E Data Structure: Lectures Note 2020/2021 Prepared by: Dr. Mamoun Nawahdah
Stacks

Stack is an abstract data type that serves as a collection of . N
elements, with two principal operations: Push " Pop

= push adds an element to the collection;

" pop removes the last element that was added.

(i

e Last In, First Out = LIFO

ABSTRACT DATA TyPE: STACK

Data
A collection of objects in reverse chronological order and having the same data type

OPERATIONS
Pseubocone UML DEscripTION

push(newEntry) +push(newEntry: T): void Task: Adds a new entry to the top of the
stack.
Input: newEntry 1s the new entry.
Output: None.

popQ) +pop(d: T Task: Removes and returns the stack’s top
entry.
Input: None.
Output: Returns the stack’s top entry.
Throws an exception if the stack 15
empty before the operation.
peek() +peek(): T Task: Retrieves the stack’s top entry
without changing the stack i any
way.
Input: None.
Output: Returns the stack’s top entry.
Throws an exception if the stack
1s empty.

isEmpty () +isEmpty(): boolean Task: Detects whether the stack 1s empty.
Input: None.
Output: Retums true if the stack 1s empty.

clearQ) +clear(): void Task: Removes all entries from the stack.
Input: None.
Output: None.

Stack Applications:
e Parsing in a compiler
e JVM
e Undoin a word processor
e Back button in a web browser
e Implementing function calls in a compiler

51

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

E Data Structure: Lectures Note 2020/2021 Prepared by: Dr. Mamoun Nawahdah
Single Linked List Implementation:
Each of the following operation involves top of stack

= push
" pop
= peek

Head or Tail for topNode??

Head of linked list easiest, fastest to access O(c) = Let this be the top of the stack
Chain

= Glo—(l

topNode

Top entry of stack @
I

&=

Stack
public class LinkedStack<T extends Comparable<T>> {
private Node<T> topNode;

public void push(T data) {
Node<T> newNode = new Node<T>(data);
newNode.setNext(topNode);
topNode = newNode;

}

public Node<T> pop() {
Node<T> toDel = topNode;
if(topNode != null)
topNode = topNode.getNext();
return toDel;

}

public Node<T> peek() { return topNode; }

public int length() {
int length = 0;
Node<T> curr = topNode;
while (curr != null) {
length++;
curr = curr.getNext();
}

return length;

}
public boolean isEmpty() { return (topNode == null); }

public void clear() { topNode = null; }

52

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

E Data Structure: Lectures Note
Array-Based Implementation:
End of the array easiest to access
Let this be top of stack

Let first entry be bottom of stack
0 1 2

2020/2021

3

Prepared by: Dr. Mamoun Nawahdah

amy o [oo e

2
| I =

topIndex

(:) Top entry of stack
o
O
G

Stack

public class ArrayStack <T> {
private Object[] s;
private int n=-1;

public ArrayStack(int capacity){
s = new Object[capacity];

}

public boolean isEmpty(){ return n ==-1;}
public int getN(){ return n;}

public void push(T data){
s[++n] = data;

}

public Object pop(){
if(lisEmpty())
return s[n--];
return null;

}

public String toString() {
String res = "Top-->";
for(int i=n; i>=0;i--)
res+="["+s[i]+"]-->";
return res+"Null";

}

}

Overflow: use resizing array
* Stack implementations: resizing array vs. linked lis

= Linked-list: each operation takes O(c) in th
deal with the links.

Resizing array: every operation takes O(c)

HW: To Do resize to double original size (repeated doubling)
How to shrink array?? Half size of array when array is % full.

t. Which one is better??
e worst case. However, uses extra time and space to

amortized! also less wasted times.

! The basic idea is that an expensive operation can alter the state so that the worst case cannot occur again for a long time, thus amortizing its cost.

STUDENTS-HUB.com

Uploaded By: Jibreel Bornat

