Data Encryption Standard (DES)

Dr. Asem Kitana

STUDENTS-HUB.com

Uploaded By: anonymous

Overview of DES

- Symmetric block cipher.
- 56-bit key.
- 64-bit input block, 64-bit output block.
- Developed in 1977 by National Institute of Standards and Technology (NIST); and designed by IBM.

Simplified DES (S-DES)

- Input (plaintext) block: 8-bits
- Output (ciphertext) block: 8-bits
- Key: 10-bits
- Rounds: 2
- Round keys generated using permutations and left shifts
- Encryption: initial permutation, round function, switch halves
- Decryption: Same as encryption, except round keys used in opposite order

S-DES Algorithm

S-DES Round Keys Generation

S-DES Key Generation and Encryption

S-DES Round Function

S-DES Permutations

- Permutation means transposition or rearrangement of bits.
- ➢ P10 (permutation)

Input	1	2	3	4	5	6	7	8	9	10
Output	3	5	2	7	4	10	1	9	8	6

➢ P8 (selection and permutation)

Input	1	2	3	4	5	6	7	8	9	10
Output	6	3	7	4	8	5	10	9		

➢ P4 (permutation)

Input	1	2	3	4
Output	2	4	3	1

S-DES Operations

► EP (Expansion and Permutation)

Input	1	2	3	4				
Output	4	1	2	3	2	3	4	1

► IP (Initial Permutation)

Input	1	2	3	4	5	6	7	8
Output	2	6	3	1	4	8	5	7

$> IP^{-1}$ (Inverse of Initial Permutation)

Input	1	2	3	4	5	6	7	8
Output	4	1	3	5	7	2	8	6

S-DES Operations

- LS-1: left shift by 1 position
- LS-2: left shift by 2 positions
- IP^{-1} : inverse of IP, such that $X = IP^{-1}$ (IP(X))
- SW: swap the halves (Switching Function)
- f_K : round function using round key K
- F: internal function in each round

XOR Table

- If the bits are similar, the output is 0
- If the bits are different, the output is 1

Α	В	A XOR B
0	0	0
0	1	1
1	0	1
1	1	0

S-Boxes of S-DES

- S-Box considered as a matrix: input used to select row/column; selected element is output
- 4-bit input: *bit*₁, *bit*₂, *bit*₃, *bit*₄
- *bit*₁*bit*₄ specifies row (0, 1, 2 or 3 in decimal)
- *bit*₂*bit*₃ specifies column
- 2-bit output
- Indexing of S-Boxes starts from 0 to 3 for rows and columns.

S-Boxes of S-DES

S-Boxes of S-DES

S-DES vs. DES

	S-DES	DES
Block size	8 bits	64 bits
Key size	10 bits	56 bits
Rounds	2	16
IP	8 bits	64 bits
S-Boxes	2	8
Round keys	2	16
Round key size	8 bits	48 bits

S-DES summary

- Educational encryption algorithm
- S-DES expressed as functions:

 $\text{ciphertext} = \text{IP}^{-1} \left(f_{K_2} \left(\text{SW} \left(f_{K_1} (\text{IP}(\text{plaintext})) \right) \right) \right)$

 $plaintext = IP^{-1} (f_{K_1} (SW(f_{K_2} (IP(ciphertext))))))$

- Brute force attack on S-DES is easy since only 10-bit key
- If we know plaintext and corresponding ciphertext, can we determine key? Very hard

Example1

Deploying S-DES cipher, encrypt the plaintext (01110010) using the key (1010000010).

\bigstar Round keys generation $(k_1 \text{ and } k_2)$:

K: 1010000010 (10-bit key) P10: 1000001100 LS-1: 0000111000 (deployed on both halves of P10) P8: 10100100 (represents k_1) LS-2: 001000011 (deployed on both halves of LS-1) P8: 01000011 (represents k_2)

 k_1 and k_2 (each 8-bit) are used as inputs in the encryption and decryption stages.

Encryption:

Round1:

Plaintext: 01110010

IP: 10101001

R-half: 1001

L-half: 1010

EP: 11000011 (deployed on R-half)

XOR: 01100111 (EP XOR k_1 , which represents substitution)

S0: 0110 (left half of XOR deployed on S-Box 0)

```
row = 00 (decimal 0)
```

```
column = 11 (decimal 3)
```

```
output = 10 (row 0 and column 3 of S0)
```

```
S1: 0111 (right half of XOR deployed on S-Box 1)
   row = 01 (decimal 1)
   column = 11 (decimal 3)
   output = 11 (row 1 and column 3 of S1)
SOS1: 1011
P4: 0111 (deployed on SOS1)
XOR: 1101 (P4 XOR L-half)
Result: 11011001 (XOR + R-half)
End of round1
SW: 10011101 (swapping the two halves of Result)
The output of SW function (10011101) is used as input in
   round<sub>2</sub>.
```

```
\succ Round2:
SW: 10011101
R-half: 1101
L-half: 1001
EP: 11101011 (deployed on R-half)
XOR: 10101000 (EP XOR k_2)
S0: 1010 (left half of XOR deployed on S-Box 0)
   row = 10 (decimal 2)
   column = 01 (decimal 1)
   output = 10 (row 2 and column 1 of S0)
```

```
S1: 1000 (right half of XOR deployed on S-Box 1)
    row = 10 (decimal 2)
   column = 00 (decimal 0)
    output = 11 (row 2 and column 0 of S1)
SOS1: 1011
P4: 0111 (deployed on SOS1)
XOR: 1110 (P4 XOR L-half)
Result: 11101101 (XOR + R-half)
IP<sup>-1</sup>: 01110111
The ciphertext is (01110111)
```

Example2

Deploying S-DES algorithm, decrypt the ciphertext (00111000) using the key (1010000010).

DES Algorithm

