
 Data Structure: Lectures Note 2020/2021 Prepared by: Dr. Mamoun Nawahdah

51

Stacks

Stack is an abstract data type that serves as a collection of
elements, with two principal operations:

 push adds an element to the collection;
 pop removes the last element that was added.

• Last In, First Out  LIFO

Stack Applications:

 Parsing in a compiler
 JVM
 Undo in a word processor
 Back button in a web browser
 Implementing function calls in a compiler
 :

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

 Data Structure: Lectures Note 2020/2021 Prepared by: Dr. Mamoun Nawahdah

52

Single Linked List Implementation:
Each of the following operation involves top of stack
 push
 pop
 peek

Head or Tail for topNode??
Head of linked list easiest, fastest to access O(c)  Let this be the top of the stack

public class LinkedStack<T extends Comparable<T>> {
 private Node<T> topNode;

 public void push(T data) {
 Node<T> newNode = new Node<T>(data);
 newNode.setNext(topNode);
 topNode = newNode;
 }

 public Node<T> pop() {
 Node<T> toDel = topNode;
 if(topNode != null)
 topNode = topNode.getNext();
 return toDel;
 }

 public Node<T> peek() { return topNode; }

 public int length() {
 int length = 0;
 Node<T> curr = topNode;
 while (curr != null) {
 length++;
 curr = curr.getNext();
 }
 return length;
 }

 public boolean isEmpty() { return (topNode == null); }

 public void clear() { topNode = null; }
}

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

 Data Structure: Lectures Note 2020/2021 Prepared by: Dr. Mamoun Nawahdah

53

Array-Based Implementation:
• End of the array easiest to access

 Let this be top of stack
 Let first entry be bottom of stack

public class ArrayStack <T> {
 private Object[] s;
 private int n=-1;

 public ArrayStack(int capacity){
 s = new Object[capacity];
 }

 public boolean isEmpty(){ return n ==-1;}
 public int getN(){ return n;}

 public void push(T data){
 s[++n] = data;
 }

 public Object pop(){
 if(!isEmpty())
 return s[n--];
 return null;
 }

 public String toString() {
 String res = "Top-->";
 for(int i=n; i>=0;i--)
 res+="["+s[i]+"]-->";
 return res+"Null";
 }
}

 Overflow: use resizing array HW: To Do resize to double original size (repeated doubling)
 How to shrink array?? Half size of array when array is ¼ full.

• Stack implementations: resizing array vs. linked list. Which one is better??
 Linked-list: each operation takes O(c) in the worst case. However, uses extra time and space to

deal with the links.
 Resizing array: every operation takes O(c) amortized1 also less wasted times.

1 The basic idea is that an expensive operation can alter the state so that the worst case cannot occur again for a long time, thus amortizing its cost.

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

