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Knowledge-based agents

• Knowledge base (KB) = set of sentences in a formal language

• Declarative approach to building an agent (or other system):

– Tell it what it needs to know

• Then it can ask itself what to do - answers should follow from the KB

• Distinction between data and program

• Fullest realization of this philosophy was in the field of expert systems 

or knowledge-based systems in the 1970s and 1980s

Inference engine

Knowledge base

Domain-independent algorithms

Domain-specific content

Uploaded By: anonymousSTUDENTS-HUB.com



What is logic?

• Logic is a formal system for manipulating facts so 

that true conclusions may be drawn

– “The tool for distinguishing between the true and the 

false” – Averroes (12th cen.)

• Syntax: rules for constructing valid sentences

– E.g., x + 2  y is a valid arithmetic sentence, x2y + is not

• Semantics: “meaning” of sentences, or relationship 

between logical sentences and the real world

– Specifically, semantics defines truth of sentences

– E.g., x + 2  y is true in a world where x = 5 and y = 7
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Overview

• Propositional logic

• Inference rules and theorem proving

• First order logic 

• Each has SYNTAX: way to form sentences and 

SEMANTICS way to interpret (give true or false 

to sentences).
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Propositional logic: Syntax
• Atomic sentence:

– A proposition symbol representing a true or false statement: so P   and 
Q and R are each proposition. A proposition is a sentence and so 
are the constants: T  (True) and F (False)

• Negation:
– If P is a sentence, P is a sentence

• Conjunction: 
– If P and Q are sentences, P  Q is a sentence

• Disjunction: 
– If P and Q are sentences, P  Q is a sentence

• Implication:
– If P and Q are sentences, P  Q is a sentence

• Biconditional: 
– If P and Q are sentences, P  Q is a sentence

• , , , ,  are called logical connectives

• Question: are  P  Q  F, P  Q  T sentences???
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Propositional Logic: Semantics

• A interpretation I specifies the true/false status of each 

proposition symbol in the knowledge base

• A model is an interpretation in which the formula of 

interest is True.  Given P, Q and R propositions:
– Could be:   P is true,  Q is true,  R is false or {P, Q, R’} or  {P, Q} 

– With three symbols, there are 8 possible interpretations, and they can be 

enumerated exhaustively: 000➔111: {P’, Q’, R’} ➔ {P, Q, R}

• Rules for evaluating truth with respect to a model:
  P is true iff     P is false  

   P  Q    is true iff     P          is true and Q           is true

   P  Q    is true iff     P  is true or       Q          is true

   P  Q is true iff     P          is false or Q          is true

   P  Q is true iff     P  Q  is true and    Q  P  is true
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Truth tables
• A truth table specifies the truth value of a composite 

sentence for each possible assignments of truth 

values to its atoms. 

• The truth value of a more complex sentence can be 

evaluated recursively or compositionally

• Rain➔ umbrella, can carry umbrella in sun!
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Models, Interpretations, Worlds
• An interpretation I (world) is an assignment of values 

(T,F) to ALL variables (propositions) in a formula α

• An interpretation is a model for formula α if α is True in 

that interpretation: 

• Given formula α= A V B’: Interpretations: 11; 10;01;00

• Models are 10,11,00  Non-model: 01

• E.g. 10,11,00  are the models in which α is TRUE 

 and 01 is the model in which α is FALSE

• Also {A}, {A,B}, {}, are models of α; {B} is not a model.
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Models and Interpretations
• May specify interpretation by listing positive 

literals only.

• P ⊕ Q: has 4 interpretations and 2 models. 

{P}, {Q} are models and interpretations, 

{P,Q} is an interpretation but not a model! However: 

Frequently,  the interpretation and model are used 

interchangeably with the context determining the 

meaning: HERE (in our slides). So model may mean 

interpretation: and distinguish between models in which 

a formula is true and false!

This may be  the approach in some of these slides and 

may be more: but be careful.
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Logical Equivalence

• Two sentences are logically equivalent iff they are true in same 

models. Or have the same values under all interpretations
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Logical equivalence: Clauses
• Two sentences are logically equivalent iff they are true in 

same interpretations:  Let’s discuss implication: →

• α→β= α’ v β  [same as T ^ α→β V F]  T=true, F=false

• α1 ^ α2 ^ α3 ^ α4→β= α1’ v α2’ v α3’ v α4’ v β

• α1 ^ α2 ^ α3 ^ α4→β1 v β2 v β3 = 

                                   α1’ v α2’ v α3’ v α4’ v β1 v β2 v β3

• α1 ^ α2 ^ α3 ^ α4→  = α1’ v α2’ v α3’ v α4’ 

• →β1 v β2 v β3 = β1 v β2 v β3
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Logical equivalence: Clauses
• A literal: an atom or negated atom: α3, α4’,  β1

• A clause: disjunction of Literals: α3’ v α4’ v β1

• □: is the empty clause –Never True-
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Validity, satisfiability

A sentence is valid if it is true in all Interpretations,

e.g., True, 1 , A A, A  A, (A  (A  B))  B

A sentence is satisfiable if it is true in some Interpretation (has 
a model)

e.g., AB, C

A sentence is unsatisfiable if it is true in no Interpretation (has 
no models)

e.g., AA, 0, False, (A A)  

Valid is also satisfiable, 

Not Valid is either satisfiable or Unsatisfiable: 

S1= A  C, S2= A A
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Validity, satisfiability

If sentence S1 is valid then S1 is 

Unsatisfiable S1=[A A]> S1= A A

If sentence S2 is unstaisfiable then S2 is 

Valid. S2=[A A]> S2= A A

If sentence S3 is satisfiable  then S3 is 

satisfiable or unsatisfiable: S3= A  C, S3= A A, 

If sentence S4 is not valid then S4 is 

Satisfiable or invalid: S4= A  C, S4= A A,

Uploaded By: anonymousSTUDENTS-HUB.com



Entailment
• Entailment means that a sentence follows from the 

premises contained in the knowledge base:

KB ╞ α

• KB entails sentence α if and only if α is true in all 

interpretations where KB is true (KB Models)  

– E.g., KB : {x = 0}  entailsα: {x * y = 0}

– Can α be true when KB is false? 

Of course: x=5, KB is false, x * y = 0 [y=0]➔ α is true!!

• KB ╞ α iff (KB  α) is valid or  (KB  α) is valid 

• KB ╞ α iff (KB α) is unsatisfiable: has no models

• Negate α and prove (KB α) unsatisfiable: 

• Refutational proof, proof by contradiction
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Entailment

• Entailment Example for KB ╞ α

• Let  KB = P➔Q and P, Let α=P, show that KB ╞ α

• 2 variable, 4 interpretations.

P Q P➔Q {P➔Q, P} Q {P➔Q, P, 

Q’}

0 0 1 0 0 0

0 1 1 0 1 0

1 0 0 0 0 0

1 1 1 1 1 0
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Entailment Example

• Let  KB = R^P➔Q and P, Let α=Q, show thatKB╞ α

• 3 variable, 8 interpretations. Enumeration: NO
P Q R R^P {R^P➔Q} {R^P➔Q, P} KB   α 

0 0 0 0 1 0 0

0 0 1 0 1 0 0

0 1 0 0 1 0 0

0 1 1 0 1 0 0

1 0* 0 0 1 1 *** 1***

1 0 1 1 0 0 0

1

1

1

1

0

1

0

1

1

1

1

1

0

0
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Entailment 
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Entailment 
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Entailment 
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Entailment 
Check that: (KB α) unsatisfiable 
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Inference

• Logical inference: a procedure for generating 

sentences that follow from a knowledge base KB

• An inference procedure is sound if whenever it 

derives a sentence α, KB╞ α

– A sound inference procedure can derive only true 

sentences

• An inference procedure is complete if whenever 

KB╞ α, α can be derived by the procedure

– A complete inference procedure can derive every 

entailed sentence
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Inference: Soundness and Completeness

• Can be sound but not complete: 

• E.g. Derive nothing from any KB. 

• Or from AB derive only A

• Can be complete but not sound.

• Or from AB derive A and B and C ?

• E.g. Derive everything from any KB. 

• Best if both sound and complete: drives all 

and only what is derivable: all the truth and 

nothing but the truth: كل الحق ولا شيء غير الحق
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Inference

• How can we check whether a sentence α is entailed by KB?

• How about we enumerate all possible models of the KB 

(truth assignments of all its symbols), and check that α is 

true in every model in which KB is true?

– Is this sound?

– Is this complete?

• Problem: if KB contains n symbols, the truth table will be of 

size 2n

• Better idea: use inference rules, or sound procedures to 

generate new sentences or conclusions  given the premises 

in the KB
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Inference rules

• Modus Ponens

P-->Q, P

      Q

• And-elimination


 

premises

conclusion

Rule

Goal

Fact
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Inference rules

• And-introduction

• Or-introduction













,
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Inference rules

• Double negative elimination

• Unit resolution



  ,
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Resolution

• Example:

: “The weather is dry”

: “The weather is rainy”

γ: “I carry an umbrella”







 ,







 ,
or
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Resolution

• Examples:

• P v Q,  P v R gives Q v R

•  P v R,  P gives R

•  P v R, R v P gives P v P OR  R v R =1

•  P, P gives      ., or empty clause or •   

always false =0
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Resolution is complete

• To prove KB╞ α, assume KB   α 

 and derive a contradiction: Refutation proof!

• Rewrite KB   α as a conjunction of clauses, 

or disjunctions of literals 

– Conjunctive normal form (CNF) (product of sums)

         (P  Q  R) (S  P  T  R) (Q  S)

Disjuncts are clauses, sets of literals: {P,Q,R}, {S,P,T,R},{Q,S}

 Special case: the empty set (empty clause){}, • 

• Keep applying resolution to clauses that contain 

complementary literals and adding resulting clauses 

to the list

– If there are no new clauses to be added, then KB does not entail α

– If two clauses resolve to form an empty clause, we have a 

contradiction and KB╞ α







 ,
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Complexity of inference

• Propositional inference is co-NP-complete

– Complement of the SAT problem: α ╞ β if and 

only if the sentence α   β is unsatisfiable

– Every known inference algorithm has worst-

case exponential running time

• Efficient inference possible for restricted 

cases
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Proof, Refutation Proof
P v Q, P→R, Q→ R:  can prove R?  Yes: 

1- P v Q -- {P, Q}

2-  P v R -- {P, R}

3- Q v R   -- {Q, R}

Clause 9 is a proof of R. But refutation is more convenient!

4- R   -- {R}

1. {P,Q} Premise

2. {~ P,R} Premise

3. {~ Q,R} Premise

4. {~ R} Premise

5. {Q,R} 1,2

6. {P,R} 1,3

7. {~ P} 2,4

8. {~ Q} 3,4

9. {R} 3,5

10. {Q} 4,5

11. {R} 2,6

12. {P} 4,6

13. {Q} 1,7

14. {R} 6,7

15. {P} 1,8

16. {R} 5,8
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Example
If Omar visits Poland (P), then Omar visits Quebec (Q).  If it is Monday (M), 

Omar visits Poland or Québec.  Prove that, if it is Monday, then Omar visits 

Québec. 

Query (Goal): M→ Q  or  M v Q: =not easy to prove this: so REFUTATION-

Goal negation: M and  Q::   {M}, { Q}

1. {~ P,Q} Premise

2. {~ M,P,Q} Premise

3. {M} Negated Goal

4. {~ Q} Negated Goal

5. {P,Q} 3,2

6. {Q} 5,1

7. {} 6,4
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Definite clauses

• A definite clause is a disjunction with exactly one 

positive literal

• Equivalent to (P1  …  Pn)   Q

• Basis of logic programming (Prolog)

• Efficient (linear-time) complete inference through 

forward chaining and backward chaining

• Note:  R is the same as R. R  is  R.

• (P1  …  Pn)   is  P1  …   Pn

premise or body
conclusion 

or head
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Forward chaining

• Idea: find any rule whose premises are satisfied in 

the KB, add its conclusion to the KB, and keep 

going until query is found. Let Goal be Q
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Forward chaining example

• AND-OR Graph

– multiple links joined by an 
arc indicate conjunction – 
every link must be proved

– multiple links without an arc 
indicate disjunction – any 
link can be proved

• Empty circles: symbols known to be 

true but not yet “processed”

• Counts: how many premises of 

each implication are yet unknown
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Forward chaining example
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Forward chaining example
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Forward chaining example
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Forward chaining example
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Forward chaining example
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Forward chaining example
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Forward chaining example
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Backward chaining

Idea: work backwards from the query q:

to prove q by BC,

check if q is known already, or

prove by BC all premises of some rule concluding q
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Backward chaining example
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Backward chaining example
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Backward chaining example
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Backward chaining example
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Backward chaining example
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Backward chaining example
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Backward chaining example
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Backward chaining example
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Backward chaining example
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Backward chaining example
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Forward vs. backward chaining

• Forward chaining is data-driven, automatic 

processing

– May do lots of work that is irrelevant to the goal 

• Backward chaining is goal-driven, appropriate 

for problem-solving

– Complexity can be much less than linear in size of KB
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Summary

• Logical agents apply inference to a knowledge base to 

derive new information and make decisions

• Basic concepts of logic:

– syntax: formal structure of sentences

– semantics: truth of sentences wrt models

– entailment: necessary truth of one sentence given another

– inference: deriving sentences from other sentences

– soundness: derivations produce only entailed sentences

– completeness: derivations can produce all entailed sentences

• Resolution is complete for propositional logic

• Forward, backward chaining are linear-time, complete for 

definite clauses
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First-Order Logic
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Limitations of propositional logic

• Suppose you want to say “All humans are mortal”

– In propositional logic, you would need 

~10 billion statements

• Suppose you want to say “Some people can run a 

marathon”

– You would need a disjunction of 10 billion 

statements
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First-order logic

• Propositional logic assumes the world consists 

of atomic facts

• First-order logic assumes the world contains 

objects, relations, and functions
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Syntax of FOL

• Constants:  John, Sally, 2, ... 

• Variables:  x, y, a, b,...

• Predicates:  Person(John), Siblings(John, Sally), IsOdd(2), ...

• Functions:  MotherOf(John), Sqrt(x), ...

• Connectives: , , , , 

• Equality:  = 

• Quantifiers:  ,  

• Term:  Constant or Variable or Function(Term1, ... , Termn) 

• Atomic sentence: Predicate(Term1, ... , Termn) or Term1 = Term2

• Complex sentence: made from atomic sentences using connectives

   and quantifiers

• Possible overloading between Functions and Predicates: 

• FatherOf(Ali,Omar): True or False; FatherOf(Hasan): possibly Issam
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Semantics of FOL

• Sentences are true with respect to a model and an 

interpretation

• Model contains objects (domain elements) and relations 

among them

• Interpretation specifies referents for

constant symbols → objects

predicate symbols → relations

function symbols → functional relations

• An atomic sentence Predicate(Term1, ... , Termn) is true 

iff the objects referred to by Term1, ... , Termn are in the 

relation referred to by Predicate 

• MotherOf(Ahmad,Muna), MotherOf(Fatima,Leen), 
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Universal quantification

• x P(x)

• Example: “Everyone at BZU is smart”

x At(x,BZU)  Smart(x)

Why not x At(x,BZU)  Smart(x)?

• Roughly speaking, equivalent to the conjunction of all 

possible instantiations of the variable:

[At(Mariam, BZU)  Smart(Mariam)]  ...

[At(Hasan, BZU)   Smart(Hasan)]  ...

• x P(x) is true in a model m iff P(x) is true with x being 

each possible object in the model

Uploaded By: anonymousSTUDENTS-HUB.com



Existential quantification

• x P(x)

• Example: “Someone at BZU is smart”

x At(x,BZU)  Smart(x)

Why not x At(x, BZU)  Smart(x)?

• Roughly speaking, equivalent to the disjunction of all 

possible instantiations:

[At(Mariam, BZU)  Smart(Mariam)] 

[At(Hasan, BZU)  Smart(Hasan)]  … 

• x P(x) is true in a model m iff P(x) is true with x being 

some possible object in the model
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Properties of quantifiers

• x y is the same as y x

• x y is the same as y x 

• x y is not the same as y x

x y Loves(x,y) 

 “There is a person who loves everyone”

y x Loves(x,y)

 “Everyone is loved by at least one person”

• Quantifier duality: each quantifier can be expressed using 

the other with the help of negation

x Likes(x,IceCream)         x Likes(x,IceCream)

x Likes(x,Broccoli) x Likes(x,Broccoli)
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Equality

• Term1 = Term2 is true under a given model if 

and only if Term1 and Term2 refer to the same 

object

• E.g., definition of Sibling in terms of Parent:

x,y Sibling(x,y)  

[(x = y)  m,f  (m = f)  Parent(m,x)  

Parent(f,x)  Parent(m,y)   Parent(f,y)]
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Using FOL: The Kinship Domain

• Brothers are siblings

x,y Brother(x,y)  Sibling(x,y)

• “Sibling” is symmetric

x,y Sibling(x,y)  Sibling(y,x)

• One's mother is one's female parent

m,c (Mother(c) = m)  (Female(m)  Parent(m,c))
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Using FOL: The Set Domain

• s Set(s)  (s = {})  (x,s2 Set(s2)  s = {x|s2})

• x,s {x|s} = {}

• x,s x  s  s = {x|s}

• x,s x  s  [ y,s2 (s = {y|s2}  (x = y  x  s2))]

• s1,s2 s1  s2  (x x  s1  x  s2)

• s1,s2 (s1 = s2)  (s1  s2  s2  s1)

• x,s1,s2 x  (s1  s2)  (x  s1  x  s2)

• x,s1,s2 x  (s1  s2)  (x  s1  x  s2)
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Translating English to FOL
Every gardener likes the sun.

x gardener(x) → likes(x,Sun) 

You can fool some of the people all of the time.

x t  person(x) time(t) → can-fool(x,t)

You can fool all of the people some of the time.

x t (person(x) → time(t) can-fool(x,t))

x (person(x) → t (time(t) can-fool(x,t)))

All purple mushrooms are poisonous.

x (mushroom(x)  purple(x)) → poisonous(x) 

No purple mushroom is poisonous.

x purple(x)  mushroom(x)  poisonous(x) 

x  (mushroom(x)  purple(x)) → poisonous(x) 

There are exactly two purple mushrooms.

x y mushroom(x)  purple(x)  mushroom(y)  purple(y) ^ (x=y)  z 
(mushroom(z)  purple(z)) → ((x=z)  (y=z)) 

Clinton is not tall.

tall(Clinton) 

Every person who commits a crime must be punished.

x  commitscrime(x) → punished(x) 

What is : x  commitscrime(x)  punished(x) XX

Equivalent

Equivalent
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Translating English to FOL
– Everybody is loved by all people: 

       z x  Loved1By2(x,z)

– Somebody is loved by all people: 

     z x Loved1By2(z,x) … x  Loved1By2(C1,x)

– Somebody is loved by somebody: 

     z x  Loved1By2(x,z) … Loved1By2(C1,C2)

– Everybody is loved by somebody: 

     z x  Loved1By2(z,x) … z Loved1By2(z,M(z)); M(z)=mother/fiancé(z) 

– Some people love all animals: 

     z x  Person(z)  Animal(x)  Loved1By2(x,z)

– Any two real numbers have a number between them: 

     x x z Between(x,y,z) …  x x Between(x,y,f(x,y)); f(x,y) =x+y/2

• X is above Y iff X is directly on top of Y or there is a pile of one or more other 
objects directly on top of one another starting with X and ending with Y.

x y above(x,y)  (on(x,y)   z (on(x,z)  above(z,y))) 
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Example: A simple genealogy KB by FOL

• Build a small genealogy knowledge base 
using FOL that
– contains facts of immediate family relations (spouses, parents, 

etc.)

– contains definitions of more complex relations (ancestors, 
relatives)

– is able to answer queries about relationships between people

• Predicates:
– parent(x, y), child(x, y), father(x, y), daughter(x, y), etc.

– spouse(x, y), husband(x, y), wife(x,y)

– ancestor(x, y), descendant(x, y)

– male(x), female(y)

– relative(x, y)

• Facts:
– husband(Joe, Mary), son(Fred, Joe)

– spouse(John, Nancy), male(John), son(Mark, Nancy)

– father(Jack, Nancy), daughter(Linda, Jack)

– daughter(Liz, Linda)
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• Rules for genealogical relations
– (x,y) parent(x, y)  child (y, x)

 (x,y) father(x, y)  parent(x, y)  male(x) (similarly for 
mother(x, y))

 (x,y) daughter(x, y)  child(x, y)  female(x) (similarly for 
son(x, y))

– (x,y) husband(x, y)  spouse(x, y)  male(x) (similarly for 
wife(x, y))

 (x,y) spouse(x, y)  spouse(y, x)  (spouse relation is 
symmetric)

– (x,y) parent(x, y) → ancestor(x, y) 

 (x,y)(z) parent(x, z)  ancestor(z, y) → ancestor(x, y) 

– (x,y) descendant(x, y)  ancestor(y, x) 

– (x,y)(z) ancestor(z, x)  ancestor(z, y) → relative(x, y)

–  

– (x,y) parent(x, y) → mother (y, x) or father (y, x) !!!!!

– (x,y) sibling(x, y) → brother (y, x) or sister (y, x) !!!!!

– (x,y) uncle(x, y) → خال (y, x) or عم (y, x) !!!!!Uploaded By: anonymousSTUDENTS-HUB.com



• Rules for genealogical relations
 (related by common ancestry)

 (x,y) spouse(x, y) → relative(x, y) (related by 
marriage)

 (x,y)(z) relative(z, x)  relative(z, y) → 
relative(x, y) (transitive)

 (x,y) relative(x, y)  relative(y, x) (symmetric)

• Queries
– ancestor(Jack, Fred)   /* the answer is yes */

– relative(Liz, Joe)        /* the answer is yes */

– relative(Nancy,  Matthew)   

          /* no answer in general, no if under closed 
world assumption */

– (z) ancestor(z, Fred)  ancestor(z, Liz)
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Why “First order”?

• FOL permits quantification over variables

• Higher order logics permit quantification 

over functions and predicates:

   P,x [P(x)  P(x)]

  x,y (x=y)  [P (P(x)P(y))]
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Inference in FOL

• All rules of inference for propositional logic apply 

to first-order logic 

• We just need to reduce FOL sentences to PL 

sentences by instantiating variables and 

removing quantifiers
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Reduction of FOL to PL

• Suppose the KB contains the following:

x King(x)  Greedy(x)  Evil(x)

King(John), Greedy(John), Brother(Richard,John)

• How can we reduce this to PL?

• Let’s instantiate the universal sentence in all possible ways:

King(John)  Greedy(John)  Evil(John)

King(Richard)  Greedy(Richard)  Evil(Richard)

King(John) Greedy(John) Brother(Richard,John)

• The KB is propositionalized

– Proposition symbols are King(John), Greedy(John), Evil(John), 

King(Richard), etc.
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Reduction of FOL to PL

• What about existential quantification, e.g.,

x Crown(x)  OnHead(x,John) ?

• Let’s instantiate the sentence with a new constant that 

doesn’t appear anywhere in the KB:

Crown(C1)  OnHead(C1,John)
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Propositionalization

• Every FOL KB can be propositionalized so as to preserve 

entailment

– A ground sentence is entailed by the new KB iff it is 

entailed by the original KB

• Idea: propositionalize KB and query, apply resolution, 

return result

• Problem: with function symbols, there are infinitely many 

ground terms

– For example, Father(X) yields Father(John), 

Father(Father(John)), Father(Father(Father(John))), etc.
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Propositionalization

• Theorem (Herbrand 1930): 

– If a sentence α is entailed by an FOL KB, it is entailed by a finite 

subset of the propositionalized KB

• Idea: For n = 0 to Infinity do

– Create a propositional KB by instantiating with depth-n terms

– See if α is entailed by this KB

• Problem: works if α is entailed, loops if α is not entailed

• Theorem (Turing 1936, Church 1936): 

– Entailment for FOL is semidecidable: algorithms exist that say 

yes to every entailed sentence, but no algorithm exists that also 

says no to every nonentailed sentence
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Inference in FOL

• “All men are mortal. Socrates is a man; therefore, 

Socrates is mortal.”

• x man(x) → mortal(x)

• man(Socrates)

• Mortal(Socrates)?? 

• It seems to work if we replace x by Scorates

• Can we prove this without full propositionalization as an 

intermediate step?

• Can we do that with the least propositionalization?
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Generalized Modus Ponens 

(GMP)
(p1  p2  …  pn q), p1', p2', … , pn' 

such that SUBST(θ, pi)= SUBST(θ, pi') for all i

SUBST(θ,q)

• All variables assumed universally quantified

• Example:

x King(x)  Greedy(x)  Evil(x)

King(John)  Greedy(John)  Brother(Richard,John)

p1 is King(x),        p2 is Greedy(x), q is Evil(x) 

p1' is King(John), p2' is Greedy(y), θ is {x/John,y/John}

SUBST(θ,q) is Evil(John)
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Predicate Logic and CNF
[Q  P]  S;To CNF:  [Q  P]  S; [Q  P]  S; 

[Q   P]  S; [Q  S]  [ P  S]; {Q,S}; {P , S}

• Converting FOL to CNF is harder - we need to 

worry about variables and quantifiers.

1. Eliminate all implications  P Q=  P  Q 

2. Reduce the scope of all  to single term. 

3. Make all variable names unique (set apart)

4. Move Quantifiers Left [leftmost]

5. Eliminate Existential Quantifiers [No ]

6. Eliminate Universal Quantifiers [all are ]

7. Convert to conjunction of disjuncts CNF

8. Create separate clause for each conjunct CNF.
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Eliminate Existential Quantifiers

• To eliminate the quantifier, we can replace 

the variable with a function.

• We don’t know what the function is, we 

just know it exists.

• So we invent one!

• It is a function of n variables where n is the 

number of universally quantifies variables 

preceding the existential quantifier
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Skolem functions

 y President(y)

We replace y with a new function func:

President(func())

func is called a skolem function.

In general the function must have the same number 

of arguments as the number of universal 

quantifiers in the current scope of existential 

quantifier. In our case it is 0: Constant!!!
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Skolemization Example
x y Father(y,x)

create a new function named f1 and replace y with the 

function (f1(x).

 x Father(f1(x),x)

 zx t y Manager(y,x,z,t)

 zx t Manager(f2(z,x,t),x,z,t)

 zx y t Manager(y,x,z,t)

 zx t Manager(f3(z,x),x,z,t)

y Manager(y,x,z,t)

Manager(f3(),x,z,t) OR  Manager (C,x,z,t), C f of 0 var
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Conversion to CNF

• Everyone who loves all animals is loved by someone:
x [[y [Animal(y)  Loves(x,y)]]  [y Loves(y,x)]] original

• 1. Eliminate biconditionals and implications
x [ [[y [ Animal(y)  Loves(x,y)]]  [y Loves(y,x)]] 

x [ [[y [Animal(y)  Loves(x,y)]]  [y Loves(y,x)]] 

• 2. Move  inwards: x p ≡ x p,   x p ≡ x p
x [ [y (Animal(y)  Loves(x,y))]  [y Loves(y,x)]]  =

x [ [y Animal(y)  Loves(x,y)]  [y Loves(y,x)]] =

x [ [y Animal(y)  Loves(x,y)]  [y Loves(y,x)]] 
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Conversion to CNF contd.

3. Standardize variables: each quantifier should use a different 
one

x [[y Animal(y)  Loves(x,y)]  [z Loves(z,x)]]

4.   Skolemize: a more general form of existential instantiation. 
Each existential variable is replaced by a Skolem function of the 
enclosing universally quantified variables:F(x)/y, G(x)/z

 x [[Animal(F(x))  Loves(x,F(x))]  Loves(G(x),x) ]

5. Drop universal quantifiers: No need, all variables are 
Universally quantified

 [Animal(F(x))  Loves(x,F(x))]   Loves(G(x),x)

6. Distribute  over  :

 [Animal(F(x))Loves(G(x),x)]  [Loves(x,F(x))Loves(G(x),x)]
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Unification
Now that we have FOL Clauses (CNF) with variables (all 

universally quantified) we want to apply inference rules

Suppose we have the rule

If x is a working automobile, then x has an engine.

P(x) → Q(x) OR the clause  P(x)  Q(x)

and we have the fact

Tim’s Audi is a working automobile P(a)

These cannot immediately be resolved because P(x) 

and P(a) don’t quite match. They must be “unified.”
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Modus Ponens

in the Predicate Calculus

P(a) → Q(a)

P(a)

---------

Q(a)

But we have

P(x) → Q(x)

So we create a substitution instance of it:

P(a) → Q(a)

using the substitution { a/x }
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Substitutions
A substitution is a set of term/variable pairs.

e.g.,  Sub1= {  a/x,  f(a)/y,   w/z }: read as Replace x by a, y 

by f(a) and z by w.

Each element of the set is an elementary substitution.

A particular variable occurs at most once on the right-hand 

side of any elementary substitution.

So, { a/x, b/x }    is not an acceptable substitution.

The empty set is an acceptable substitution (replace nothing).

If E is a term or a formula of the predicate calculus, and S is a 

substitution, then S(E) is the result of applying S to E, i.e., 

replacing each variable of S that occurs in E by the 

corresponding term in S.
Sub1(P(x,y,z))= P(a,f(a),w)
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Unifiers

Given a pair of literals L1 and L2, if S is a substitution 

such that     S(L1) = S(L2) or S(L1) = S(L2), 

then S is a unifier for L1 and L2.

Example:

L1 = P(x, f(a))

L2 = P(b, y)

S = { b/x, f(a)/y } 

S(L1) = P(b, f(a))  = S(L2)

Therefore S is a unifier for L1 and L2.
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The Occurs Check
A unifier may not contain an elementary substitution of the 

form  f(x)/x and may not cause an indefinite recursion.

In general the term in a term/variable pair may not include 

that variable.

P(x) and P(f(x))  cannot be unified, since f(x)/x is illegal.

P(y, f(y)) and P(f(x), y)  cannot be unified, since

S =  {  f(x)/y,  f(y)/x }  leads to an indefinite recursion.

Testing whether a variable appears in its corresponding term 

is called the “occurs check”.

Some automated reasoning systems do not perform the 
occurs check in order to save time.
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Generality of Unifiers
Some pairs of literals may have more than one possible 

unifier.

    P(x), P(y)    is unified by each of  { x/y },  { y/x },

                            { z/x, z/y }, { a/x, a/y},  {  f(a)/x, f(a)/y }  etc.

Suppose S1 and S2 are unifiers for P1 and P2.

Then S1(P1) = S1(P2)   or S1(P1) = ~S1(P2)

         S2(P1) = S2(P2)   or S2(P1) = ~S2(P2)

S1 is more general than S2 if there exists S3 such that

S3(S1(P1)) = S2(P1). 

S3(S1(P1)) means apply S3 to the result of applying S1 to P1.

{ a/x, a/y } is less general than {  y/x }. {  y/x } is more general 

than { a/x, a/y }.
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Most General Unifiers

A unifier S1 for L1 and L2 is a most general unifier  

(MGU) for L1 and L2 provided that for any other unifier 

S2 of L1 and L2 there exists a substitution S3 such 

that

S3(S1(L1)) = S2(L1).

 S1 = {  y/x } is a most general unifier for P(x), P(y).

 S2 = { f(a)/x, f(a)/y } is not a MGU for P(x), P(y).

 S3 = { f(a)/y }

S3(S1(P(x)))   = P(f(a)) =   S2(P(x)).
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Finding a Most-General Unifier

1. Given literals L1 and L2, place a cursor at the left 

end of each. Skip any negation sign. If the predicate 

symbols do not match, return NOT-UNIFIABLE.

2. Let S =  { }.

3. Move the cursors right to the next term (argument) in 

each literal.  

If there are no terms left, return S as a MGU else 

Let t1 and t2 be the terms.
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Finding an MGU (Cont.)

4a.  If t1 = t2, go to Step 3.

4b. Otherwise, if either t1 or t2 is a variable (call it v and call 

the other term t), then attempt to add t/v to S (see below).

4c. Otherwise if t1 and t2 both begin with function symbols, 

and these symbols are the same, move the cursors to the 

first argument of these symbols and go to step 4a.

4d. Otherwise, return NOT-UNIFIABLE.
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Finding an MGU (Cont.)

When trying to add  t/v  to S, apply { t/v } to each term in 

S.  If this results in any elementary substitution whose term 

includes its variable, return NOT-UNIFIABLE.  

Otherwise, replace each elementary substitution in S by 

the result of applying { t/v } and add t/v itself to S.
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Example

L1:  P(a, f(x, a))

L2:  P(a, f(g(y), y))

S: { }

S: { g(y)/x }

Next apply a/y to the above and add it to get

S: { g(a)/x, a/y }
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Unification
More Examples of Unification:

If we apply the same substitution to both: they become the same.

p    q   θ  

Knows(John,x)  Knows(John,Jane) {x/Jane}

Knows(John,x)  Knows(y,Mary)  {x/Mary, y/John}

Knows(John,x)  Knows(y,Mother(y)) {y/John, x/Mother(John)}

Knows(John,x)  Knows(x,Mary)  {x1/John, x2/Mary}

Knows(John,x)  Knows(y,z)  {y/John, x/z}

P(x, x)                                P(f(x),x)                     No. Fails OC

P(x, x)                                P(f(y),y)                 {f(y)/x}

P(f(y), f(y))                         P(f(y),y)                 {f(y)/x}o f(y)/y= XXXX

• Standardizing apart eliminates overlap of variables

• Most general unifier: others special cases: {y/John, x/z} more general 

than {y/John, x/John, z/John} Uploaded By: anonymousSTUDENTS-HUB.com



Inference with GMP

(p1  p2  …  pn q), p1', p2', … , pn' 

such that SUBST(θ, pi)= SUBST(θ, pi') for all i

SUBST(θ,q)

• Forward chaining

– Like search: keep proving new things and adding them to 

the KB until we can prove q

• Backward chaining

– Find p1, …, pn such that knowing them would prove q

– Recursively try to prove p1, …, pn 
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Example knowledge base

• The law says that it is a crime for an American to sell 

weapons to hostile nations.  The country Nono, an 

enemy of America, has some missiles, and all of its 

missiles were sold to it by Colonel West, who is 

American.

• Prove that Col. West is a criminal
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Example knowledge base
It is a crime for an American to sell weapons to hostile nations:

American(x)  Weapon(y)  Sells(x,y,z)  Hostile(z)  Criminal(x)

Nono has some missiles

   x Owns(Nono,x)  Missile(x)

Owns(Nono,M1)  Missile(M1) FACTS 

All of Nono’s missiles were sold to it by Colonel West

Missile(x)  Owns(Nono,x)  Sells(West,x,Nono)

Missiles are weapons:

Missile(x)  Weapon(x)

An enemy of America counts as “hostile”:

Enemy(x,America)  Hostile(x)

Captain West is American

American(West)                                                FACTS                    

The country Nono is an enemy of America 

Enemy(Nono,America)

Goal:  Criminal(West) ?

Uploaded By: anonymousSTUDENTS-HUB.com



Forward chaining proof

American(x)  Weapon(y)  Sells(x,y,z)  Hostile(z)  Criminal(x)

Owns(Nono,M1)  Missile(M1)

Missile(x)  Owns(Nono,x)  Sells(West,x,Nono)

Missile(x)  Weapon(x)  Enemy(x,America)  Hostile(x)

American(West)  Enemy(Nono,America)Uploaded By: anonymousSTUDENTS-HUB.com



Forward chaining proof

American(x)  Weapon(y)  Sells(x,y,z)  Hostile(z)  Criminal(x)

Owns(Nono,M1)  Missile(M1)

Missile(x)  Owns(Nono,x)  Sells(West,x,Nono)

Missile(x)  Weapon(x)  Enemy(x,America)  Hostile(x)

American(West)  Enemy(Nono,America)Uploaded By: anonymousSTUDENTS-HUB.com



Forward chaining proof

American(x)  Weapon(y)  Sells(x,y,z)  Hostile(z)  Criminal(x)

Owns(Nono,M1)  Missile(M1)

Missile(x)  Owns(Nono,x)  Sells(West,x,Nono)

Missile(x)  Weapon(x)  Enemy(x,America)  Hostile(x)

American(West)  Enemy(Nono,America)Uploaded By: anonymousSTUDENTS-HUB.com



Backward chaining example

American(x)  Weapon(y)  Sells(x,y,z)  Hostile(z)  Criminal(x)

Owns(Nono,M1)  Missile(M1)

Missile(x)  Owns(Nono,x)  Sells(West,x,Nono)

Missile(x)  Weapon(x)  Enemy(x,America)  Hostile(x)

American(West) Enemy(Nono,America)                           Criminal(West) Uploaded By: anonymousSTUDENTS-HUB.com



Backward chaining example

American(x)  Weapon(y)  Sells(x,y,z)  Hostile(z)  Criminal(x)

Owns(Nono,M1)  Missile(M1)

Missile(x)  Owns(Nono,x)  Sells(West,x,Nono)

Missile(x)  Weapon(x)  Enemy(x,America)  Hostile(x)

American(West)  Enemy(Nono,America)Uploaded By: anonymousSTUDENTS-HUB.com



Backward chaining example

American(x)  Weapon(y)  Sells(x,y,z)  Hostile(z)  Criminal(x)

Owns(Nono,M1)  Missile(M1)

Missile(x)  Owns(Nono,x)  Sells(West,x,Nono)

Missile(x)  Weapon(x)  Enemy(x,America)  Hostile(x)

American(West)  Enemy(Nono,America)Uploaded By: anonymousSTUDENTS-HUB.com



Backward chaining example

American(x)  Weapon(y)  Sells(x,y,z)  Hostile(z)  Criminal(x)

Owns(Nono,M1)  Missile(M1)

Missile(x)  Owns(Nono,x)  Sells(West,x,Nono)

Missile(x)  Weapon(x)  Enemy(x,America)  Hostile(x)

American(West)  Enemy(Nono,America)Uploaded By: anonymousSTUDENTS-HUB.com



Backward chaining example

American(x)  Weapon(y)  Sells(x,y,z)  Hostile(z)  Criminal(x)

Owns(Nono,M1)  Missile(M1)

Missile(x)  Owns(Nono,x)  Sells(West,x,Nono)

Missile(x)  Weapon(x)  Enemy(x,America)  Hostile(x)

American(West)  Enemy(Nono,America)Uploaded By: anonymousSTUDENTS-HUB.com



Backward chaining example

American(x)  Weapon(y)  Sells(x,y,z)  Hostile(z)  Criminal(x)

Owns(Nono,M1)  Missile(M1)

Missile(x)  Owns(Nono,x)  Sells(West,x,Nono)

Missile(x)  Weapon(x)  Enemy(x,America)  Hostile(x)

American(West)  Enemy(Nono,America)Uploaded By: anonymousSTUDENTS-HUB.com



Resolution: FOL version

p1  ···  pk,          q1  ···  qn

such that UNIFY(pi, qj) = θ

SUBST(θ, p1  ···  pi-1  pi+1  ···  pk  q1  ···  qj-1  qj+1  ···  qn)

• For example,

Rich(x)  Unhappy(x) 

                  Rich(Ken)

Unhappy(Ken)

 with θ = {x/Ken}

• Refutation Proof: Apply resolution steps to CNF(KB  α); 

complete for FOL
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Example: Resolution

1-  Smart(x)   LikesHockey(x)  NorthSchool(x)

2-  Canadian(y)  LikesHockey(y)

3-   Skates(z)  LikesHockey(z)

4- Smart(Joe)

5- Skates(Joe)

Goal is to find out if NorthSchool(Joe) is true NorthSchool(Joe) ?

3+5= LikesHockey(Joe)….(6)

4+1=  LikesHockey(Joe)  NorthSchool(Joe) ….(7)

6+7= NorthSchool(Joe)     Goal

Next Refutational Proof
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Example:Resolution Refutation

1-  Smart(x)   LikesHockey(x)  NorthSchool(x)

2-  Canadian(y)  LikesHockey(y)

3-   Skates(z)  LikesHockey(z)

4-  Smart(Joe)

5-  Skates(Joe)

0-  NorthSchool (Joe)                                 (Goal: NorthSchool (Joe))

---------------------------------------------------------------------------------

0+1=  Smart(Joe)   LikesHockey(Joe) ….(6)

3+5= LikesHockey(Joe)….(7)

4+7=  Skates(Joe)….(8)

0+8=•
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Resolution proof: definite clauses
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Logic programming: Prolog
• FOL: 

King(x)  Greedy(x)  Evil(x)

Greedy(y)

King(John)

• Prolog: 
evil(X) :- king(X), greedy(X).

greedy(Y).

king(john).

• Closed-world assumption: 

– Every constant refers to a unique object

– Atomic sentences not in the database are assumed to be false

• Inference by backward chaining, clauses are tried in the 

order in which they are listed in the program, and literals 

(predicates) are tried from left to right
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Prolog example

parent(abraham,ishmael).

parent(abraham,isaac).

parent(isaac,esau). 

parent(isaac,jacob). 

grandparent(X,Y) :- parent(X,Z), parent(Z,Y). 

descendant(X,Y) :- parent(Y,X). 

descendant(X,Y) :- parent(Z,X), descendant(Z,Y). 

? parent(david,solomon).

? parent(abraham,X).

? grandparent(X,Y).

? descendant(X,abraham).
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Prolog example

parent(abraham,ishmael).

parent(abraham,isaac).

parent(isaac,esau). 

parent(isaac,jacob). 

• What if we wrote the definition of  descendant like this:

descendant(X,Y) :- descendant(Z,Y), parent(Z,X). 

descendant(X,Y) :- parent(Y,X). 

? descendant(W,abraham).

• Backward chaining would go into an infinite loop!

– Prolog inference is not complete, so the ordering of the clauses 

and the literals is really important
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Applications of Automated Reasoning

• Diagnosis of Digital Circuits

• Software/hardware verification

• Rule Based Systems (customer Support)

• Mathematics: proving theorems

• Deductive databases: rules instead of facts: can 

save lots of space: database constraints (salaries 

of managers >supervised_employee)

• Ways to treat negation! Can’t prove something
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Graph coloring

colorable(Wa,Nt,Sa,Q,Nsw,V) :-

diff(Wa,Nt), diff(Wa,Sa), diff(Nt,Q), diff(Nt,Sa), diff(Q,Nsw), 

diff(Q,Sa), diff(Nsw,V), diff(Nsw,Sa), diff(V,Sa).

diff(red,blue). diff(red,green). diff(green,red).

diff(green,blue). diff(blue,red). diff(blue,green).
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Prolog lists

• Appending two lists to produce a third:

  append([],Y,Y).                         

  append([X|L],Y,[X|Z]) :- append(L,Y,Z). 

• query:   append(A,B,[1,2]) 

• answers: A=[]    B=[1,2]

         A=[1]   B=[2]

         A=[1,2] B=[]
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