

Dr. Khalil Qatu

ENCE 331: Permeability

What is permeability ?

- Permeability is the capacity of soil to allow water pass through it.
- Factors affecting permeability:
 - Grain size (D₁₀)
 - Void ratio (e)
 - Particle shape (angular vs. spherical)
 - Soil structure
 - Degree of saturation (partially saturated vs. fully saturated)
 - Adsorbed water
 - Stratification of soil
 - Fluid viscosity
 - Temperature

Irregular and narrower

Regular and open

Water flow through soil

STUDENTS-HUB.com

Darcy's law

• Discharge velocity vs. hydraulic gradient

 $v \propto i \longrightarrow v = ki$

 $v = discharge \ velocity$, which is the quantity of water flowing in unit time through a unit gross cross-sectional area of soil at right angles to the direction of flow.

k = hydraulic conductivity (otherwise known as the coefficient of permeability)

Discharge: Volume of water flowing in unit of time (q)

$$q = vA \implies q = kiA$$

Steady-state conditions

Hydraulic gradient, i

Seepage velocity (v_s)

$$q = vA = A_v v_s$$

$$v_{s} = \frac{v(A_{v} + A_{s})}{A_{v}} = \frac{v(A_{v} + A_{s})L}{A_{v}L} = \frac{v(V_{v} + V_{s})}{V_{v}}$$

$$v_s = \frac{v}{n}$$

Hydraulic conductivity (k)

Soil type	k	
	cm/sec	ft/min
Clean gravel	100-1.0	200-2.0
Coarse sand	1.0-0.01	2.0-0.02
Fine sand	0.01-0.001	0.02-0.002
Silty clay	0.001-0.00001	0.002-0.00002
Clay	< 0.000001	< 0.000002

How to find (k)

STUDENTS-HUB.com

Laboratory tests

Constant head test

Q = Avt = A(ki)t $i = \frac{h}{L}$ $Q = A\left(k\frac{h}{L}\right)t$ $k = \frac{QL}{Aht}$

Laboratory tests

- Constant head test
 - Example:

The results of a constant-head permeability test for a fine sand sample having a diameter of 150 mm and a length of 300 mm are as follows:

Constant head difference = 500 mm

Time of collection of water = 5 min

Volume of water collected = 350 cm³

Laboratory tests

Falling head test

In-situ Tests

• Why??

In-situ tests

• Pumping from wells (unconfined aquifer)

 $dr \rightarrow \parallel \mid \leftarrow$ $-r_2 \longrightarrow$ q = kiAWater table Draw-down curve during pumping before pumping ╧ $q = k \left(\frac{dh}{dr}\right) 2\pi rh$ dh +Η h_1 h_2 $k = \frac{2.303q \, \log_{10}\left(\frac{r_1}{r_2}\right)}{\pi(h_1^2 - h_2^2)}$ - いち こういちがん ひこうやち こういちがん ひこうやち こういちがん Test well 1 Impermeable layer Observation wells

In-situ tests

• Pumping from wells (confined aquifer)

q = kiA

$$q = k \left(\frac{dh}{dr}\right) 2\pi r H$$

$$k = \frac{q \, \log_{10} \left(\frac{r_1}{r_2}\right)}{2.727 H (h_1 - h_2)}$$

In-situ tests

Empirical Formulas

Uniform Sand $k = c D_{10}$

k: permeability (cm/s)
c: const. 1-1.5
D₁₀ = effective diameter (mm)

Sand/gravels (May include some Silts without plasticity)

$$k(\text{cm/s}) = 2.4622 \left[D_{10}^2 \frac{e^3}{(1+e)} \right]^{0.7825}$$

$$k(\text{cm/sec}) = 35 \left(\frac{e^3}{1+e}\right) C_u^{0.6} (D_{10})^{2.32}$$

STUDENTS-HUB.com

STUDENTS-HUB.com

- Most soils are not isotropic with respect to permeability
- The magnitude of k changes with respect to the direction of flow
- The magnitudes of k_v and k_H in a given soil depend on several factors, including the method of deposition in the field.

• Flow is parallel to stratification

$$q = kiA$$

$$q = q_1 + q_2 + \dots + q_n$$

$$k_{eq(H)} * i * 1 * H = k_{H1}i_1 * 1 * H_1 + k_{H2}i_2 * 1 * H_2 + \dots + k_{H_n}i_n * 1 * H_n$$

$$i = i_1 = i_2 = \dots = i_n$$

$$k_{H(eq)} = \frac{1}{H} (k_{H_1} H_1 + k_{H_2} H_2 + k_{H_3} H_3 + \dots + k_{H_n} H_n)$$

• Flow is Normal to stratification

$$q = kiA$$

$$q = q_1 = q_2 = \dots = q_n$$

$$i = i_1 + i_2 + \ldots + i_n$$

Example

The Figure shows three layers of soil in a tube that is 100 mm 3 100 mm in cross section. Water is supplied to maintain a constant-head difference of 300 mm across the sample. The hydraulic conductivities of the soils in the direction of flow through them are as shown, Determine:

- Equivalent permeability
- Discharge (q) (rate of water supply)
- $h_A and h_B$

Example

. Water is supplied to maintain a constant-head difference across the sample. The hydraulic conductivities of the soils in the direction of flow through them are as shown, Determine:

- Equivalent permeability
- Discharge (q) (rate of water supply)
- Total head at points A,B,C, and D.

