visit root of a binary tree between visiting nodes in root’s subtrees.

ON

el

33 52 65 12 25 27 33 34 39 48 52 60 65 72 78 90

1.Traverse the left sub tree. £
2.Visit the root. @
3.Traverse the right sub tree.

©

o Recursive implementation:

public void traverselnOrder() { traverselnOrder(root); }
public void traverselnOrder(TNode node) {
if (node = null) {
if (node.left != null)
traverselnOrder(node.left);
System.out.print(node + " ");
if (node.right != null)
traverselnOrder(node.right);

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Binary Trees 2016/2017 Prepared by: Dr. Mamoun Nawahdah
e Using a stack to perform an in-order traversal iteratively: (Optional)

1) Create an empty stack S.
2) Initialize current node as root
3) Push the current node to S and set current = current—>left until current is NULL
4) If current is NULL and stack is not empty then
a) Pop the top item from stack.
b) Print the popped item, set current = popped_item—=>right
c) Go to step 3.
5) If current is NULL and stack is empty then we are done.

Yoyl

AT

Traversal order:

void traverseInOrder () {
if (root == null) return;
Stack<Node> stack = new Stack<Node> () ;
Node node = root;
//first node to be visited will be the left one
while (node != null) {

stack.push (node) ;
node = node.left;
}
// traverse the tree
while (!stack.isEmpty()) {
// visit the top node
node = stack.pop ()
System.out.print (node.data + " ");
if (node.right != null) {
node = node.right;
// the next node to be visited is the leftmost
while (node != null) {
stack.push (node) ;
node = node.left;

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Binary Trees 2016/2017 Prepared by: Dr. Mamoun Nawahdah

= Pre-Order Traversal: Visit root before we visit root’s subtrees.

\ e

SN /
1.Visit the root.
2.Traverse the left sub tree.

3.Traverse the right sub tree.

52 33 65 52 33 25 12 27 39 34 48 65 60 78 72 90

= Post-Order Traversal: Visit root of a binary tree after visiting nodes in root’s
subtrees.

O oY

& ®
LN /
1.Traverse the left sub tree. :

2.Traverse the right sub tree.
3. Visit the root.

33 65 B2 12 27 25 34 48 39 33 60 72 90 78 65

= Level-Order Traversal: Begin at root and visit nodes one level at a time.

e The visitation order of a level-order traversal:

1) Create an empty queue g

2) temp_node = root /*start from root*/

3) Loop while temp_node is not NULL
a) print temp_node->data.
b) Enqueue temp_node’s children (first left then right children) to q
¢) Dequeue a node from q and assign it’s value to temp_node

e Level-order traversal is implemented via a queue.

e The traversal is a breadth-first search.

HW: implement level-order traversal

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Binary Trees 2016/2017 Prepared by: Dr. Mamoun Nawahdah
Expression Trees

e The leaves of an expression tree are operands, such as constants or variable names, and the other
nodes contain operators.
e |tisalso possible for a node to have only one child, as is the case with the unary minus operator.

e We can evaluate an expression tree by applying the operator at the root to the values obtained by
recursively evaluating the left and right subtrees.
(a) a/b (by a*b+c () a*(b+c) d) a*(b+c*d)/e

ATAE

Algorithm for evaluation of an expression tree:

Algorithm evaluate(expressionTree)
if (expressionTree is empty)

return 0
else
{
firstOperand = evaluate(/efr subtree of expressionTree)
secondOperand = evaluate(right subtree of expressionTree)
operator = rthe root of expressionTree
return the result of the operation operator and its operands firstOperand
and secondOperand
}

Constructing an expression tree:

The construction of the expression tree takes place by reading the postfix expression one symbol at a
time:
e [f the symbol is an operand, one-node tree is created and a pointer is pushed onto a stack.
e |f the symbol is an operator,
o Two pointers trees T1 and T2 are popped from the stack

o A new tree whose root is the operator and whose left and right children point to T2 and
T1 respectively is formed .
o A pointer to this new tree is then pushed to the Stack.

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Binary Trees
Example:

2016/2017
(ab+cde+**)

Prepared by: Dr. Mamoun Nawahdah

Since the first two symbols are operands, one-
node trees are created and pointers are pushed
to them onto a stack.

The next symbol is a '+'. It pops two pointers, a
new tree is formed, and a pointer to it is
pushed onto to the stack.

Next, ¢, d, and e are read. A one-node tree is
created for each and a pointer to the
corresponding tree is pushed onto the stack.

Continuing, a '+'is read, and it merges the last
two trees.

Now, a '"*'is read. The last two tree pointers
are popped and a new tree is formed with a "*'
as the root.

Finally, the last symbol is read. The two trees
are merged and a pointer to the final tree
remains on the stack.

STUDENTS-HUB.com

Uploaded By: anonymous

E Data Structure: Binary Trees 2016/2017 Prepared by: Dr. Mamoun Nawahdah
Binary Search Trees (BST)

e Problem: searching in binary tree takes O(n).

e Solution: forming a binary search tree.

e In a binary search tree for every node , X, in the tree, the values of all the items in its left subtree are
smaller than the item in X, and the values of all the items in its right subtree are larger (or equal if
duplication is allowed) than the item in X.

Binary Tree

Binary Search Tree

e Every node in a binary search tree is the root of a binary search tree.

e Search for an item:
Example: find(52), find(39) , find(35)

public TNode find(T data) { return find(data, root); }
public TNode find(T data, TNode node) {
if (node!= null) {
int comp = node.data.compareTo(data);
if (comp ==0)
return node;
else if (comp > 0 && node.haslLeft()) return find(data, node.left);
else if (comp < 0 && node.hasRight()) return find(data, node.right);
}
return null;
}

Efficiency: Searching a binary search tree of height h is O(h)
However, to make searching a binary search tree as efficient as possible, tree must be as short as possible.

10
7

STUDENTS-HUB.com Uploaded By: anonymous

E Data Structure: Binary Trees 2016/2017 Prepared by: Dr. Mamoun Nawahdah

Finding Max and Min Values:

SMAIL I FST I ARGFST

e The find Min operation is performed by following left nodes as long as there is a left child.
e The find Max operation is similar.

public TNode largest() { return largest(root); }
public TNode<T> largest(TNode node) {
if(node!= null){
if(Inode.hasRight())
return (node);
return largest(node.right);

}

return null;

}

public TNode smallest() { return smallest(root); }
public TNode<T> smallest(TNode node) {
if(node!= null){
if(!node.haslLeft())
return (node);
return smallest(node.left);

}

return null;

11

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Binary Trees 2016/2017 Prepared by: Dr. Mamoun Nawahdah

Insert in Binary Search Tree:
Example: insert(63)

Insert (63)

public void insert(T data) {
if (isEmpty())
root = new TNode(data);
else
insert(data, root);
}
public void insert(T data, TNode node) {
if (data.compareTo((T) node.data) >= 0) { // insert into right subtree
if (Inode.hasRight())
node.right = new TNode(data);
else
insert(data, node.right);
}else { // insert into left subtree
if (Inode.hasLeft())
node.left = new TNode(data);
else
insert(data, node.left);

Deleting a Node:

Case 1: Node to be deleted is a leaf. Two possible configurations of a leaf node N:
Being a left child or a right child:

Before After

(b)

—>

Node N Node N

12

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Binary Trees 2016/2017 Prepared by: Dr. Mamoun Nawahdah
Example: delete(34)

Delete (34)

Case 1 : Node to be deleted is a leaf.

public TNode delete(T data) {
TNode current = root;
TNode parent = root;
boolean isLeftChild = false;

if (isEmpty()) return null;// tree is empty
while (current != null && !current.data.equals(data)) {
parent = current;
if (data.compareTo((T)current.data) < 0) {
current = current.left;
isLeftChild = true;
} else {
current = current.right;
isLeftChild = false;
}
}

if (current == null) return null; // node to be deleted not found

// case 1: node is a leaf
if (Icurrent.hasLeft() && !current.hasRight()) {
if (current == root) // tree has one node

root = null;
else {
if (isLeftChild) parent.left = null;
else parent.right = null;
}
}
// other cases

return current;

13

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Binary Trees 2016/2017 Prepared by: Dr. Mamoun Nawahdah
Case 2: If a node has one child, it can be removed by having its parent bypass it.

Two possible configurations before removal After removal

E Node C)\

Example: delete (72)

Case 2 : Node to be deleted has one child.
Note: The root is a special case because it does not have a parent.
// Case 2 broken down further into 2 separate cases
else if (current.hasLeft()) { // current has left child only
if (current == root) {
root = current.left;
} else if (isLeftChild) {
parent.left = current.left;
}else {
parent.right = current.left;
}
} else if (current.hasRight()) { // current has right child only
if (current == root) {
root = current.right;
} else if (isLeftChild) {
parent.left = current.right;
}else {
parent.right = current.right;

}

}

14

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Binary Trees 2016/2017 Prepared by: Dr. Mamoun Nawahdah
Case 3:
o Two possible configurations of a node N that has two children:

(@) ®) /
n i < el [
Node P ¥ NodeP Y

fNodeN fNodeN ')
g\lode Cc, i 5 Node Cj, i %ode C, i 5 Node C,)\

o A node with two children is replaced by using the smallest item in the right subtree

(Successor).
Example: delete(33)

Delete (33) (52 Delete (33)

Delete (33)

Delete (33)

15

STUDENTS-HUB.com Uploaded By: anonymous

E Data Structure: Binary Trees 2016/2017 Prepared by: Dr. Mamoun Nawahdah
// case 3: node to be deleted has 2 children
else {
Node successor = getSuccessor(current);
if (current == root)
root = successor;
else if (isLeftChild) {
parent.left= successor;
} else {
parent.right = successor;

}

successor.left = current.left;

}

private Node getSuccessor(Node node) {

Node parentOfSuccessor = node;

Node successor = node;

Node current = node.right;

while (current != null) {
parentOfSuccessor = successor;
successor = current;
current = current.left;

}

if (successor != node.right) { // fix successor connections
parentOfSuccessor.left = successor.right;
successor.right = node.right;

}

return successor;

Soft Delete (lazy deletion):
When an element is to be deleted, it is left in the tree and simply marked as being deleted.
e |f a deleted item is reinserted, the overhead of allocating a new cell is avoided.

Tree Height:

public int height() { return height(root); }
public int height(TNode node) {
if (node == null) return 0;
if (node.isLeaf()) return 1;
int left = 0;
int right = 0;
if (node.hasLeft()) left = height(node.left);
if (node.hasRight()) right = height(node.right);
return (left > right) ? (left + 1) : (right + 1);

16

STUDENTS-HUB.com Uploaded By: anonymous

E Data Structure: Binary Trees 2016/2017 Prepared by: Dr. Mamoun Nawahdah
Efficiency of Operations:

* Fortree of height h

= The operations add, delete, and find are O(h)
e If tree of n nodes has height h=n

= These operations are O(n)
* Shortest tree is complete

= Results in these operations being O(log n)

Unbalanced Tree:
e The order in which you add entries to a binary search tree affects the shape of the tree.

Example: add 5, 7, 12, 15, 25, 27, 42, 47, 50

© ® .
O,
®
@
Unbalanced

e If you add entries into an initially empty binary search tree, do not add them in sorted order.

Balanced

17

STUDENTS-HUB.com Uploaded By: anonymous

E Data Structure: Binary Trees 2016/2017 Prepared by: Dr. Mamoun Nawahdah

e —

SHED STUDYING?
&

18

STUDENTS-HUB.com Uploaded By: anonymous

