$$\frac{dy}{dx} = \frac{1}{x} \frac{dy}{dt} \quad \text{and} \quad \frac{d^2y}{dx^2} = \frac{1}{x^2} \left[\frac{d^2y}{dt^2} - \frac{dy}{dt} \right]$$

The new ODE with the independent variable t is

$$\frac{d^2y}{dt^2} + 6\frac{dy}{dt} + 9y = 0 (1.15)$$

The characteristic equation

$$m^2+6m+9=0$$
 (m +3)(m+3) = 0

has a double root -3. Equation (1.15) has a general solution

$$y(t) = (c_1 + c_2 t)e^{-3t}$$

Using the transformation again, one obtains

$$y(x) = (c_1 + c_2 \ln x)x^{-3}$$

Euler equations appear in solutions of BVPs involving spherical geometry.

Exercises 1.2

- Determine the general solution for the equation y''-4y'+4y=0.
- Solve the differential equation y'' + 2y' + 2y = 0
- Find a general solution for y'''-2y'-4y=0. Hint: Show firs: that the characteristic equation has a root 2.
- Solve the boundary value problem y''-y=0, y(0)=0, $y'(\pi)=1$.
- Find a general solution for $y^{(4)}-y=0$.
- Solve the differential equation y''' 5y'' + 6y' = 0.
- Determine a general solution for the equation $x^2y'' 3xy' + 3y = 0$
- Solve the BVP $x^2y'' 3xy' + 4y = 0$, y(1) = 0, $y(e) = e^{-x^2}$
- Find a general solution for $x^2y'' xy' + 5y = 0$
- Find a solution for the BVP $x^2y'' + xy' + y = 0$, y(0) = 1, $y(\pi/2) = 2$.

1.5. LINEAR PDES

A PDE is called *linear* if L is a linear partial differential operator so that

$$B Lu = f (1.16)$$

following are examples of PDEs solution for the equation is a function of independent variables which satisfies The variable *u* is dependent and is a function of the independent variables alone. If the equation is not linear it is described as *nonlinear*. Equation (1.16) (1.16). The order of a PDE is the order of its highest order derivative. The is homogeneous if $f\equiv 0$; otherwise it is referred to as nonhomogeneous. A

$$Lu = u_x + u_y = x(x+2y)$$
 (1.17)

$$Lu = u_{xy} + u_{yy} = 0 (1.18)$$

$$Lu = u_y u_{yy} + u u_x = 0 (1.19)$$

homogeneous of order 2. It has a solution $u = \sin(x+y)$. Equation (1.17) is linear, nonhomogeneous of order 1 with a solution $u=x^2$. The functions g and h are arbitrary. The last equation (1.19) is nonlinear that $u = \sin x$, $u = e^{y-x}$, u = g(x) and u = h(y-x) are all solutions of (1.18). The second equation (1.18) is linear, homogeneous of order 2. One can verify

solution satisfying specified conditions directly. constraint may be a difficult task. It may be preferable to find a particular appropriately differentiable functions of x alone or y-x are solutions of are arbitrary functions of definite functions. The last two solutions mentioned arbitrary constants. Instead of arbitrary constants, general solutions for PDEs (1.18). Finding a particular solution from a general solution satisfying a functions e^x , $\cos x$, $\sin(y-x)$, $(y-x)^2$, $\ln(y-x)$, and all others that are for (1.18) were arbitrary functions g(x) and h(y-x). This implies that For ODEs of nth order, general solutions are families of functions with n

1.6. CLASSIFICATION OF A LINEAR PDE OF SECOND ORDER

A second order linear PDE with two independent variables has the form

$$Au_{xx} + Bu_{xy} + \overleftarrow{Q}u_{yy} + Du_x + Eu_y + Fu = G$$
(1)

hyperbolic, elliptic, or parabolic at a specific point in a domain as where coefficients A, \ldots, G are functions of x and y alone. The equation is

$$8^2 - 4AC$$
 (1.2))

geometry classification of conic sections. It can be shown by proper continuous is positive, negative, or zero. The classification is analogous to the

Should the coefficients A, \ldots, G be constants, then the equation is a single type Sommerfeld [31, pp. 36-43]. Illustrations of the classification follow: on canonical forms and characteristic equations, the reader may for all points of the domain. For details of the classification, and information unaltered. Equation (1.20) can be classified different at different points. transformation that the nature of (1.20) is invariant and the sign of (1.21) is

- (a) $u_{xx} - u_{yy} = 0$ is hyperbolic with $B^2 - 4AC = 4$
- (b) $u_{xx} + u_{yy} + u = xy$ is elliptic with $B^2 - 4AC = -4$
- <u>O</u> $u_{xx} + u_x - u_y + u = 0$ is parabolic with $B^2 - 4AC = 0$
- 3 $u_{xx} + xu_{yy} = 0$ is elliptic, parabolic, or hyperbolic as x > 0, x = 0, x < 0 since $B^2 - 4AC = -4x$.

1.7. BOUNDARY VALUE PROBLEMS WITH PDES

dependent variable of the PDE it must satisfy the PDE in a domain of its propriate partial derivatives of u. independent variables and also constraint equations involving u and apboundary of the domain is called a boundary value problem. If u is the A mathematical problem composed of a PDE and certain constraints on the

constraint is referred to as an initial condition. If all the supplementary problem or mixed problem. In the problem initial-boundary value problem. In the literature one often finds the use of the conditions are initial conditions then the problem is an initial value problem. A may have a condition given at one specified time, frequently when t=0. Such a terminology boundary value problem to include the initial-boundary value problem that has both initial and boundary conditions is properly called an Problems involving time t as one of the independent variables of the PDE

$$u_t(x,t) = a^2 u_{xx}(x,t), \quad (0 < x < 1, t > 0)$$
 (1.22)

$$u(0,t)=u(1,t)=0, (t>0)$$
 (1.23)

$$u(x,0)=f(x), \quad (0 \le x \le 1)$$
 (1.24)

tions. The problem (1.22)-(1.24) is an initial-boundary value problem or simply a boundary value problem depending on one's preference. the condition (1.24) is an initial condition, while (1.23) are boundary condi-

Zachmanoglon and Thoe [39, pp. 100-1091 problems of PDEs. At this time we indicate only a Cauchy-Kovalevsky theorem for the second order PDE with initial conditions. For details see Existence and uniqueness are important topics for boundary or initial value

BOUNDARY VALUE PROBLEMS WITH PDES

Theorem.*

be the PDE with initial conditions $\frac{0}{40}(0,x) = f(x)$ $u_{II} = F(\underline{I}, x, u_{I}, u_{x}; u_{Ix}u_{xx})$

(1.25)

$$u(0,x) = g(x)$$

and F is analytic in a neighborhood of the point (0,0,f(0),g(0),f'(0))u(x, t) in a neighborhood of the origin g'(0), f'''(0)). Then the problem (1.25), (1.26) has a unique analytic solution origin. Assume that f(x) and g(x) are analytic in a neighborhood of the origin Functions f(x) and g(x) are defined on an interval of the x axis containing the

The Cauchy-Kovalevsky theorem serves as an example of an existence-uniqueness theorem for an IVP with a PDE. At a later time we will investigate properties of existence and uniqueness for a few problems of mathematical

problems are well posed, it is important to know that there are problems that Hadamard [16, p. 33-34] the elliptic equation should result only in a small variation of the solution. Even though most of our fail to meet these conditions. From a family of examples attributed to describe a specified phenomenon, a small modification in the original datu implied above is sometimes referred to as stability. For a mathematical model depends continuously on initial or boundary data. The last requirement A mathematical problem is well posed if it has a unique solution that

$$u_{xx}+u_{yy}=0$$
, $-\infty < x < \infty$, $y>0$

with the initial conditions on the x axis

$$u(x,0)=0, -\infty < x < \infty$$

$$u_y(x,0) = e^{-\sqrt{n}} \sin nx, \quad -\infty < x < \infty$$

has the solution

$$u(x,y) \stackrel{\bigcirc}{=} \frac{e^{-\sqrt{n}}}{n} \sin nx \sinh ny$$

data, and therefore is unstable. As $n \to \infty$, $e^{-\sqrt{n}} \sin nx \to 0$, but $fo_{-\infty}^{O} \neq 0$ the solution $e^{-\sqrt{n}} / n \sin nx \sinh ny \to \infty$ for any $y \neq 0$. The solution (1.2% fails to depend continuously on the initial JD

SECOND ORDER LINEAR PDES WITH CONSTANT COEFFICIENTS Therefore,

Therefore,

Integrating a second time relative $\Theta_{\mathcal{F}}$ y, one finds

 $u = e^{y} + \frac{\alpha}{2} x^{3} y - y + g(x)$

To determine g(x) we use the second condition,

$$u(x.0) = e^x = 1 + g(x)$$

It follows that

$$g(x)=e^x-1$$

The solution for the problem is

$$u = e^y + x^3y - y + e^x - 1$$

only For a second type, we consider the equation with second partial derivatives

$$Au_{xx} + Bu_{xy} + Cu_{yy} = 0$$

(1.28)

where A, B, and C are real constants. Let

$$u = f(y + mx) \tag{1.29}$$

be a proposed solution. We attempt to find m so that (1.29) satisfies (1.28). If f is a solution of (1.28) it must be twice differentiable. Substituting (1.29) into (1.28), we obtain

$$Am^2f''(y+mx)+Bmf''(y+mx)+Cf''(y+mx)=0$$

If $f''(y+mx)\neq 0$,

$$m^2 \stackrel{\text{C}}{\text{Li}} Bm + C = 0$$

roots $m=m_1$ and $m=m_2$ then $u=f(y+m_1x)$ and $u=g(y+m_2x)$ are solutions of (1.28). The linear combination \geq The polynomial equation (1.30) is a characteristic equation. If it has distinct

 $u = f(y + m_1 x) + g(y + m_2 x)$

()

CONSTANT COEFFICIENTS 1.8. SECOND ORDER LINEAR PDEs WITH

type follow. derivative equal to a function of the independent variables. Illustrations of this type follow. One of the simplest equations in this category is a second order partia

Example 1,6. Find a solution for the PDE

$$u_{xy} = xy^2$$

First integrate relative to y with x fixed. Then

$$u_x = \frac{xy^3}{3} + f'(x)$$

x with y fixed produces the solution where f'(x) is an arbitrary function of x only. A second integration relative to

$$u = \frac{x^2 y^3}{6} + f(x) + g(y)$$

relative to x, we select an arbitrary function f'(x) in derivative form in the first where g(y) is an arbitrary function of y alone. Anticipating an integration

Example 17. Solve the PDE

$$u_{yy} = e^{y}$$

with the supplementary conditions

$$u_y(x,0) = x^3$$
 and $u(x,0) = e^{-x^3}$

Integrating the PDE relative to y, one obtains

$$u_y = e^y + f(x)$$

Due to the nature of the first supplementary condition we determine f(x)perfore finding u.

$$u_{y}(x,0)=x^{3}=1+f(x)$$

his implies that

$$f(x) = x^3 - 1$$

If m_1 and m_2 are distinct and new variables

$$r = y + m_1 x$$
 and $s = y + m_2 x$ (1.32)

gare introduced in (1.28), the new equation is

$$A[m_1^2u_{rr}+2m_1m_2u_{rs}+m_2^2u_{ss}]+B[m_1u_{rr}+(m_1+m_2)u_{rs}+m_2u_{ss}]$$

$$+C[u_{rr}+2u_{rs}+u_{ss}]=0 (1.33)$$

urand-us, are both zero, and assuming $u_{rr} = u_{sr}$. Equation (1.33) can be simplified so that the coefficients of

$$u_{rs} = 0$$
 (1.34)

Equation (1.34) is a special type solvable by integration. It has the solution

$$u=f(r)+g(s)$$

Replacing r and s as given in (1.32) one obtains the solution (1.31). The d'Alembert solution of the wave equation

$$u_{\mu} = c^2 u_{xx}, c > 0$$
 (1.35)

is hyperbolic. The auxiliary equation is is a good illustration of the transformation described in (1.32). Equation (1.35)

$$m^2 - c^2 = 0 (1.36)$$

The transformation (1.32) becomes

$$r = x + ct \quad \text{and} \quad s = x - ct \tag{1.37}$$

Using (1.37) as described above, we obtain

$$u=f(x+ct)+g(x-ct)$$

for the solution of the wave equation.

and distinct roots in (1.30); an elliptic equation (1.28) is paired with conjugate bers. The discriminant for the quadratic equation (1.30) is the same as the Complex roots in (1.30); and a parabolic equation (1.28) is associated with a discriminant for (1.28). Therefore, a hyperbolic PDE (1.28) is matched by real distinct. (b) double, or (c) conjugate (imaginary part nonzero) complex num double root in (1.30) The solutions of the characteristic equation (1.30) may be (a) real and

> second solution for (1.28) is If $m_1 = m_2$ in (1.30), then $B^2 - 49C = 0$. The two roots are $m_1 = -B/2A$. A cond solution for (1.28) is

$$u = \underset{\circ}{\overset{\circ}{ag}}(y + m_1 x)$$

This result can be verified if $m_1 = \overline{m}_2 = -B/2A$ is employed. In this case

$$u = f(y + m_0 x) + xg(y + m_1 x)$$
 (1.38)

is a general solution for (1.28). One can show that

$$u = f(y + m_1 x) + yg(y + m_1 x)$$
 (1.39)

is a general solution of (1.28) also

Example 1.8. Find a general solution for $u_{xx} + 4u_{xy} + 4u$ m 2+4 11-11

-2. A general solution using (1.38) is This equation is parabolic. The characteristic equation has a double root

$$u=f(y-2x)+xg(y-2x)$$

If (1.39) is used

$$u=f(y-2x)+yg(y-2x)$$

is a general solution

Example 1.9. Determine a solution for $u_{xx} + 4u_{yy} = 0$.

same form as (1.31). For this PDE characteristic equation has roots ±2i. The general solution is written in the The discriminant $B^2-4AC<0$. Therefore, the equation is elliptic. The

$$u=f(y-2ix)+g(y+2ix)$$

is a general solution

tial solution for the homogeneous PDE By comparison with an ODE one may suspect the existence of an exponen-

$$Au_{xx} + Bu_{xy} + \mathcal{E}u_{yy} + Du_x + Eu_y + Fu = 0$$

(1.40)

where the coefficients A, \ldots, F are real constants. Let

$$O\mu = e^{\alpha x + \beta y} \tag{1.41}$$

where α and β are real, be a proposed solution. Substituting (1.41) in (1.40): \Box \Box \Box \Box \Box \Box

 $A\alpha^2 + B\alpha\beta + C\beta^2 + D\alpha + E\beta + F = 0$ (1.42)

In the quadratic equation (1.42), one may solve for β as a function of α or α as particular solution function of β . Assume that we solve for β and obtain $\beta_1(\alpha)$ and $\beta_2(\alpha)$. A

$$u = K_1 e^{\alpha x + \beta_1(\alpha)y} + K_2 e^{\alpha x + \beta_2(\alpha)y}$$

is the result.

example 1.10. Determine a solution for the PDE

$$u_{xx} - u_{yy} - 2u_x + u = 0 (1.43)$$

Substitute the exponential function

$$u = e^{\alpha x + \beta y}$$

in (1.43). The characteristic equation

$$\alpha^2 - \beta^2 - 2\alpha \pm 1 = 0$$

has solutions

$$\beta = \alpha - 1$$
 and $\beta = -\alpha + 1$

Using superposition of the two solutions one finds the particular solution

$$u = K_1 e^{\alpha x + (\alpha - 1)y} + K_2 e^{\alpha x + (-\alpha + 1)y}$$

This solution may be written

$$u = K_1 e^{-y} e^{\alpha(x+y)} + K_2 e^{y} e^{\alpha(x-y)}$$

We may conjecture that a general solution has the form

$$u = e^{-y} f(x+y) + e^{y} g(x-y)$$
 (1.44)

into (1.43), we confirm that (1.44) is a solution. where f and g are twice differentiable arbitrary functions. By substituting (1.44)

When the left member of (1.42) has distinct linear factors, the type of simplification discussed is possible. The case of a repeated linear factor may be considered by using a result comparable to (1.38) or (1.39).

for a general solution

Let $u = e^{\alpha x + \beta y}$ and obtain a characteristic equation $\alpha^2 - 2\alpha\beta + \frac{\alpha}{\beta}^2 - 2\beta + 2\alpha + 1 = 0$ ne double root is

$$\alpha^2 - 2\alpha\beta + \frac{\alpha}{\beta}^2 - 2\beta + 2\alpha + 1 =$$

The double root is

$$\beta = \alpha + 1$$

An exponential form of a solution is

$$u=e^{y}\left[K_{1}e^{\alpha(x+y)}+K_{2}xe^{\alpha(x+y)}\right]$$

A general solution

$$u=e^{y}[f(x+y)+xg(x+y)]$$

can be verified

elements appear. Certain cases may arise in (1.42) where linear factors with imaginary

Example 1.12. Investigate a solution for the equation

$$u_{xx} + u_{yy} - 2u_y + u = 0 (1.45)$$

Let

$$u=e^{\alpha x+\beta y}$$

be a proposed solution. The characteristic equation

$$\alpha^2 + \beta^2 - 2\beta + 1 = 0$$

has two linear factors with imaginary elements for which

$$\bigcup_{i=1}^{m} \beta = 1 \pm i\alpha$$

An exponential solution is

$$u = e^{i\Pi} e^{\alpha(x+iy)} + e^{\alpha(x-iy)}$$

(1.46)

general solution for (1.45) is suggested by (1.46)

$$u = e^{y} [f(x+iy) + g(x-iy)]$$
 (1.47)

is easy to verify that (1.47) is a solution of (1.45).

In some situations the exponential procedure may produce a set of useful particular solutions, but fail to suggest a general solution.

example 1.13. Determine a solution for the equation

$$u_{xx}+u_{yy}+4u=0$$

One obtains a characteristic equation

$$\alpha^2 + \beta^2 + 4 = 0$$

Ullva

$$\beta = \pm i \sqrt{\alpha^2 + 4}$$

If the exponential substitution is followed then

$$u = e^{\alpha x} \left[K_1 e^{i\sqrt{\alpha^2 + 4}y} + K_2 e^{-i\sqrt{\alpha^2 + 4}y} \right]$$

This solution can be expressed

$$u = e^{\alpha x} \left[M_1 \cos \sqrt{\alpha^2 + 4} y + M_2 \sin \sqrt{\alpha^2 + 4} y \right]$$

 K_1 and K_2 are proporty related to M_1 and M_2 using Euler's identity.

Equation (1.40) can be solved almost like an ODE if only partial derivatives with respect to one variable appear. Arbitrary constants of the ODE solution become arbitrary functions of the remaining variable.

Example 1.14. Solve the PDE

$$u_{yy} - 4u_y + 3u = 0$$

In dependent variable u is a function of x and y, but the only derivatives involved are relative to y alone. The corresponding ODE, with u as a function of y.

$$\frac{d^2u}{dy^2} - 4\frac{du}{dy} + 3u = 0$$

SECOND ORDER LINEAR PDES WITH CONSTANT COEFFICIENTS

has a solution

$$u = c_1 e^{2y} + c_2 e^{y}$$

Arbitrary constants c_1 and c_2 are replaced by arbitrary functions of x alone. The general solution becomes

$$=e^{3y}f(\mathbf{x})+e^{y}g(x)$$

Other PDEs may be solved by using comparable solutions of ODEs

Example 1.15. Find a solution for the PDE

$$xu_{xy} + 2u_y = y^2$$

We observe that the equation may be written

$$\frac{\partial}{\partial y} [xu_x + 2u] = y^2$$

By integrating, we obtain

$$xu_x + 2u = \frac{y^3}{3} + f(x)$$

Dividing by x, with y fixed, one recognizes a linear differential equation of first order

$$u_x + \frac{2}{x}u = \frac{y^3}{3x} + \frac{f(x)}{x}$$

The integrating factor is x^2 . This equation may be displayed

$$\frac{\partial}{\partial x}(x^2u) = \frac{xy^3}{3} + xf(x)$$

Integrating the most recent equation we obtain

$$x^{2}u = \frac{x^{2}}{6} + f^{*}(x) + G(y)$$

An explicit form of the solution is

e solution is
$$C$$

$$u = \frac{y^3}{6} + \frac{1}{10}f(x) + \frac{1}{x^2}G(y)$$

LINEAR DIFFERENTIAL EQUATIONS

For more information regarding Section 1.8, the reader may consult

xercises 1.3
1. Solve the boundary value problem

$$u_{xy} = 0, \quad u_x(x,0) = \cos x, \quad u\left(\frac{\pi}{2}, y\right) = \sin y$$

2 Find the solution for

$$u_{yx} = x^2y$$
, $u_{y}(0, y) = y^2$, $u(x, 1) = \cos x$

Determine a solution for $u_{xx} = \cos x$ if

$$u(0, y) = y^2$$
 and $u(\pi, y) = \pi \sin y$.

Classify the following PDEs as hyperbolic, parabolic or elliptic:

- (a) $yu_{xx} + xu_{yy} = 0$.
- (b) $x^2 u_{xx} + 2xy u_{xy} + y^2 u_{yy} + u_x + u_y = 0$
- (c) $u_{xx} + 2u_{xy} 3u_{yy} = 0$. (d) $u_{xx} 2u_{xy} + u_{yy} = 0$.
- $u_{xx} + a^2 u_{yy} = 0, a > 0.$
- $u_{xx} 2u_{xy} + 2u_{yy} = 0$ Solve the equations (c)-(f)

The d'Alembert solution of the wave equation (1.35) is

$$u=f(x+ct)+g(x-ct)$$

Solve the wave equation if u(x,0)=0 and $u_i(x,0)=\phi(x)$

- Determine a general solution for equation 4(c) by using the transformation s=y-3x, r=y+x.
- If u(0, y) = 0 and $u_x(0, y) = \phi(y)$ in (a), show that

$$u = \frac{1}{4} \int_{y-3x}^{y+x} \phi(\alpha) d\alpha$$

Determine a solution for $u_{xx} + 2u_{xy} + u_{xy} + u_{x} + u_{yy} = 0$ by letting $u = \frac{1}{2} x^{2} B^{2}$. After finding β as a function of α , propose a general solution. enfy the general solution

SKPAKA LIUIN OF TANKE

8. Using the substitution $u=e^{ax+\beta y} \overrightarrow{Q}(a)$ find an exponential solution for

the equation. $4u_{xx}-u_{yy}-2u_x+4u_y=0$; (b) propose and verify a general solution for

9. Solve the PDE $xu_{xy} + 3u_y = y^3$.

10. If $Au_{xx}+Bu_{xy}+Cu_{yy}=F(x,y)$, $\stackrel{\frown}{A}$, B, and C are constants, then the equation has a general solution $\stackrel{\frown}{\oplus}$

$$u=u_c(x\stackrel{\odot}{\supseteq}y)+u_p(x,y)$$

where $u_c(x, y)$ is a general solution of $Au_{xx} + Bu_{xy} + Cu_{yy} = 0$ and $u_p(x, y)$ is a particular solution of the original equation. Find a general solution for the following equations:

- (a) $u_{xx} = 2u_{xy} + 3u_{yy} = e^x$
- (b) $u_{xx} u_{xy} 2u_{yy} = \sin y$.

19. SEPARATION OF VARIABLES

procedure we produce an equation with one member a function of a single form of a product of functions of single independent variables. Using this It is assumed in this method that the solution of a PDE can be expressed in the member can be a constant but not a function of all the original independent variable and the other member a function of the remaining variables. Each variables. This process is illustrated in the following examples

Example 1.16. Find a solution for the PDE

$$u_t = 4u_{xx} \tag{1.48}$$

using the separation of variables

We assume that the solution of (1.48) has the form

$$u(x,t) = X(x)T(t)$$

(1.49)

where X is a function of x alone and T is a function of t alone. Inserting (1.49)into (1.48) we obtain

$$X^{\mu} = 4X''T$$

After dividing by 4XT, one has the variables separated in the form

$$X'''$$
 (1.50)

If (1.50) is differentiated partially relative to t, one attains the result

$$\frac{\partial}{\partial t} \left(\frac{T'}{4T} \right) = 0 \tag{1.51}$$

Assuming ϕ is an arbitrary function of x alone, the solution of (1.51) is

$$\frac{T'}{4T} = \phi(x)$$

which has a solution constant. A similar partial differentiation of (1.50) relative to x leads to a PDE This violates the condition that T is a function of t alone unless $\phi(x)$ is a

$$\frac{X'''}{X} = \psi(i)$$

to the same constant, say α^2 or $-\alpha^2$ valid only if $\psi(t)$ is constant. Therefore both members of (1.50) must be equal If α^2 is used (1.50) becomes

$$\frac{T'}{4T} = \frac{X''}{X} = \alpha^2 \tag{1.52}$$

Result (1.52) is equivalent to two ODEs

$$T' - 4\alpha^2 T = 0$$

$$X'' - \alpha^2 X = 0$$
 (1.53)

he solutions of the two ODEs of (1.53) are respectively,

$$T = Ae^{4\alpha^2t}$$

$$X = B_1 e^{\alpha x} + B_2 e^{-\alpha x}$$
(1.54)

nserting the solutions of (1.54) in (1.49) we find a solution

$$u(x, +) = e^{4\alpha^2 i} [C_1 e^{\alpha x} + C_2 e^{-\alpha x}]$$

Where $C_1 = AB_1$ and $C_2 = AB_2$. $H : -\alpha^2$ is used instead of α^2 in (1.52) the two ODEs are

$$T' + 4\alpha^2 T = 0$$
$$X'' + \alpha^2 X = 0$$

(1.55)

solutions of (1.55) are

$$T = A^* e^{-4\alpha^2 t}$$

$$X = B_1^* \cos \alpha x + B_2^* \sin \alpha x$$

 $X = B_1^* \cos \alpha x + B_2^* \sin \alpha x$

(1.56)

SEPARATION OF VARIABLES

Using the solutions of (1.56) in (1.29) we have

 $u = e^{-4\alpha^2t} \left[\mathcal{C}_1^* \cos \alpha x + C_2^* \sin \alpha x \right]$

In most of our BVPs a bounded selution will be necessary. The constants α^2 or $-\alpha^2$ must be selected to satisfy this requirement.

Example 1.17. Determine a solution for

$$u_t = a^2 (u_{xx} + u_{yy}) \tag{1.57}$$

Since three independent variables appear in (1.57), we let

$$u(x, y, t) = T(t)X(x)Y(y)$$
 (1.58)

Equation (1.57) has the form

$$T'XY = a^2 \left(TX''Y + TXY''' \right) \tag{1.59}$$

after substituting (1.58) in the PDE. Equation (1.59) has another form

$$\frac{T'}{a^2T} = \frac{X''}{X} + \frac{Y''}{Y} \tag{1.60}$$

respectively Partially differentiating (1.60) relative to x, then y, and finally t, we have

$$\frac{\partial}{\partial x} \left(\frac{X''}{X} \right) = 0$$

$$\frac{\partial}{\partial y} \left(\frac{Y''}{Y} \right) = 0 \tag{1.61}$$

$$\frac{\partial}{\partial t} \left(\frac{T'}{a^2 T} \right) = 0$$

Solutions of the three PDEs of
$$(1.61)$$
 are
$$\frac{X'''\Omega}{X + 1} - \alpha^{2}$$

$$\frac{Y'''\Omega}{Y + 2} - \beta^{2}$$

$$\frac{T'}{\alpha^{2}TO} - (\alpha^{2} + \beta^{2})$$
(1)

SEPARATION OF VARIABLES

the T equation (1.60) be satisfied we select $-(\alpha^2 + \beta^2)$ as the constant in the

associated ODEs

$$X^{i} + \alpha^{2}X = 0$$

$$Y^{i} + \beta^{2}Y = 0$$

$$Y^{i} + (\alpha^{2} + \beta^{2})a^{2}T = 0$$

$$X = B_1 \cos \alpha x + B_2 \sin \alpha x$$

$$Y = C_1 \cos \beta y + C_2 \sin \beta y$$

$$T = A \exp\left[-\left(\alpha^2 + \beta^2\right)a^2t\right]$$

$$\mathbf{u} = \exp\left[-(\alpha^2 + \beta^2)a^2t\right] \left[B_1^* \cos \alpha x + B_2^* \sin \alpha x\right] \left[C_1 \cos \beta y + C_2 \sin \beta y\right]$$

ayed is a bounded solution. colution of (1.57). Other forms for the solution are available. The one

ariable coefficients in x and y VPs Myint-U [25, pp. 128-129] shows that the second order PDE* with portant problems of mathematical physics, yet it fails for many PDEs and The method of separation of variables is valuable for solving a number o

$$A(x, y)u_{xx} + C(x, y)u_{yy} + D(x, y)u_x + E(x, y)u_y + F(x, y)u = 0$$

(1.63)

separable when a functional multiplier $1/[\phi(x, y)]$ converts the new equa-

$$A(x,y)X''Y+C(x,y)XY''+D(x,y)X'Y+E(x,y)XY'+F(x,y)XY=0$$

nto the form

$$\left[(x)X''Y + B_1(y)XY'' + A_2(x)X'Y + B_2(y)XY' + \left[A_3(x) + B_3(y) \right] XY = 0 \right]$$

onditions are all important items for the success of the procedure. Explicit rules for the workability of this method are a bit elusive. Types of ferential equations, kinds of coordinate systems, and forms of boundary

the example that follows is from Myint-U [25], by permission of Elsevier North Holland. Inc.

method is successful, solve the PDE. (a) $u_{xy}-u=0$.

- (a) $u_{xy} u = 0$.

- $t^2u_{ii}-x^2u_{xx}=0.$
- $(t^2+x^2)u_{tt}+u_{xx}=0$
- $u_{xx} y^2 u_{yy} y u_y = 0.$
- $u_{xy}=0.$
- $u_{xx}-u_{xy}+u_{yy}=2x$
- $u_{xx}=u_{yy}-u_y=0.$
- $u_{i} = u_{xx}$
- Find a solution for the boundary (or initial) value problems:
- $u_{tt} u_{xx} = 0, u(x, 0) = u(0, t) = 0$
- $u_{xx} u_{yy} 2u_y = 0, u_x(0, y) = u(x, 0) = 0$
- <u>©</u> $u_t = u_{xx}, u_x(0, t) = 0.$
- (a) Show that the equation with constant coefficients

$$Au_{xx} + Bu_{xy} + Cu_{yy} = 0$$

a result appropriate conditions. Note: Let u(x, y) = X(x)Y(y) and show that is separable if the coefficients meet proper conditions. Determine

$$\left(\frac{X''}{X}\right)' + \frac{B}{A}\left(\frac{X'}{X}\right)'\left(\frac{Y'}{Y}\right) = 0$$

is obtained from

$$\frac{X''}{X} + \frac{\sum_{j=1}^{K} \frac{X'}{X}}{X} + \frac{Y'}{Y} + \frac{C}{A} \frac{Y''}{Y} = 0$$

Finally, show that

from
$$\frac{X'''}{X} + \frac{\mathbb{E}B}{\sqrt{A}} \frac{X'}{X} \frac{Y'}{Y} + \frac{C}{A} \frac{Y''}{Y} = 0$$
ow that
$$\frac{\mathbb{D}}{\mathbb{D}}$$

$$Y'' + \lambda Y = 0 \quad \frac{\mathbb{D}}{\mathbb{D}}$$

$$\frac{1}{\mathbb{D}}$$

are related ODEs

(b) Find a solution for $u_{xx} - u_{xy} + u_{yy} = 0$ by separating variables.