

[3] If $0 < L < \infty$ then f and g grow at same rate as $x \rightarrow \infty$ Exp which faster D yx, ex -1 < a < 1 =) \lim a = 0 $\lim_{x\to\infty}\frac{y}{e} = \lim_{x\to\infty}\frac{y}{e}$ $\lim_{x\to\infty}\frac{y}{e}$ $\lim_{x\to\infty}\frac{y}{e}$ $\lim_{x\to\infty}\frac{y}{e}$ $\lim_{x\to\infty}\frac{y}{e}$ $\lim_{x\to\infty}\frac{y}{e}$ y grows faster than E or E y Slower y // Y^X $(\frac{3}{2})^{\times}$, e^{\times} 3=1.5 e 22.718 $\lim_{x \to \infty} \frac{\left(\frac{3}{2}\right)^{x}}{e^{x}} = \lim_{x \to \infty} \left(\frac{3}{2}\right)^{x}$ (3) × grows slower than e as

STUDENTS-HUB.com

Uploaded By: Malak Obaid

of
$$e^{\frac{3}{2}}$$
 grows slower than $e^{-\frac{3}{2}}$ $e^{\frac{3}{2}}$ $e^{\frac{3$

STUDENTS-HUB.com

Uploaded By: Malak Obaid

 $\lim_{x \to \infty} \frac{2}{x^2} = \lim_{x \to \infty} \frac{2}{2x}$ $= \lim_{x \to \infty} \frac{2}{2} (\ln x)^2 = \infty$ $\lim_{x \to \infty} \frac{2}{x^2} (\ln x)^2 = \infty$