ABSTRACT CLASSES
AND INTERFACES

Objectives

To design and use abstract classes (§13.2).

To generalize numeric wrapper classes BigInteger and BigDecimal
using the abstract Number class (§13.3).

To process a calendar using the Calendar and GregorianCalendar
classes (§13.4).

To specify common behavior for objects using interfaces (§13.5).

To define interfaces and define classes that implement interfaces

(§13.5).
To define a natural order using the ComparabTe interface (§13.6).
To make objects cloneable using the Cloneab1e interface (§13.7).

To explore the similarities and differences among concrete classes,
abstract classes, and interfaces (§13.8).

To design the Rational class for processing rational numbers (§13.9).

To design classes that follow the class-design guidelines (§13.10).

M13_LIAN9966_12_SE_C13.indd 499 @

STUDENTS-HUB.com

CHAPTER

28/09/19 4:20 PM

https://students-hub.com

500 Chapter I3 Abstract Classes and Interfaces

Key
Point
problem
interface
Key
Point
abstract class
VideoNote
Abstract GeometricObject
class

abstract method

abstract modifier

abstract class

M13_LIAN9966_12_SE_C13.indd 500

STUDENTS-HUB.com

3.1 Introduction

A superclass defines common behavior for related subclasses. An interface can be
used to define common behavior for classes (including unrelated classes).

You can use the java.util.Arrays.sort method to sort an array of numbers or strings.
Can you apply the same sort method to sort an array of geometric objects? In order to write
such code, you have to know about interfaces. An interface is for defining common behavior
for classes (including unrelated classes). Before discussing interfaces, we introduce a closely
related subject: abstract classes.

3.2 Abstract Classes

An abstract class cannot be used to create objects. An abstract class can contain
abstract methods that are implemented in concrete subclasses.

In the inheritance hierarchy, classes become more specific and concrete with each new sub-
class. If you move from a subclass back up to a superclass, the classes become more general
and less specific. Class design should ensure a superclass contains common features of its
subclasses. Sometimes, a superclass is so abstract it cannot be used to create any specific
instances. Such a class is referred to as an abstract class.

In Chapter 11, GeometricObject was defined as the superclass for Circle and
Rectangle. GeometricObject models common features of geometric objects. Both Circle
and Rectangle contain the getArea() and getPerimeter () methods for computing the
area and perimeter of a circle and a rectangle. Since you can compute areas and perimeters for
all geometric objects, it is better to define the getArea () and getPerimeter () methods in
the GeometricObject class. However, these methods cannot be implemented in the
GeometricObject class because their implementation depends on the specific type of
geometric object. Such methods are referred to as abstract methods and are denoted using the
abstract modifier in the method header. After you define the methods in GeometricObject,
it becomes an abstract class. Abstract classes are denoted using the abstract modifier in the
class header. In UML graphic notation, the names of abstract classes and their abstract methods
are italicized, as shown in Figure 13.1. Listing 13.1 gives the source code for the new
GeometricObject class.

LisTING 13.1 GeometricObject.java

public abstract class GeometricObject ({
private String color = "white";
private boolean filled;
private java.util.Date dateCreated;

/** Construct a default geometric object */
protected GeometricObject() {
dateCreated = new java.util.Date();

}

1
2
3
4
5
6
7
8
9
10
11 /** Construct a geometric object with color and filled value */
12 protected GeometricObject(String color, boolean filled) {

13 dateCreated = new java.util.Date();
14 this.color = color;
15 this.filled = filled;
16

17

18

19

20

}

/** Return color */
public String getColor() {
return color;

28/09/19 4:20 PM

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

Abstract class name
is italicized

The #sign

protected modifier

Abstract methods ————~
are italicized

—color: String
—filled: boolean

—dateCreated: java.util.Date

—

indicates #GeometricObject ()

#GeometricObject (color:
boolean)
+getColor () : String
+setColor (color:
+isFilled() :
+setFilled(filled: boolean): void
+getDateCreated () :
+toString () :
+getArea(): double
IIIIIIIIIIIIIIIII

String): void

boolean

java.util.Date

String

string, filled:

[3.2 Abstract Classes 501

Methods getArea and getPerimeter are
overridden in Circle and Rectangle.
Superclass methods are generally omitted

| | in the UML diagram for subclasses.

-radius:

double

+Circle()
+Circle(radius:

+Circle(radius:
boolean)

+getRadius () :
+setRadius (radius:

+getDiameter () :

-width: double
~height: double

double)

double, color: string, filled:

double
double) : void
double

+Rectangle ()

+Rectangle (width: double, height: double)

+Rectangle (width: double, height: double,

string, filled: boolean)
+getWidth () : double

+setWidth (width: double): void

+getHeight () : double

+setHeight (height: double):

void

color:

FIGURE 13.1

The new GeometricObject class contains abstract methods.

21 }
22
23 /** Set a new color */
24 public void setColor(String color) {
25 this.color = color;
26 }
27
28 /** Return filled. Since filled is boolean,
29 * the getter method is named isFilled */
30 public boolean isFilled() {
31 return filled;
32 }
33
34 /** Set a new filled */
35 public void setFilled(boolean filled) {
36 this.filled = filled;
37 }
38
39 /** Get dateCreated */
40 public java.util.Date getDateCreated() {
41 return dateCreated;
42 }
M13_LIAN9966_12_SE_C13.indd 501 @

STUDENTS-HUB.com

28/09/19 4:20 PM

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

502 Chapter I3 Abstract Classes and Interfaces

abstract method

abstract method

why protected constructor?

@ implement Circle
implement Rectangle

extends abstract
GeometricObject

extends abstract
GeometricObject

create a circle
create a rectangle

M13_LIAN9966_12_SE_C13.indd 502

STUDENTS-HUB.com

43
44 @Override
45 public String toString() {

46 return "created on " + dateCreated + "\ncolor: " + color +
47 " and filled: " + filled;

48 }

49

50 /** Abstract method getArea */

51 public abstract double getArea();

52

53 /** Abstract method getPerimeter */
54 public abstract double getPerimeter();
55 }

Abstract classes are like regular classes, but you cannot create instances of abstract classes
using the new operator. An abstract method is defined without implementation. Its implementa-
tion is provided by the subclasses. A class that contains abstract methods must be defined as
abstract.

The constructor in the abstract class is defined as protected because it is used only by
subclasses. When you create an instance of a concrete subclass, its superclass’s constructor is
invoked to initialize data fields defined in the superclass.

The GeometricObject abstract class defines the common features (data and methods) for
geometric objects and provides appropriate constructors. Because you don’t know how to
compute areas and perimeters of geometric objects, getArea() and getPerimeter () are
defined as abstract methods. These methods are implemented in the subclasses. The imple-
mentation of Circle and Rectangle is the same as in Listings 11.2 and 11.3, except they
extend the GeometricObject class defined in this chapter. You can see the complete code
for these two programs at liveexample.pearsoncmg.com/html/Circle.html and liveexample.
pearsoncmg.com/html/Rectangle.html, respectively.

LisTING 13.2 Circle.java

1 public class Circle extends GeometricObject {
2 // Same as lines 2-47 1in Listing 11.2, so omitted
3

}

LisTING 13.3 Rectangle.java

1 public class Rectangle extends GeometricObject {
2 /] Same as lines 2-49 in Listing 11.3, so omitted
3}

13.2.1 Why Abstract Methods?

You may be wondering what advantage is gained by defining the methods getArea() and
getPerimeter () as abstract in the GeometricObject class. The example in Listing 13.4
shows the benefits of defining them in the GeometricObject class. The program creates two
geometric objects, a circle and a rectangle, invokes the equalArea method to check whether
they have equal areas, and invokes the displayGeometricObject method to display them.

LISTING 13.4 TestGeometricObject.java

public class TestGeometricObject {
/** Main method */
public static void main(String[] args) {
/| Create two geometric objects
GeometricObject geoObject1 = new Circle(5);
GeometricObject geoObject2 = new Rectangle(5, 3);

DU WN -

28/09/19 4:20 PM

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

[3.2 Abstract Classes 503

7

8 System.out.printin("The two objects have the same area? " +

9 equalArea(geoObject1, geoObject2));

10

11 /| Display circle

12 displayGeometricObject(geoObject1);

13

14 /| Display rectangle

15 displayGeometricObject(geoObject2);

16 }

17

18 /** A method for comparing the areas of two geometric objects */

19 public static boolean equalArea(GeometricObject objectt, equalArea

20 GeometricObject object2) {

21 return object1.getArea() == object2.getArea();

22 }

23

24 /** A method for displaying a geometric object */

25 public static void displayGeometricObject (GeometricObject object) { displayGeometricObject

26 System.out.printin();

27 System.out.printin("The area is " + object.getArea());

28 System.out.printin("The perimeter is " + object.getPerimeter());

29 }

30 }

The two objects have the same area? false E
GE} The area is 78.53981633974483

The perimeter is 31.41592653589793

The area is 15.0
The perimeter is 16.0

The methods getArea () and getPerimeter () defined in the GeometricObject class are
overridden in the Circle class and the RectangTe class. The statements (lines 5-6)

GeometricObject geoObject1 = new Circle(5);
GeometricObject geoObject2 = new Rectangle(5, 3);

create a new circle and rectangle and assign them to the variables geoObject1 and
geoObject2. These two variables are of the GeometricObject type.

When invoking equalArea (geoObject1, geoObject2) (line 9), the getArea () method
defined in the Circle class is used for object1.getArea (), since geoObject1 is a circle,
and the getArea () method defined in the Rectangle class is used for object2.getArea(),
since geoObject2 is a rectangle.

Similarly, when invoking displayGeometricObject (geoObject1) (line 12), the
methods getArea() and getPerimeter () defined in the Circle class are used, and when
invoking displayGeometricObject (geoObject2) (line 15), the methods getArea and
getPerimeter defined in the Rectangle class are used. The JVM dynamically determines
which of these methods to invoke at runtime, depending on the actual object that invokes the
method.

Note you could not define the equalArea method for comparing whether two geometric
objects have the same area if the getArea method was not defined in GeometricObject,
since object1 and object2 are of the GeometricObject type. Now you have seen the
benefits of defining the abstract methods in GeometricObject. why abstract methods?

M13_LIAN9966_12_SE_C13.indd 503 @ 28/09/19 4:20 PM

STUDENTS-HUB.com

mnawahdah
Highlight

https://students-hub.com

504 Chapter I3 Abstract Classes and Interfaces

abstract method in abstract
class

object cannot be created from
abstract class

abstract class without abstract
method

concrete method overridden
to be abstract

concrete method overridden
to be abstract

abstract class as type

ﬁeck
Point

M13_LIAN9966_12_SE_C13.indd 504

STUDENTS-HUB.com

13.2.2

The following points about abstract classes are worth noting:

13.2.1

Interesting Points about Abstract Classes

An abstract method cannot be contained in a nonabstract class. If a subclass of an
abstract superclass does not implement all the abstract methods, the subclass must be
defined as abstract. In other words, in a nonabstract subclass extended from an
abstract class, all the abstract methods must be implemented. Also note abstract meth-
ods are nonstatic.

An abstract class cannot be instantiated using the new operator, but you can still
define its constructors, which are invoked in the constructors of its subclasses. For
instance, the constructors of GeometricObject are invoked in the Circle class and
the Rectangle class.

A class that contains abstract methods must be abstract. However, it is possible to
define an abstract class that doesn’t contain any abstract methods. This abstract class
is used as a base class for defining subclasses.

A subclass can override a method from its superclass to define it as abstract. This
is very unusual, but it is useful when the implementation of the method in the
superclass becomes invalid in the subclass. In this case, the subclass must be
defined as abstract.

A subclass can be abstract even if its superclass is concrete. For example, the Object
class is concrete, but its subclasses, such as GeometricObject, may be abstract.

You cannot create an instance from an abstract class using the new operator, but an
abstract class can be used as a data type. Therefore, the following statement, which
creates an array whose elements are of the GeometricObject type, is correct:

GeometricObject[] objects = new GeometricObject[10];

You can then create an instance of GeometricObject and assign its reference to the
array like this:
objects[0] = new Circle();

Which of the following classes defines a legal abstract class?

class A {
abstract void unfinished() {

}

public class abstract A {
abstract void unfinished();

}

(a) (b)

class A {
abstract void unfinished();

}

abstract class A {
protected void unfinished();
}

(© (d)

abstract class A {
abstract void unfinished();

}

abstract class A {
abstract int unfinished();

}

(e) ()

28/09/19 4:20 PM

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

13.3 Case Study: The Abstract Number Class 505

13.2.2 The getArea() and getPerimeter () methods may be removed from the
GeometricObject class. What are the benefits of defining getArea() and
getPerimeter () as abstract methods in the GeometricObject class?

13.2.3 True or false?

a. An abstract class can be used just like a nonabstract class except that you can-
not use the new operator to create an instance from the abstract class.

b. An abstract class can be extended.
c. A subclass of a nonabstract superclass cannot be abstract.

d. A subclass cannot override a concrete method in a superclass to define it as
abstract.

e. An abstract method must be nonstatic.

[3.3 Case Study: The Abstract Number Class

Number is an abstract superclass for numeric wrapper classes BigInteger and

BigDecimal.
. Key
Section 10.7 introduced numeric wrapper classes and Section 10.9 introduced the Point

BigInteger and BigDecimal classes. These classes have common methods byteValue (),
shortValue (), intValue(), TongValue(), floatValue(), and doubleValue () for
returning a byte, short, int, Tong, float, and double value from an object of these
classes. These common methods are actually defined in the Number class, which is a superclass
for the numeric wrapper classes BigInteger and BigDecimal, as shown in Figure 13.2.

® T

+byteValue () : byte Returns this number as a byte.

+shortValue () : short Returns this number as a short.

+intValue () : int Returns this number as an int.

+longValue () : long Returns this number as a long.

+floatValue () : float Returns this number as a float.
+doubleValue () : double Returns this number as a double.

I I I I I I I |
Double I Float | Long I Integer | Short | Byte | Biglnteger | BigDecimal I

FIGURE 13.2 The Number class is an abstract superclass for Double, Float, Long, Integer, Short, Byte,
BigInteger, and BigDecimal.

Since the intValue (), TongValue(), floatValue(), and doubleValue () methods
cannot be implemented in the Number class, they are defined as abstract methods in the Number
class. The Number class is therefore an abstract class. The byteValue () and shortValue ()
methods are implemented from the intValue () method as follows:

public byte byteValue() {
return (byte)intValue();

}

public short shortValue() {
return (short)intValue();

}

M13_LIAN9966_12_SE_C13.indd 505 @ 28/09/19 4:20 PM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

506 Chapter I3 Abstract Classes and Interfaces

create an array list
add number to list

invoke getLargestNumber

@ doubleValue

ﬁeck
Point

M13_LIAN9966_12_SE_C13.indd 506

STUDENTS-HUB.com

With Number defined as the superclass for the numeric classes, we can define methods to
perform common operations for numbers. Listing 13.5 gives a program that finds the largest
number in a list of Number objects.

LisTING 13.5 LargestNumber.java

1 dimport java.util.ArraylList;
2 import java.math.*;
3
4 public class LargestNumber {
5 public static void main(String[] args) {
6 ArrayList<Number> 1list = new ArrayList<>();
7 Tist.add(45); // Add an integer
8 Tist.add(3445.53); // Add a double
9 /1 Add a BigInteger
10 Tist.add(new BigInteger("3432323234344343101"));
11 // Add a BigDecimal
12 Tist.add(new BigDecimal("2.0909090989091343433344343"));
13
14 System.out.printin("The largest number is " +
15 getLargestNumber(1ist));
16 }
17
18 public static Number getlLargestNumber (ArrayList<Number> 1ist) {
19 if (list == null || 1ist.size() == 0)
20 return null;
21
22 Number number = list.get(0);
23 for (int i = 1; i < Tist.size(); i++)
24 if (number.doubleValue() < 1ist.get(i).doubleValue())
25 number = Tist.get(i);
26
27 return number;
28 }
29 }

The Targest number is 3432323234344343101

The program creates an ArrayList of Number objects (line 6). It adds an Integer object,
a Double object, a BigInteger object, and a BigDecimal object to the list (lines 7-12).
Note 45 is automatically converted into an Integer object and added to the list in line 7, and
3445 .53 is automatically converted into a Doub1e object and added to the list in line 8§ using
autoboxing.

Invoking the getLargestNumber method returns the largest number in the list (line 15).
The getLargestNumber method returns nul1 if the list is nu11 or the list size is 0 (lines 19
and 20). To find the largest number in the list, the numbers are compared by invoking their
doubleValue () method (line 24). The doubleValue () method is defined in the Number
class and implemented in the concrete subclass of Number. If a number is an Integer object,
the Integer’s doubleValue () is invoked. If a number is a BigDecimal object, the Big-
Decimal’s doubleValue () is invoked.

If the doub1eValue () method was not defined in the Number class, you will not be able
to find the largest number among different types of numbers using the Number class.

13.3.1 Why do the following two lines of code compile but cause a runtime error?

Number numberRef
Double doubleRef

Integer.valueOf (0);
(Double)numberRef;

28/09/19 4:20 PM

mnawahdah
Highlight

https://students-hub.com

13.4 Case Study: Calendar and GregorianCalendar 507

13.3.2 Why do the following two lines of code compile but cause a runtime error?

Number[] numberArray = Integer[2];
numberArray[0] = Double.valueOf(1.5);

13.3.3 Show the output of the following code:

public class Test {
public static void main(String[] args) {
Number x = 3;
System.out.println(x.intValue());
System.out.printin(x.doubleValue());
}
}

13.3.4 What is wrong in the following code? (Note the compareTo method for the
Integer and Double classes was introduced in Section 10.7.)

public class Test {
public static void main(String[] args) {
Number x = Integer.valueOf(3);
System.out.printin(x.intValue());
System.out.printin(x.compareTo(4));

}
}

13.3.5 What is wrong in the following code?

public class Test {
public static void main(String[] args) {
Number x = Integer.valueOf(3);
System.out.printin(x.intValue());
System.out.printin((Integer)x.compareTo(4));

}
}

[3.4 Case Study: Calendar and GregorianCalendar

GregorianCalendar is a concrete subclass of the abstract class Calendar.

An instance of java.util.Date represents a specific instant in time with millisecond Key
precision. java.util.Calendar is an abstract base class for extracting detailed calendar Point
information, such as the year, month, date, hour, minute, and second. Subclasses of
Calendar can implement specific calendar systems, such as the Gregorian calendar, the u
lunar calendar, and the Jewish calendar. Currently, java.util.GregorianCalendar for
the Gregorian calendar is supported in Java, as shown in Figure 13.3. The add method is ~ Calendarand
abstract in the Calendar class because its implementation is dependent on a concrete cal-

VideoNote

endar system. abstract add method
You can use new GregorianCalendar () to construct a default GregorianCalendar construct calendar

with the current time and new GregorianCalendar (year, month, date) toconstructa
GregorianCalendar with the specified year, month, and date. The month parameter is
0-based—that is, 0 is for January.

The get (int field) method defined in the Calendar class is useful for extracting the get(field)
date and time information from a Calendar object. The fields are defined as constants, as
shown in Table 13.1.

Listing 13.6 gives an example that displays the date and time information for the
current time.

M13_LIAN9966_12_SE_C13.indd 507 @

STUDENTS-HUB.com

GregorianCalendar classes

28/09/19 4:20 PM

mnawahdah
Highlight

https://students-hub.com

508 Chapter I3 Abstract Classes and Interfaces

#Calendar ()

+get (field: int): int

+set(field: int, value: int): void

t+set (year: int, month: int,
dayOfMonth: int): wvoid

t+getActualMaximum(field: int): int

+add(field: int, amount: int): void

+getTime () : java.util.Date

+setTime (date: java.util.Date): void

Constructs a default calendar.
Returns the value of the given calendar field.
Sets the given calendar to the specified value.

Sets the calendar with the specified year, month, and date. The month
parameter is 0-based; that is, O is for January.

Returns the maximum value that the specified calendar field could have.
Adds or subtracts the specified amount of time to the given calendar field.

Returns a Date object representing this calendar’s time value (million
second offset from the UNIX epoch).

Sets this calendar’s time with the given Date object.

e et |

+GregorianCalendar ()

+GregorianCalendar (year:
month: int, dayOfMonth:

+GregorianCalendar (year:

month: int, dayOfMonth:
hour:int, minute: int,

int,
int)

int,
int,

second: int)

Constructs a GregorianCalendar for the current time.

Constructs a GregorianCalendar for the specified year, month, and
date.

Constructs a GregorianCalendar for the specified year, month, date,

hour, minute, and second. The month parameter is 0-based, that
is, 0 is for January.

FiGure 13.3 The abstract Calendar class defines common features of various calendars.

calendar for current time

extract fields in calendar

TaBLE 13.1 Field Constants in the Calendar Class

Constant Description

YEAR The year of the calendar.

MONTH The month of the calendar, with 0 for January.

DATE The day of the calendar.

HOUR The hour of the calendar (12-hour notation).
HOUR_OF_DAY The hour of the calendar (24-hour notation).

MINUTE The minute of the calendar.

SECOND The second of the calendar.

DAY_OF_WEEK The day number within the week, with 1 for Sunday.
DAY_OF_MONTH Same as DATE.

DAY_OF_YEAR The day number in the year, with 1 for the first day of the year.

WEEK_OF_MONTH
WEEK_OF_YEAR
AM_PM

The week number within the month, with 1 for the first week.
The week number within the year, with 1 for the first week.
Indicator for AM or PM (0 for AM and 1 for PM).

LisTING 13.6 TestCalendar.java

import java.util.*;

public class TestCalendar ({
public static void main(String[] args) {

Calendar calendar =

new GregorianCalendar();

System.out.printin("Current time is " + new Date());

M13_LIAN9966_12_SE_C13.indd 508

STUDENTS-HUB.com

1
2
3
4
5 /] Construct a Gregorian calendar for the current date and time
6
7
8

System.out.printin("YEAR: " + calendar.get(Calendar.YEAR));

28/09/19 4:20 PM

https://students-hub.com

13.4 Case Study: Calendar and GregorianCalendar 509

9 System.out.printin("MONTH: " + calendar.get(Calendar.MONTH));
10 System.out.printin("DATE: " + calendar.get(Calendar.DATE));

11 System.out.printin("HOUR: " + calendar.get(Calendar.HOUR));

12 System.out.printin("HOUR_OF_DAY: " +

13 calendar.get(Calendar.HOUR_OF_DAY)) ;

14 System.out.printin("MINUTE: " + calendar.get(Calendar.MINUTE));
15 System.out.printin("SECOND: " + calendar.get(Calendar.SECOND));
16 System.out.printin("DAY_OF WEEK: ™ +

17 calendar.get (Calendar.DAY_OF_WEEK)) ;

18 System.out.printin("DAY_OF_MONTH: " +

19 calendar.get(Calendar .DAY_OF_MONTH));

20 System.out.printin("DAY_OF_YEAR: " +

21 calendar.get(Calendar.DAY_OF_YEAR)) ;

22 System.out.printin("WEEK_OF_MONTH: " +

23 calendar.get(Calendar .WEEK_OF_MONTH)) ;

24 System.out.printin("WEEK OF_YEAR: " +

25 calendar.get (Calendar .WEEK_OF_YEAR)) ;

26 System.out.printin("AM_PM: " + calendar.get(Calendar.AM_PM));
27

28 // Construct a calendar for December 25, 1997

29 Calendar calendar1 = new GregorianCalendar (1997, 11, 25);

30 String[] dayNameOfWeek = {"Sunday", "Monday", "Tuesday", "Wednesday",
31 "Thursday", "Friday", "Saturday"};

32 System.out.println("December 25, 1997 is a " +

33 dayNameOfWeek[calendar1.get(Calendar.DAY_OF_WEEK) - 1]);

34 }

35 }

Current time is Tue Sep 22 12:55:56 EDT 2015
YEAR: 2015

MONTH: 8

DATE: 22

HOUR: 0

HOUR_OF_DAY: 12

MINUTE: 55

SECOND: 56

DAY_OF_WEEK: 3

DAY_OF_MONTH: 22

DAY_OF_YEAR: 265

WEEK_OF _MONTH: 4

WEEK_OF YEAR: 39

AM_PM: 1

December 25, 1997 1is a Thursday

The set (int field, value) method defined in the Calendar class can be used to set a
field. For example, you can use calendar.set (Calendar.DAY_OF MONTH, 1) to set the
calendar to the first day of the month.

The add (field, value) method adds the specified amount to a given field. For example,
add(Calendar.DAY_OF MONTH, 5) adds five days to the current time of the calendar.
add(Calendar.DAY_OF MONTH, -5) subtracts five days from the current time of the
calendar.

To obtain the number of days in a month, use calendar.getActualMaximum(Calendar
.DAY_OF_MONTH). For example, if the calendar was for March, this method would
return 31.

M13_LIAN9966_12_SE_C13.indd 509 @

STUDENTS-HUB.com

create a calendar

set(field, value)

add(field, amount)

getActualMaximum(field)

28/09/19 4:20 PM

https://students-hub.com

510 Chapter I3 Abstract Classes and Interfaces

setTime(date)
getTime()

ﬁeck
Point

Key
Point
VideoNote
The concept of interface

interface inheritance

M13_LIAN9966_12_SE_C13.indd 510

STUDENTS-HUB.com

You can set a time represented in a Date object for the calendar by invoking calendar .
setTime (date) and retrieve the time by invoking calendar.getTime ().

13.4.1 Can you create a Calendar object using the Calendar class?
13.4.2 Which method in the Calendar class is abstract?
13.4.3 How do you create a Calendar object for the current time?

13.4.4 For aCalendar object c, how do you get its year, month, date, hour, minute, and
second?

3.5 Interfaces

An interface is a class-like construct for defining common operations for objects.

In many ways an interface is similar to an abstract class, but its intent is to specify common
behavior for objects of related classes or unrelated classes. For example, using appropriate
interfaces, you can specify that the objects are comparable, edible, and/or cloneable.

To distinguish an interface from a class, Java uses the following syntax to define an interface:

modifier interface InterfaceName {
/** Constant declarations */
/** Abstract method signatures */

}

Here is an example of an interface:

public interface Edible {

/** Describe how to eat */

public abstract String howToEat();
}

An interface is treated like a special class in Java. Each interface is compiled into a separate
bytecode file, just like a regular class. You can use an interface more or less the same way
you use an abstract class. For example, you can use an interface as a data type for a reference
variable, as the result of casting, and so on. As with an abstract class, you cannot create an
instance from an interface using the new operator.

You can use the Edib1e interface to specify whether an object is edible. This is accom-
plished by letting the class for the object implement this interface using the impTlements
keyword. For example, the classes Chicken and Fruit in Listing 13.7 (lines 30 and 49)
implement the Edib1e interface. The relationship between the class and the interface is known
as interface inheritance. Since interface inheritance and class inheritance are essentially the
same, we will simply refer to both as inheritance.

LiIsTING 13.7 TestEdible.java

1 public class TestEdible {

2 public static void main(String[] args) {

3 Object[] objects = {new Tiger(), new Chicken(), new Apple()};
4 for (int i = 0; i < objects.length; i++) {

5 if (objects[i] instanceof Edible)

6 System.out.printin(((Edible)objects[i]).howToEat());
7

8 if (objects[i] instanceof Animal) {

9 System.out.printin(((Animal)objects[i]).sound());

10 }

11 }

12 }

13 }

28/09/19 4:20 PM

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

[3.5 Interfaces 511

14

15 abstract class Animal { Animal class
16 private double weight;

17

18 public double getWeight() {

19 return weight;

20 }

21

22 public void setWeight(double weight) {

23 this.weight = weight;

24 }

25

26 /** Return animal sound */

27 public abstract String sound();

28 }

29

30 class Chicken extends Animal implements Edible { implements Edible
31 @Override

32 public String howToEat() ({ howToEat ()
33 return "Chicken: Fry it";

34 }

35

36 @Override
37 public String sound() {

38 return "Chicken: cock-a-doodle-doo";

39 }

40 }

41

42 class Tiger extends Animal { Tiger class
@& 43 eOverride

44 public String sound() {

45 return "Tiger: RROOAARR";

46 }

47 '}

48

49 abstract class Fruit implements Edible { implements Edible

50 /| Data fields, constructors, and methods omitted here

51 }

52

53 class Apple extends Fruit { AppTle class

54 @Override
55 public String howToEat () ({

56 return "Apple: Make apple cider™;

57 }

58 }

59

60 class Orange extends Fruit { Orange class

61 @Override
62 public String howToEat () ({

63 return "Orange: Make orange juice";
64 }
65 }

Tiger: RROOAARR

Chicken: Fry it

Chicken: cock-a-doodle-doo
Apple: Make apple cider

This example uses several classes and interfaces. Their inheritance relationship is shown
in Figure 13.4.

M13_LIAN9966_12_SE_C13.indd 511 @ 28/09/19 4:20 PM

STUDENTS-HUB.com

https://students-hub.com

512 Chapter I3

Notation: The interface
and its methods are
italicized. The dashed
line and hollow triangle
are used to point to

the interface.

+howToEat () : String +sound(): String omitted in the UML.

Abstract Classes and Interfaces

—weight: double The getter and setter methods
for weight are provided, but

T T

Fruit

Orange

Chickenl Tiger |

Apple |

FIGURE 13.4 EdibTle is a supertype for Chicken and Fruit. Animal is a supertype for Chicken and Tiger. Fruit is
a supertype for Orange and Apple.

common behavior

omit modifiers

default methods

M13_LIAN9966_12_SE_C13.indd 512

STUDENTS-HUB.com

The Animal class defines the weight property with its getter and setter methods (lines
16-24) and the sound method (line 27). The sound method is an abstract method and will be
implemented by a concrete animal class.

The Chicken class implements Edib1e to specify that chickens are edible. When a class
implements an interface, it implements all the methods defined in the interface. The Chicken
class implements the howToEat method (lines 32-34). Chicken also extends Animal to
implement the sound method (lines 37-39).

The Fruit class implements Edib1e. Since it does not implement the howToEat method,
Fruit must be defined as abstract (line 49). The concrete subclasses of Fruit must
implement the howToEat method. The App1e and Orange classes implement the howToEat
method (lines 55 and 62).

The main method creates an array with three objects for Tiger, Chicken, and Apple
(line 3) and invokes the howToEat method if the element is edible (line 6), and the sound
method if the element is an animal (line 9).

In essence, the Edib1e interface defines common behavior for edible objects. All edible
objects have the howToEat method.

Note

The modifiers public static final on data fields and the modifiers pubTic
abstract on methods can be omitted in an interface. Therefore, the following inter-
face definitions are equivalent:

public interface T { public interface T {
public static final int K = 1; int K = 1;
Equivalent
public abstract void p(); - void p();
} }

Although the pub11ic modifier may be omitted for a method defined in the interface,
the method must be defined pub1ic when it is implemented in a subclass.

Note

Java 8 introduced default interface methods using the keyword default. A default
method provides a default implementation for the method in the interface. A class that
implements the interface may simply use the default implementation for the method or
override the method with a new implementation. This feature enables you to add a new
method to an existing interface with a default implementation without having to rewrite
the code for the existing classes that implement this interface.

®

28/09/19 4:20 PM

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

Java 8 also permits public static methods in an interface. A public static method in an

interface can be used just like a public static method in a class.

In Java 9, you can also use private methods in an interface. These methods are
used for implementing the default methods and public static methods. Here is
an example of defining default methods, static methods, and private methods in

an interface:

public interface Java89Interface {
/** default method in Java 8*/
public default void doSomething() {
System.out.println("Do something");

}

/** static method in Java 8%/
public static int getAValue() {
return 0;

}

/** private static method Java 9 */
private static int getAStaticValue() {
return 0;

}

/** private instance method Java 9 */
private void performPrivateAction() {
}

}

13.5.1 Suppose A is an interface. Can you create an instance using new A()?
13.5.2 Suppose A is an interface. Can you declare a reference variable x with type A like this?

A X;

13.5.3 Which of the following is a correct interface?

interface A {
void print() { }
} }

abstract interface A {
abstract void print()

{

}

(a) (b)

abstract interface A {
print();
} }

interface A {
void print();

(© (d

interface A { interface A {
default void print() { static int get() {
} return O;

} }

(e) ()
13.5.4 Show the error in the following code:

interface A {
void m1();

}

class B implements A {
void m1() {
System.out.printin("m1");
}
}

M13_LIAN9966_12_SE_C13.indd 513 @

STUDENTS-HUB.com

[3.5 Interfaces 513

ﬁeck
Point

28/09/19 4:20 PM

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

514 Chapter I3

java.lang.Comparable

M13_LIAN9966_12_SE_C13.indd 514

STUDENTS-HUB.com

Abstract Classes and Interfaces

3.6 The Comparable Interface

The Comparable interface defines the compareTo method for comparing objects.

Key

Suppose you want to design a generic method to find the larger of two objects of the same type,

Point such as two students, two dates, two circles, two rectangles, or two squares. In order to accomplish
this, the two objects must be comparable, so the common behavior for the objects must be compara-
ble. Java provides the Comparab1e interface for this purpose. The interface is defined as follows:

package java.lang;

/'l Interface for comparing objects, defined in java.lang

public interface Comparable<E> {

public int compareTo(E o) ;

}

The compareTo method determines the order of this object with the specified object o and
returns a negative integer, zero, or a positive integer if this object is less than, equal to, or

greater than o.

The Comparable interface is a generic interface. The generic type E is replaced by a
concrete type when implementing this interface. Many classes in the Java library implement
ComparabTe to define a natural order for objects. The classes Byte, Short, Integer, Long,
Float, Double, Character, BigInteger, BigDecimal, Calendar, String, and Date
all implement the Comparabe interface. For example, the Integer,BigInteger, String,
and Date classes are defined as follows in the Java API:

public final class Integer extends Number
implements Comparable<Integer> {
// class body omitted

@Override
public int compareTo (Integer o) {
// Implementation omitted

}

public class BigInteger extends Number
implements Comparable<Biginteger> {
// class body omitted

@Override
public int compareTo (BigInteger o) {
// Implementation omitted

}

public final class String extends Object
implements Comparable<String> {
// class body omitted

@Override
public int compareTo (String o) {
// Implementation omitted

}

public class Date extends Object
implements Comparable<Date> {
// class body omitted

@Override
public int compareTo (Date o) {
// Implementation omitted
}
}

Thus, numbers are comparable, strings are comparable, and so are dates. You can use the
compareTo method to compare two numbers, two strings, and two dates. For example, the

following code:

java.util.Date date1

a b wON =

displays

System.out.printin(Integer.valueOf(3).compareTo(5));
System.out.printin("ABC".compareTo("ABC"));

new java.util.Date(2013, 1, 1);
java.util.Date date2 = new java.util.Date(2012, 1, 1);
System.out.printin(datel.compareTo(date2));

28/09/19 4:20 PM

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

3.6 The Comparable Interface 515

Line 1 displays a negative value since 3 is less than 5. Line 2 displays zero since ABC is
equal to ABC. Line 5 displays a positive value since date1 is greater than date2.

Let n be an Integer object, s be a String object, and d be a Date object. All the follow-
ing expressions are true:

n instanceof Integer s instanceof String d instanceof Date
n instanceof Object s instanceof Object d instanceof Object
n instanceof Comparable s instanceof Comparable d instanceof Comparable

Since all Comparable objects have the compareTo method, the java.util.Arrays.
sort (Object[]) method in the Java API uses the compareTo method to compare and sorts the
objects in an array, provided the objects are instances of the Comparabe interface. Listing 13.8
gives an example of sorting an array of strings and an array of BigInteger objects.

LisTING 13.8 SortComparableObjects.java

import java.math.*;

1
2
3 public class SortComparableObjects {

4 public static void main(String[] args) {

5 String[] cities = {"Savannah", "Boston", "Atlanta", "Tampa"};
6 java.util.Arrays.sort(cities);

7 for (String city: cities)

8 System.out.print(city + " ");

9 System.out.printin();

10

11 BigInteger[] hugeNumbers = {new BigInteger("2323231092923992"),
12 new BigInteger("432232323239292"),

13 new BigInteger("54623239292")};

14 java.util.Arrays.sort (hugeNumbers) ;

15 for (BigInteger number: hugeNumbers)

16 System.out.print(number + " ");

17 }

18 }

Atlanta Boston Savannah Tampa
54623239292 432232323239292 2323231092923992

The program creates an array of strings (line 5) and invokes the sort method to sort
the strings (line 6). The program creates an array of BigInteger objects (lines 11-13) and
invokes the sort method to sort the BigInteger objects (line 14).

You cannot use the sort method to sort an array of Rectang1e objects because Rectangle
does not implement Comparab1e. However, you can define a new rectangle class that imple-
ments Comparable. The instances of this new class are comparable. Let this new class be
named ComparableRectangle, as shown in Listing 13.9.

LisTING 13.9 ComparableRectangle.java

1 public class ComparableRectangle extends Rectangle

2 implements Comparable<ComparableRectangle> {

B /** Construct a ComparableRectangle with specified properties */
4 public ComparableRectangle(double width, double height) {

5 super (width, height);

6 }

7

8 @Override // Implement the compareTo method defined in Comparable

M13_LIAN9966_12_SE_C13.indd 515 @

STUDENTS-HUB.com

create an array
sort the array

create an array

sort the array

2

implements Comparable

28/09/19 4:20 PM

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

516 Chapter I3 Abstract Classes and Interfaces

implement compareTo 9 public int compareTo(ComparableRectangle o) {

10 if (getArea() > o.getArea())

11 return 1;

12 else if (getArea() < o.getArea())

13 return -1;

14 else

15 return 0;

16 }

17

18 @Override // Implement the toString method in GeometricObject
implement toString 19 public String toString() ({

20 return "Width: " + getWidth() + " Height: " + getHeight() +

21 "Area: " + getArea();

22 }

23 }

ComparableRectangle extends Rectangle and implements Comparable, as shown
in Figure 13.5. The keyword imp1ements indicates that ComparableRectangle inherits all the
constants from the Comparab1e interface and implements the methods in the interface. The
compareTo method compares the areas of two rectangles. An instance of Comparable-
Rectangle is also an instance of Rectangle, GeometricObject, Object, and
Comparable

GeometricObject I

Notation:

The interface name and the +compareTo (o: ComparableRectangle): int
method names are italicized.
The dashed line and hollow

@ triangle are used to point to ?

Rectangle

the interface.

"

ComparableRectangle I

FiGure 13.5 ComparableRectangle extends Rectangle and implements Comparable

You can now use the sort method to sort an array of ComparableRectangle objects,
as in Listing 13.10.

LisTING 13.10 SortRectangles.java

1 public class SortRectangles {

2 public static void main(String[] args) {
create an array 3 ComparableRectangle[] rectangles = {

4 new ComparableRectangle(3.4, 5.4),

5 new ComparableRectangle(13.24, 55.4),

6 new ComparableRectangle(7.4, 35.4),

7 new ComparableRectangle(1.4, 25.4)};
sort the array 8 java.util.Arrays.sort(rectangles);

9 for (Rectangle rectangle: rectangles) {

10 System.out.print(rectangle + " ");

11 System.out.printin();

12 }

13 }

14 '}

Width: 3.4 Height: 5.4 Area: 18.36
E Width: 1.4 Height: 25.4 Area: 35.559999999999995
Width: 7.4 Height: 35.4 Area: 261.96
Width: 13.24 Height: 55.4 Area: 733.496

M13_LIAN9966_12_SE_C13.indd 516 @ 28/09/19 4:20 PM

STUDENTS-HUB.com

https://students-hub.com

3.6 The Comparable Interface 517

An interface provides another form of generic programming. It would be difficult to use a
generic sort method to sort the objects without using an interface in this example, because
multiple inheritance would be necessary to inherit Comparable and another class, such as
Rectangle, at the same time.

The Object class contains the equals method, which is intended for the subclasses of the
Object class to override in order to compare whether the contents of the objects are the same.
Suppose the Object class contains the compareTo method, as defined in the Comparable
interface; the sort method can be used to compare a list of any objects. Whether a compareTo
method should be included in the Object class is debatable. Since the compareTo method
is not defined in the Object class, the Comparable interface is defined in Java to enable
objects to be compared if they are instances of the Comparab1e interface. compareTo should
be consistent with equals. That is, for two objects o1 and 02, 0o1.compareTo(02) == 0if
and only if o1.equals (02) is true. Therefore, you should also override the equals method
in the ComparableRectangle class to return true if two rectangles have the same area.

13.6.1 True or false? If a class implements Comparab1e, the object of the class can invoke
the compareTo method.

13.6.2 Which of the following is the correct method header for the compareTo method in
the String class?

public int compareTo(String o)
public int compareTo(Object o)

13.6.3 Can the following code be compiled? Why?

Integer n1 = 3;
@ Object n2 = 4;
System.out.println(n1.compareTo(n2));

13.6.4 You can define the compareTo method in a class without implementing the Comparable
interface. What are the benefits of implementing the Comparab e interface?

13.6.5 What is wrong in the following code?

public class Test ({
public static void main(String[] args) {
Person[] persons = {new Person(3), new Person(4), new Person(1)};
java.util.Arrays.sort(persons);

}
}

class Person {
private int id;

Person(int id) {
this.id = id;
}
}

13.6.6 Simplify the code in lines 10-15 in Listing 13.9 using one line of code. Also over-
ride the equals method in this class.

13.6.7 Listing 13.5 has an error. If you add Tist.add(new BigInteger
("3432323234344343102")) ; in line 11, you will see the result is incorrect.
This is due to the fact that a double value can have up to 17 significant digits. When
invoking doubleValue () on a BigInteger object in line 24, precision is lost. Fix
the error by converting the numbers into BigDecimal, and compare them using the
compareTo method in line 24.

M13_LIAN9966_12_SE_C13.indd 517 @

STUDENTS-HUB.com

benefits of interface

ﬁeck
Point

28/09/19 4:20 PM

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

518 Chapter I3 Abstract Classes and Interfaces

Key
Point

java.lang.Cloneable

marker interface

M13_LIAN9966_12_SE_C13.indd 518

STUDENTS-HUB.com

3.7 The Cloneable Interface

The Cloneabl e interface specifies that an object can be cloned.

Often, it is desirable to create a copy of an object. To do this, you need to use the cTone method
and understand the Cloneab]e interface.

An interface contains constants and abstract methods, but the Cloneable interface is a
special case. The CloneabT e interface in the java. Tang package is defined as follows:

package java.lang;

public interface Cloneable {

}

This interface is empty. An interface with an empty body is referred to as a marker interface.
A marker interface is used to denote that a class possesses certain desirable properties. A class
that implements the Cloneab1e interface is marked cloneable, and its objects can be cloned
using the clone () method defined in the Object class.

Many classes in the Java library (e.g., Date, Calendar and ArrayList) implement
Cloneable. Thus, the instances of these classes can be cloned. For example, the following
code:

1 Calendar calendar = new GregorianCalendar (2013, 2, 1);
2 Calendar calendar1 = calendar;
3 Calendar calendar2 = (Calendar)calendar.clone();
4 System.out.printin("calendar == calendar1 is " +
5 (calendar == calendar1));
6 System.out.printin("calendar == calendar2 is " +
7 (calendar == calendar2));
8 System.out.printin("calendar.equals(calendar2) is " +
9 calendar.equals(calendar2));
displays
calendar == calendar1 is true
calendar == calendar2 is false

calendar.equals(calendar2) is true

In the preceding code, line 2 copies the reference of calendar to calendar1, so calendar
and calendar1 point to the same Calendar object. Line 3 creates a new object that is the
clone of calendar and assigns the new object’s reference to calendar2. calendar2 and
calendar are different objects with the same contents.

The following code:
1 ArraylList<Double> 1ist1 = new ArrayList<>();
2 1ist1.add(1.5);
3 1ist1.add(2.5);
4 1ist1.add(3.5);
5 ArraylList<Double> 1ist2 = (ArrayList<Double>)1ist1.clone();
6 ArraylList<Double> 1ist3 = list1;
7 1ist2.add(4.5);
8 Tist3.remove(1.5);
9 System.out.printin("Tlist1 is " + list1);
10 System.out.printin("Tist2 is " + 1ist2);
11 System.out.printin("Tist3 is " + 1ist3);

28/09/19 4:20 PM

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

[3.7 The Cloneable Interface 519

displays

Tist1 is [2.5, 3.5]
Tist2 is [1.5, 2.5, 3.5, 4.5]
Tist3 is [2.5, 3.5]

In the preceding code, line 5 creates a new object that is the clone of Tist1 and assigns the
new object’s reference to 1ist2. Tist2 and Tist1 are different objects with the same
contents. Line 6 copies the reference of Tist1 to Tist3, so Tist1 and 1ist3 point to the
same ArrayList object. Line 7 adds 4.5 into 1ist2. Line 8 removes 1.5 from 1ist3.
Since Tist1 and 1ist3 point to the same ArrayList, lines 9 and 11 display the same
content.

You can clone an array using the c1one method. For example, the following code:

1 dint[] list1 = {1, 2};

2 dint[] T1ist2 = list1.clone();

3 Tist1[0] = 7;

4 Tist2[1] = 8;

5 System.out.printin("1ist1 is " + 1ist1[0] + ", " + Tist1[1]);

6 System.out.printin("Tist2 is " + Tist2[0] + ", " + Tist2[1]);
displays

Tist1 is 7, 2
Tist2 is 1, 8

Note the return type of the clone () method for an array is the same as the type of the
array. For example, the return type for Tist1.clone() is int[] since Tist1 is of the
type int[].

To define a custom class that implements the C1oneab1e interface, the class must override
the clone () method in the Object class. Listing 13.11 defines a class named House that
implements Cloneable and Comparable.

LisTING 13.11 House.java

1 public class House implements Cloneable, Comparable<House> {
2 private int id;
3 private double area;
4 private java.util.Date whenBuilt;
5
6 public House(int id, double area) {
7 this.id = id;
8 this.area = area;
9 whenBuilt = new java.util.Date();
10 }
11
12 public int getId() {
13 return id;
14 }
15
16 public double getArea() {
17 return area;
18 }
19
20 public java.util.Date getWhenBuilt() {
21 return whenBuilt;
22 }
M13_LIAN9966_12_SE_C13.indd 519 @

STUDENTS-HUB.com

clone arrays

how to implement C1oneable

28/09/19 4:20 PM

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

520 Chapter I3 Abstract Classes and Interfaces

This exception is thrown if
House does not implement
Cloneable

CloneNotSupported-
Exception

shallow copy
deep copy

M13_LIAN9966_12_SE_C13.indd 520

STUDENTS-HUB.com

23

24 @Override /** Override the protected clone method defined in
25 the Object class, and strengthen its accessibility */
26 public Object clone() {

27 try {

28 return super.clone();

29

30 catch (CloneNotSupportedException ex) {

31 return null;

32 }

33 }

34

35 @Override // Implement the compareTo method defined in Comparable
36 public int compareTo(House o) {

37 if (area > o.area)

38 return 1;

39 else if (area < o.area)

40 return -1;

41 else

42 return 0;

43 }

44)

The House class implements the c1one method (lines 26-33) defined in the Object class.
The header for the cTone method defined in the Object class is

protected native Object clone() throws CloneNotSupportedException;

The keyword native indicates that this method is not written in Java, but is implemented
in the JVM for the native platform. The keyword protected restricts the method to be accessed
in the same package or in a subclass. For this reason, the House class must override the method
and change the visibility modifier to pub11 ¢ so the method can be used in any package. Since
the cTone method implemented for the native platform in the Object class performs the task
of cloning objects, the clone method in the House class simply invokes super.clone ().
The c1one method defined in the Object class throws CloneNotSupportedException if
the object is not a type of Cloneable. Since we catch the exception in the method (lines
30-32), there is no need to declare it in the clone () method header.

The House class implements the compareTo method (lines 36-43) defined in the
ComparabTe interface. The method compares the areas of two houses.

You can now create an object of the House class and create an identical copy from it, as
follows:

House house1
House house2

new House(1, 1750.50);
(House)house1.clone();

house1 and house2 are two different objects with identical contents. The c1one method in
the Object class copies each field from the original object to the target object. If the field is of
a primitive type, its value is copied. For example, the value of area (doubTle type) is copied
from house1 to house2. If the field is of an object, the reference of the field is copied. For
example, the field whenBui1t is of the Date class, so its reference is copied into house2, as
shown in Figure 13.6a. Therefore, house1.whenBuilt == house2.whenBuilt is true,
although house1 == house2 is false. This is referred to as a shallow copy rather than a deep
copy, meaning if the field is of an object type, the object’s reference is copied rather than
its contents.

28/09/19 4:20 PM

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

[3.7 The Cloneable Interface 521

id = 1 =—m> 1 I id = 1 =—> 1 I

area = 1750.50 —> 1750.50 area = 1750.50 —1> 1750.50
whenpui 1t ——> reference | [ERNEIR henpuile —> reforence |~ EEESETENRE
date object date object
house2 = contents house2 = contents
housel.clone () housel.clone ()

=<
[}
3
5]
2

id = 1 =—mm> 1 I id = 1 =— > 1

area = 1750.50 —p>» 1750.50 area = 1750.50 —p>» 1750.50

whenBuilt —————> reference I— whenBuilt ————> reference I—> contents

(a) (b)

FIGURE 13.6 (a) The default c1one method performs a shallow copy. (b) The custom c1one method performs a
deep copy.

To perform a deep copy for a House object, replace the clone () method in lines deep copy
26-33 with the following code: (For the complete code, see liveexample.pearsoncmg.com/text/
House.txt.)

public Object clone() throws CloneNotSupportedException {
/| Perform a shallow copy
House houseClone = (House)super.clone();
/1 Deep copy on whenBuilt
houseClone.whenBuilt = (java.util.Date) (whenBuilt.clone());
return houseClone;

or

public Object clone() {
try {
/| Perform a shallow copy
House houseClone = (House)super.clone();
/| Deep copy on whenBuilt
houseClone.whenBuilt = (java.util.Date) (whenBuilt.clone());
return houseClone;
}
catch (CloneNotSupportedException ex) {
return null;
}
}

Now, if you clone a House object in the following code:

new House(1, 1750.50);
(House)house1.clone();

House house1
House house2

house1.whenBuilt == house2.whenBuilt will be false. house1 and house2 contain
two different Date objects, as shown in Figure 13.6b.
Several questions arise from the c1one method and Cloneab1e interface.

M13_LIAN9966_12_SE_C13.indd 521 @

STUDENTS-HUB.com

date object

28/09/19 4:20 PM

https://students-hub.com

522 Chapter I3 Abstract Classes and Interfaces

‘ltzak
Point

M13_LIAN9966_12_SE_C13.indd 522

STUDENTS-HUB.com

First, why is the clone method in the Object class defined protected, not public? Not
every object can be cloned. The designer of Java purposely forces the subclasses to override
it if an object of the subclass is cloneable.

Second, why is the c1one method not defined in the CloneabTe interface? Java provides a
native method that performs a shallow copy to clone an object. Since a method in an interface
is abstract, this native method cannot be implemented in the interface. Therefore, the designer
of Java decided to define and implement the native c1one method in the Object class.

Third, why doesn’t the Object class implement the Cloneab1e interface? The answer is
the same as in the first question.

Fourth, what would happen if the House class did not implement Cloneable in line 1 of
Listing 13.11? house1.clone () would return nul1 because super.clone () in line 28
would throw a CloneNotSupportedException.

Fifth, you may implement the c1one method in the House class without invoking the clone
method in the Object class as follows:

public Object clone() {
/1 Perform a shallow copy
House houseClone = new House(id, area);

/| Deep copy on whenBuilt
houseClone.whenBuilt = new Date();
houseClone.getWhenBuilt().setTime(whenBuilt.getTime());

return houseClone;

}

In this case, the House class does not need to implement the Cloneable interface, and you
have to make sure all the data fields are copied correctly. Using the cTone () method in the
Object class relieves you from manually copying the data fields. The c1one method in
the Object class automatically performs a shallow copy of all the data fields.

13.7.1 Canaclassinvoke super.clone () when implementing the clone () method if the
class does not implement java.1ang.Cloneable? Does the Date class implement
Cloneable?

13.7.2 What would happen if the House class (defined in Listing 13.11) did not override
the clone () method or if House did not implement java.lang.Cloneable?

13.7.3 Show the output of the following code:

java.util.Date date = new java.util.Date();
java.util.Date date1 = date;

java.util.Date date2 = (java.util.Date) (date.clone());
System.out.printin(date == datel);
System.out.printin(date == date2);
System.out.printin(date.equals(date2));

13.7.4 Show the output of the following code:

ArrayList<String> 1ist = new ArrayList<>();
Tist.add("New York");
ArrayList<String> list1
ArraylList<String> 1ist2
Tist.add("Atlanta")
System.out.printin(list == list1);
System.out.printin(list == 1ist2);
System.out.printin("1ist is " + 1ist);
System.out.printin("1ist1 is " + 1ist1);

(

(

Tist;
(ArrayList<String>) (1ist.clone());

System.out.printin("1ist2.get(0) is " + Tist2.get(0));
System.out.printin("1ist2.size() is " + Tist2.size());

28/09/19 4:20 PM

https://students-hub.com

[3.8 Interfaces vs. Abstract Classes 523

13.7.5 What is wrong in the following code?

public class Test {
public static void main(String[] args) {
GeometricObject x = new Circle(3);
GeometricObject y = x.clone();
System.out.printin(x == vy);
}
}

13.7.6 Show the output of the following code:

public class Test {
public static void main(String[] args) {
House house1 = new House(1, 1750, 50);
House house2 = (House)housel.clone();
System.out.printin(housel.equals(house2);

}
}

13.8 Interfaces vs. Abstract Classes

A class can implement multiple interfaces, but it can only extend one superclass.

An interface can be used more or less the same way as an abstract class, but defining

Key
an interface is different from defining an abstract class. Table 13.2 summarizes the Point
differences.
TaABLE 13.2 Interfaces vs. Abstract Classes
Variables Constructors Methods

Abstract class No restrictions. Constructors are invoked by subclasses No restrictions.

through constructor chaining. An abstract

class cannot be instantiated using the new

operator.
Interface All variables must be No constructors. An interface cannot be May contain public abstract

public static final. instantiated using the new operator. instance methods, public default,

and public static methods.

Java allows only single inheritance for class extension, but allows multiple extensions for
interfaces. For example,

public class NewClass extends BaseClass
implements Interfacel, ... , InterfaceN {

}

An interface can inherit other interfaces using the extends keyword. Such an interface is
called a subinterface. For example, NewInterface in the following code is a subinterface of
Interface1l, ..., and InterfaceN.

public interface NewInterface extends Interface1l,
/1 constants and abstract methods
}

, InterfaceN {

A class implementing NewInterface must implement the abstract methods defined in
NewInterface, Interface1, ..., and InterfaceN. An interface can extend other inter-
faces, but not classes. A class can extend its superclass and implement multiple interfaces.

M13_LIAN9966_12_SE_C13.indd 523 @

STUDENTS-HUB.com

single inheritance
multiple inheritance

subinterface

28/09/19 4:20 PM

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

524 Chapter I3 Abstract Classes and Interfaces

naming convention

is-a relationship
is-kind-of relationship

interface preferred

Animal class

Chicken class

M13_LIAN9966_12_SE_C13.indd 524

STUDENTS-HUB.com

All classes share a single root, the Object class, but there is no single root for interfaces.
Like a class, an interface also defines a type. A variable of an interface type can reference
any instance of the class that implements the interface. If a class implements an interface, the
interface is like a superclass for the class. You can use an interface as a data type and cast
a variable of an interface type to its subclass, and vice versa. For example, suppose c is an
instance of Class2 in Figure 13.7. c is also an instance of Object, Class1, Interface1,
Interface1_1, Interface1_2, Interface2_1, and Interface2_ 2.

Interfacel 2 |4 Interface2_2 |<l -----------------
Interfacel _1 |4-"-

bemmmm——————

------ Interfacel | Interface2_1 |<|------------------

W Class1 Class2 |

FIGURe 13.7 Class1 implements Interface1; Interface1 extends Interface1_1
and Interface1_2.Class2 extends Class1 and implements Interface2_1 and
Interface2_ 2.

Class names are nouns. Interface names may be adjectives or nouns.

Design Guide

Abstract classes and interfaces can both be used to specify common behavior of objects.
How do you decide whether to use an interface or a class? In general, a strong is-a
relationship that clearly describes a parent—child relationship should be modeled using
classes. For example, Gregorian calendar is a calendar, so the relationship between the
class java.util.GregorianCalendar and java.util.Calendar is modeled
using class inheritance. A weak is-a relationship, also known as an is-kind-of relationship,
indicates that an object possesses a certain property. A weak is-a relationship can be
modeled using interfaces. For example, all strings are comparable, so the String class
implements the ComparabTe interface.

In general, interfaces are preferred over abstract classes because an interface can define a
common supertype for unrelated classes. Interfaces are more flexible than classes. Consider the

Animal class. Suppose the howToEat method is defined in the Animal class as follows:

abstract class Animal {
public abstract String howToEat();

}
Two subclasses of Animal are defined as follows:

class Chicken extends Animal {
@Override
public String howToEat() {
return "Fry it";
}
}

28/09/19 4:20 PM

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

[3.8 Interfaces vs. Abstract Classes 525

class Duck extends Animal { Duck class
@Override
public String howToEat () ({
return "Roast it";

}
}

Given this inheritance hierarchy, polymorphism enables you to hold a reference to a Chicken
object or a Duck object in a variable of type AnimaTl, as in the following code:

public static void main(String[] args) {
Animal animal = new Chicken();
eat(animal);

animal = new Duck();
eat(animal);

}

public static void eat(Animal animal) {
System.out.printin(animal.howToEat());
}

The JVM dynamically decides which howToEat method to invoke based on the actual object
that invokes the method.

You can define a subclass of Animal. However, there is a restriction: the subclass must
be for another animal (e.g., Turkey). Another issue arises: if an animal (e.g., Tiger) is not
edible, it will not be appropriate to extend the AnimaT class.

Interfaces don’t have these problems. Interfaces give you more flexibility than classes
@ because you don’t have to make everything fit into one type of class. You may define the
howToEat () method in an interface, and let it serve as a common supertype for other classes.
For example, see the following code:

public class DesignDemo {
public static void main(String[] args) {
Edible stuff = new Chicken();
eat (stuff);

stuff = new Duck();
eat (stuff);

stuff = new Broccoli();
eat (stuff);

}

public static void eat(Edible stuff) ({
System.out.printin(stuff.howToEat()):
}
}

interface Edible { Edible interface
public String howToEat () ;
}

class Chicken implements Edible { Chicken class
@0verride
public String howToEat () ({
return "Fry it";
}
}

M13_LIAN9966_12_SE_C13.indd 525 @ 28/09/19 4:20 PM

STUDENTS-HUB.com

https://students-hub.com

526 Chapter I3 Abstract Classes and Interfaces

Duck class

Broccoli class

ﬁeck
Point

Key
Point

M13_LIAN9966_12_SE_C13.indd 526

STUDENTS-HUB.com

class Duck implements Edible {
@Override
public String howToEat() ({
return "Roast it";

}
}

class Broccoli implements Edible {
@Override
public String howToEat() {
return "Stir-fry it";
}
}

To define a class that represents edible objects, simply let the class implement the Edible
interface. The class is now a subtype of the Edib1e type, and any Edib1e object can be passed
to invoke the howToEat method.

13.8.1 Give an example to show why interfaces are preferred over abstract classes.

13.8.2 Define the terms abstract classes and interfaces. What are the similarities and
differences between abstract classes and interfaces?

13.8.3 True or false?

. An interface is compiled into a separate bytecode file.
. An interface can have static methods.
. An interface can extend one or more interfaces.

An interface can extend an abstract class.

0 A0 T P

. An interface can have default methods.

13.9 Case Study: The Rational Class

This section shows how to design the Rational class for representing and processing
rational numbers.

A rational number has a numerator and a denominator in the form a/b, where a is the numerator
and b the denominator. For example, 1/3, 3/4, and 10/4 are rational numbers.

A rational number cannot have a denominator of 0, but a numerator of 0 is fine. Every inte-
ger 1 is equivalent to a rational number i /1. Rational numbers are used in exact computations
involving fractions—for example, 1/3 = 0.33333. ... This number cannot be precisely
represented in floating-point format using either the data type double or float. To obtain
the exact result, we must use rational numbers.

Java provides data types for integers and floating-point numbers, but not for rational
numbers. This section shows how to design a class to represent rational numbers.

Since rational numbers share many common features with integers and floating-point
numbers, and Number is the root class for numeric wrapper classes, it is appropriate to define
Rational as a subclass of Number. Since rational numbers are comparable, the Rational
class should also implement the Comparab1e interface. Figure 13.8 illustrates the Rational
class and its relationship to the Number class and the Comparable interface.

A rational number consists of a numerator and a denominator. There are many equivalent
rational numbers—for example, 1/3 = 2/6 = 3/9 = 4/12. The numerator and the denom-
inator of 1/3 have no common divisor except 1, so 1/3 is said to be in lowest terms.

To reduce a rational number to its lowest terms, you need to find the greatest common
divisor (GCD) of the absolute values of its numerator and denominator, then divide both the
numerator and denominator by this value. You can use the method for computing the GCD of

28/09/19 4:20 PM

https://students-hub.com

13.9 Case Study: The Rational class 527

java.lang.Number

1 ;
. .~>Rational
<<interface>> |, .7
java.lang.Comparable<Rational> K|~ 1
Add, Subtract, Multiply, Divide

-numerator: long The numerator of this rational number.

—denominator: long The denominator of this rational number.

+Rational () Creates a rational number with numerator 0 and denominator 1.

+Rational (numerator: long, Creates a rational number with a specified numerator and
denominator: long) denominator.

+getNumerator () : long Returns the numerator of this rational number.

+getDenominator () : long Returns the denominator of this rational number.

+add (secondRational: Rational) : Returns the addition of this rational number with another.
Rational

+subtract (secondRational: Returns the subtraction of this rational number with another.
Rational) : Rational

+multiply (secondRational: Returns the multiplication of this rational number with another.
Rational) : Rational

+divide (secondRational: Returns the division of this rational number with another.
Rational) : Rational

+toString () : String Returns a string in the form “numerator/denominator.” Returns

the numerator if denominator is 1.
-gcd(n: long, d: long): long Returns the greatest common divisor of n and d.
@ FiGURre 13.8 The properties, constructors, and methods of the Rational class are illustrated in UML.

two integers n and d, as suggested in Listing 5.9, GreatestCommonDivisor.java. The numerator
and denominator in a Rational object are reduced to their lowest terms.

As usual, let us first write a test program to create two Rational objects and test its
methods. Listing 13.12 is a test program.

LisTING 13.12 TestRationalClass.java

1 public class TestRationalClass {

2 /** Main method */

3 public static void main(String[] args) {

4 /| Create and initialize two rational numbers r1 and r2

5 Rational r1 = new Rational (4, 2); create a Rational
6 Rational r2 = new Rational (2, 3); create a Rational
7

8 /'l Display results

9 System.out.printin(r1 + " + " + r2 + " =" + r1.add(r2)); add
10 System.out.printin(r1 + " = " + r2 + " =" + ri.subtract(r2));
11 System.out.printin(r1 + " "+ r2+ " ="+ rl.multiply(r2));
12 System.out.printin(r1 + " / " + r2 + " =" + r1.divide(r2));
13 System.out.println(r2 + " is " + r2.doubleValue());
14 }
15 }

2 +2/3 =28/3

2 - 2/3 =4/3 Q!;;

2 * 2/3 =4/3

2/ 2/3 =3

2/3 is 0.6666666666666666

M13_LIAN9966_12_SE_C13.indd 527 @ 28/09/19 4:20 PM

STUDENTS-HUB.com

https://students-hub.com

528 Chapter I3 Abstract Classes and Interfaces

M13_LIAN9966_12_SE_C13.indd 528

STUDENTS-HUB.com

The main method creates two rational numbers, r1 and r2 (lines 5 and 6), and displays the
resultsof r1 + r2,r1 - r2,r1 x r2,and r1 / r2 (lines 9-12). To perform r1 + r2,
invoke r1.add (r2) toreturn a new Rational object. Similarly, invoke r1.subtract (r2)
forr1 - r2, r1.multiply(r2) forr1 x r2,and r1.divide(r2) forr1 / r2.

The doubleValue () method displays the double value of r2 (line 13). The
doubleValue () method is defined in java.lang.Number and overridden in Rational.

Note when a string is concatenated with an object using the plus sign (+), the object’s string
representation from the toString () method is used to concatenate with the string. Thus, r1
+ " 4+ "+ r2+ " ="+ ri1.add(r2) isequivalentto r1.toString() + " + " +
r2.toString() + " = " + ri1.add(r2).toString().

The Rational class is implemented in Listing 13.13.

LisTING 13.13 Rational.java

1 public class Rational extends Number implements Comparable<Rational> {
2 /| Data fields for numerator and denominator

3 private long numerator = 0;

4 private long denominator = 1;

5

6 /** Construct a rational with default properties */

7 public Rational() {

8 this (0, 1);

9 }

10

11 /** Construct a rational with specified numerator and denominator */
12 public Rational(long numerator, long denominator) {

13 Tong gcd = gcd(numerator, denominator);

14 this.numerator = (denominator > 0 ? 1 : -1) * numerator / gcd;

15 this.denominator = Math.abs(denominator) / gcd;

16 }

17

18 /** Find GCD of two numbers */
19 private static long gcd(long n, long d) {

20 Tong n1 = Math.abs(n);

21 Tong n2 = Math.abs(d);

22 int gcd = 1;

23

24 for (int k = 1; k <= n1 & k <= n2; k++) {
25 if (n1 % k == 0 && n2 % k == 0)

26 gced = Kk;

27 }

28

29 return gcd;

30 }

31

32 /** Return numerator */

33 public Tong getNumerator() {

34 return numerator;

35 }

36

37 /** Return denominator */

38 public Tong getDenominator() ({

39 return denominator;

40 }

41

42 /** Add a rational number to this rational */
43 public Rational add(Rational secondRational) {
44 Tong n = numerator * secondRational.getDenominator() +
45 denominator * secondRational.getNumerator();

28/09/19 4:20 PM

https://students-hub.com

STUDENTS-HUB.com

13.9 Case Study: The Rational class 529

46 Tong d = denominator * secondRational.getDenominator();
47 return new Rational(n, d);
48 }
49
50 /** Subtract a rational number from this rational */
51 public Rational subtract(Rational secondRational) ({ a _ ¢ _ ad — be
52 long n = numerator * secondRational.getDenominator () b d™ W
53 — denominator * secondRational.getNumerator();
54 Tong d = denominator * secondRational.getDenominator();
55 return new Rational(n, d);
56 }
57
58 /** Multiply a rational number by this rational */
59 public Rational multiply(Rational secondRational) { a e _ac
60 long n = numerator * secondRational.getNumerator(); b d ™ bd
61 Tong d = denominator * secondRational.getDenominator();
62 return new Rational(n, d);
63 }
64
65 /** Divide a rational number by this rational */
66 public Rational divide(Rational secondRational) { 4 . c_ ad
67 long n = numerator * secondRational.getDenominator(); b T d T b
68 Tong d = denominator * secondRational.numerator;
69 return new Rational(n, d);
70 }
71
72 @0Override
73 public String toString() {
74 if (denominator == 1)

@ 75 return numerator + "";
76 else
77 return numerator + "/" + denominator;
78 }
79
80 @Override // Override the equals method in the Object class
81 public boolean equals(Object other) {
82 if ((this.subtract((Rational) (other))).getNumerator() == 0)
83 return true;
84 else
85 return false;
86 }
87
88 @Override // Implement the abstract intValue method in Number
89 public int intValue() {
90 return (int)doubleValue();
91 }
92
93 @Override // Implement the abstract floatValue method in Number
94 public float floatValue() ({
95 return (float)doubleValue();
96 }
97
98 @Override // Implement the doubleValue method in Number
99 public double doubleValue() {
100 return numerator * 1.0 / denominator;
101 }
102
103 @Override // Implement the abstract longValue method in Number
104 public Tong longValue() ({
105 return (long)doubleValue();

M13_LIAN9966_12_SE_C13.indd 529 @

28/09/19 4:20 PM

https://students-hub.com

530 Chapter I3 Abstract Classes and Interfaces

immutable

encapsulation

overflow

M13_LIAN9966_12_SE_C13.indd 530

STUDENTS-HUB.com

106 }

107

108 @Override // Implement the compareTo method in Comparable
109 public int compareTo(Rational o) {

110 if (this.subtract(o).getNumerator() > 0)

111 return 1;

112 else if (this.subtract(o).getNumerator() < 0)
113 return -1;

114 else

115 return 0;

116 }

117 }

The rational number is encapsulated in a Rational object. Internally, a rational number is
represented in its lowest terms (line 13) and the numerator determines its sign (line 14). The
denominator is always positive (line 15).

The gcd method (lines 19-30 in the Rational class) is private; it is not intended for use
by clients. The gcd method is only for internal use by the Rational class. The gcd method
is also static, since it is not dependent on any particular Rational object.

The abs (x) method (lines 20 and 21 in the Rational class) is defined in the Math class
and returns the absolute value of x.

Two Rational objects can interact with each other to perform add, subtract, multiply,
and divide operations. These methods return a new Rational object (lines 43—70). The math
formula for performing these operations are as follows:

a/b + c/d = (ad + bo)/(bd) (e.g., 2/3 + 3/4 = (2*4 + 3%¥3)[(3*4) = 17/12)
a/b — c/d = (ad — bo)/(bd) (e.g., 2/3 — 3/4 = (2*4 — 3%3)/(3*4) = —1/12)
a/b * c/d = (ac)/(bd) (e.g., 2/3%3/4 = (2%3)/(3%4) = 6/12 = 1/2)
(a/b) / (c/d) = (ad)/(be) (e.g., (2/3) / (3/4) = (2%4)/(3*3) = 8/9)

The methods toString and equals in the Object class are overridden in the Rational class
(lines 72-86). The toString () method returns a string representation of a Rational object in
the form numerator/denominator, or simply numerator ifdenominatoris 1. The equals
(Object other) method returns true if this rational number is equal to the other rational number.

The abstract methods intValue, TongValue, floatValue, and doubleValue in the
Number class are implemented in the Rational class (lines 88-106). These methods return
the int, Tong, float, and doub1e value for this rational number.

The compareTo (Rational other) method in the Comparabl e interface is implemented in
the Rational class (lines 108-116) to compare this rational number to the other rational number.

Note

z The getter methods for the properties numerator and denominator are provided in
the Rational class, but the setter methods are not provided, so, once a Ratio-
nal object is created, its contents cannot be changed. The Rational class is immutable.
The String class and the wrapper classes for primitive-type values are also immutable.

Note

The numerator and denominator are represented using two variables. It is possible to use
an array of two integers to represent the numerator and denominator (see Programming
Exercise 13.14). The signatures of the public methods in the Rational class are not
changed, although the internal representation of a rational number is changed. This is a
good example to illustrate the idea that the data fields of a class should be kept private
so as to encapsulate the implementation of the class from the use of the class.

The Rational class has serious limitations and can easily overflow. For example, the
following code will display an incorrect result, because the denominator is too large:

28/09/19 4:20 PM

https://students-hub.com

13.10 Class-Design Guidelines 531

public class Test {
public static void main(String[] args) {
Rational r1 = new Rational (1, 123456789);
Rational r2 = new Rational (1, 123456789);
Rational r3 = new Rational (1, 123456789);
System.out.printin("r1 * r2 * r3 is " +
r1.multiply(r2.multiply(r3)));

rt * r2 * r3 is -1/2204193661661244627

To fix it, you can implement the Rational class using the BigInteger for numerator and
denominator (see Programming Exercise 13.15).

13.9.1 Show the output of the following code:

Rational r1 = new Rational (-2, 6);
System.out.printin(r1.getNumerator());
System.out.println(r1.getDenominator());
System.out.println(r1.intValue());
System.out.printin(r1.doubleValue());

13.9.2 Why is the following code wrong?

Rational r1 = new Rational(-2, 6);
Object r2 = new Rational (1, 45);
System.out.printin(r2.compareTo(r1));

13.9.3 Why is the following code wrong?

Object r1 = new Rational(-2, 6);
Rational r2 = new Rational(1, 45);
System.out.println(r2.compareTo(r1));

13.9.4 Simplify the code in lines 82-85 in Listing 13.13, Rational java, using one line of code
without using the if statement. Simplify the code in lines 110-115 using a conditional
operator.

13.9.5 Trace the program carefully and show the output of the following code:
Rational r1 = new Rational(1, 2);

Rational r2 = new Rational(1, -2);
System.out.println(r1.add(r2));

13.9.6 The preceding question shows a bug in the toString method. Revise the
toString () method to fix the error.

[3.10 Class-Design Guidelines

Class-design guidelines are helpful for designing sound classes.

You have learned how to design classes from the preceding example and from many other
examples in the previous chapters. This section summarizes some of the guidelines.

13.10.1 Cohesion

A class should describe a single entity, and all the class operations should logically fit together to
support a coherent purpose. You can use a class for students, for example, but you should not com-
bine students and staff in the same class, because students and staff are different entities.

M13_LIAN9966_12_SE_C13.indd 531 @

STUDENTS-HUB.com

-

ﬁeck
Point

Key
Point

coherent purpose

28/09/19 4:20 PM

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

532 Chapter I3 Abstract Classes and Interfaces

separate responsibilities

naming conventions

naming consistency

no-arg constructor

encapsulate data fields

easy to explain

independent methods

intuitive meaning

independent properties

M13_LIAN9966_12_SE_C13.indd 532

STUDENTS-HUB.com

A single entity with many responsibilities can be broken into several classes to separate the
responsibilities. The classes String, StringBuilder, and StringBuffer all deal with
strings, for example, but have different responsibilities. The String class deals with immutable
strings, the StringBuilder class is for creating mutable strings, and the StringBuffer
class is similar to StringBuilder, except that StringBuffer contains synchronized meth-
ods for updating strings.

13.10.2 Consistency

Follow standard Java programming style and naming conventions. Choose informative names
for classes, data fields, and methods. A popular style is to place the data declaration before the
constructor, and place constructors before methods.

Make the names consistent. It is not a good practice to choose different names for
similar operations. For example, the Tength () method returns the size of a String, a
StringBuilder, and a StringBuffer. It would be inconsistent if different names were used
for this method in these classes.

In general, you should consistently provide a public no-arg constructor for constructing a default
instance. If a class does not support a no-arg constructor, document the reason. If no constructors
are defined explicitly, a public default no-arg constructor with an empty body is assumed.

If you want to prevent users from creating an object for a class, you can declare a private
constructor in the class, as is the case for the Math class and the GuessDate class.

13.10.3 Encapsulation

A class should use the private modifier to hide its data from direct access by clients. This
makes the class easy to maintain.

Provide a getter method only if you want the data field to be readable and provide a setter
method only if you want the data field to be updateable. For example, the Rational class
provides a getter method for numerator and denominator, but no setter method, because a
Rational object is immutable.

13.10.4 Clarity

Cohesion, consistency, and encapsulation are good guidelines for achieving design clarity. In
addition, a class should have a clear contract that is easy to explain and easy to understand.

Users can incorporate classes in many different combinations, orders, and environments.
Therefore, you should design a class that imposes no restrictions on how or when the user can
use it, design the properties in a way that lets the user set them in any order and with any
combination of values, and design methods that function independently of their order of occur-
rence. For example, the Loan class contains the properties ToanAmount, numberOfYears,
and annualInterestRate. The values of these properties can be set in any order.

Methods should be defined intuitively without causing confusion. For example, the sub-
string(int beginIndex, int endIndex) method in the String class is somewhat
confusing. The method returns a substring from beginIndex to endIndex - 1, rather than
to endIndex. It would be more intuitive to return a substring from beginIndex to
endIndex.

You should not declare a data field that can be derived from other data fields. For example,
the following Person class has two data fields: birthDate and age. Since age can be derived
from birthDate, age should not be declared as a data field.

public class Person {
private java.util.Date birthDate;
private int age;

28/09/19 4:20 PM

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

13.10 Class-Design Guidelines 533

13.10.5 Completeness

Classes are designed for use by many different customers. In order to be useful in a wide range
of applications, a class should provide a variety of ways for customization through properties
and methods. For example, the String class contains more than 40 methods that are useful
for a variety of applications.

13.10.6 Instance vs. Static

A variable or method that is dependent on a specific instance of the class must be an instance
variable or method. A variable that is shared by all the instances of a class should be declared
static. For example, the variable numberOfObjects in Circle in Listing 9.8 is shared
by all the objects of the Circle class, and therefore is declared static. A method that is
not dependent on a specific instance should be defined as a static method. For instance, the
getNumberOfObjects () methodin Circle is not tied to any specific instance and therefore
is defined as a static method.

Always reference static variables and methods from a class name (rather than a reference
variable) to improve readability and avoid errors.

Do not pass a parameter from a constructor to initialize a static data field. It is better to
use a setter method to change the static data field. Thus, the following class in (a) is better
replaced by (b):

public class SomeThing {
private int tl1;
private static int t2;

public class SomeThing {
private int tl1;
private static int t2;

public SomeThing(int tl, int t2) { public SomeThing(int tl1) {

} }
public static void setT2 (int t2) {

SomeThing.t2 = t2;
}

(a) (b)

Instance and static are integral parts of object-oriented programming. A data field or method
is either instance or static. Do not mistakenly overlook static data fields or methods. It is a
common design error to define an instance method that should have been static. For example,
the factorial (int n) method for computing the factorial of n should be defined static
because it is independent of any specific instance.

A constructor is always instance because it is used to create a specific instance. A static
variable or method can be invoked from an instance method, but an instance variable or method
cannot be invoked from a static method.

[3.10.7 Inheritance vs. Aggregation

The difference between inheritance and aggregation is the difference between an is-a and a
has-a relationship. For example, an apple is a fruit; thus, you would use inheritance to model
the relationship between the classes App1e and Fruit. A person has a name; thus, you would
use aggregation to model the relationship between the classes Person and Name.

M13_LIAN9966_12_SE_C13.indd 533 @

STUDENTS-HUB.com

common design error

28/09/19 4:20 PM

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

534 Chapter I3 Abstract Classes and Interfaces

ﬁeck
Point

M13_LIAN9966_12_SE_C13.indd 534

STUDENTS-HUB.com

13.10.8 Interfaces vs. Abstract Classes

Both interfaces and abstract classes can be used to specify common behavior for objects. How do
you decide whether to use an interface or a class? In general, a strong is-a relationship that clearly
describes a parent—child relationship should be modeled using classes. For example, since an
orange is a fruit, their relationship should be modeled using class inheritance. A weak is-a relation-
ship, also known as an is-kind-of relationship, indicates that an object possesses a certain property.
A weak is-a relationship can be modeled using interfaces. For example, all strings are comparable,
so the String class implements the Comparab1e interface. A circle or a rectangle is a geometric
object, so Circ1le can be designed as a subclass of GeometricObject. Circles are different and
comparable based on their radii, so Circ1le can implement the Comparabe interface.

Interfaces are more flexible than abstract classes because a subclass can extend only one
superclass, but can implement any number of interfaces. However, interfaces cannot contain
data fields. In Java 8, interfaces can contain default methods and static methods, which are very
useful to simplify class design. We will give examples of this type of design in Chapter 20,
Lists, Stacks, Queues, and Priority Queues.

13.10.1 Describe class-design guidelines.

Key TERMS

abstract class 500 marker interface 518
abstract method 500 shallow copy 520
deep copy 520 subinterface 523

interface 523

CHAPTER SUMMARY

I. Abstract classes are like regular classes with data and methods, but you cannot create
instances of abstract classes using the new operator.

2. An abstract method cannot be contained in a nonabstract class. If a subclass of an abstract
superclass does not implement all the inherited abstract methods of the superclass, the
subclass must be defined as abstract.

3. A class that contains abstract methods must be abstract. However, it is possible to define
an abstract class that doesn’t contain any abstract methods.

4. A subclass can be abstract even if its superclass is concrete.
5. An interface is a class-like construct that contains only constants, abstract methods,
default methods, and static methods. In many ways, an interface is similar to an abstract

class, but an abstract class can contain data fields.

6. An interface is treated like a special class in Java. Each interface is compiled into a
separate bytecode file, just like a regular class.

7. The java.lang.Comparable interface defines the compareTo method. Many classes
in the Java library implement Comparable.

28/09/19 4:20 PM

mnawahdah
Highlight

https://students-hub.com

Programming Exercises 535

8. The java.lang.Cloneable interface is a marker interface. An object of the class that
implements the Cloneabe interface is cloneable.

9. A class can extend only one superclass but can implement one or more interfaces.

10. An interface can extend one or more interfaces.

Quiz

Answer the quiz for this chapter online at the book Companion Website.

PROGRAMMING EXERCISES

Sections 13.2 and 13.3

**13.1

*13.2

*13.3

**13.4

(Triangle class) Design a new Triangle class that extends the abstract
GeometricObject class. Draw the UML diagram for the classes Triangle and
GeometricObject then implement the Triangle class. Write a test program
that prompts the user to enter three sides of the triangle, a color, and a Boolean
value to indicate whether the triangle is filled. The program should create a Tri -
angle object with these sides, and set the color and f1i171ed properties using the
input. The program should display the area, perimeter, color, and true or false to
indicate whether it is filled or not.

(Shuffle ArrayList) Write the following method that shuffles an ArrayList of
numbers:

public static void shuffle(ArrayList<Number> 1ist)
(Sort ArrayList) Write the following method that sorts an ArrayList of numbers:
public static void sort(ArrayList<Number> 1ist)

(Display calendars) Rewrite the PrintCalendar class in Listing 6.12 to display
a calendar for a specified month using the Calendar and GregorianCalendar
classes. Your program receives the month and year from the command line. For
example:

java Exercise13_04 5 2016

This displays the calendar shown in Figure 13.9.

B Command Prompt - O X

c:\exercise>java Exercisel3_e4 10 2019 ~
October 2019
Sun Mon Tue Wed Thu Fri Sat
1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 306 31

c:\exercise> v

FIGURE 13.9 The program displays a calendar for May 2016.

M13_LIAN9966_12_SE_C13.indd 535 @

STUDENTS-HUB.com

MyProgramminglLab’

28/09/19 4:20 PM

https://students-hub.com

536 Chapter I3 Abstract Classes and Interfaces

M13_LIAN9966_12_SE_C13.indd 536

STUDENTS-HUB.com

You can also run the program without the year. In this case, the year is the current
year. If you run the program without specifying a month and a year, the month is
the current month.

Sections 13.4-13.8v

*13.5

*13.6

*13.7

*13.8

*13.9

*13.10

*13.11

(Enable GeometricObject comparable) Modify the GeometricObject class to
implement the Comparab1e interface and define a static max method in the Geo-
metricObject class for finding the larger of two GeometricObject objects.
Draw the UML diagram and implement the new GeometricObject class. Write
a test program that uses the max method to find the larger of two circles, the larger
of two rectangles.

(The ComparableCircle class) Define a class named ComparableCircle
that extends Circle and implements Comparable. Draw the UML diagram
and implement the compareTo method to compare the circles on the basis of
area. Write a test class to find the larger of two instances of ComparableCircle
objects, and the larger between a circle and a rectangle.

(The Colorable interface) Design an interface named Colorable with a void
method named howToColor (). Every class of a colorable object must imple-
ment the Colorable interface. Design a class named Square that extends
GeometricObject and implements Colorable. Implement howToColor to
display the message Color all four sides. The Square class contains a
data field side with getter and setter methods, and a constructor for constructing
a Square with a specified side. The Square class has a private double data field
named side with its getter and setter methods. It has a no-arg constructor to
create a Square with side 0, and another constructor that creates a Square with
the specified side.

Draw a UML diagram that involves Colorable, Square, and GeometricObject.
Write a test program that creates an array of five GeometricObjects. For each object
in the array, display its area and invoke its howToCo1or method if it is colorable.

(Revise the MyStack class) Rewrite the MyStack class in Listing 11.10 to perform
a deep copy of the 1ist field.

(Enable Circle comparable) Rewrite the Circle class in Listing 13.2 to extend
GeometricObject and implement the Comparable interface. Override the
equals method in the Object class. Two Circle objects are equal if their radii
are the same. Draw the UML diagram that involves Circle, GeometricObject,
and Comparable.

(Enable Rectang1e comparable) Rewrite the Rectangle class in Listing 13.3 to
extend GeometricObject and implement the Comparable interface. Override
the equals method in the Object class. Two Rectangle objects are equal if
their areas are the same. Draw the UML diagram that involves Rectangle, Geo-
metricObject, and Comparable.

(The Octagon class) Write a class named Octagon that extends
GeometricObject and implements the Comparable and Cloneable inter-
faces. Assume all eight sides of the octagon are of equal length. The area can be
computed using the following formula:

area = (2 + 4/\/5) * side * side

The Octagon class has a private double data field named side with its getter and
setter methods. The class has a no-arg constructor that creates an Octagon with
side 0, and a constructor to create an Octagon with a specified side.

28/09/19 4:20 PM

https://students-hub.com

Programming Exercises 537

Draw the UML diagram that involves Octagon, GeometricObject, Comparable,
and Cloneable. Write a test program that creates an Octagon object with side
value 5 and displays its area and perimeter. Create a new object using the clone
method, and compare the two objects using the compareTo method.

*13.12 (Sum the areas of geometric objects) Write a method that sums the areas of all the
geometric objects in an array. The method signature is

public static double sumArea(GeometricObject[] a)

Write a test program that creates an array of four objects (two circles and two
rectangles) and computes their total area using the sumArea method.

*13.13 (Enable the Course class cloneable) Rewrite the Course class in Listing 10.6
to add a cTone method to perform a deep copy on the students field.

Section 13.9

*13.14 (Demonstrate the benefits of encapsulation) Rewrite the Rational class in List-
ing 13.13 using a new internal representation for the numerator and denominator.
Create an array of two integers as follows:

private long[] r = new long[2];

Use r[0] to represent the numerator and r[1] to represent the denominator. The
signatures of the methods in the Rational class are not changed, so a client appli-
cation that uses the previous Rationa?l class can continue to use this new Ratio-
nal class without being recompiled.

*13.15 (Use BigInteger for the Rational class) Redesign and implement the Ratio-
nal class in Listing 13.13 using BigInteger for the numerator and denomina-
tor. Write a test program that prompts the user to enter two rational numbers and
display the results as shown in the following sample run:

Enter the first rational number: 3 454 E

Enter the second rational number: 7 2389 |uEnter

3/454 + 7/2389 = 10345/1084606
3/454 — 7/2389 = 3989/1084606
3/454 * 7/2389 = 21/1084606
3/454 | 7/2389 = 7167/3178

7/2389 is 0.0029300962745918793

*13.16 (Create a rational-number calculator) Write a program similar to Listing 7.9,
Calculator.java. Instead of using integers, use rationals, as shown in Figure 13.10.
You will need to use the split method in the String class, introduced in
Section 10.10.3, Replacing and Splitting Strings, to retrieve the numerator string
and denominator string, and convert strings into integers using the Integer
.parselInt method.

M13_LIAN9966_12_SE_C13.indd 537 @ 28/09/19 4:20 PM

STUDENTS-HUB.com

https://students-hub.com

538 Chapter I3 Abstract Classes and Interfaces

M13_LIAN9966_12_SE_C13.indd 538

STUDENTS-HUB.com

B Command Prompt - O X y-axis

c:\exercise>java Exercisel3_16 "3/4 + 1/5" N |
3/4 + 1/5 = 19/20 \ 2+ 3i

c:\exercise>java Exercisel3_16 "3/4 - 1/5"
3/4 - 1/5 = 11/20

X-axis

c:\exercise>java Exercisel3_16 "3/4 * 1/5"
3/4 * 1/5 = 3/20

3-2i

c:\exercise>

(a) (b)
FIGURE 13.10 (a) The program takes a string argument that consists of operand1, operator, and
operand2 from the command line and displays the expression and the result of the arithmetic
operation. (b) A complex number can be interpreted as a point in a plane.

*13.17 (Math: The CompTex class) A complex number is a number in the form a + bi,
where a and b are real numbers and i is V —1. The numbers a and b are known
as the real part and imaginary part of the complex number, respectively. You can
perform addition, subtraction, multiplication, and division for complex numbers
using the following formulas:

at+bitctdi=(@+c)+ D+ di
a+bi—(c+d)=(@@—c)+ b —di
(a + bi) * (¢ + di) = (ac — bd) + (bc + ad)i
(a + bil(c + di) = (ac + bd)I(+ d») + (bc — ad)il(® + d?)

You can also obtain the absolute value for a complex number using the following
formula:

la + bil = Va* + b’

(A complex number can be interpreted as a point on a plane by identifying the
(a,b) values as the coordinates of the point. The absolute value of the com-
plex number corresponds to the distance of the point to the origin, as shown
in Figure 13.10.)

Design a class named Complex for representing complex numbers and the
methods add, subtract, multiply, divide, and abs for performing complex-
number operations, and override toString method for returning a string repre-
sentation for a complex number. The toString method returns (a + bi) asa
string. If b is 0, it simply returns a. Your Comp1ex class should also implement
Cloneable and Comparable. Compare two complex numbers using their abso-
lute values.

Provide three constructors Complex(a, b), Complex(a), and CompTlex().
Complex () creates a Complex object for number 0, and Complex(a) cre-
ates a Complex object with 0 for b. Also provide the getRealPart () and
getImaginaryPart () methods for returning the real part and the imaginary part
of the complex number, respectively.

Draw the UML class diagram and implement the class. Use the code at https://
liveexample.pearsoncmg.com/test/Exercise13_17.txt to test your implementa-
tion. Here is a sample run:

28/09/19 4:20 PM

https://students-hub.com

Programming Exercises 539

Enter the first complex number: 3.5 5.5 |-enter
Enter the second complex number: -3.5 1 |-enter E
(3.5 + 5.5i) + (-3.5 + 1.0i) = 0.0 + 6.5i

(3.5 + 5.5i) - (-3.5 +1.0i) = 7.0 + 4.51

(3.5 + 5.51) * (-3.5 + 1.01) = -17.75 + -15.751
(3.5 + 5.5i) / (-3.5 + 1.01i) = -0.5094 + -1.7i

| (3.5 + 5.51)| = 6.519202405202649

false

8.5

5.5

[-3.5 + 1.0i, 4.0 + -0.51, 3.5 + 5.5i, 3.5 + 5.51]

13.18 (Use the Rational class) Write a program that computes the following summa-
tion series using the Rational class:

e v

[SSHR)

N | —
AW
N}
=)
Pk
(]
S

You will discover that the output is incorrect because of integer overflow (too
large). To fix this problem, see Programming Exercise 13.15.

13.19 (Convert decimals to fractions) Write a program that prompts the user to enter a
decimal number and displays the number in a fraction. (Hint: read the decimal
number as a string, extract the integer part and fractional part from the string, and
use the Rational class in Listing 13.13 to obtain a rational number for the deci-

@ mal number.) Here are some sample runs:

Enter a decimal number: 3.25 |dEnter
The fraction number is 13/4

o

Enter a decimal number: -0.45452
The fraction number is -11363/25000

.

13.20 (Algebra: solve quadratic equations) Rewrite Programming Exercise 3.1 to obtain
imaginary roots if the determinant is less than O using the Complex class in
Programming Exercise 13.17. Here are some sample runs:

Enter a, b, c: 1 3 1 |~—1Enter g

The roots are -0.381966 and -2.61803

Enter a, b, c:121 E

The root is -1

M13_LIAN9966_12_SE_C13.indd 539 @ 28/09/19 4:20 PM

STUDENTS-HUB.com

https://students-hub.com

540 Chapter I3 Abstract Classes and Interfaces

2

M13_LIAN9966_12_SE_C13.indd 540

STUDENTS-HUB.com

Enter a, b, c: 1 2 3 IJEnter
The roots are -1.0 + 1.41427i and -1.0 + —-1.4142i

13.21

(Algebra: vertex form equations) The equation of a parabola can be expressed in
either standard form (y = ax®> + bx + ¢) or vertex form (y = a(x — h)*> + k).
Write a program that prompts the user to enter a, b, and ¢ as integers in standard

, ~b 4ac — b*\ _
form and displays A | = 22 and k| = T) the vertex form. Display &
a a

and k as rational numbers. Here are some sample runs:

Enter a, b, c: 1 3 1 IAEnter
h is -3/2 k is -5/4

Enter a, b, c: 2 3 4 IaEnter
h is -3/4 k is 23/8

28/09/19 4:20 PM

https://students-hub.com

