
Logic and Automated Reasoning

Uploaded By: anonymousSTUDENTS-HUB.com

Knowledge-based agents

• Knowledge base (KB) = set of sentences in a formal language

• Declarative approach to building an agent (or other system):

– Tell it what it needs to know

• Then it can ask itself what to do - answers should follow from the KB

• Distinction between data and program

• Fullest realization of this philosophy was in the field of expert systems

or knowledge-based systems in the 1970s and 1980s

Inference engine

Knowledge base

Domain-independent algorithms

Domain-specific content

Uploaded By: anonymousSTUDENTS-HUB.com

What is logic?

• Logic is a formal system for manipulating facts so

that true conclusions may be drawn

– “The tool for distinguishing between the true and the

false” – Averroes (12th cen.)

• Syntax: rules for constructing valid sentences

– E.g., x + 2  y is a valid arithmetic sentence, x2y + is not

• Semantics: “meaning” of sentences, or relationship

between logical sentences and the real world

– Specifically, semantics defines truth of sentences

– E.g., x + 2  y is true in a world where x = 5 and y = 7

Uploaded By: anonymousSTUDENTS-HUB.com

Overview

• Propositional logic

• Inference rules and theorem proving

• First order logic

• Each has SYNTAX: way to form sentences and

SEMANTICS way to interpret (give true or false

to sentences).

Uploaded By: anonymousSTUDENTS-HUB.com

Propositional logic: Syntax
• Atomic sentence:

– A proposition symbol representing a true or false statement: so P and
Q and R are each proposition. A proposition is a sentence and so
are the constants: T (True) and F (False)

• Negation:
– If P is a sentence, P is a sentence

• Conjunction:
– If P and Q are sentences, P  Q is a sentence

• Disjunction:
– If P and Q are sentences, P  Q is a sentence

• Implication:
– If P and Q are sentences, P  Q is a sentence

• Biconditional:
– If P and Q are sentences, P  Q is a sentence

• , , , ,  are called logical connectives

• Question: are P  Q  F, P  Q  T sentences???

Uploaded By: anonymousSTUDENTS-HUB.com

Propositional Logic: Semantics

• A interpretation I specifies the true/false status of each

proposition symbol in the knowledge base

• A model is an interpretation in which the formula of

interest is True. Given P, Q and R propositions:
– Could be: P is true, Q is true, R is false or {P, Q, R’} or {P, Q}

– With three symbols, there are 8 possible interpretations, and they can be

enumerated exhaustively: 000➔111: {P’, Q’, R’} ➔ {P, Q, R}

• Rules for evaluating truth with respect to a model:
 P is true iff P is false

 P  Q is true iff P is true and Q is true

 P  Q is true iff P is true or Q is true

 P  Q is true iff P is false or Q is true

 P  Q is true iff P  Q is true and Q  P is true

Uploaded By: anonymousSTUDENTS-HUB.com

Truth tables
• A truth table specifies the truth value of a composite

sentence for each possible assignments of truth

values to its atoms.

• The truth value of a more complex sentence can be

evaluated recursively or compositionally

• Rain➔ umbrella, can carry umbrella in sun!
Uploaded By: anonymousSTUDENTS-HUB.com

Models, Interpretations, Worlds
• An interpretation I (world) is an assignment of values

(T,F) to ALL variables (propositions) in a formula α

• An interpretation is a model for formula α if α is True in

that interpretation:

• Given formula α= A V B’: Interpretations: 11; 10;01;00

• Models are 10,11,00 Non-model: 01

• E.g. 10,11,00 are the models in which α is TRUE

 and 01 is the model in which α is FALSE

• Also {A}, {A,B}, {}, are models of α; {B} is not a model.

Uploaded By: anonymousSTUDENTS-HUB.com

Models and Interpretations
• May specify interpretation by listing positive

literals only.

• P ⊕ Q: has 4 interpretations and 2 models.

{P}, {Q} are models and interpretations,

{P,Q} is an interpretation but not a model! However:

Frequently, the interpretation and model are used

interchangeably with the context determining the

meaning: HERE (in our slides). So model may mean

interpretation: and distinguish between models in which

a formula is true and false!

This may be the approach in some of these slides and

may be more: but be careful.

Uploaded By: anonymousSTUDENTS-HUB.com

Logical Equivalence

• Two sentences are logically equivalent iff they are true in same

models. Or have the same values under all interpretations

Uploaded By: anonymousSTUDENTS-HUB.com

Logical equivalence: Clauses
• Two sentences are logically equivalent iff they are true in

same interpretations: Let’s discuss implication: →

• α→β= α’ v β [same as T ^ α→β V F] T=true, F=false

• α1 ^ α2 ^ α3 ^ α4→β= α1’ v α2’ v α3’ v α4’ v β

• α1 ^ α2 ^ α3 ^ α4→β1 v β2 v β3 =

 α1’ v α2’ v α3’ v α4’ v β1 v β2 v β3

• α1 ^ α2 ^ α3 ^ α4→ = α1’ v α2’ v α3’ v α4’

• →β1 v β2 v β3 = β1 v β2 v β3

Uploaded By: anonymousSTUDENTS-HUB.com

Logical equivalence: Clauses
• A literal: an atom or negated atom: α3, α4’, β1

• A clause: disjunction of Literals: α3’ v α4’ v β1

• □: is the empty clause –Never True-

Uploaded By: anonymousSTUDENTS-HUB.com

Validity, satisfiability

A sentence is valid if it is true in all Interpretations,

e.g., True, 1 , A A, A  A, (A  (A  B))  B

A sentence is satisfiable if it is true in some Interpretation (has
a model)

e.g., AB, C

A sentence is unsatisfiable if it is true in no Interpretation (has
no models)

e.g., AA, 0, False, (A A) 

Valid is also satisfiable,

Not Valid is either satisfiable or Unsatisfiable:

S1= A  C, S2= A A

Uploaded By: anonymousSTUDENTS-HUB.com

Validity, satisfiability

If sentence S1 is valid then S1 is

Unsatisfiable S1=[A A]> S1= A A

If sentence S2 is unstaisfiable then S2 is

Valid. S2=[A A]> S2= A A

If sentence S3 is satisfiable then S3 is

satisfiable or unsatisfiable: S3= A  C, S3= A A,

If sentence S4 is not valid then S4 is

Satisfiable or invalid: S4= A  C, S4= A A,

Uploaded By: anonymousSTUDENTS-HUB.com

Entailment
• Entailment means that a sentence follows from the

premises contained in the knowledge base:

KB ╞ α

• KB entails sentence α if and only if α is true in all

interpretations where KB is true (KB Models)

– E.g., KB : {x = 0} entailsα: {x * y = 0}

– Can α be true when KB is false?

Of course: x=5, KB is false, x * y = 0 [y=0]➔ α is true!!

• KB ╞ α iff (KB  α) is valid or (KB  α) is valid

• KB ╞ α iff (KB α) is unsatisfiable: has no models

• Negate α and prove (KB α) unsatisfiable:

• Refutational proof, proof by contradiction
Uploaded By: anonymousSTUDENTS-HUB.com

Entailment

• Entailment Example for KB ╞ α

• Let KB = P➔Q and P, Let α=P, show that KB ╞ α

• 2 variable, 4 interpretations.

P Q P➔Q {P➔Q, P} Q {P➔Q, P,

Q’}

0 0 1 0 0 0

0 1 1 0 1 0

1 0 0 0 0 0

1 1 1 1 1 0

Uploaded By: anonymousSTUDENTS-HUB.com

Entailment Example

• Let KB = R^P➔Q and P, Let α=Q, show thatKB╞ α

• 3 variable, 8 interpretations. Enumeration: NO
P Q R R^P {R^P➔Q} {R^P➔Q, P} KB   α

0 0 0 0 1 0 0

0 0 1 0 1 0 0

0 1 0 0 1 0 0

0 1 1 0 1 0 0

1 0* 0 0 1 1 *** 1***

1 0 1 1 0 0 0

1

1

1

1

0

1

0

1

1

1

1

1

0

0

Uploaded By: anonymousSTUDENTS-HUB.com

Entailment

Uploaded By: anonymousSTUDENTS-HUB.com

Entailment

Uploaded By: anonymousSTUDENTS-HUB.com

Entailment

Uploaded By: anonymousSTUDENTS-HUB.com

Entailment
Check that: (KB α) unsatisfiable

Uploaded By: anonymousSTUDENTS-HUB.com

Inference

• Logical inference: a procedure for generating

sentences that follow from a knowledge base KB

• An inference procedure is sound if whenever it

derives a sentence α, KB╞ α

– A sound inference procedure can derive only true

sentences

• An inference procedure is complete if whenever

KB╞ α, α can be derived by the procedure

– A complete inference procedure can derive every

entailed sentence

Uploaded By: anonymousSTUDENTS-HUB.com

Inference: Soundness and Completeness

• Can be sound but not complete:

• E.g. Derive nothing from any KB.

• Or from AB derive only A

• Can be complete but not sound.

• Or from AB derive A and B and C ?

• E.g. Derive everything from any KB.

• Best if both sound and complete: drives all

and only what is derivable: all the truth and

nothing but the truth: كل الحق ولا شيء غير الحق

Uploaded By: anonymousSTUDENTS-HUB.com

Inference

• How can we check whether a sentence α is entailed by KB?

• How about we enumerate all possible models of the KB

(truth assignments of all its symbols), and check that α is

true in every model in which KB is true?

– Is this sound?

– Is this complete?

• Problem: if KB contains n symbols, the truth table will be of

size 2n

• Better idea: use inference rules, or sound procedures to

generate new sentences or conclusions given the premises

in the KB

Uploaded By: anonymousSTUDENTS-HUB.com

Inference rules

• Modus Ponens

P-->Q, P

 Q

• And-elimination


 

premises

conclusion

Rule

Goal

Fact

Uploaded By: anonymousSTUDENTS-HUB.com

Inference rules

• And-introduction

• Or-introduction













,

Uploaded By: anonymousSTUDENTS-HUB.com

Inference rules

• Double negative elimination

• Unit resolution



  ,





Uploaded By: anonymousSTUDENTS-HUB.com

Resolution

• Example:

: “The weather is dry”

: “The weather is rainy”

γ: “I carry an umbrella”







 ,







 ,
or

Uploaded By: anonymousSTUDENTS-HUB.com

Resolution

• Examples:

• P v Q,  P v R gives Q v R

•  P v R, P gives R

•  P v R, R v P gives P v P OR R v R =1

•  P, P gives ., or empty clause or •

always false =0

Uploaded By: anonymousSTUDENTS-HUB.com

Resolution is complete

• To prove KB╞ α, assume KB   α

 and derive a contradiction: Refutation proof!

• Rewrite KB   α as a conjunction of clauses,

or disjunctions of literals

– Conjunctive normal form (CNF) (product of sums)

 (P  Q  R) (S  P  T R) (Q  S)

Disjuncts are clauses, sets of literals: {P,Q,R}, {S,P,T,R},{Q,S}

 Special case: the empty set (empty clause){}, •

• Keep applying resolution to clauses that contain

complementary literals and adding resulting clauses

to the list

– If there are no new clauses to be added, then KB does not entail α

– If two clauses resolve to form an empty clause, we have a

contradiction and KB╞ α







 ,

Uploaded By: anonymousSTUDENTS-HUB.com

Complexity of inference

• Propositional inference is co-NP-complete

– Complement of the SAT problem: α ╞ β if and

only if the sentence α   β is unsatisfiable

– Every known inference algorithm has worst-

case exponential running time

• Efficient inference possible for restricted

cases

Uploaded By: anonymousSTUDENTS-HUB.com

Proof, Refutation Proof
P v Q, P→R, Q→ R: can prove R? Yes:

1- P v Q -- {P, Q}

2-  P v R -- {P, R}

3- Q v R -- {Q, R}

Clause 9 is a proof of R. But refutation is more convenient!

4- R -- {R}

1. {P,Q} Premise

2. {~ P,R} Premise

3. {~ Q,R} Premise

4. {~ R} Premise

5. {Q,R} 1,2

6. {P,R} 1,3

7. {~ P} 2,4

8. {~ Q} 3,4

9. {R} 3,5

10. {Q} 4,5

11. {R} 2,6

12. {P} 4,6

13. {Q} 1,7

14. {R} 6,7

15. {P} 1,8

16. {R} 5,8

17. {} 4,9 Uploaded By: anonymousSTUDENTS-HUB.com

Example
If Omar visits Poland (P), then Omar visits Quebec (Q). If it is Monday (M),

Omar visits Poland or Québec. Prove that, if it is Monday, then Omar visits

Québec.

Query (Goal): M→ Q or  M v Q: =not easy to prove this: so REFUTATION-

Goal negation: M and  Q:: {M}, { Q}

1. {~ P,Q} Premise

2. {~ M,P,Q} Premise

3. {M} Negated Goal

4. {~ Q} Negated Goal

5. {P,Q} 3,2

6. {Q} 5,1

7. {} 6,4
Uploaded By: anonymousSTUDENTS-HUB.com

Definite clauses

• A definite clause is a disjunction with exactly one

positive literal

• Equivalent to (P1  …  Pn)  Q

• Basis of logic programming (Prolog)

• Efficient (linear-time) complete inference through

forward chaining and backward chaining

• Note:  R is the same as R. R  is R.

• (P1  …  Pn)  is  P1  …   Pn

premise or body
conclusion

or head

Uploaded By: anonymousSTUDENTS-HUB.com

Forward chaining

• Idea: find any rule whose premises are satisfied in

the KB, add its conclusion to the KB, and keep

going until query is found. Let Goal be Q

Uploaded By: anonymousSTUDENTS-HUB.com

Forward chaining example

• AND-OR Graph

– multiple links joined by an
arc indicate conjunction –
every link must be proved

– multiple links without an arc
indicate disjunction – any
link can be proved

• Empty circles: symbols known to be

true but not yet “processed”

• Counts: how many premises of

each implication are yet unknown

Uploaded By: anonymousSTUDENTS-HUB.com

Forward chaining example

Uploaded By: anonymousSTUDENTS-HUB.com

Forward chaining example

Uploaded By: anonymousSTUDENTS-HUB.com

Forward chaining example

Uploaded By: anonymousSTUDENTS-HUB.com

Forward chaining example

Uploaded By: anonymousSTUDENTS-HUB.com

Forward chaining example

Uploaded By: anonymousSTUDENTS-HUB.com

Forward chaining example

Uploaded By: anonymousSTUDENTS-HUB.com

Forward chaining example

Uploaded By: anonymousSTUDENTS-HUB.com

Backward chaining

Idea: work backwards from the query q:

to prove q by BC,

check if q is known already, or

prove by BC all premises of some rule concluding q

Uploaded By: anonymousSTUDENTS-HUB.com

Backward chaining example

Uploaded By: anonymousSTUDENTS-HUB.com

Backward chaining example

Uploaded By: anonymousSTUDENTS-HUB.com

Backward chaining example

Uploaded By: anonymousSTUDENTS-HUB.com

Backward chaining example

Uploaded By: anonymousSTUDENTS-HUB.com

Backward chaining example

Uploaded By: anonymousSTUDENTS-HUB.com

Backward chaining example

Uploaded By: anonymousSTUDENTS-HUB.com

Backward chaining example

Uploaded By: anonymousSTUDENTS-HUB.com

Backward chaining example

Uploaded By: anonymousSTUDENTS-HUB.com

Backward chaining example

Uploaded By: anonymousSTUDENTS-HUB.com

Backward chaining example

Uploaded By: anonymousSTUDENTS-HUB.com

Forward vs. backward chaining

• Forward chaining is data-driven, automatic

processing

– May do lots of work that is irrelevant to the goal

• Backward chaining is goal-driven, appropriate

for problem-solving

– Complexity can be much less than linear in size of KB

Uploaded By: anonymousSTUDENTS-HUB.com

Summary

• Logical agents apply inference to a knowledge base to

derive new information and make decisions

• Basic concepts of logic:

– syntax: formal structure of sentences

– semantics: truth of sentences wrt models

– entailment: necessary truth of one sentence given another

– inference: deriving sentences from other sentences

– soundness: derivations produce only entailed sentences

– completeness: derivations can produce all entailed sentences

• Resolution is complete for propositional logic

• Forward, backward chaining are linear-time, complete for

definite clauses

Uploaded By: anonymousSTUDENTS-HUB.com

First-Order Logic

Uploaded By: anonymousSTUDENTS-HUB.com

Limitations of propositional logic

• Suppose you want to say “All humans are mortal”

– In propositional logic, you would need

~10 billion statements

• Suppose you want to say “Some people can run a

marathon”

– You would need a disjunction of 10 billion

statements

Uploaded By: anonymousSTUDENTS-HUB.com

First-order logic

• Propositional logic assumes the world consists

of atomic facts

• First-order logic assumes the world contains

objects, relations, and functions

Uploaded By: anonymousSTUDENTS-HUB.com

Syntax of FOL

• Constants: John, Sally, 2, ...

• Variables: x, y, a, b,...

• Predicates: Person(John), Siblings(John, Sally), IsOdd(2), ...

• Functions: MotherOf(John), Sqrt(x), ...

• Connectives: , , , , 

• Equality: =

• Quantifiers: , 

• Term: Constant or Variable or Function(Term1, ... , Termn)

• Atomic sentence: Predicate(Term1, ... , Termn) or Term1 = Term2

• Complex sentence: made from atomic sentences using connectives

 and quantifiers

• Possible overloading between Functions and Predicates:

• FatherOf(Ali,Omar): True or False; FatherOf(Hasan): possibly Issam
Uploaded By: anonymousSTUDENTS-HUB.com

Semantics of FOL

• Sentences are true with respect to a model and an

interpretation

• Model contains objects (domain elements) and relations

among them

• Interpretation specifies referents for

constant symbols → objects

predicate symbols → relations

function symbols → functional relations

• An atomic sentence Predicate(Term1, ... , Termn) is true

iff the objects referred to by Term1, ... , Termn are in the

relation referred to by Predicate

• MotherOf(Ahmad,Muna), MotherOf(Fatima,Leen),
Uploaded By: anonymousSTUDENTS-HUB.com

Universal quantification

• x P(x)

• Example: “Everyone at BZU is smart”

x At(x,BZU)  Smart(x)

Why not x At(x,BZU)  Smart(x)?

• Roughly speaking, equivalent to the conjunction of all

possible instantiations of the variable:

[At(Mariam, BZU)  Smart(Mariam)]  ...

[At(Hasan, BZU)  Smart(Hasan)]  ...

• x P(x) is true in a model m iff P(x) is true with x being

each possible object in the model

Uploaded By: anonymousSTUDENTS-HUB.com

Existential quantification

• x P(x)

• Example: “Someone at BZU is smart”

x At(x,BZU)  Smart(x)

Why not x At(x, BZU)  Smart(x)?

• Roughly speaking, equivalent to the disjunction of all

possible instantiations:

[At(Mariam, BZU)  Smart(Mariam)] 

[At(Hasan, BZU)  Smart(Hasan)]  …

• x P(x) is true in a model m iff P(x) is true with x being

some possible object in the model
Uploaded By: anonymousSTUDENTS-HUB.com

Properties of quantifiers

• x y is the same as y x

• x y is the same as y x

• x y is not the same as y x

x y Loves(x,y)

 “There is a person who loves everyone”

y x Loves(x,y)

 “Everyone is loved by at least one person”

• Quantifier duality: each quantifier can be expressed using

the other with the help of negation

x Likes(x,IceCream) x Likes(x,IceCream)

x Likes(x,Broccoli) x Likes(x,Broccoli)

Uploaded By: anonymousSTUDENTS-HUB.com

Equality

• Term1 = Term2 is true under a given model if

and only if Term1 and Term2 refer to the same

object

• E.g., definition of Sibling in terms of Parent:

x,y Sibling(x,y) 

[(x = y)  m,f  (m = f)  Parent(m,x) 

Parent(f,x)  Parent(m,y)  Parent(f,y)]

Uploaded By: anonymousSTUDENTS-HUB.com

Using FOL: The Kinship Domain

• Brothers are siblings

x,y Brother(x,y)  Sibling(x,y)

• “Sibling” is symmetric

x,y Sibling(x,y)  Sibling(y,x)

• One's mother is one's female parent

m,c (Mother(c) = m)  (Female(m)  Parent(m,c))

Uploaded By: anonymousSTUDENTS-HUB.com

Using FOL: The Set Domain

• s Set(s)  (s = {})  (x,s2 Set(s2)  s = {x|s2})

• x,s {x|s} = {}

• x,s x  s  s = {x|s}

• x,s x  s  [y,s2 (s = {y|s2}  (x = y  x  s2))]

• s1,s2 s1  s2  (x x  s1  x  s2)

• s1,s2 (s1 = s2)  (s1  s2  s2  s1)

• x,s1,s2 x  (s1  s2)  (x  s1  x  s2)

• x,s1,s2 x  (s1  s2)  (x  s1  x  s2)

Uploaded By: anonymousSTUDENTS-HUB.com

Translating English to FOL
Every gardener likes the sun.

x gardener(x) → likes(x,Sun)

You can fool some of the people all of the time.

x t person(x) time(t) → can-fool(x,t)

You can fool all of the people some of the time.

x t (person(x) → time(t) can-fool(x,t))

x (person(x) → t (time(t) can-fool(x,t)))

All purple mushrooms are poisonous.

x (mushroom(x)  purple(x)) → poisonous(x)

No purple mushroom is poisonous.

x purple(x)  mushroom(x)  poisonous(x)

x (mushroom(x)  purple(x)) → poisonous(x)

There are exactly two purple mushrooms.

x y mushroom(x)  purple(x)  mushroom(y)  purple(y) ^ (x=y)  z
(mushroom(z)  purple(z)) → ((x=z)  (y=z))

Clinton is not tall.

tall(Clinton)

Every person who commits a crime must be punished.

x commitscrime(x) → punished(x)

What is : x commitscrime(x)  punished(x) XX

Equivalent

Equivalent

Uploaded By: anonymousSTUDENTS-HUB.com

Translating English to FOL
– Everybody is loved by all people:

  z x Loved1By2(x,z)

– Somebody is loved by all people:

 z x Loved1By2(z,x) … x Loved1By2(C1,x)

– Somebody is loved by somebody:

 z x Loved1By2(x,z) … Loved1By2(C1,C2)

– Everybody is loved by somebody:

 z x Loved1By2(z,x) … z Loved1By2(z,M(z)); M(z)=mother/fiancé(z)

– Some people love all animals:

 z x Person(z)  Animal(x)  Loved1By2(x,z)

– Any two real numbers have a number between them:

  x x z Between(x,y,z) …  x x Between(x,y,f(x,y)); f(x,y) =x+y/2

• X is above Y iff X is directly on top of Y or there is a pile of one or more other
objects directly on top of one another starting with X and ending with Y.

x y above(x,y) (on(x,y)  z (on(x,z)  above(z,y)))

Uploaded By: anonymousSTUDENTS-HUB.com

Example: A simple genealogy KB by FOL

• Build a small genealogy knowledge base
using FOL that
– contains facts of immediate family relations (spouses, parents,

etc.)

– contains definitions of more complex relations (ancestors,
relatives)

– is able to answer queries about relationships between people

• Predicates:
– parent(x, y), child(x, y), father(x, y), daughter(x, y), etc.

– spouse(x, y), husband(x, y), wife(x,y)

– ancestor(x, y), descendant(x, y)

– male(x), female(y)

– relative(x, y)

• Facts:
– husband(Joe, Mary), son(Fred, Joe)

– spouse(John, Nancy), male(John), son(Mark, Nancy)

– father(Jack, Nancy), daughter(Linda, Jack)

– daughter(Liz, Linda)
Uploaded By: anonymousSTUDENTS-HUB.com

• Rules for genealogical relations
– (x,y) parent(x, y) child (y, x)

 (x,y) father(x, y) parent(x, y)  male(x) (similarly for
mother(x, y))

 (x,y) daughter(x, y) child(x, y)  female(x) (similarly for
son(x, y))

– (x,y) husband(x, y) spouse(x, y)  male(x) (similarly for
wife(x, y))

 (x,y) spouse(x, y) spouse(y, x) (spouse relation is
symmetric)

– (x,y) parent(x, y) → ancestor(x, y)

 (x,y)(z) parent(x, z)  ancestor(z, y) → ancestor(x, y)

– (x,y) descendant(x, y) ancestor(y, x)

– (x,y)(z) ancestor(z, x)  ancestor(z, y) → relative(x, y)

–

– (x,y) parent(x, y) → mother (y, x) or father (y, x) !!!!!

– (x,y) sibling(x, y) → brother (y, x) or sister (y, x) !!!!!

– (x,y) uncle(x, y) → خال (y, x) or عم (y, x) !!!!!Uploaded By: anonymousSTUDENTS-HUB.com

• Rules for genealogical relations
 (related by common ancestry)

 (x,y) spouse(x, y) → relative(x, y) (related by
marriage)

 (x,y)(z) relative(z, x)  relative(z, y) →
relative(x, y) (transitive)

 (x,y) relative(x, y) relative(y, x) (symmetric)

• Queries
– ancestor(Jack, Fred) /* the answer is yes */

– relative(Liz, Joe) /* the answer is yes */

– relative(Nancy, Matthew)

 /* no answer in general, no if under closed
world assumption */

– (z) ancestor(z, Fred)  ancestor(z, Liz)

Uploaded By: anonymousSTUDENTS-HUB.com

Why “First order”?

• FOL permits quantification over variables

• Higher order logics permit quantification

over functions and predicates:

 P,x [P(x)  P(x)]

 x,y (x=y)  [P (P(x)P(y))]

Uploaded By: anonymousSTUDENTS-HUB.com

Inference in FOL

• All rules of inference for propositional logic apply

to first-order logic

• We just need to reduce FOL sentences to PL

sentences by instantiating variables and

removing quantifiers

Uploaded By: anonymousSTUDENTS-HUB.com

Reduction of FOL to PL

• Suppose the KB contains the following:

x King(x)  Greedy(x)  Evil(x)

King(John), Greedy(John), Brother(Richard,John)

• How can we reduce this to PL?

• Let’s instantiate the universal sentence in all possible ways:

King(John)  Greedy(John)  Evil(John)

King(Richard)  Greedy(Richard)  Evil(Richard)

King(John) Greedy(John) Brother(Richard,John)

• The KB is propositionalized

– Proposition symbols are King(John), Greedy(John), Evil(John),

King(Richard), etc.

Uploaded By: anonymousSTUDENTS-HUB.com

Reduction of FOL to PL

• What about existential quantification, e.g.,

x Crown(x)  OnHead(x,John) ?

• Let’s instantiate the sentence with a new constant that

doesn’t appear anywhere in the KB:

Crown(C1)  OnHead(C1,John)

Uploaded By: anonymousSTUDENTS-HUB.com

Propositionalization

• Every FOL KB can be propositionalized so as to preserve

entailment

– A ground sentence is entailed by the new KB iff it is

entailed by the original KB

• Idea: propositionalize KB and query, apply resolution,

return result

• Problem: with function symbols, there are infinitely many

ground terms

– For example, Father(X) yields Father(John),

Father(Father(John)), Father(Father(Father(John))), etc.

Uploaded By: anonymousSTUDENTS-HUB.com

Propositionalization

• Theorem (Herbrand 1930):

– If a sentence α is entailed by an FOL KB, it is entailed by a finite

subset of the propositionalized KB

• Idea: For n = 0 to Infinity do

– Create a propositional KB by instantiating with depth-n terms

– See if α is entailed by this KB

• Problem: works if α is entailed, loops if α is not entailed

• Theorem (Turing 1936, Church 1936):

– Entailment for FOL is semidecidable: algorithms exist that say

yes to every entailed sentence, but no algorithm exists that also

says no to every nonentailed sentence
Uploaded By: anonymousSTUDENTS-HUB.com

Inference in FOL

• “All men are mortal. Socrates is a man; therefore,

Socrates is mortal.”

• x man(x) → mortal(x)

• man(Socrates)

• Mortal(Socrates)??

• It seems to work if we replace x by Scorates

• Can we prove this without full propositionalization as an

intermediate step?

• Can we do that with the least propositionalization?

Uploaded By: anonymousSTUDENTS-HUB.com

Generalized Modus Ponens

(GMP)
(p1  p2  …  pn q), p1', p2', … , pn'

such that SUBST(θ, pi)= SUBST(θ, pi') for all i

SUBST(θ,q)

• All variables assumed universally quantified

• Example:

x King(x)  Greedy(x)  Evil(x)

King(John) Greedy(John) Brother(Richard,John)

p1 is King(x), p2 is Greedy(x), q is Evil(x)

p1' is King(John), p2' is Greedy(y), θ is {x/John,y/John}

SUBST(θ,q) is Evil(John)

Uploaded By: anonymousSTUDENTS-HUB.com

Predicate Logic and CNF
[Q  P]  S;To CNF: [Q  P]  S; [Q  P]  S;

[Q   P]  S; [Q  S]  [ P  S]; {Q,S}; {P , S}

• Converting FOL to CNF is harder - we need to

worry about variables and quantifiers.

1. Eliminate all implications  P Q=  P  Q

2. Reduce the scope of all  to single term.

3. Make all variable names unique (set apart)

4. Move Quantifiers Left [leftmost]

5. Eliminate Existential Quantifiers [No ]

6. Eliminate Universal Quantifiers [all are ]

7. Convert to conjunction of disjuncts CNF

8. Create separate clause for each conjunct CNF.
Uploaded By: anonymousSTUDENTS-HUB.com

Eliminate Existential Quantifiers

• To eliminate the quantifier, we can replace

the variable with a function.

• We don’t know what the function is, we

just know it exists.

• So we invent one!

• It is a function of n variables where n is the

number of universally quantifies variables

preceding the existential quantifier

Uploaded By: anonymousSTUDENTS-HUB.com

Skolem functions

 y President(y)

We replace y with a new function func:

President(func())

func is called a skolem function.

In general the function must have the same number

of arguments as the number of universal

quantifiers in the current scope of existential

quantifier. In our case it is 0: Constant!!!

Uploaded By: anonymousSTUDENTS-HUB.com

Skolemization Example
x y Father(y,x)

create a new function named f1 and replace y with the

function (f1(x).

 x Father(f1(x),x)

 zx t y Manager(y,x,z,t)

 zx t Manager(f2(z,x,t),x,z,t)

 zx y t Manager(y,x,z,t)

 zx t Manager(f3(z,x),x,z,t)

y Manager(y,x,z,t)

Manager(f3(),x,z,t) OR Manager (C,x,z,t), C f of 0 var

Uploaded By: anonymousSTUDENTS-HUB.com

Conversion to CNF

• Everyone who loves all animals is loved by someone:
x [[y [Animal(y)  Loves(x,y)]]  [y Loves(y,x)]] original

• 1. Eliminate biconditionals and implications
x [[[y [Animal(y)  Loves(x,y)]]  [y Loves(y,x)]]

x [[[y [Animal(y)  Loves(x,y)]]  [y Loves(y,x)]]

• 2. Move  inwards: x p ≡ x p,  x p ≡ x p
x [[y (Animal(y)  Loves(x,y))]  [y Loves(y,x)]] =

x [[y Animal(y)  Loves(x,y)]  [y Loves(y,x)]] =

x [[y Animal(y)  Loves(x,y)]  [y Loves(y,x)]]

Uploaded By: anonymousSTUDENTS-HUB.com

Conversion to CNF contd.

3. Standardize variables: each quantifier should use a different
one

x [[y Animal(y)  Loves(x,y)]  [z Loves(z,x)]]

4. Skolemize: a more general form of existential instantiation.
Each existential variable is replaced by a Skolem function of the
enclosing universally quantified variables:F(x)/y, G(x)/z

 x [[Animal(F(x))  Loves(x,F(x))]  Loves(G(x),x)]

5. Drop universal quantifiers: No need, all variables are
Universally quantified

 [Animal(F(x))  Loves(x,F(x))]  Loves(G(x),x)

6. Distribute  over  :

 [Animal(F(x))Loves(G(x),x)]  [Loves(x,F(x))Loves(G(x),x)]

Uploaded By: anonymousSTUDENTS-HUB.com

Unification
Now that we have FOL Clauses (CNF) with variables (all

universally quantified) we want to apply inference rules

Suppose we have the rule

If x is a working automobile, then x has an engine.

P(x) → Q(x) OR the clause  P(x)  Q(x)

and we have the fact

Tim’s Audi is a working automobile P(a)

These cannot immediately be resolved because P(x)

and P(a) don’t quite match. They must be “unified.”

Uploaded By: anonymousSTUDENTS-HUB.com

Modus Ponens

in the Predicate Calculus

P(a) → Q(a)

P(a)

Q(a)

But we have

P(x) → Q(x)

So we create a substitution instance of it:

P(a) → Q(a)

using the substitution { a/x }

Uploaded By: anonymousSTUDENTS-HUB.com

Substitutions
A substitution is a set of term/variable pairs.

e.g., Sub1= { a/x, f(a)/y, w/z }: read as Replace x by a, y

by f(a) and z by w.

Each element of the set is an elementary substitution.

A particular variable occurs at most once on the right-hand

side of any elementary substitution.

So, { a/x, b/x } is not an acceptable substitution.

The empty set is an acceptable substitution (replace nothing).

If E is a term or a formula of the predicate calculus, and S is a

substitution, then S(E) is the result of applying S to E, i.e.,

replacing each variable of S that occurs in E by the

corresponding term in S.
Sub1(P(x,y,z))= P(a,f(a),w)

Uploaded By: anonymousSTUDENTS-HUB.com

Unifiers

Given a pair of literals L1 and L2, if S is a substitution

such that S(L1) = S(L2) or S(L1) = S(L2),

then S is a unifier for L1 and L2.

Example:

L1 = P(x, f(a))

L2 = P(b, y)

S = { b/x, f(a)/y }

S(L1) = P(b, f(a)) = S(L2)

Therefore S is a unifier for L1 and L2.

Uploaded By: anonymousSTUDENTS-HUB.com

The Occurs Check
A unifier may not contain an elementary substitution of the

form f(x)/x and may not cause an indefinite recursion.

In general the term in a term/variable pair may not include

that variable.

P(x) and P(f(x)) cannot be unified, since f(x)/x is illegal.

P(y, f(y)) and P(f(x), y) cannot be unified, since

S = { f(x)/y, f(y)/x } leads to an indefinite recursion.

Testing whether a variable appears in its corresponding term

is called the “occurs check”.

Some automated reasoning systems do not perform the
occurs check in order to save time.

Uploaded By: anonymousSTUDENTS-HUB.com

Generality of Unifiers
Some pairs of literals may have more than one possible

unifier.

 P(x), P(y) is unified by each of { x/y }, { y/x },

 { z/x, z/y }, { a/x, a/y}, { f(a)/x, f(a)/y } etc.

Suppose S1 and S2 are unifiers for P1 and P2.

Then S1(P1) = S1(P2) or S1(P1) = ~S1(P2)

 S2(P1) = S2(P2) or S2(P1) = ~S2(P2)

S1 is more general than S2 if there exists S3 such that

S3(S1(P1)) = S2(P1).

S3(S1(P1)) means apply S3 to the result of applying S1 to P1.

{ a/x, a/y } is less general than { y/x }. { y/x } is more general

than { a/x, a/y }.

Uploaded By: anonymousSTUDENTS-HUB.com

Most General Unifiers

A unifier S1 for L1 and L2 is a most general unifier

(MGU) for L1 and L2 provided that for any other unifier

S2 of L1 and L2 there exists a substitution S3 such

that

S3(S1(L1)) = S2(L1).

 S1 = { y/x } is a most general unifier for P(x), P(y).

 S2 = { f(a)/x, f(a)/y } is not a MGU for P(x), P(y).

 S3 = { f(a)/y }

S3(S1(P(x))) = P(f(a)) = S2(P(x)).

Uploaded By: anonymousSTUDENTS-HUB.com

Finding a Most-General Unifier

1. Given literals L1 and L2, place a cursor at the left

end of each. Skip any negation sign. If the predicate

symbols do not match, return NOT-UNIFIABLE.

2. Let S = { }.

3. Move the cursors right to the next term (argument) in

each literal.

If there are no terms left, return S as a MGU else

Let t1 and t2 be the terms.

Uploaded By: anonymousSTUDENTS-HUB.com

Finding an MGU (Cont.)

4a. If t1 = t2, go to Step 3.

4b. Otherwise, if either t1 or t2 is a variable (call it v and call

the other term t), then attempt to add t/v to S (see below).

4c. Otherwise if t1 and t2 both begin with function symbols,

and these symbols are the same, move the cursors to the

first argument of these symbols and go to step 4a.

4d. Otherwise, return NOT-UNIFIABLE.

Uploaded By: anonymousSTUDENTS-HUB.com

Finding an MGU (Cont.)

When trying to add t/v to S, apply { t/v } to each term in

S. If this results in any elementary substitution whose term

includes its variable, return NOT-UNIFIABLE.

Otherwise, replace each elementary substitution in S by

the result of applying { t/v } and add t/v itself to S.

Uploaded By: anonymousSTUDENTS-HUB.com

Example

L1: P(a, f(x, a))

L2: P(a, f(g(y), y))

S: { }

S: { g(y)/x }

Next apply a/y to the above and add it to get

S: { g(a)/x, a/y }

Uploaded By: anonymousSTUDENTS-HUB.com

Unification
More Examples of Unification:

If we apply the same substitution to both: they become the same.

p q θ

Knows(John,x) Knows(John,Jane) {x/Jane}

Knows(John,x) Knows(y,Mary) {x/Mary, y/John}

Knows(John,x) Knows(y,Mother(y)) {y/John, x/Mother(John)}

Knows(John,x) Knows(x,Mary) {x1/John, x2/Mary}

Knows(John,x) Knows(y,z) {y/John, x/z}

P(x, x) P(f(x),x) No. Fails OC

P(x, x) P(f(y),y) {f(y)/x}

P(f(y), f(y)) P(f(y),y) {f(y)/x}o f(y)/y= XXXX

• Standardizing apart eliminates overlap of variables

• Most general unifier: others special cases: {y/John, x/z} more general

than {y/John, x/John, z/John} Uploaded By: anonymousSTUDENTS-HUB.com

Inference with GMP

(p1  p2  …  pn q), p1', p2', … , pn'

such that SUBST(θ, pi)= SUBST(θ, pi') for all i

SUBST(θ,q)

• Forward chaining

– Like search: keep proving new things and adding them to

the KB until we can prove q

• Backward chaining

– Find p1, …, pn such that knowing them would prove q

– Recursively try to prove p1, …, pn

Uploaded By: anonymousSTUDENTS-HUB.com

Example knowledge base

• The law says that it is a crime for an American to sell

weapons to hostile nations. The country Nono, an

enemy of America, has some missiles, and all of its

missiles were sold to it by Colonel West, who is

American.

• Prove that Col. West is a criminal

Uploaded By: anonymousSTUDENTS-HUB.com

Example knowledge base
It is a crime for an American to sell weapons to hostile nations:

American(x)  Weapon(y)  Sells(x,y,z)  Hostile(z)  Criminal(x)

Nono has some missiles

 x Owns(Nono,x)  Missile(x)

Owns(Nono,M1)  Missile(M1) FACTS

All of Nono’s missiles were sold to it by Colonel West

Missile(x)  Owns(Nono,x)  Sells(West,x,Nono)

Missiles are weapons:

Missile(x)  Weapon(x)

An enemy of America counts as “hostile”:

Enemy(x,America)  Hostile(x)

Captain West is American

American(West) FACTS

The country Nono is an enemy of America

Enemy(Nono,America)

Goal: Criminal(West) ?

Uploaded By: anonymousSTUDENTS-HUB.com

Forward chaining proof

American(x)  Weapon(y)  Sells(x,y,z)  Hostile(z)  Criminal(x)

Owns(Nono,M1)  Missile(M1)

Missile(x)  Owns(Nono,x)  Sells(West,x,Nono)

Missile(x)  Weapon(x) Enemy(x,America)  Hostile(x)

American(West) Enemy(Nono,America)Uploaded By: anonymousSTUDENTS-HUB.com

Forward chaining proof

American(x)  Weapon(y)  Sells(x,y,z)  Hostile(z)  Criminal(x)

Owns(Nono,M1)  Missile(M1)

Missile(x)  Owns(Nono,x)  Sells(West,x,Nono)

Missile(x)  Weapon(x) Enemy(x,America)  Hostile(x)

American(West) Enemy(Nono,America)Uploaded By: anonymousSTUDENTS-HUB.com

Forward chaining proof

American(x)  Weapon(y)  Sells(x,y,z)  Hostile(z)  Criminal(x)

Owns(Nono,M1)  Missile(M1)

Missile(x)  Owns(Nono,x)  Sells(West,x,Nono)

Missile(x)  Weapon(x) Enemy(x,America)  Hostile(x)

American(West) Enemy(Nono,America)Uploaded By: anonymousSTUDENTS-HUB.com

Backward chaining example

American(x)  Weapon(y)  Sells(x,y,z)  Hostile(z)  Criminal(x)

Owns(Nono,M1)  Missile(M1)

Missile(x)  Owns(Nono,x)  Sells(West,x,Nono)

Missile(x)  Weapon(x) Enemy(x,America)  Hostile(x)

American(West) Enemy(Nono,America) Criminal(West) Uploaded By: anonymousSTUDENTS-HUB.com

Backward chaining example

American(x)  Weapon(y)  Sells(x,y,z)  Hostile(z)  Criminal(x)

Owns(Nono,M1)  Missile(M1)

Missile(x)  Owns(Nono,x)  Sells(West,x,Nono)

Missile(x)  Weapon(x) Enemy(x,America)  Hostile(x)

American(West) Enemy(Nono,America)Uploaded By: anonymousSTUDENTS-HUB.com

Backward chaining example

American(x)  Weapon(y)  Sells(x,y,z)  Hostile(z)  Criminal(x)

Owns(Nono,M1)  Missile(M1)

Missile(x)  Owns(Nono,x)  Sells(West,x,Nono)

Missile(x)  Weapon(x) Enemy(x,America)  Hostile(x)

American(West) Enemy(Nono,America)Uploaded By: anonymousSTUDENTS-HUB.com

Backward chaining example

American(x)  Weapon(y)  Sells(x,y,z)  Hostile(z)  Criminal(x)

Owns(Nono,M1)  Missile(M1)

Missile(x)  Owns(Nono,x)  Sells(West,x,Nono)

Missile(x)  Weapon(x) Enemy(x,America)  Hostile(x)

American(West) Enemy(Nono,America)Uploaded By: anonymousSTUDENTS-HUB.com

Backward chaining example

American(x)  Weapon(y)  Sells(x,y,z)  Hostile(z)  Criminal(x)

Owns(Nono,M1)  Missile(M1)

Missile(x)  Owns(Nono,x)  Sells(West,x,Nono)

Missile(x)  Weapon(x) Enemy(x,America)  Hostile(x)

American(West) Enemy(Nono,America)Uploaded By: anonymousSTUDENTS-HUB.com

Backward chaining example

American(x)  Weapon(y)  Sells(x,y,z)  Hostile(z)  Criminal(x)

Owns(Nono,M1)  Missile(M1)

Missile(x)  Owns(Nono,x)  Sells(West,x,Nono)

Missile(x)  Weapon(x) Enemy(x,America)  Hostile(x)

American(West) Enemy(Nono,America)Uploaded By: anonymousSTUDENTS-HUB.com

Resolution: FOL version

p1  ···  pk, q1  ···  qn

such that UNIFY(pi, qj) = θ

SUBST(θ, p1  ···  pi-1  pi+1  ···  pk  q1  ···  qj-1  qj+1  ···  qn)

• For example,

Rich(x)  Unhappy(x)

 Rich(Ken)

Unhappy(Ken)

 with θ = {x/Ken}

• Refutation Proof: Apply resolution steps to CNF(KB  α);

complete for FOL

Uploaded By: anonymousSTUDENTS-HUB.com

Example: Resolution

1-  Smart(x)   LikesHockey(x)  NorthSchool(x)

2-  Canadian(y)  LikesHockey(y)

3-  Skates(z)  LikesHockey(z)

4- Smart(Joe)

5- Skates(Joe)

Goal is to find out if NorthSchool(Joe) is true NorthSchool(Joe) ?

3+5= LikesHockey(Joe)….(6)

4+1=  LikesHockey(Joe)  NorthSchool(Joe) ….(7)

6+7= NorthSchool(Joe) Goal

Next Refutational Proof

Uploaded By: anonymousSTUDENTS-HUB.com

Example:Resolution Refutation

1-  Smart(x)   LikesHockey(x)  NorthSchool(x)

2-  Canadian(y)  LikesHockey(y)

3-  Skates(z)  LikesHockey(z)

4- Smart(Joe)

5- Skates(Joe)

0-  NorthSchool (Joe) (Goal: NorthSchool (Joe))

0+1=  Smart(Joe)   LikesHockey(Joe) ….(6)

3+5= LikesHockey(Joe)….(7)

4+7=  Skates(Joe)….(8)

0+8=•

Uploaded By: anonymousSTUDENTS-HUB.com

Resolution proof: definite clauses

Uploaded By: anonymousSTUDENTS-HUB.com

Logic programming: Prolog
• FOL:

King(x)  Greedy(x)  Evil(x)

Greedy(y)

King(John)

• Prolog:
evil(X) :- king(X), greedy(X).

greedy(Y).

king(john).

• Closed-world assumption:

– Every constant refers to a unique object

– Atomic sentences not in the database are assumed to be false

• Inference by backward chaining, clauses are tried in the

order in which they are listed in the program, and literals

(predicates) are tried from left to right
Uploaded By: anonymousSTUDENTS-HUB.com

Prolog example

parent(abraham,ishmael).

parent(abraham,isaac).

parent(isaac,esau).

parent(isaac,jacob).

grandparent(X,Y) :- parent(X,Z), parent(Z,Y).

descendant(X,Y) :- parent(Y,X).

descendant(X,Y) :- parent(Z,X), descendant(Z,Y).

? parent(david,solomon).

? parent(abraham,X).

? grandparent(X,Y).

? descendant(X,abraham).

Uploaded By: anonymousSTUDENTS-HUB.com

Prolog example

parent(abraham,ishmael).

parent(abraham,isaac).

parent(isaac,esau).

parent(isaac,jacob).

• What if we wrote the definition of descendant like this:

descendant(X,Y) :- descendant(Z,Y), parent(Z,X).

descendant(X,Y) :- parent(Y,X).

? descendant(W,abraham).

• Backward chaining would go into an infinite loop!

– Prolog inference is not complete, so the ordering of the clauses

and the literals is really important
Uploaded By: anonymousSTUDENTS-HUB.com

Applications of Automated Reasoning

• Diagnosis of Digital Circuits

• Software/hardware verification

• Rule Based Systems (customer Support)

• Mathematics: proving theorems

• Deductive databases: rules instead of facts: can

save lots of space: database constraints (salaries

of managers >supervised_employee)

• Ways to treat negation! Can’t prove something

Uploaded By: anonymousSTUDENTS-HUB.com

Graph coloring

colorable(Wa,Nt,Sa,Q,Nsw,V) :-

diff(Wa,Nt), diff(Wa,Sa), diff(Nt,Q), diff(Nt,Sa), diff(Q,Nsw),

diff(Q,Sa), diff(Nsw,V), diff(Nsw,Sa), diff(V,Sa).

diff(red,blue). diff(red,green). diff(green,red).

diff(green,blue). diff(blue,red). diff(blue,green).

Uploaded By: anonymousSTUDENTS-HUB.com

Prolog lists

• Appending two lists to produce a third:

 append([],Y,Y).

 append([X|L],Y,[X|Z]) :- append(L,Y,Z).

• query: append(A,B,[1,2])

• answers: A=[] B=[1,2]

 A=[1] B=[2]

 A=[1,2] B=[]

Uploaded By: anonymousSTUDENTS-HUB.com

	Slide 1: Logic and Automated Reasoning
	Slide 2: Knowledge-based agents
	Slide 3: What is logic?
	Slide 4: Overview
	Slide 5: Propositional logic: Syntax
	Slide 6: Propositional Logic: Semantics
	Slide 7: Truth tables
	Slide 8: Models, Interpretations, Worlds
	Slide 9: Models and Interpretations
	Slide 10: Logical Equivalence
	Slide 11: Logical equivalence: Clauses
	Slide 12: Logical equivalence: Clauses
	Slide 13: Validity, satisfiability
	Slide 14: Validity, satisfiability
	Slide 15: Entailment
	Slide 16: Entailment
	Slide 17: Entailment Example
	Slide 18: Entailment
	Slide 19: Entailment
	Slide 20: Entailment
	Slide 21: Entailment Check that: (KB α) unsatisfiable
	Slide 22: Inference
	Slide 23: Inference: Soundness and Completeness
	Slide 24: Inference
	Slide 25: Inference rules
	Slide 26: Inference rules
	Slide 27: Inference rules
	Slide 28: Resolution
	Slide 29: Resolution
	Slide 30: Resolution is complete
	Slide 31: Complexity of inference
	Slide 32: Proof, Refutation Proof P v Q, PR, Q R: can prove R? Yes: 1- P v Q -- {P, Q} 2-  P v R -- {P, R} 3- Q v R -- {Q, R} Clause 9 is a proof of R. But refutation is more convenient! 4- R -- {R}
	Slide 33: Example
	Slide 34: Definite clauses
	Slide 35: Forward chaining
	Slide 36: Forward chaining example
	Slide 37: Forward chaining example
	Slide 38: Forward chaining example
	Slide 39: Forward chaining example
	Slide 40: Forward chaining example
	Slide 41: Forward chaining example
	Slide 42: Forward chaining example
	Slide 43: Forward chaining example
	Slide 44: Backward chaining
	Slide 45: Backward chaining example
	Slide 46: Backward chaining example
	Slide 47: Backward chaining example
	Slide 48: Backward chaining example
	Slide 49: Backward chaining example
	Slide 50: Backward chaining example
	Slide 51: Backward chaining example
	Slide 52: Backward chaining example
	Slide 53: Backward chaining example
	Slide 54: Backward chaining example
	Slide 55: Forward vs. backward chaining
	Slide 56: Summary
	Slide 57: First-Order Logic
	Slide 58: Limitations of propositional logic
	Slide 59: First-order logic
	Slide 60: Syntax of FOL
	Slide 61: Semantics of FOL
	Slide 62: Universal quantification
	Slide 63: Existential quantification
	Slide 64: Properties of quantifiers
	Slide 65: Equality
	Slide 66: Using FOL: The Kinship Domain
	Slide 67: Using FOL: The Set Domain
	Slide 68: Translating English to FOL
	Slide 69: Translating English to FOL
	Slide 70: Example: A simple genealogy KB by FOL
	Slide 71
	Slide 72
	Slide 73: Why “First order”?
	Slide 74: Inference in FOL
	Slide 75: Reduction of FOL to PL
	Slide 76: Reduction of FOL to PL
	Slide 77: Propositionalization
	Slide 78: Propositionalization
	Slide 79: Inference in FOL
	Slide 80: Generalized Modus Ponens (GMP)
	Slide 81: Predicate Logic and CNF
	Slide 82: Eliminate Existential Quantifiers
	Slide 83: Skolem functions
	Slide 84: Skolemization Example
	Slide 85: Conversion to CNF
	Slide 86: Conversion to CNF contd.
	Slide 87: Unification
	Slide 88: Modus Ponens in the Predicate Calculus
	Slide 89: Substitutions
	Slide 90: Unifiers
	Slide 91: The Occurs Check
	Slide 92: Generality of Unifiers
	Slide 93: Most General Unifiers
	Slide 94: Finding a Most-General Unifier
	Slide 95: Finding an MGU (Cont.)
	Slide 96: Finding an MGU (Cont.)
	Slide 97: Example
	Slide 98: Unification
	Slide 99: Inference with GMP
	Slide 100: Example knowledge base
	Slide 101: Example knowledge base
	Slide 102: Forward chaining proof
	Slide 103: Forward chaining proof
	Slide 104: Forward chaining proof
	Slide 105: Backward chaining example
	Slide 106: Backward chaining example
	Slide 107: Backward chaining example
	Slide 108: Backward chaining example
	Slide 109: Backward chaining example
	Slide 110: Backward chaining example
	Slide 111: Resolution: FOL version
	Slide 112: Example: Resolution
	Slide 113: Example:Resolution Refutation
	Slide 114: Resolution proof: definite clauses
	Slide 115: Logic programming: Prolog
	Slide 116: Prolog example
	Slide 117: Prolog example
	Slide 118: Applications of Automated Reasoning
	Slide 119: Graph coloring
	Slide 120: Prolog lists

