

ot

3.. Average & instantaneous Acceleration :

* Motion along y-axis:	
$a_{2} = -9 = -9.8 \text{ m/s}^{2} \text{ m/s}^{2}.$	
<u>Viy = vi sin 8.</u>	
<u>* اولا + at</u>	
VyP ² - Viy ² - 29 Ay.	
$by = viy + \frac{1}{2}g^{\frac{1}{2}}.$	
* Flight time : الم التحليقي بن التحليق	
$\Delta y = V(y) + \frac{1}{2}g^{+2}$	
<u> ان پار کے اور کے اور کی م</u>	
t _{AB = 2Vi sine} , 9	
5	
* The Maximum Height (H) 2.	
vfy _ et	
o = vising gt	
t <u>, Visine</u> 9	
<u>م این - لوا ² میں - لوا میں میں میں میں میں میں میں میں میں میں</u>	
$\frac{1}{9} = \frac{1}{2} \frac{1}{9} \frac{1}{2} \frac{1}{9} $	
<u>. N - Vi²suite</u> . 29	
~>	
* to find the difference between Rand H?	
$\frac{R}{29} = \frac{1}{29} \frac{1}{29}$	
<u>د</u> * د	
$\frac{H}{R} = \left(\frac{y_1^* \sin^2 e}{2g}\right) \left(\frac{-g}{x_1^{r_1} \sin^2 e}\right)$	
K () 203 / 'xti' Sin 25)	
<u>.H = Sin²6 _ 1 tang.</u> R y sing cosg	
K 4 Sind Cosd	
: H = RtanB ,	
ч	
Sample Problem 4.04 Projectile dropped from airplane	
In Fig. 4-14, a rescue plane flies at 198 km/h (= 55.0 m/s) and \mathbf{a}	0 Patiente
constant height $h = 500$ m toward a point directly over a victim, where a rescue capsule is to land.	Line of sight
(a) What should be the angle ϕ of the pilot's line of sight to	- 490h
the victim when the capsule release is made?	β_{av}
tand = x h f	
	(b) As the capsule reaches the water, what is its velocity \vec{v} ?
Dx = X = Vixt, we need to find t.	Vx=Vix
$Dy = \Delta y = yxyt - Lgt^2$, $Viy = 0 \rightarrow Vo y = comp of the velocity.$	\rightarrow SSm/s.
$-h = -\frac{1}{2} g^{+1}$	Vyf = viy _ St
	z = 0 - (9.8)(10.1)
$500 = \frac{1}{2} (9.8) t^2$ t = 10.1 sec.	= -99 m /s
* X= Vix t	· · · · · · · · · · · · · · · · · · ·
	, vF = 55î , 99ĵ m/s.
= 55 x 10.1	a VE = SSL _ 4TJ _ m/s.
- 555,5m	$ \vec{v}_{P} _{e} \sqrt{(55)^{2} + (99)^{2}}$
r = r + r + r + r + r + r + r + r + r +	$\approx 1^{13} m^{15}$
<u>= 48</u>	P + + (-99) VX
	ss)
	8 = -60.9*
STUDENTS-HUB.com	Uploaded By: Tala zalloum

Sample Problem 4.05 Launched into the air from a water slide

One of the most dramatic videos on the web (but entirely fictitious) supposedly shows a man sliding along a long water slide and then being launched into the air to land in a water pool. Let's attach some reasonable numbers to such a flight to calculate the velocity with which the man would have hit the water. Figure 4-15*a* indicates the launch and landing sites and includes a superimposed coordinate system with its origin conveniently located at the launch site. From the video we take the horizontal flight distance as D = 20.0 m, the flight time as t = 2.50 s, and the launch angle as $\theta_0 = 40.0^\circ$. Find the magnitude of the velocity at launch and at landing.

KEY IDEAS

(1) For projectile motion, we can apply the equations for constant acceleration along the horizontal and vertical axes *separately*. (2) Throughout the flight, the vertical acceleration is $a_y = -g = -9.8 \text{ m/s}^2$ and the horizontal acceleration is $a_x = 0$.

Calculations: In most projectile problems, the initial challenge is to figure out where to start. There is nothing wrong with trying out various equations, to see if we can somehow get to the velocities. But here is a clue. Because we are going to apply the constant-acceleration equations separately to the *x* and *y* motions, we should find the horizontal and vertical components of the velocities at launch and at landing. For each site, we can then combine the velocity components to get the velocity.

Because we know the horizontal displacement D = 20.0 m, let's start with the horizontal motion. Since $a_x = 0$,

Figure 4-15 (a) Launch from a water slide, to land in a water pool. The velocity at (b) launch and (c) landing. STUDENTS-HUB.com

we know that the horizontal velocity component v_x is constant during the flight and thus is always equal to the horizontal component v_{0x} at launch. We can relate that component, the displacement $x - x_0$, and the flight time t = 2.50 s with Eq. 2-15:

$$x - x_0 = v_{0x}t + \frac{1}{2}a_xt^2.$$
(4-32)

Substituting $a_x = 0$, this becomes Eq. 4-21. With $x - x_0 = D$, we then write

$$20 \text{ m} = v_{0x}(2.50 \text{ s}) + \frac{1}{2} (0)(2.50 \text{ s})^2$$
$$v_{0x} = 8.00 \text{ m/s}.$$

That is a component of the launch velocity, but we need the magnitude of the full vector, as shown in Fig. 4-15*b*, where the components form the legs of a right triangle and the full vector forms the hypotenuse. We can then apply a trig definition to find the magnitude of the full velocity at launch:

 $\cos\theta_0 = \frac{v_{0x}}{v_0}$

and so

$$v_0 = \frac{v_{0x}}{\cos \theta_0} = \frac{8.00 \text{ m/s}}{\cos 40^\circ}$$

= 10.44 m/s \approx 10.4 m/s. (Answer)

Now let's go after the magnitude v of the landing velocity. We already know the horizontal component, which does not change from its initial value of 8.00 m/s. To find the vertical component v_y and because we know the elapsed time t =2.50 s and the vertical acceleration $a_y = -9.8$ m/s², let's rewrite Eq. 2-11 as

$$v_y = v_{0y} + a_y t$$

and then (from Fig. 4-15b) as

$$v_v = v_0 \sin \theta_0 + a_v t. \tag{4-33}$$

Substituting $a_y = -g$, this becomes Eq. 4-23. We can then write

$$v_y = (10.44 \text{ m/s}) \sin (40.0^\circ) - (9.8 \text{ m/s}^2)(2.50 \text{ s})$$

= -17.78 m/s.

Now that we know both components of the landing velocity, we use Eq. 3-6 to find the velocity magnitude:

$$v = \sqrt{v_x^2 + v_y^2}$$

= $\sqrt{(8.00 \text{ m/s})^2 + (-17.78 \text{ m/s})^2}$
= 19.49 m/s ~ 19.5 m/s. (Answer)
Jploaded By: Tala zalloum

7 In a particle accelerator, the position vector of a particle is initially estimated as $\vec{r} = 6.0\hat{i} - 7.0\hat{j} + 3.0\hat{k}$ and after 10 s, it is Vavg = <u>Dr</u> estimated to be $\vec{r} = -3.0\hat{i} + 9.0\hat{j} - 3.0\hat{k}$, all in meters. In unit vector notation, what is the average velocity of the particle? $\overline{r} = 6 \overline{i} - 7 \overline{j} + 3 \overline{k}$ $(-3\hat{i} + 9\hat{j} - 3\hat{k}) - (\delta\hat{i} - 7\hat{j} + 3\hat{k})$ after 10 s :. $\vec{a}_{1} = -3\hat{b}_{1} + 9\hat{J}_{1} - 3\hat{k}$ - 0 - 0 - - 9 + 16 J - 0.6 =(-0.9) + 1.6) - 0.6 = m/s $\frac{1}{\sqrt{1600}} = \frac{1}{\sqrt{1600}} = \frac{1}{\sqrt{1600}$ 1.93 m/s **14** A proton initially has $\vec{v} = 4.0\hat{i} - 2.0\hat{j} + 3.0\hat{k}$ and then 4.0 s later has $\vec{v} = -2.0\hat{i} - 2.0\hat{j} + 5.0\hat{k}$ (in meters per second). For that 4.0 s, what are (a) the proton's average acceleration \vec{a}_{avg} in unit-vector notation, (b) the magnitude of \vec{a}_{avg} , and (c) the angle between \vec{a}_{avg} and the positive direction of the x axis? a) à aug = DT At $\vec{v}_{,} = 4\hat{v}_{-}2\hat{j}_{+}3\hat{k}$ $= (-2\hat{b} - 2\hat{J} + 5\hat{k}) - (4\hat{b} - 2\hat{J} + 3\hat{k})$ after ysic: $\vec{v}_{1} = -2\hat{v} - 2\hat{J} + 5$ -61 +07 +2k $=(-15\hat{v}, 0.5\hat{k}) m/s^2$ b) $r |\bar{a} avg| = \int (1.5)^2 + (0.5)^2$ $= 1.58 \text{ m/s}^2$ () tang = 0.5 1.5 = 0.3 - 6= 18 with X-180 - 18 -> 162° with X+

5.. Uniform Circle Motion :

. والمنظرة علي المان على المراجع
V · ·
$V = 2\pi C m/s$ (constant)
$\frac{V = 2\pi (m/s)}{T} \begin{pmatrix} \alpha \\ \alpha$
ومتفترة الجامياً.
(a since dir. of V is not constant.
* We have acceleration (ac) . Life for a
$a_{c} = -\frac{\sqrt{2}}{2}$
$= \omega^{2} C$
* fregaancy (f)
$\beta = \frac{1}{T}$ rev/sec = Hz.
T * angular free of angular velocity (ω)
$\omega = 2\pi f$ rad (sec
* V=w(
S-@C

Sample Problem 4.06 Top gun pilots in turns

"Top gun" pilots have long worried about taking a turn too tightly. As a pilot's body undergoes centripetal acceleration, with the head toward the center of curvature, the blood pressure in the brain decreases, leading to loss of brain function. There are several warning signs. When the centripotal

which the brain decreases, leading to loss of brain function. There are several warning signs. When the centripetal acceleration is 2g or 3g, the pilot feels heavy. At about 4g, the pilot's vision switches to black and white and narrows to "tunnel vision." If that acceleration is sustained or increased, vision ceases and, soon after, the pilot is unconscious—a condition known as *g*-LOC for "*g*-induced loss of consciousness." What is the magnitude of the acceleration, in *g* units, of

a pilot whose aircraft enters a horizontal circular turn with a velocity of $\vec{v_i} = (400^{\circ} + 500^{\circ})$ m/s and 24.0 s later leaves the turn with a velocity of $\vec{v_j} = (-400^{\circ} - 500^{\circ})$ m/s?

we want to find R.

S using the fact that i has apposite dir in half cyrde - T=2(24) = 48 sec.

$V = V (400)^{2} + (500)^{7}$			
= 640 m/s			
but $V = 2\pi R$			
τ 640 = <u>2π</u> P	R = 4889m.		
પષ્ઠ			
$a_{c} = V^{2}$			
$\frac{R}{= (640)^2}$			
4 889			
= 83.8 m /s²			
<u>-</u> 8.5 9.			

6...Relative Motion:

Measures of position and velocity depend on the reference frams of the measurer.

* How is observer moving?

our usual refrence frame is that of the ground.

* How to read subscripts ?

1) PA P as measured by A.

*) STUDENTS-HUB.com

from A at rest	1	
fram B moving at Const.		?ps
t frames A and B are each watching	7.8	
he movement of object P.	P BA	
RE MOVEMENT OF SUICK T.		
+ Position in different frames are rele	the of two of	
	areat by s-	
XPA = XPB + XBA		
* take d - VPA - VPB + VB	A	
drivc » → ãpp = ãps.		
Sample Problem 4.08 Relative mot	ion, two dime	
In Fig. 4-20 <i>a</i> , a plane moves due east while the plane somewhat south of east, toward a stee		
blows to the northeast. The plane has velocity to the wind, with an airspeed (speed relative	to the wind)	
of 215 km/h, directed at angle θ south of end as velocity \vec{v}_{WG} relative to the ground 65.0 km/h, directed 20.0° east of north. What	with speed	
tude of the velocity \vec{v}_{PG} of the plane relative t and what is θ ?		
0		
From A :- sround		
fram B :- wind		
P :- Pilot		
UPG : toward east.		
<u>م</u>		
VPW: 215 Km/h, 8 South of east		
۵		α [°] νθω.
Nug: 65 km/h, 20 east of north.		
NVPG = UVWG		
νρω = 215 cost 2 + 215 Sing 3		
→ Vwc = 65 sin 200 + 65 co3 200.		
VPG = VPG2 + 0J		
, ΨΡω + Ψωσ = (215 cost + 65 sin 20)	î + (215 sin	€ + 65 (5320) Ĵ
C, but VPG = VPW + VWG		
X - Camp 2 -		
VPG = 215 Cose + 65 Sin20		
Y. Comp t-		
0 = 215 sinf + 65 cos 20		
5ing- <u>65 cos20</u> 213		
<u> 6.5°</u>		
:. VPG = 215 Cas 165 + 65 Sin :	20	
= 228 km/h.		
: UPG = 2283 Km/h (or due)	<u>eas</u> t).	
STUDENTS-I		Com Unloaded Pur Tala zalloum
STUDENTS-	100.0	com Uploaded By: Tala zalloum

Lecture problems:

7 In a particle accelerator, the position vector of a particle is initially estimated as $\vec{r} = 6.0\hat{i} - 7.0\hat{j} + 3.0\hat{k}$ and after 10 s, it is Vavg = Dr Dt estimated to be $\vec{r} = -3.0\hat{i} + 9.0\hat{j} - 3.0\hat{k}$, all in meters. In unit vector notation, what is the average velocity of the particle? n = 62 - 71 + 3k $(-3\hat{i}+9\hat{j}-3\hat{k})-(\delta\hat{v}-7\hat{j}+3\hat{k})$ after 10 s :- $\overline{c_1} = -3\widehat{l} + 9\widehat{j} - 3\widehat{k}$ 10-0 -9)+16j_0.6 =(-0.9) + 1.6) - 0.6 = m/s. $\frac{1}{\sqrt{(0.9)^{2} + (1.6)^{2} + (0.6)^{2}}}$ = 1.93 m/s **14** A proton initially has $\vec{v} = 4.0\hat{i} - 2.0\hat{j} + 3.0\hat{k}$ and then 4.0 s later has $\vec{v} = -2.0\hat{i} - 2.0\hat{j} + 5.0\hat{k}$ (in meters per second). For that 4.0 s, what are (a) the proton's average acceleration \vec{a}_{avg} in unit-vector notation, (b) the magnitude of \vec{a}_{avg} , and (c) the angle between a) à aug = Div \vec{a}_{avg} and the positive direction of the x axis? $\vec{v}_{,} = 4\hat{v}_{-}2\hat{J}_{+}3\hat{k}$ $= (-2\hat{\nu} - 2\hat{j} + 5\hat{k}) - (4\hat{\nu} - 2\hat{j} + 3\hat{k})$ = 4 - 6 $= -6\hat{\nu} + 6\hat{j} + 2\hat{k}$ after ysec :- $\vec{v}_{,} = \vec{2}\hat{v}_{,} - 2\hat{j} + \hat{s}\hat{k}$ (-1.5 i + 0.5 k) m/s2 b) r lā aug != $\int (1.5)^2 + (0.5)^2$ $= 1.58 \text{ m/s}^2$ $C) \tan P = 0.5$ 1.5 = 0.3 - 6= 18 with X-180 - 18 -> 162° with X+

STUDENTS-HUB.com

22 A small ball rolls horizontally off the edge of a tabletop that is 1.50 m high. It strikes the floor at a point 1.52 m horizontally from the table edge. (a) How long is the ball in the air? (b) What is its speed at the instant it leaves the table? h = 1.5 m. a) $Dy = vit + Lat^2$ -1.5 = 0 + L (-9.8) + 2 1.52 m +2 = 0.3 ~ + = 0.55 sec. b) Dx = vit + Lat2 1.52 = vi(0.55) +0 vi = 2.76 m/s 32 You throw a ball toward a wall at speed 25.0 m/s and at angle $\theta_0 =$ a) $Dx = vit + \frac{1}{2}at^2$ 40.0° above the horizontal (Fig. 4-26). The wall is distance d = 22.0 m $22 = (25 \cos 40) + + 0$ from the release point of the ball. t = 1.15 sec. (a) How far above the release point does the ball hit the wall? What are $D_y = vit + Lat^2$ Figure 4-26 Problem 32. the (b) horizontal and (c) vertical $\underline{D_{y}} = (25 \sin 40)(1.15) + \frac{1}{2}(-9.8)(1.15)^{2}$ components of its velocity as it hits the wall? (d) When it hits, has it passed the highest point on its = 15.5 m. trajectory? b) vfy = viy + at d) no, Vy max = O. = 25 sin 40 + (-9.8) (1.15) = 4.8 m/s VPx = Vix + at = 25 cos 40 = 19.5 m/s $\therefore \nu P = \sqrt{(4.8)^2 + (19.5)^2}$ 19.7 m/s

> F = 1100 rev X min -> 18.33 ruv/s **58** A rotating fan completes <u>1100 revolutions every minute</u>. Consider the tip of a blade, at a radius of 0.15 m. (a) Through what mih 60 Sec ____ distance does the tip move in one revolution? What are (b) the tip's speed and (c) the magnitude of its acceleration? (d) What is the period of the motion? · V = _2(3.14) (0.15) a) $D = 2\pi r$ 0.054 = 2(3.14) (0.15) = 17.44 m/s. = 0.942m C) $a = \sqrt{2}$ b) $V = 2\pi C$ r T = 1 = 0.054 sec $= (17.44)^2$ 0.15 = 1949.4 m/s2 60 A centripetal-acceleration addict rides in uniform circular motion with period T = 2.0 s and radius r = 3.50 m. At t_1 his accel-0 eration is $\vec{a} = (6.00 \text{ m/s}^2)\hat{i} + (-4.00 \text{ m/s}^2)\hat{j}$. At that instant, what are the values of (a) $\vec{v} \cdot \vec{a}$ and (b) $\vec{r} \times \vec{a}$? a) V. c = V. a cos 90*=* 0 brxa = rxa sino 20

STUDENTS-HUB.com

×80 A 200 m wide river flows due east at a uniform speed of 2.5 m/s. A boat with a speed of 8.0 m/s relative to the water leaves the south bank pointed in a direction 30° west of north. What are the (a) magnitude and (b) direction of the boat's velocity relative to the ground? (c) How long does the boat take to cross the river? -Vwg = 2.5 P V bw. > V bw = 8 sin 30 b + 8 cos 30 J 30 = - 40 + 6.96 · Vbg = Vwg + Vbw = $2.5\hat{l} + (-4\hat{l} + 6.9)\hat{l}$ $= -1.5 \hat{\mu} + 6.9 \hat{\mu}$ $V_{bg} = / (1.5)^2 + (6.9)^2$ = 7m/s $\tan \theta = \frac{-6.9}{-} \quad \Rightarrow \quad \theta = 78^{\circ}$ C) V = D + → += 29 see. 7 = 200

Discussion problems:

5 A train at a constant 60.0 km/h moves east for 40.0 min, then in a direction 50.0° east of due north for 20.0 min, and then west for 50.0 min. What are the (a) magnitude and (b) angle of its average velocity during this trip?

11 A particle that is moving in an xy plane has a position vector given by $\vec{r} = (3.00t^3 - 6.00t)\hat{i} + (7.00 - 8.00t^4)\hat{j}$, where \vec{r} is measured in meters and t is measured in seconds. For t = 3.00 s, in unit-vector notation, find (a) \vec{r} , (b) \vec{v} , and (c) \vec{a} . (d) Find the angle between the positive direction of the x axis and a line that is tangent to the path of the particle at t = 3.00 s.

 $\frac{\alpha}{r} = (3t^{3} - 6t)\hat{i} + (7 - 8t^{4})\hat{j}.$ $\frac{1}{r}(t - 3) = (3(3)^{3} - 6(3)\hat{i} + (7 - 3(3)^{4})\hat{j}$ $= (63\hat{i} - 64)\hat{j} + 0.$

 $\frac{b}{\vec{v}} = (9t^2 - 6)\hat{i} + (-32t^3)\hat{j}$ $\frac{c}{\vec{v}}(t=3) = (9(3t^2 - 6)\hat{i} + (-32(3t^2))\hat{j}$ $= (75\hat{i} - 864\hat{j}) \text{ m/s}.$

 $C) \vec{a} = (18t) \hat{i} + (-96t^{2})\hat{j}$ $\vec{a}(t_{2}3) = (18(3))\hat{i} + (-96(3)^{2})\hat{j}$ $= (54\hat{i} - 864\hat{j}) m/s^{2}$

$$\frac{d}{d} = \frac{1}{100} \frac{1}{200} \frac{-864}{54}$$

= -85

STUDENTS-HUB.com

15 From the origin, a particle starts at $t = 0$ s with a velocity
$\vec{v} = 7.0\hat{i}$ m/s and moves in the xy plane with a constant accelera-
tion of $\vec{a} = (-9.0\hat{i} + 3.0\hat{j}) \text{ m/s}^2$. At the time the particle reaches
the maximum x coordinate, what is its (a) velocity and (b) position
vector?

X-akis:-	9 - axis :-
$vP^2 = vi^2 + 2ad$	vf = vi + at
$0 = (7)^{2} + (2)(-9)(d)$	vf = 0 + (3)(0.77)
d = 2.72 m	= 2.31 m/s
vf = vi + at	$vP^2 = vi^2 + 2ad$
0 = 7 + (-9) +	$(2.31)^2 = 0 + 2(3) d$
t = 0.77 sec.	d = 0.88 m.
:. a) $\vec{v}\vec{k} = (2.31\hat{J}) m/s$	
b) $\vec{c} = (2.72\hat{i} + 0.88\hat{j})$ m.	

20 In Fig. 4-23, particle A moves along the line y = 30 m with a constant velocity \vec{v} of magnitude 3.0 m/s and parallel to the x axis. A At the instant particle A passes the y axis, particle B leaves the origin with a zero initial speed and a constant acceleration \vec{a} of magnitude 0.40 m/s². What angle θ between \vec{a} and the positive direction of the y axis would result in a collision?

$$= \frac{C_{\text{Citiliston i}}}{XAR} = XBR$$

$$3f = 0.2 \sin R^{\frac{1}{2}}$$

$$\frac{1}{2} = 0.2 \sin R^{\frac{1}{2}}$$

$$30 = 0.2 \cos R \left(\frac{15}{2}\right)^{2}$$

$$\frac{2}{30} = 0.2 \cos R \left(\frac{15}{2}\right)^{2}$$

$$\frac{2}{30} = \frac{2}{30} \frac{2}{30} \frac{2}{1 - \sin^{2}R} \rightarrow \frac{2 \cos R}{2} \rightarrow \frac{2}{3} \frac{2}{1 - \sin^{2}R} \rightarrow \frac{2 \cos R}{2} \rightarrow \frac{2}{2} \frac{2}{2} \rightarrow \frac{2}{2} \frac{2}{5} \frac{2}{5}$$

a)
$$d = v; t + \frac{1}{2}at^{2}$$

 $700 = 80.6 \cos 30t + 0$
 $t = 10 5cc.$

b)
$$dy = vit + \int_{2} at^{2}$$

 $dy = 80.6 \sin 30 (10) + \frac{1}{2} (-9.8)(10)^{2}$
 $d_{=} -903 \text{ m}$
 $d_{=} -903 \text{ m}$.

B				
77 Snow is falling vertically at a constant speed of 8.0 m/s. At		ر. الادع		
what angle from the vertical do the snowflakes appear to be falling				
as viewed by the driver of a car traveling on a straight, level road				
with a speed of 50 km/h?	- V 59			
Max Buta Call Under all				
Vsg = 8 mls (vertically down ward) 🗸	N			
V cg = 13.9 m/s -> (to the right)				
		VSC		
* ۲۰۶۰ = ۲۰۶۰ + ۲۰e			Vsq	* حوطالب الفاوية اللي بنزل
		./		
Vsc = Vcg - Vsg		- Ke	/	ويها الثلج بالنسبة المسيارة
		- Vcg		
tan 8 = 13.9 8 = 60°		منج	المانيج بنها بجمس	
8			حركة السيارة .	
STUDENTS-HUB.com			Jploaded By	: Tala zalloum