e e s g e

1]
i

LINEAR DIEFERENTIAL EQUATIONS

.wn, x=e'and t=Inx. Then ’ ; .
R TN S R b P o) R
i " dx H t .&Hm_ x| g2 dr |’ s | i
Mﬁu« mna ODE with :F independent variable 7 is T
m+mmw.+€no (1.15)
‘.;o characteristic nnrm:on
mI6mE9=0 (w43 e

.U F has a double root —3. Equation (1.15) has a general solution
y(1)=(e+ert)e
..‘,.ﬂ.c.mmsm the transformation again, one obtains

Y(x)=(c,+c,Inx)x~3

uler equations appear in solutions of BYPs 5<m_<ﬁm spherical geoinetry.
w ..lm_.nmm.mw 1.2

1.} Determine the general solution for the equation y” —dy'+d4y=0.
@ Solve the differential equation y”+2 ' +2 =0,

ﬂ.ua a general solution for y'—2y'—4y =0,
Hint: Show firs: that the characteristic equation has a root 2.

Solve the boundary value problem y” — =0, y(0)=0, Yim)=1
Find a general solution for yH—y=0.

Solve the differential equation y'—s5 Y +6y'=0.

Determine a general solution for the equation xw..:..rwue‘.f_ru y=0.
- Solve the BVP x2y"— 35+ 4y=0, y(1) =0, y(e) =",

Find a genera) solution for x2y” — xy*+5, =0,

Find a solution for the BVP »w‘.,+@.\+\<uo, HO)=1; y(w/2)=2.
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CLASSIFICATION OF A LINEAR vvmm.q SECOND ORDER 4 9
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1.5. LINEAR PDEs S

A PDE is called linear if L is a limear partial differential operator so that

= : ’
0 Lu=f (1.16)
3
The variable u is dependent mbmw. is a function of the independent variables
alone. If the equation is not lineap it is described as nonlinear. Equation (1.16)
is homogeneous if f=0; othe it is referred to as nonhomogeneous. A
solution for the equation is a function of independent variables which satisfies
(1.16). The order of a PDE is the order of its highest order derivative. The
following are examples of PDEs.

Lu=u,+u,=x(x+2y) (17
_ Lu=u,,+u, =0 (1.18)
Lu=u,u, +uu, =0 . (1.19)

Equation (1.17) is linear, nonhomogeneous of order 1 with a solution u=x.
The second equation (1.18) is linear, homogeneous of order 2. One can verify
that u=sin x, u=e”™*, u=g(x) and u=h(y—x) are all solutions of (1.18).
The functions g and 4 are arbitrary. The last equation (1.19) is nenlinear,
homogeneous of order 2. It has a solution u=sin(x+y).

For ODEs of nth order, general solutions are families of functions with
arbitrary constants. Instead of arbitrary constants, general solutions for PDEs
are arbitrary functions of definite functions. The last two solutions mentioned
for (1.18) were arbitrary functions g(x) and h(y—x). This implies that
functions e*, cosx, sin(y—x), (y—x)?, In(y—x), and all others that are
appropriately differentiable functions of x alone or y—x are solutions of
(1.18). Finding a particular solution from a general solution satisfying a
constraint may be a difficult task. It may be preferable to find a particular
solution satisfying specified conditions directly. a

L6. CLASSIFICATION OF A LINEAR PDE QF SECOND ORDER

A second order ﬁan&. PDE with two independent variables has the form

Au+Bu,+ &, + Du,+ Eu + Fu=G (1.20)
m

where coefficients A4,...,G are mm_Umn#woum of x and y alone. The n@nmmon is
hyperbolic, elliptic, or parabolic at specific point in a domain as
; : =

ZB2—44C : (120
T—

is positive, negative, or zero. .Hdmn_mmm:.mnmmcn is analogous to :l.
geomgtry classification of conic séétions. it can be shown by proper cos.:



LINEAR DIFFERENTIAL EQUATIONS

_nsformation that the nature of (1.20) is invariant and the sign of (1.21) is
naltered. Equation (1.20) can be classified different at different points.
Jould the coefficients 4,..., G be constants, then the equation is a sinfle type
or all points of the domain. For details of the n,_mm&mnmmonm..wum information
on canonical forms and orpnmoﬁn.mmnw equations, the reader may refer to
gommerfeld [31, pp. 36-43]. Illustrations of the classification follow:

=

(2) s — iy, =0 i hyperbolic with B2 —44C=4,
(b) Uxx+ 1y, +u=xyiselliptic with B2 —44C=—4,
(c) Uxxtuy—u,+u=0is parabolic with B2 —44C=0."

(d) .. +xu,, =0 is elliptic, parabolic, or hyperbolic as x>0, x=0, or
" x<0 since B* —4AC=—4x.

17.: BOUNDARY VALUE PROBLEMS WITH PDEs
—_ =i
. A mathematical problem composed of a PDE and certain constraints on the

£ boundary of the domain is called a boundary vaiue problem. If u is the
£ dependent variable of the PDE it must satisfy the PDE in a domain of its
independent variables and also constraint equations involving u and ap-
¥ propriate partial derivatives of u. .

- Problems involving time ¢ as one of the independent variables of the PDE
¢ may have a condition given at one specified time, frequently when +=0. Such a

+ constraint is referred to as an initial condition. If all the supplementary
~ conditions are initizl conditions then the problem is an initial value problem. A

& problem that has both initial and boundary conditions is properly called an

5. initial-boundary valve problem. In the literature one often finds the use of the

“terminology boundary value problem to include the initial-boundary value
- problem or mixed problem. In the problem

e e

. w(x)=atu(x,1), (0<x<l,1>0) (1.22)
| %.cu::.cup (1>0) (1.23)
u(x,0)=f(x), (0<x<1) ° (1.24)

&n condition (1.24) is an initial condition, while (1.23) are boundary condi-
ons. The problem: (122)~(1.24) is an initial-boundary value problem or
MEHE.w 2 boundary value problem depending on one’s preference. .
: mEm.Hmna and uniqueness are important topics for mo:ume or initial value
‘Problems of PDEs, At this time we indicate: only a Cauchy-Xovalevsky

Mﬁo_.nE moasunmnw ,ua order PDE with initial conditions. For details see
: mn:Emb.mm_ou and Thoe [39, pp. 100—1091. :
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BOUNDARY VALUE mwowgfmmcﬁ . 1
Theorem.* Let m .
—— c
= F( x, 4y, 50, 0,,,) (1.25)
. m
be the PDE with initial nou&ao_mw
0, x)=f(x)
o .
:m.o.ium?v (1.26)

Functions f(x) and g(x) are defined on an interval of the x axis containing the
origin. Assume that f(x) and g(x) are analytic in a neighborhood of the origin
and F is analytic in a neighborhood of the point (0,0, f(0). g(0). 7(0).
£’(0), f7(0)). Then the problem (1.25), (1.26) has a unique analytic solution
u(x, ) in a neighborhood of the origin. .

The Cauchy-Kovalevsky thedrem . serves as an example of an existence-
uniqueness theorem for an IVP with a PDE. At a later time we will investigate
properties of existence and uniqueness for a few problems of mathematical
physics. -~

A mathematical problem is well posed if it has a unique solution thai
depends continuously on initial or boundary data. The last requirement
implied above is sometimes referred to as stability. For a mathematical model
to describe a specified phenomenon, a small modification in the original data
should result only in a small variation of the solution. Even though most of our
problems are well posed, it is important to know that there are probléms that
fail to meet these conditions. From a family of examples attributed to
Hadamard [16, p. 33-34] the elliptic equation s n e e

EAHIT:E‘”O. .IOOAHAS. p\VD
with the initial conditions on the x axis ;
u(x,0)=0, —0 XX
:»Ak.ovﬂml.\ﬂmmb nx, —oco<x<oo
has the solution m )
/ Me— - ST
u(x, y)> sin nxsinhny - - (1.27)
H i .

As n—co, m..}lmE nx—0, but mo_..an#o the solution ml_\m\: sin nxsinh ny —on
far any y#<0. The solution C.wmm&m to depend continuously on the initjsl
data, and therefore is unstable. ’ _
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LINEAR Uaﬁmég EQUATIONS

_ g. SECOND ORDER LINEAR PDEs WITH

“FOne of the mmaﬁ_mmﬁ... equations in this nmﬁ.moQ is a second order partial
derivative equal to 2 function of the independent variables. Illustrations of this
ype follow.

Example L. Finda solution for the PDE

. P g5
K.C.lkmv

L
u,= ..W +f(x)

=where f/(x) is an arbit-ary function of x only. A second integration reiative to
with y fixed produces the solution

3.3
u==2"47(x)+g(y)

Fwhere g(y) is an arbitrary function of » alone. Anticipating an iniegration
Frelative to x. we select an arbitrary function f’(x) in derivative form in the first

Fstep.

= :.,.A.\__PSHHH and w(x,0)=e~ .
w.,m:ﬁnmqmszw the PDE relative to y, one obtains , ; T
- B ) i el x) o o ’ .

]

HC 10 the nature of the first supplementary condition we determine f(x)
m.n.woﬂn finding u. : .

u (x,.0)=x>=1+f(x)

is implies that

fx)=x=1
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SECOND ORDER LINEAR PDEs WITH @Zmﬁz,_, COEFFICIENTS 13

Therefore,

anon

u,Se’+x'—1
.M s
Integrating a second time relative & y, one finds
3
u=e’Bx’y—y+g(x)
W. ;
To determine g(x) we use the second condition,
u(x.0)=e*=1+g(x)
It follows that
g(x)=e*—1

The solution for the problem is

u=e¥+x3y—yptes—1

For a second type, we consider the equation with second partial derivatives

only _
: T:k+w_=.c.+ Cu,, =0 r (1.25)
where A4, B, and C are real constants. Let ) .
u=f(y+mx) (1.29)

be a proposed solution. We attempt to find m so that (1.29) satisfies (1.28). :.,.x

is a solution of (1.28) it must be twice differentiable. Substituting (1.29) into
(1.28), we obtain ‘ ‘

Am?*f“( y+mx)+Bm “(y+mx)+Cf*(p+mx) =0

If f7(y+mx)#0, e
o

C . s —
. ¢ Am*dtBm+C=0 (1.30}

2 .

The polynomial equation (1.30) is wﬂormaponnam:o equation. If it has &ﬂ?ﬁ. ‘
roots m=m, and m=m, then :H\@+S_kv and u=g(y+m;x) are solytions -

of (1.28). The linear combination m

:nw@lq_ml +WQ+§.H.,H.v_ 7 | /
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“If m, and m, are distinct and new variables

r=y-+mx and s=ytmyx (1.32)

(1.33)

ot .rwm T Equation (1.33) can be simplified so that the coefficients of
i=and-u,, are both zero, and

u,,=0 (1.34)
‘Equation (1.34) is w special type solvable by integration. It has the solution
. u=f(r)+g(s)

,N_,.nﬁﬁm&um r and s as given in (1.32) one obtains the solution (1.31).
‘The d’Alembert solution of the wave equation

~

,:L.wl.l..ﬁ.‘.m:xwano (1.35)

hyperbolic. The auxiliary equation is

(1.36)
72 The transformation (1.32) becomes

. . r=x+ect and s=x—c (1.37)
.n.S.m_.Q.uﬁ as described above, we obtain

u=f(x+ct)+g(x—ct)

1€ solution of the wave equation.

; solutions of the characteristic equation (1.30) may be (a) real and
ca .(b) double, or (c) conjugate (imaginary part nonzero) complex num-
vﬂ,m. m.vn. discriminant for the quadratic- equation (1.30) is the same as the
Summant for (1.28). Therefore, a hyperbolic PDE (1.28) is matched by real
mm.l.wn m,_mcbn_ﬁ roots ir: (1.30); an elliptic equation (1.28) is paired with conjugate

Z complex roots in (1.30); and a parabolic equation (1.28) is associated with a
szdouble root in (1.30). : C

is a mooa Ewwﬂmmos of the transformation described in (1.32). Equation (1.35)
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C=0. The two roots are m, = Im\uk.?

If m,=m, in (1.30), then B> —4
second solution for (1.28) is

mous

ny

:Hmu%ﬁw..*.w:_ku ._ -

This result can be verified if m, HW.N =—B/24 is employed. In this case

= ..
u=f(y+mx)+xg(y+mx) (1.38)
@
is a general solution for (1.28). Oﬁm. can show that
=) i
u=f(y+mx)+yg(y+mx) (1.39)

is a general solution of (1.28) also.

. 2z qLi=L
Example 1.8. Find a general solution for u, +4u,, +4u,, =0. i

rx
This equation is parabolic. The characteristic equation has a double root

—2. A general solution using (1.38) is
u=f(y-2x)y*xg(y—2x)
If (1.39) is used . |
u=f(y—2x)+yg(y—2x)
isa mmunrw._ solution.

Example 1.9. Determine a solution for u,, +4u,, =0. wmhT AR - ’
The discriminant B2 —4A4C<0. Therefore, the equation is elliptic. The

characteristic equation has toots =2i. The general solution is written in the

same form as (1.31). For this PDE - :

u=f(y—2ix)+g(y+2ix)

is a general solution.

By comparison with an ODE one may suspect the existence of an n.xvou.n:-.
tial solution for the homogeneous PDE

. ﬂ\:.u +Bu,,+€u,,+Du, + Eu, + Fu=0 _ (1.40)°
where the coefficients 4,..., F B@R& constants. Let
2 e
=g s A {1.41)

where a'and B are real, be a pugpesed solution. Substituting (1.41) in 1 1.40:

e

STUDEN
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. " obtains the condition ‘
U

E Aa?+Baf+CB2 +Da+EB+F=0 (1.42)

L . ﬂ o the pcm&.mmn nr_mmno: (1.42), one may solve for B as a function of a or e as
"¢ nction of B Assume that we solve for B and obtain B,(a) and By(a). A
‘mn_.p_m:o_nmon. :

E“.W‘_Nnk+m._ﬁnu.v. +.~A.~mnk+.mnnn:.

E e resulc ¥

>

w.l Je 1.10.~ Determine a solution for the PDE

g =ty 2w Fu=0 (1.43)
Substitute the exponential function
u=e ax+f8y

n (1.43). The characteristic equation

o* =pr—2g+1=0

8=a—1 and mﬂlwi . -

S

s :.ﬁ F%. member of (1.42) has distinct linear factors, the type of
plification discussed is possible. The case of a repeated linear factus may be
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. SECOND ORDER LINEAR PDEs WITH CONS1 ANT COEFTICIENTS
o

Example 1.11. ' Examine WJ
c
u,, —2u,, +_Mw —2u,+2u,+u=0
]

for a general solution. S
Let u=e“**#” and obtain a chafacteristic equation .
. ; D

[<5)
o? —20f+B? —2p+2a+1=0
O

The double root is

Upl

' B=aTl
An exponential form of a solution ww. ;
u=e?| K je®*t7) + K, xe™= ]
A general mowmmow.
u=e’[ f(x+y) +xg(x+y)]

can be verified.

Certain cases may arise in (1.42) where linear factors with imaginary
elements appear. .

Example 1.12.  Investigate a solution for the equation

—

uy, tuy, —2u, +u=0 (1.45)
Let n
! nlll.mnk.T.m.v.
be a proposed solution. The characteristic equation
nm.m_.mwlm_m+_ﬂo
has two linear factors with memm_mQ elements for which .
’ m
D B=1=i
T A
An exponential solution is _clu
‘ . = . . .
:Hmb%m&ui.b +e*x—n)] (1.46)
e
T
0p]



LINEAR DIFFERENTIAL EQUATIONS

. =k general solution for (1.45) is suggested by (1.46)

— u=e'| f(x+iy) +g(x—i)] (1.47)

In some situations the exponential procedure may produce a set of useful
articular solutions, but fail to suggest a general solution.

ample 1.13. Determine a solution for the equation

sy hu b 4u=0

ol +B*+4=0

ith

_. pe=ifiTa
[ the exponential substitution is followed then .
| u= mnaﬂﬂ_mm«y&+ﬁum lEL
: .m.m&.smon can b= expressed
:Hmnaﬁa_ cos ,\wﬂe;.bmmwmb ot +hL
K, and K, are properly related to M, and M, using mEmH.m identity.
.pﬁmon (1.40) can be mo?nm almost like an OUm if only partial derivatives

.__E espect to one variable appear. Arbitrary constants of the ODE solution
¢ arbitrary functions of the remaining variable. .

£’ SECOND ORDER LINEAR PDEs WITH CONSTANT COEFFICIENTS
‘ . ;.

Ry

R R R

as a solution . E
hi s . s

c
:Hn_mu+numw
T ®©

Arbitrary constants ¢, and M.M. are Hq@mnma by arbitrary functions of x alone.

The general solution becomes =

o}
i :Hmuw\?.mv+mam?u

o
Other PDEs may be solved by usifig comparable solutions of ODEs.

Example 1.15. Find a solution for the FPDE

o ——

xu,, +2u, =y

We observe that the equation may be written
. [xu, +2u]=p?
ay <

By integrating, we obtain

3

x:.«+~:HNmr+ﬁ.«V

Dividing by x, with y fixed, one recognizes a linear differential equation of first
order

3
u +m.:H%|+\.Tnv
. x 3x X

x

The integrating factor is x2. This equation may be displayed
82N
o (x*u)= 3 +xf(x)

Integrating the most recent equatiof we obtain
g e}
. 4
O

)

-
xtu= xlmv.%.*.&*mkv.fm:;

S-H

An explicit form of the solution is |—

_y 1
U= ?:HMQC;

STUDEN




nd [18; Chapter 8].

.f...

2

U= XY u (9, )=y

and

(2) |<:‘_.v.+.ﬂ«.v..‘.“ x

Q) Mg t2u, T 3u,,=0.
.m.. # H&u EHHIME; d.+.£.<.v.”o.
3 3 (&) u.,+ npz._.._..n 0, a=>0.

(N w,—2u,,+t 2u,, =0.

:Determine a solution for
After finding B as
nfy .En general solution.

ore information regarding Section 1.8,

\

he bouadary value problem

B4 Determine a solution for u =cosx if
u(m, y)=msin y.

; H
4 Classify the {npllowing PDEs as hyperbolic, parabolic or elliptic:

LINEAR DIFFERENTIAL EQUATIONS

ST L, A

50)=s0>

u(x,1)=cosx

1% 13

(b)) xPu. T m_..x.v_:n.*.+p_..,. Uy, Fu U= 0.

Solve the equations (¢)—(f)-

m _...Jﬁ d’Alembert ..wo:.&o,: of the wave equation (1.35) 18
:H_Ax+n&+mﬁxln$

« Solve the wave equation if u(x,0)=0 and u _A.,.qu.gﬁﬁ.&.

~& 6. .,n.mv Determine 2 general solution for equation .ﬁou by using the transfor-

. .Emmon s=y—3x, r=y X
b) 11 u(0, y)=9 and (0,

y)=¢(y) in (a). show that

u= w..\.—.,.ﬁ.x.vnc& da

y—3x

:fpfwr,:.+:_.,.+=._+:..Ho by letting u=
a function of a, proposc a general solution.

the reader may consult
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8. . Using the .substitution :Hmnﬂfnwwm& find an exponential solution for’
Anuulzé._lm: TAu = (b) ﬁnommn and verify a general solution for
the equation. i i c

9. Solve the PDE xu,,+3u,= A

o
c
®©
o
1f m:ﬁ+m:¢+ﬁz§nm~a. ) M B, and C are constants, then the
equation has a general solution % ;o

@©
:H.:%H:M& +ﬁan. ¥) .
; -)
where u(x, y)isa general solution of Au,,+Bu,,+ Cu,,=0 and u,(x. ¥)

is a particular solution of the original equation. Find a general solution
for the following equations:

(a) :x.ﬁ.lw:é.._.wzﬁﬂmx
(b)) Ug—Ugy— 2Uy, =S Y-

19. SEPARATION OF VARIABLES

|

It is assumed in this method that the solution of a PDE can be expressed in the
form of a product of functions of single independent variables. Using this
procedure we produce an equation with one mernber a function of a single
variable and the other member a function of the remaining variables. Each .
member can be a constant but not 2 function of all the original independent

variables. This process 18 illustrated in the following examples.

Example 1.16.

Find a solution for the PDE

(1.48)

_ u,=4u,,
using the separation of variables. ’
We assume that the solution of (1.48) has the form
w(x, 1)=X(x)T(¢) (1.49)

where X is a function of x alone and T is a function of 1 alone. Inserting C-nau

into (1.48) we obtain = s
‘ (@]

‘ Kb=ax'T

i 2
After dividing by 4XT, one has tig variables separated in the form

S ..
I...._. B rr




g B 8(T)\_
o ) mhﬁﬂ.v 0

ﬂ 7=9(x)

sistan :
which has a solution

=00

"o the same constant, say a” or —a?.
If o is used (1.50) becomes

A -

AT~ X
“Result (1.52) is equivalent to two ODEs

T'—4a*T=0
X" —a*X=0

T=Aet""

k”m_mnmﬂ. +mHm|QH

umn_.num the solutions of (1.54) in (1.49) we find a solution
u(x, t Ima.nr_ﬂﬁ__mna + ﬁ,.um =ux)

ere C, J\G_ tnd C,=AB,
{—o® is used _:mﬂnma of &? in (1.52) the two ODEs are

T'+427T=0
= X'+ a2X=0
lutions of (1.55) are

3 T=Ave~te* _

X=Bf}cos ax+ Bfsinax

: (L. mS _md_:,m_.g:mﬁa _um_.:mzz relative to _, one attains the nnmﬁz

ing ¢ is an arbitrary function of x alone, the solution of (1.51) is

... w WWT.H}N.UEHHZEF HOC._P,:OZm

(1.51)

s violates the condition that 7" is a function of ¢ alone unless ¢(x) is a
t. A similar partial differentiation of (1.50) relative to x leads to a PDE

valid only if () is constant. Therefore both members of (1.50) must be equal

(1.52)

(1.53)

(1.54)

(1.55)

(1.56)

iy
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SEPARATION OF VARIABLES

mous

Using the solutions of (1.56) in GW.& we have
: : o

c
e B ﬁmwoom ax+ Cfsinax]

In Eo& of our BVPs a bounded m&tnon will be necessary. The constants a? or
—a? must be selected to satisfy w@ requirement.

Example 1.17. Determine a mo__h@u for

D

u,=a*(u,,+u,) ‘ (1.57)

Since three independent variables appear in (1.57), we let
u(x, y,t)=T(t)X(x)Y(y) (1.38)
Equation (1.57) has the form .
H\.&%Hnuﬁﬁkzu\.r TXY") . C.‘.MB

after substituting (1.58) in the PDE. Equation (1.59) has another form

— =+ ~ (1.60)

Partially differentiating 2 60) relative to x, then y, and finally 1, we :m( e.
respectively

m M\\s _
= (%) =0
9 (Y .
_ a7 )= R
9 (. 7T\ _
(7)o
Solutions of the three PDEs of :.Wv are
3 7 (]
x|,
xH *
u1U
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Ij.ﬂ.rﬂx FDELE.OH__.
P&oﬁ&& ‘ODEs

X" +a?X=0
Y"+B2Y=0
T+ (a?+B*)a’T=0

X=Bcosax+B,sinax

Y=CcosBy+ C,sin Sy ’ "

T=Aexp[— (o +muvni

..m.?n EnEom of separation of variables is valuable fos- mo?Em a ::t...._.mnn of
ant problems of mathematical physics, yet it fails for mahy wUmm mbm
SE C [25, PP 128-129] shows that the second order PDE* with

()XY +B, (1) XY +4,(x) XY+ By (y) X¥'+ [ 4 5(x)+By(y)] X¥=0
E Explicit rules f
el (fer

‘ or the workability of this method are a bit elusive. Types of
ndi

ential equations, kinds of coordinate systems, and forms of boundary
Ons are all important items for the success'of the procedure.

napBEn that follows is from Myint-U [25], by permission of Elsevier North Hailand. Inc.

SEPARATION OF VARIABLES

Exercises 1.4 / h/g /

rlllll.llllnnllllll.

1. Test the following PDEs for thésmethod of separation of variables. If the
method is successful, solve the %m .

(a)
(b)
(©
(d)
(e)
n
ce 9)
1)
-~
6)]
(x)

25

& ¢, ﬁ\v / N»&mv

ogymous

u,,—u=0.
Uy~ U, =0.
Uy —t,,—2u,=0.
Up — Ut 2u,—2u tu=
1?u,—xu,,=0.
(2 +x*)u,+u, . =0. . s
U —yu,,—yu,=0.
ey

H.ﬂ,l: yh U =2,

Uptoaded B

e Tl =0.

2. Find a solution for the boundary (or initial) value problems:

(a)
(b)
(<)

3. (a)

() Finda mo_::on for u,,—

=1t =0, u(x,0)=u(0, 1)=0. LI
e Uy, =20, =0, (0, y)=u(x,0)=0.

U, =u,,, uJl0,1)=0.

xx?
Show that the equation ‘with constant coefficients
Au, +Bu,,+Cu,=0

is separable if the coefficients meet proper conditions. Determine.
appropriate conditions. Note: Let u(x, y)=X(x)Y(y) mna show. that -
a result . a

X"\, B
Ai Ta

is obtained from

Slie
@JSHquqp
~|

(=9

be >
|~
+
e (e}
g
I
o

P

wwnm_@, show that

x—AExnEx=0

Y +AY=0 P i

are related ODEs.

STUDE

g e, =0 by separating variables.



