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Sampling Theorem:
Let 𝑋(𝑓) be a band limited spectral representation on  [−𝑓𝑚𝑎𝑥 , 𝑓𝑚𝑎𝑥] of 𝑥(𝑡), the following is a pair of Fourier Transform:

𝑥 𝑡 ∙  

𝑛=−∞

∞

𝛿 𝑡 − 𝑛𝑇0 =  

𝑛=−∞

∞

𝑥 𝑛𝑇0 𝛿 𝑡 − 𝑛𝑇0 ↔𝑓0  

𝑛=−∞

∞

𝑋 𝑓 − 𝑛𝑓0

Proof: (by duality theorem):
Applying the Fourier transform convolution theorem:
F[𝑥 𝑡 ∙  𝑛=−∞

∞ 𝛿 𝑡 − 𝑛𝑇0 ] = 𝑋 𝑓 ∗ 𝐹[ 𝑛=−∞
∞ 𝛿 𝑡 − 𝑛𝑇0 ] = 𝑋 𝑓 ∗ 𝑓0 𝑛=−∞

∞ 𝛿 𝑓 − 𝑛𝑓0 =

𝑓0  

𝑛=−∞

∞

𝑋 𝑓 ∗ 𝛿 𝑓 − 𝑛𝑓0 =𝑓0  

𝑛=−∞

∞

𝑋 𝑓 − 𝑛𝑓0

Thus,

𝑥 𝑡 ∙  

𝑛=−∞

∞

𝛿 𝑡 − 𝑛𝑇0 ↔𝑓0  

𝑛=−∞

∞

𝑋 𝑓 − 𝑛𝑓0

That is the spectral representation of the sampled signal with an ideal uniform sampling scheme is a scaled repetition of the
spectral representation of the original signal. 

Nyquist Sampling Theorem:
Given a low-pass signal with maximum frequency 𝑓𝑚𝑎𝑥 , The minimum ideal and uniform sampling frequency with which 
the signal can  reconstructed is the Nyquist sampling frequency: 𝑓𝑁 = 2𝑓𝑚𝑎𝑥.
Proof:
Consider the following signal, It is clear that to avoid spectral components overlap the following condition must be satisfied: 
𝑓0 − 𝑓𝑚𝑎𝑥 ≥ 𝑓𝑚𝑎𝑥 → 𝑓0 ≥ 2𝑓𝑚𝑎𝑥 = 𝑓𝑁 which proves the assert
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Proof: 

Aliasing
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Observation1:
The Nyquist frequency is the theoretical limit that permits the signal reconstruction with an ideal LPF. Hence,  in real 
application the reconstruction requires the use of a sampling frequency 𝑓0 > 2𝑓𝑚𝑎𝑥

Observation2: 
The sampler is a nonlinear device that distort the spectra of original signal. 
Observation3:
When the sampling  frequency  𝑓0 < 𝑓𝑁 the repetitions of the spectra overlap and thus can not be separated or 

reconstructed. This phenomenon is a special case of frequency distortion called Aliasing.

The LPF Reconstruction filter:

The LPF reconstruction filter has amplitude 𝑇𝑠 =
1

𝑓𝑠
and cut-off  frequency   𝑓𝑐 =

𝑓𝑠

2

𝐻𝐿𝑃 𝑓 =
1

𝑓𝑠
𝜋(
𝑓

𝑓𝑠
)𝑒−𝑗2𝜋𝑓𝜏

Example:
Consider the signal 𝑥 𝑡 = 10 cos 100𝜋𝑡 and:
• Compute and plot the spectral representation of the signal
• Compute and plot the spectral representation of the sampled signal with ideal uniform sampling frequency 𝑓 = 80𝐻𝑧.
• Compute and plot the spectral representation of the sampled signal with ideal uniform sampling frequency 𝑓 = 150𝐻𝑧.
• Determine and plot (impose on the sampled signal spectra) the ideal LPF reconstruction filter in both cases.
• Determine which of the two cases has aliasing. 
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• 𝑋 𝑓 = 5𝛿 𝑓 − 50 + 5𝛿(𝑓 + 50)

• 𝑓𝑠 = 80 → 𝑋𝑠 𝑓 = 𝑓𝑠  𝑛=−∞
∞ 𝑋 𝑓 − 𝑛𝑓𝑠 = 400 𝑛=−∞

∞ 𝛿 𝑓 − 50 − 80𝑛 + 𝛿 𝑓 + 50 − 80𝑛

• 𝑓𝑠 = 150 → 𝑋𝑠 𝑓 = 𝑓𝑠  𝑛=−∞
∞ 𝑋 𝑓 − 𝑛𝑓𝑠 = 750 𝑛=−∞

∞ 𝛿 𝑓 − 50 − 150𝑛 + 𝛿 𝑓 + 50 − 150𝑛

• 𝐻𝐿𝑃−80 𝑓 =
1

80
𝜋

𝑓

80
𝑒−𝑗2𝜋𝑓𝜏 → 𝑓𝑐 = 40Hz

• 𝐻𝐿𝑃−150 𝑓 =
1

150
𝜋(

𝑓

50
)𝑒−𝑗2𝜋𝑓𝜏 → 𝑓𝑐 = 75Hz

• The sampled signal with → 𝑓𝑠 = 80Hz has aliasing because the reconstructed signal is sinusoidal with frequency 𝑓𝑟𝑒𝑐
= 30Hz whereas the original signal has  𝑓0 = 50Hz . The reconstructed signal with sampling frequency 𝑓𝑠= 150Hz is 
identical to the original signal.   
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Effect of Non-Ideal  Sampling:
Since the Dirac impulse can not be realized in practice and ideal sampling requires the use of infinite speed switch, 
real sampler uses a train of finite pulses to control the sampler switch. The used device is called a sample and hold 
system composed of a switch and a memory element that stores the average value of the sampled values.

Since the amplitude of Fourier transform of train of finite pulses is = 𝑃 𝑓 = 𝜏𝑓𝑠  𝑛=−∞
𝑛=∞ |𝑠𝑖𝑛𝑐(𝜏𝑓𝑠)𝛿(𝑓 − 𝑛𝑓𝑠)| , the result 

of the sampling of x(t) becomes 𝑋𝑠 𝑓 = 𝜏𝑓𝑠  𝑛=−∞
𝑛=∞ 𝑋(𝑓) ∗ 𝑠𝑖𝑛𝑐(𝜏𝑓𝑠)𝛿(𝑓 − 𝑛𝑓𝑠) = 𝜏𝑓𝑠  𝑛=−∞

𝑛=∞ 𝑠𝑖𝑛𝑐 𝑛𝜏𝑓𝑠 𝑋(𝑓 − 𝑛𝑓𝑠)
Thus using 𝑓𝑠 > 𝑓𝑁 each repetition of the signal spectra is multiplied by the corresponding value of the amplitude spectra 
which leads to amplitude distortion in the spectra of  𝑋𝑠 𝑓 as in figure.
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Analog to Digital Conversion:

To convert an analog signal to a digital one three steps are required:
• Sampling 𝑥 𝑡 𝑤𝑖𝑡ℎ 𝑡 ∈ 𝑅 → 𝑥𝑠 𝑛 ∈ 𝑅 𝑤𝑖𝑡ℎ 𝑛 ∈ 𝑁

𝑎𝑛𝑑 𝑡𝑖𝑚𝑒 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 𝑇𝑠
• Quantization 𝑥𝑠 𝑛 ∈ 𝑅 → 𝑥𝑞 𝑛 = 𝑓𝑙𝑜𝑜𝑟 𝑥𝑠 𝑛 ∈ R_level

• Encoding where each quantized signal level is mapped to a binary code.

Digital to Analog Conversions

To convert a digital signal to an analog one, The signal is 
introduces to a sum circuit that adds the contribution of each 
bit and a smoothing filter (LPF)
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Elementary Discrete Signals:

• Unit impulse:   𝛿 𝑛 =  
1 𝑓𝑜𝑟 𝑛 = 0
0 𝑓𝑜𝑟 𝑛 ≠ 0

• Unit Step: 𝑢 𝑛 =  
1 𝑓𝑜𝑟 𝑛 ≥ 0
0 𝑓𝑜𝑟 < 0

• Discrete Exponential 𝑥 𝑛 = A𝑒𝛼𝑛

• Sinusoidal 𝑥 𝑛 = Acos(n𝜔0 + 𝜃)
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Classification of Discrete Systems:
A system discrete model is defined by: 𝑦 𝑛 = 𝑇[𝑥 𝑛 ] with 𝑥(𝑛) the excitation and 𝑦(𝑛) the system response.
• The classification follows the same concepts illustrated in the continuous time case, taking into account that the 

differentiation and integration operations (which are not valid in discrete analysis) are transformed to difference and 
sequences computation.

• Linear and nonlinear system:
A discrete system is said to be linear if it satisfies the additivity and proportionality properties which can be included in
the superposition form:
The system is linear 
↔ ∀ 𝑡𝑤𝑜 𝑖𝑛𝑝𝑢𝑡𝑠 𝑥1 𝑛 𝑎𝑛𝑑 𝑥2 𝑛 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑠 𝑦1 𝑛 𝑎𝑛𝑑 𝑦2 𝑛 , 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦 𝑎𝑛𝑑 ∀𝛼1 𝑛 𝑎𝑛𝑑 𝛼2 𝑛 , the 
response to the input 𝑥 𝑛 = 𝛼1𝑥1 𝑛 + 𝛼2𝑥2 𝑛 is   𝑦 𝑛 = 𝛼1𝑦1 𝑛 + 𝛼2𝑦2 𝑛 .
Example:
Determine if the system 𝑦 𝑛 = 𝑘𝑥 𝑛 is linear.
Solution:
Additivity test:  the responses to the first input  𝑥1 𝑛 and 𝑥2 𝑛 are 𝑦1 𝑛 = 𝑘𝑥1 𝑛 𝑎𝑛𝑑 𝑦2 𝑛 = k𝑥2 𝑛 →
𝑦1 𝑛 + 𝑦2 𝑛 = 𝑘(𝑥1 𝑛 + 𝑥2 𝑛 )
Consider 𝑥 𝑛 = 𝑥1 𝑛 + 𝑥2 𝑛 , the response is 𝑦 𝑛 = 𝑘𝑥 𝑛 = 𝑘𝑥 𝑛 = 𝑘(𝑥1 𝑛 + 𝑥2 𝑛 )
→ 𝑡ℎ𝑒 𝑎𝑑𝑑𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑎𝑝𝑝𝑙𝑖𝑒𝑠
Proportionality test:
The response of the system to  𝑥(𝑛) = 𝛼𝑥 𝑛 is  𝑦 𝑛 = 𝑘 𝛼𝑥 𝑛 = 𝛼 𝑘𝑥 𝑛 = 𝛼𝑦 𝑛
→ 𝑇ℎ𝑒 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦 𝑎𝑝𝑝𝑙𝑖𝑒𝑠
The system is linear.

Exercise: Determine if the systems  𝑦 𝑛 = 𝑘𝑥 𝑛 + ℎ and 𝑦 𝑛 = 𝑥(𝑛) are linear/nonlinear. 9Uploaded By: Malak ObaidSTUDENTS-HUB.com



• Time-invariant/Time-variant systems:
A discrete system is said to be time-invariant ↔ ∀𝑥 𝑛 𝑎𝑛𝑑 ∀𝑛0, the response for𝑥 𝑛 is 𝑦 𝑛 →the response for the 
input   𝑥 𝑛 = 𝑥 𝑛 − 𝑛0 is  𝑦 𝑛 = 𝑦 𝑛 − 𝑛0 .
Example1: Determine if the system 𝑦 𝑛 = 𝑥2(𝑛) is time variant/invariant.
Solution:
Consider the input  𝑥 𝑛 = 𝑥 𝑛 − 𝑛0 , its response  𝑦 𝑛 = 𝑥2(𝑛 − 𝑛0) which is equal to the response to 𝑥 𝑛 shifted by  
𝑛0 that is y 𝑛 − 𝑛0 = 𝑥2(𝑛 − 𝑛0). Therefore, the system is time-invariant.
Example2: Determine if the system 𝑦 𝑛 = 𝑥(𝑛2) is time variant/invariant.

Solution:
Consider the input  𝑥 𝑛 = 𝑥 𝑛 − 𝑛0 , its response  𝑦 𝑛 = 𝑥((𝑛 − 𝑛0)

2) which is not equal to the response to 𝑥 𝑛
shifted by  𝑛0 that is y 𝑛 − 𝑛0 = 𝑥(𝑛2 − 𝑛0). Therefore, the system is time-variant.

• Causal and non-causal systems:
A discrete system is said to be  causal ↔ ∀𝑥1 𝑛 , 𝑥2 𝑛 𝑎𝑛𝑑 ∀𝑛0, 𝑥1 𝑛 = 𝑥2 𝑛 ∀𝑛 ≤ 𝑛0 → 𝑦1 𝑛 = 𝑦2 𝑛 ∀𝑛 ≤ 𝑛0.
Or similarly ↔ ∀𝑥 𝑛 𝑎𝑛𝑑 ∀𝑛0, 𝑥 𝑛 = 0 ∀𝑛 ≤ 𝑛0 → 𝑦 𝑛 = 0 ∀𝑛 ≤ 𝑛0. That is to be causal the response time should 
not precede the input time, that is  𝑡𝑒𝑥𝑐𝑖𝑡 ≤ 𝑡𝑟𝑒𝑠𝑝
Example:
Determine if the systems 𝑦 𝑛 = 𝑥2(𝑛 − 4) and 𝑦 𝑛 = 𝑥2(𝑛 + 4) are causal/non-causal.
Solution:
The system 𝑦 𝑛 = 𝑥2(𝑛 − 4) is causal because 𝑛 − 4 < 𝑛 ∀𝑛
The system 𝑦 𝑛 = 𝑥2(𝑛 + 4) is non-causal because 𝑛 + 4 > 𝑛 ∀𝑛
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• Static and Dynamic systems:
A discrete system is said to be static ↔ the response to the excitation at any time 𝑛 depends only on the value of the 
excitation at the same time 𝑛.  
A discrete system is said to be dynamic ↔ the response to the excitation at a time instance 𝑛 depends on the input or 
system response  history or future values (it has memory or future-stores).
Example1:
Determine if the system 𝑦 𝑛 = 10𝑥2(𝑛) is dynamic/static
Solution:
The system is static since the response at any time n depends only the value of the input at the input value at time n.
Example2:
Determine if the discrete systems 𝑦 𝑛 = 10𝑥 𝑛 − 1 𝑎𝑛𝑑 𝑦 𝑛 = 2𝑦 𝑛 − 1 + 𝑥(𝑛)𝑎𝑛𝑑 are dynamic/static
Solution:
The two systems are dynamic, the first needs  a memory cell to store the previous value of the input, the second 
needs to store the previous value of the response. 
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Linear Shift-Invariant Dynamic Discrete Time system:
Definition: A linear shift-invariant dynamic system of order 𝑁 is defined by a linear constant-coefficients difference equation 
of the type:

 

𝑘=0

𝑁

𝛼𝑘𝑦 𝑛 − 𝑘 =  

𝑘=0

𝑀

𝛽𝑘𝑥 𝑛 − 𝑘

Finite Impulse Response (FIR) and Infinite Impulse-Response (IIR) systems:

FIR System: the FIR system has its response defined by the weighted combination of its input sequence. It does not include a 
feedback path from the output to the input of the system. The FIR system characteristic difference equation is:   

𝑦 𝑛 =  𝑘=0
𝑀 𝛽𝑘𝑥 𝑛 − 𝑘

The  name is due to the fact that the summation can be considered as the convolution sum of the input with a finite M+ 1
constant-value sequence  𝛽𝑘 𝑘 = 0,1, …𝑀.
IIR System:
The response of the system is defined from the input and output sequences, hence it has a feedback path from the output to 
the inputs (called secondary inputs/present state). Its characteristic equation can be written as:

𝑦 𝑛 = − 

𝑘=1

𝑁

𝛼𝑘𝑦 𝑛 − 𝑘 + 

𝑘=0

𝑀

𝛽𝑘𝑥 𝑛 − 𝑘
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Solution of Difference Equations and Impulse Response:
The difference equations can be solved using: 
• The time domain iterative process.
• the 𝑍 and 𝑍−1 transforms

Solution of the difference equation in time domain: 
The solution is obtained by recursion.
Example:
Determine the impulse response of the causal system: 𝑦 𝑛 = 2𝑦 𝑛 − 1 + 𝑥(𝑛)
Solution:
problem data: 
the impulse response ℎ(𝑛) is required→ 𝑥 𝑛 = 𝛿 𝑛 = 1 𝑓𝑜𝑟 𝑛 = 0 𝑎𝑛𝑑 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
The system is causal→ ℎ −1 = 0
Procedure:
𝑛 = 0 → ℎ 0 = 2ℎ −1 + 𝛿 0 = 1
𝑛 = 1 → ℎ 1 = 2ℎ 0 + 𝛿 1 = 2 ∙ 1 + 0 = 2
𝑛 = 2 → ℎ 2 = 2ℎ 1 + 𝛿 2 = 2 ∙ 2 + 0 = 22

𝑛 = 3 → ℎ 3 = 2ℎ 2 + 𝛿 3 = 2 ∙ 22 + 0 = 23

…
𝑓𝑜𝑟 𝑡ℎ𝑒 𝑔𝑒𝑛𝑒𝑟𝑖𝑐 𝑛 𝑖𝑛𝑑𝑒𝑥: ℎ 𝑛 = 2ℎ 𝑛 − 1 + 0 = 2 ∙ 2𝑛−1 + 0 = 2𝑛

Thus the response of this IIR system can be written as ℎ 𝑛 = 2𝑛𝑢(𝑛)
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Example:
Determine the response of the causal system: 𝑦 𝑛 = 0.5𝑦 𝑛 − 2 + 𝑥 𝑛 − 2 𝑓𝑜𝑟 𝑥 𝑛 = 𝛿(𝑛)
Solution:
problem data: 
the impulse response ℎ(𝑛) is required→ 𝑥 𝑛 = 𝛿 𝑛 = 1 𝑓𝑜𝑟 𝑛 = 0, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
The system is causal→ ℎ 𝑛 = 0 ∀𝑛 < 0
Procedure:
𝑛 = 0 → ℎ 0 = 0.5ℎ −2 + 𝛿 −2 = 0
𝑛 = 1 → ℎ 1 = 0.5ℎ −1 + 𝛿 −1 = 0
𝑛 = 2 → ℎ 2 = 0.5ℎ 0 + 𝛿 0 = 1
𝑛 = 3 → ℎ 3 = 0.5ℎ 1 + 𝛿 1 = 0
𝑛 = 4 → ℎ 4 = 0.5ℎ 2 + 𝛿 2 = 0.5
𝑛 = 5 → ℎ 5 = 0.5ℎ 3 + 𝛿 3 = 0.5 ∙ 0 = 0
𝑛 = 6 → ℎ 6 = 0.5ℎ 4 + 𝛿 4 = 0.5 ∙ 0.5 = 0.52

𝑛 = 7 → ℎ 7 = 0.5ℎ 5 + 𝛿 5 = 0.5 ∙ 0 = 0
𝑛 = 8 → ℎ 8 = 0.5ℎ 6 + 𝛿 6 = 0.52 ∙ 0.5 = 0.53

…

𝑓𝑜𝑟 𝑡ℎ𝑒 𝑔𝑒𝑛𝑒𝑟𝑖𝑐 𝑛 𝑖𝑛𝑑𝑒𝑥: ℎ 𝑛 =  
0.5ℎ 𝑛 − 2 + 0 = 0.5 ∙ 0 = 0 odd index

0.5ℎ 𝑛 − 2 = 0.5
𝑛
2−1𝑢 𝑛 − 2 𝑒𝑣𝑒𝑛 𝑖𝑛𝑑𝑒𝑥
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Z-transform and Z-inverse
Definition: Given a discrete time sequence 𝑥(𝑛) , we define as the single-sided z-transform of 𝑥(𝑛) the complex function of 
complex variable 𝑋(𝑧) to which the following series converges:

𝑋 𝑧 =  

𝑛=0

∞

𝑥 𝑛 𝑧−𝑛

Which also satisfies the inverse z-transform Integral   𝑥 𝑛 =  𝐴𝑛𝑎𝑙𝑦𝑡𝑖𝑐−𝑟𝑒𝑔𝑖𝑜𝑛𝑋 𝑧 𝑧𝑛−1𝑑𝑧

Observation:
The inverse z-transform of a rational 𝑋(𝑧) function can be computed avoiding the integration form by using the development of 
partial-fractions and the inverse transform of some elementary signals.
Mapping  between the s and z domains:
The mapping is done  based on the single-sided Laplace transform of the sampled signal. In fact for a given a signal x(t), its 
sampled signal of 𝑥(𝑡) can be written as 𝑥𝑠 𝑡 =  𝑛=0

∞ 𝑥 𝑡 ∙ 𝛿 𝑡 − 𝑛𝑇0 =  𝑛=0
∞ 𝑥 𝑛𝑇0 ∙ 𝛿 𝑡 − 𝑛𝑇0 →

𝑋𝑠 𝑠 =  
0

∞

 

𝑛=0

∞

𝑥 𝑛𝑇0 ∙ 𝛿 𝑡 − 𝑛𝑇0 𝑒−𝑠𝑡𝑑𝑡 = 

𝑛=0

∞

𝑥 𝑛𝑇0 ∙  
0

∞

𝛿 𝑡 − 𝑛𝑇0 𝑒−𝑠𝑡𝑑𝑡 =  

𝑛=0

∞

𝑥 𝑛𝑇0 𝑒−𝑠𝑛𝑇0

Consider the mapping 𝑧 = 𝑒𝑠𝑇0 = 𝑒𝛼𝑇0 ∙ 𝑒𝑗𝜔𝑇0 which maps vertical lines of the s-plane into circles in the z-plane, we obtain the 
following :

 

𝛼 ∈] −∞, 0[→ 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑧 − 𝑝𝑙𝑎𝑛𝑒 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑜𝑓 𝑎 𝑐𝑖𝑟𝑐𝑙𝑒 𝑤𝑖𝑡ℎ 𝑟𝑎𝑑𝑖𝑢𝑠 𝑟 = 1
𝛼 = 0 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑎 𝑐𝑖𝑟𝑐𝑙𝑒 𝑤𝑖𝑡ℎ 𝑟𝑎𝑑𝑖𝑢𝑠 𝑟 = 1

𝛼 ∈]0,∞ [→ 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑧 − 𝑝𝑙𝑎𝑛𝑒 𝑡ℎ𝑒 𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑜𝑓 𝑎 𝑐𝑖𝑟𝑐𝑙𝑒 𝑤𝑖𝑡ℎ 𝑟𝑎𝑑𝑖𝑢𝑠 𝑟 = 1

Thus, the left semi plane of the s-plane  is mapped into the internal of the circle of radius=1 in the z-plane, the imaginary axe is 
mapped into the circle of radius =1, and finally the right semi plane of the s-plane is mapped into the external of the circle of  
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Observation:
The true conclusions in the s-domain left semi-plane, right semi-plane, and imaginary axe for continuous time signals and 
systems are true for the discrete time signals and systems in the internal, external, and on the circle of radius =1, 
respectively. 
For example, a continuous-time linear time invariant system is asymptotically stable if and only if all the system poles are 

in the left semi-plane, BIBO stable if it has no roots on the right semi-plane an non-repeated roots on the imaginary axe, 
unstable if there are right side system poles, or repeated imaginary poles. This is transferred to discrete systems as:  
a discrete time  linear time invariant system is asymptotically stable if and only if all the system poles are in inside the 

circle of radius =1 in the z-plane, BIBO stable if it has no roots out of the circle of radius =1  and non-repeated roots on the 
circle, unstable if there are system poles out of the circle of radius =1 , or repeated poles on the circle.

Z-Transform of elementary signals:
• Transform of 𝛿 𝑛 :
𝑋 𝑧 =  𝑛=0

∞ 𝛿 𝑛 𝑧−𝑛 = 1 ∙ 𝑧0= 1

• Transform of 𝑢 𝑛 :
𝑋 𝑧 =  𝑛=0

∞ 𝑢 𝑛 𝑧−𝑛 =  𝑛=0
∞ 𝑧−𝑛 =  𝑛=0

∞ (𝑧−1)𝑛, which is a geometric series with base = 𝑧−1 and converges for |𝑧−1|

< 1 → |𝑧| > 1 and its sum is 𝑋 𝑧 =
1

1−𝑧−1
=

𝑧

𝑧−1

• Transform of 𝑘𝑛𝑢 𝑛 :
𝑋 𝑧 =  𝑛=0

∞ 𝑘𝑛𝑢 𝑛 𝑧−𝑛 =  𝑛=0
∞ 𝑘𝑛𝑧−𝑛 =  𝑛=0

∞ (𝑘𝑧−1)𝑛, which is a geometric series with base = 𝑘𝑧−1 and converges 

for |𝑘𝑧−1| < 1 → |𝑧| > 𝑘 and its sum is 𝑋 𝑧 =
1

1−𝑘𝑧−1
=

𝑧

𝑧−𝑘
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• Transform of 𝑥 𝑛 = 𝑐𝑜𝑠(𝑛𝜔0)𝑢 𝑛 :

𝑋 𝑧 =  𝑛=0
∞ 𝑒𝑗𝜔0𝑛+𝑒−𝑗𝜔0𝑛

2
𝑧−𝑛 =

1

2

𝑧

𝑧−𝑒𝑗𝜔0𝑛
+

𝑧

𝑧−𝑒−𝑗𝜔0𝑛
=

𝑧 𝑧−𝑒−𝑗𝜔0𝑛 +𝑧 𝑧−𝑒+𝑗𝜔0𝑛

(𝑧−𝑒𝑗𝜔0𝑛)(𝑧−𝑒−𝑗𝜔0𝑛)
=

Exercise: Compute the z-transform of  𝑥 𝑛 = 𝑠𝑖𝑛(𝑛𝜔0)𝑢 𝑛 and 𝑥 𝑛 = 𝑎𝑛𝑐𝑜𝑠(𝑛𝜔0)𝑢 𝑛

Z-Transform Theorems:
Assume: 𝑥1 𝑛 and 𝑥2 𝑛 two unilateral sequences with  𝑥1 𝑛 ↔ 𝑋1 𝑧 and 𝑥2 𝑛 ↔ 𝑋2 𝑧
• Superposition-Linearity 𝑍 𝛼1𝑥1 𝑛 + 𝛼2𝑥2 𝑛 = 𝛼1𝑋1 𝑧 + 𝛼2𝑋2 𝑧
• Right-shift property: 𝑍 𝑥 𝑛 − 𝑚 = 𝑧−𝑚𝑋 𝑧 = 𝑋𝑛−𝑠ℎ(𝑧)
Proof:

𝑋𝑛−𝑠ℎ(𝑧) =  𝑛=0
∞ 𝑥 𝑛 − 𝑚 𝑧−𝑛,  using substitution 𝑘 = 𝑛 −𝑚, 𝑛 = 0 → 𝑘 = −𝑚, 𝑛 = ∞ → 𝑘 = ∞ , Consequently,

𝑋𝑛−𝑠ℎ 𝑧 =  𝑘=−𝑚
∞ 𝑥 𝑘 𝑧− 𝑘+𝑚 = 𝑧−𝑚 𝑘=0

∞ 𝑥 𝑘 𝑧−𝑘 = 𝑧−𝑚𝑋 𝑧 , 
observe that the value of the sample 𝑥 −𝑚 𝑡𝑜 𝑥 −1 𝑎𝑟𝑒 𝑒𝑞𝑢𝑎𝑙 𝑧𝑒𝑟𝑜 𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝑡ℎ𝑒 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑖𝑠 𝑎 𝑢𝑛𝑖𝑙𝑎𝑡𝑒𝑟𝑎𝑙 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒.

• Multiplication by an exponential sequence: 𝑍 𝑎𝑛𝑥 𝑛 = 𝑋
𝑧

𝑎

Proof:

𝑋𝑠𝑐 𝑧 =  

𝑛=0

∞

𝑎𝑛𝑥 𝑛 𝑧−𝑛 =  

𝑛=0

∞

𝑥 𝑛 (𝑎−1𝑧)−𝑛 = 𝑋(
𝑧

𝑎
)
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• Reversal theorem: 𝑍 𝑥 −𝑛 = 𝑋
1

𝑧

Proof: 𝑋𝑟𝑒𝑣 𝑧 =  𝑛=0
∞ 𝑥 −𝑛 𝑧−𝑛, by substitution 𝑘 = −𝑛, 𝑛 = 0 → 𝑘 = 0, 𝑛 = ∞ → 𝑘 = −∞

𝑋𝑟𝑒𝑣 𝑧 =  

𝑛=0

∞

𝑥 −𝑛 𝑧−𝑛 =  

𝑘=−∞

0

𝑥 𝑘 𝑧𝑘 =  

𝑘=−∞

0

𝑥 𝑘 (𝑧−1)−𝑘 = 𝑋 𝑧−1 = 𝑋(
1

𝑧
)

• Z-domain differentiation: 𝑍 𝑛𝑘𝑥 𝑛 = (−1)𝑘𝑧𝑘
𝑑𝑘𝑋(𝑧)

𝑑𝑧𝑘

Exercise: Proof by induction method.
Example:

Knowing that 𝑢(𝑛) ↔
𝑧

𝑧−1
determine the z-transform of 𝑥 𝑛 = 𝑛𝑢(𝑛)

Solution:

𝑍 𝑛𝑢 𝑛 = (−1)1𝑧1
𝑑

𝑑𝑧

𝑧

𝑧 − 1
= −z

𝑧 − 1 − 𝑧

(𝑧 − 1)2
=

𝑧

(𝑧 − 1)2

• Convolution theorem: 𝑍 𝑥1 𝑛 ∗ 𝑥2 𝑛 = 𝑋1 𝑧 ∙ 𝑋2 𝑧

• Initial value theorem: 𝑥 0 = lim
𝑧→∞

𝑋(𝑧)

• Final value theorem: lim
𝑛→∞

𝑥 𝑛 = lim
𝑧→1

(𝑧 − 1) 𝑋(𝑧)
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The inverse z-transform of rational functions:
• Sequence samples generation using long division
• Closed-form inverse z-transform using partial fraction and transforms of elementary signals.

Samples generation using long division
Example:

𝑋 𝑧 =
𝑧2

𝑧2 − 1.2𝑧 + 0.2
The first four elements of the sequence 𝑥 𝑛 = 1, 1.2, 1.24,1.248… .
1
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Computation of the inverse z-transform by partial fractions:
Example1:

𝑥 𝑛 = [1.2 − 0.25 0.2 𝑛]𝑢(𝑛)

Example2:

𝑦 𝑛 = 5𝛿 𝑛 + [1.25−6.25 0.2 𝑛]𝑢(𝑛)
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LSI-System representation in z-domain:
To determine the LSI discrete system transfer function we apply the Z-transform to the difference equation that represents 
the system model taking into account the superposition and  time shift theorems of the Z-transform.
IIR-system

𝑍[ 

𝑘=0

𝑁

𝛼𝑘𝑦 𝑛 − 𝑘 ] = 𝑍[ 

𝑘=0

𝑀

𝛽𝑘𝑥 𝑛 − 𝑘 ] → Y z  

𝑘=0

𝑁

𝛼𝑘𝑧
−𝑘 = X z  

𝑘=0

𝑀

𝛽𝑘𝑧
−𝑘 →

𝐻 𝑧−1 =
𝑌 𝑧−1

𝑋 𝑧−1
=
 𝑘=0
𝑀 𝛽𝑘𝑧

−𝑘

 𝑘=0
𝑁 𝛼𝑘𝑧

−𝑘
𝑇ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑛 𝑡ℎ𝑒 𝑧−1 − 𝑓𝑜𝑟𝑚

To obtain  the transfer function in the 𝑧 − 𝑓𝑜𝑟𝑚 we extract 𝑧−𝑁 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑑𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟 which leads to

𝐻 𝑧 =
𝑌 𝑧

𝑋 𝑧
=
 𝑘=0
𝑀 𝛽𝑘𝑧

𝑁−𝑘

 𝑘=0
𝑁 𝛼𝑘𝑧

𝑁−𝑘

Example:
Determine the transfer function of the system:

𝑦 𝑛 = 2𝑦 𝑛 − 1 + 3𝑦 𝑛 − 2 + 5𝑥 𝑛 − 4𝑥(𝑛 − 1)
Solution:
Rearranging the equation and applying the time delay theorem we obtain the transfer function in 𝑧−1 − 𝑓𝑜𝑟𝑚:

𝑌 𝑧 1 − 2𝑧−1 + 3𝑧−2 = 𝑋 𝑧 5 − 4𝑧−1 → 𝐻 𝑧−1 =
5 − 4𝑧−1

1 − 2𝑧−1 + 3𝑧−2

To determine the 𝑧 − 𝑓𝑜𝑟𝑚 we extract 𝑧−2 from the denominator which leads to:

𝐻 z =
5 − 4𝑧−1

𝑧−2(𝑧2 − 2𝑧 + 3)
=

𝑧2(5 − 4𝑧−1)

(𝑧2 − 2𝑧 + 3)
=

(5𝑧2 − 4𝑧)
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FIR-system
Following the same procedure we obtain: 

𝑍 𝑦 𝑛 =  

𝑘=0

𝑀

𝛽𝑘𝑍 𝑥 𝑛 − 𝑘 →
𝑌 𝑧−1

𝑋 𝑧−1
= 𝐻 𝑧−1 =  

𝑘=0

𝑀

𝛽𝑘𝑧
−𝑘

Which can be written in 𝑧 − 𝑓𝑜𝑟𝑚 as 𝐻 𝑧 =
 𝑘=0
𝑀 𝛽𝑘𝑧

𝑀−𝑘

𝑧𝑀

Example:
Determine the transfer function of the system:

𝑦 𝑛 = 3𝑥 𝑛 − 2 + 5𝑥 𝑛 − 1 − 4𝑥(𝑛)

𝐻 𝑧−1 =
𝑌(𝑧−1)

𝑋(𝑧−1)
= 3𝑧−2 + 5𝑧−1 + 4 → 𝐻 𝑧 =

4𝑧2 + 5𝑧 + 3

𝑧2

Observation:
The FIR system can have system poles only in the origin. Any pole out of the origin indicates that the 
system is an IIR one. 
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Computation of system response using z-domain:
𝑌 𝑧 = 𝑋 𝑧 ∙ 𝐻 𝑧 → 𝑦 𝑛 = 𝑍−1[𝑋 𝑧 ∙ 𝐻 𝑧 ]
The inverse Z-transform of the system response transform can be computed by partial fractions since the transfer function of 
an LSI system is a rational function in 𝑧 − 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒.
Example1:

Compute the unit step response of the system 𝐻 𝑧 =
𝑧

(𝑧−0.8)(𝑧−0.2)

Solution:

The response 𝑌 𝑧 = 𝐻(𝑧) ∙ 𝑋(𝑧) with 𝑋 𝑧 = 𝑍[𝑢 𝑛 ] =
𝑧

𝑧−1

𝑌 𝑧 =
𝑧

(𝑧 − 0.8)(𝑧 − 0.2)
∙

𝑧

𝑧 − 1
→ 𝑦 𝑛 = 𝑍−1[𝑌 𝑧 ]

Since the function is a rational function, the development in partial fractions and the inverse of the elementary signals can be
used.

We apply the partial fraction to 
𝑌(𝑧)

𝑧
=

1

(𝑧−0.8)(𝑧−0.2)
∙

𝑧

𝑧−1
in order to evaluate the fraction parameters in z-form following the 

same   procedure used in the s-domain.
𝑌(𝑧)

𝑧
=

𝑘1
𝑧 − 0.8

+
𝑘2

𝑧 − 0.2
+

𝑘3
𝑧 − 1

𝑘1 =
0.8

(0.8−0.2)(0.8−1)
= −6.67, 𝑘2 =

0.2

(0.2−0.8)(0.2−1)
= 0.42, 𝑘3 =

1

(1−0.8)(1−0.2)
= 0.625 →

𝑌 𝑧 =
−6.67𝒛

𝑧 − 0.8
+

0.42𝒛

𝑧 − 0.2
+
0.625𝒛

𝑧 − 1
→ 𝑦 𝑛 = 0.625 − 6.67 0.8𝑛 + 0.42 0.2𝑛 𝑢 𝑛

Exercise

Compute the unit  impulse response of the system 𝐻 𝑧 =
𝑧

𝑧−0.8 2(𝑧+0.2)
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Example1:

Compute the response of the system 𝐻 𝑧 =
1

(𝑧−0.1)(𝑧+0.2)
to 𝑥 𝑛 = 10𝛿(𝑛 − 2)

Solution:
The system is LSI so we can compute the impulse response and apply superposition and time-shift.
 𝑥 𝑛 = 𝛿 𝑛 →  𝑋 𝑧 = 1

ℎ 𝑛 = 𝑧−1[𝐻 𝑧 ], using partial fractions:
𝐻(𝑧)

𝑧
=

1

𝑧(𝑧 − 0.1)(𝑧 + 0.2)
=
𝑘1
𝑧
+

𝑘2
𝑧 − 0.1

+
𝑘3

𝑧 + 0.2

𝑘1 =
1

−0.1∙0.2
= −50, 𝑘2 =

1

0.1∙0.3
= 33.33, 𝑘1 =

1

−0.2∙−0.3
= 16.67 →

𝐻 𝑧 = −50 +
33.3𝑧

𝑧−0.1
+

16.7𝑧

𝑧+0.2
→ ℎ 𝑛 = −50𝛿 𝑛 + 33.33 0.1𝑛 + 16.67 −0.2𝑛 𝑢(𝑛)

Using the linearity and time-invariance system conditions, the required response is:
ℎ 𝑛 = −500𝛿 𝑛 − 2 + 333.3 0.1𝑛−2 + 166.7 −0.2𝑛−2 𝑢(𝑛 − 2)

Computation of the system response using convolution sum:
Theorem:
Given an LSI system with impulse response ℎ(𝑛) the zero state response 𝑦(𝑛) of the system to any input 𝑥(𝑛) is given by:   
𝑦 𝑛 =  𝑘=−∞

∞ 𝑥 𝑘 ℎ 𝑛 − 𝑘 =  𝑘=−∞
∞ 𝑥 𝑛 − 𝑘 ℎ 𝑘

Proof:
Assume the LSI system is  defined as  𝑦 𝑛 = 𝑇 𝑥 𝑛 , since 𝑥 𝑛 is a sequence it can be defined as
𝑥 𝑛 =  𝑘=−∞

∞ 𝑥 𝑘 𝛿 𝑛 − 𝑘 → 𝑦 𝑛 = 𝑇[𝑥 𝑛 ] = 𝑇[ 𝑘=−∞
∞ 𝑥 𝑘 𝛿 𝑛 − 𝑘 ] →  𝑘=−∞

∞ 𝑥 𝑘 𝑇[𝛿 𝑛 − 𝑘 ]

→ 𝑦(𝑛)  

𝑘=−∞

∞

𝑥 𝑘 ℎ 𝑛 − 𝑘 ]
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Corollary 1:
If 𝑥 𝑛 is a right-unilateral signal then 𝑦(𝑛) 𝑘=0

∞ 𝑥 𝑘 ℎ 𝑛 − 𝑘
Corollary 2:
If 𝑥 𝑛 is a right-unilateral signal and the system is causal then 𝑦 𝑛 =  𝑘=0

𝑛 𝑥 𝑘 ℎ 𝑛 − 𝑘
Proof:  
If the system is causal then ℎ 𝑛 − 𝑘 = 0 for 𝑛 − 𝑘 < 0 → ℎ 𝑛 − 𝑘 = 0 𝑓𝑜𝑟 𝑘 > 𝑛.
Example1:
Compute the response of the system with  ℎ 𝑛 = 2𝑛𝑢(𝑛) to the input 𝑥 𝑛 = 3𝑛𝑢(𝑛)
Solution:
The system is causal and the input signal is unilateral, thus:

𝑦 𝑛 =  

𝑘=0

𝑛

𝑥 𝑘 ℎ 𝑛 − 𝑘 ] =  

𝑘=0

𝑛

3𝑘 ∙ 2𝑛−𝑘 = 2𝑛  

𝑘=0

𝑛

(
3

2
)𝑘

 𝑘=0
𝑛 (𝑎)𝑘 is a geometric sum and its sum is equal to 𝑆 =

1−𝑎𝑛+1

1−𝑎
. Thus,

𝑦 𝑛 = 2𝑛  

𝑘=0

𝑛

(
3

2
)𝑘 = 2𝑛 ∙

1 −
3
2

𝑛+1

1 −
3
2

𝑢(𝑛) =
2𝑛 −

1
2 ∙ 3

𝑛+1

−
1
2

𝑢(𝑛) = (3𝑛+1−2𝑛+1)𝑢(𝑛)

Example2:

Compute the response of the system with  ℎ 𝑛 = 2𝑛𝑢(𝑛) to the input 𝑥 𝑛 = (
1

3
)𝑛−2𝑢(𝑛 − 2)

Solution:

𝑦 𝑛 =  

𝑘=0

𝑛

𝑥 𝑘 ℎ 𝑛 − 𝑘 ] =  

𝑘=0

𝑛

2𝑛−𝑘 ∙
1

3

𝑘−2

𝑢 𝑘 − 2 =  

𝑘=2

𝑛

2𝑛−𝑘 ∙
1

3

𝑘−2

Uploaded By: Malak ObaidSTUDENTS-HUB.com



26

Applying the substitution 𝑚 = 𝑘 − 2, 𝑘 = 2 → 𝑚 = 0, 𝑘 = 𝑛 → 𝑚 = 𝑛 − 2 →

𝑦 𝑛 =  

𝑚=0

𝑛−2

2𝑛−(𝑚+2) ∙
1

3

𝑚

= 2𝑛−2  

𝑚=0

𝑛−2

2−𝑚 ∙
1

3

𝑚

= 2𝑛−2 ∙  

𝑚=0

𝑛−2

(
1

6
)𝑚=2𝑛−2 ∙

1 −
1
6

𝑛−2+1

1 −
1
6

= 6
2𝑛−2 −

1
2 (
1
3)

𝑛−1

5

= 3
2𝑛−1 − (

1
3
)𝑛−1

5
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Discrete Systems Stability:
Definition: A discrete LSI system is said to be asymptotically stable if its transient response goes to zero and a steady state response is
reached for n goes to infinity. 
Theorem1: an LSI system with impulse response ℎ 𝑛 is asymptotically stable ↔ lim

𝑛→∞
ℎ 𝑛 = 0.

Theorem2: a dynamic LSI system is asymptotically stable↔ all the poles of its transfer function have 𝑃𝑖 < 1 (located inside the circle of 
radius =1) 
Theorem3: an LSI system is unstable if  it has at least a pole with 𝑃𝑖 > 1 (located outside the circle of radius =1) or a repeated poles with 
𝑃𝑖 = 1 (located on the circle of radius =1) .

Definition:(BIBO stability) an LSI system is said to be BIBO (Bounded Input/Bounded Output)↔ ∀ 𝑖𝑛𝑝𝑢𝑡 𝑥 𝑛 𝑤𝑖𝑡ℎ 𝑥 𝑛 ≤ 𝑁, ∃𝑀 < ∞
so that the respons 𝑦 𝑛 ≤ 𝑀,∀𝑡 (weak stability)
Theorom4: a system is BIBO stable ↔  −∞

∞ |ℎ 𝑛 | < ∞ that is if its impulse response is absolutely integrable.
Theorem3: an LSI system is BIBO stable if  it has no poles located outside the circle of radius =1 and poles with multiplicity =1  (not 
repeated ) on the circle with radius =1 ( 𝑃𝑖 = 1).
Examples 

𝐻 𝑧 =
𝑧

𝑧 − 0.8 2(𝑧 + 0.2)
→ 𝐴𝑠𝑦𝑚𝑝𝑡𝑜𝑡𝑖𝑐𝑎𝑙𝑙𝑦 𝑠𝑡𝑎𝑏𝑙𝑒

𝐻 𝑧 =
𝑧

𝑧 − 0.8 2(𝑧 − 1.8)
→ 𝑈𝑛𝑠𝑡𝑎𝑏𝑙𝑒

𝐻 𝑧 =
𝑧

𝑧 − 0.6 + 𝑗0.8 2 𝑧 − 0.6 − 𝑗0.8 2(𝑧 − 0.7)
→ 𝑈𝑛𝑠𝑡𝑎𝑏𝑙𝑒

𝐻 𝑧 =
𝑧

𝑧−0.6+𝑗0.8 𝑧−0.6−𝑗0.8 (𝑧−0.7)
→ 𝐵𝐼𝐵𝑂 𝑠𝑡𝑎𝑏𝑙𝑒.

Example : Determine if the system with with  ℎ 𝑛 = (
1

4
)𝑛𝑢(𝑛) is BIBO stable.

Solution:  −∞
∞ ℎ 𝑛 =  −∞

∞ 1

4

𝑛
𝑢 𝑛 =  0

∞ |
1

4

𝑛
)| =

1

1−0.25
=

4

3
< ∞ → 𝐵𝐼𝐵𝑂 𝑠𝑡𝑎𝑏𝑙𝑒 (but also asymptotically stable lim

𝑛→∞
(
1

4
)𝑛𝑢(𝑛) = 0)Uploaded By: Malak ObaidSTUDENTS-HUB.com
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Direct Form-I Modeling and Realization:
Discrete systems modeling and realization is used  to simulate and implement the systems. An example of this is the Direct 
Form-I realization which is derived from the direct form of the difference equation:

𝑦 𝑛 = − 

𝑖=1

𝑚

𝑘𝑖𝑦 𝑛 − 𝑖 + 

𝑖=0

𝑟

𝐿𝑖𝑥 𝑛 − 𝑖

Y 𝑧−1 = − 

𝑖=1

𝑚

𝐾𝑖𝑧
−𝑖 + X 𝑧−1  

𝑖=0

𝑟

𝐿𝑖𝑧
−𝑖
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Example2 :
Determine the direct Form-I realization of the system

𝐻 𝑧−1 =
Y 𝑧−1

X 𝑧−1
=

5 − 4𝑧−1

1 − 2𝑧−1 + 3𝑧−2
→

Y 𝑧−1 = 2𝑧−1Y 𝑧−1 − 3𝑧−2Y 𝑧−1 + [5X 𝑧−1 − 4𝑧−1X 𝑧−1 ]

Example1:
Determine the direct Form-I realization of the system

𝐻 𝑧−1 =
Y 𝑧−1

X 𝑧−1
=

5

1 − 2𝑧−1
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Frequency-Response:
The frequency response of a discrete system can be obtained by applying:
• The Discrete Fourier Transform (DFT) or its optimized form called Fast Fourier Transform (FFT).

𝑋(𝜔) =  

𝑘=0

∞

𝑥(𝑘)𝑒−𝑗𝜔𝑘

• Computing the 𝑍 − 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 at the unit circle with 𝑧 = 𝑒𝑗𝜔 , that is 𝐻(𝜔) = 𝐻(𝑧)|𝑧=𝑒𝑗𝜔
Definition:
Given a causal LSI system with impulse response h(n), the frequency response of the system can be computed using the DFT 

as 𝐻(𝜔) =  𝑘=0
𝑛 ℎ(𝑛)𝑒−𝑗𝜔𝑘

Example1:

Compute the frequency response of the system with ℎ 𝑛 = (
1

3
)𝑛

Solution:

𝐻 𝜔 =  

𝑘=0

∞

ℎ 𝑛 𝑒−𝑗𝜔𝑛 =  

𝑛=0

∞

(
1

3
)𝑛𝑒−𝑗𝜔𝑛 =  

𝑛=0

∞

(3𝑒𝑗𝜔)−𝑛 =
1

1 −
1

3𝑒𝑗𝜔

=
1

1 −
1
3 𝑒

−𝑗𝜔

Example2:

Compute the frequency response of the system with 𝐻 𝑧 =
1

1−
1

3
𝑧−1

Solution: 𝐻 𝜔 =
1

1−
1

3
𝑒−𝑗𝜔
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Sinusoidal Steady State Response:
Theorem: Given a discrete  LSI system with impulse response h(n), the response of the system to a sinusoidal 
input 𝑥 𝑛 = 𝑋𝑐𝑜𝑠 𝜔0𝑛 + 𝜑 is sinusoidal with the same input frequency 𝑦 𝑛 = 𝑌𝑐𝑜𝑠 𝜔0𝑛 + 𝜃 with:

𝑌 = 𝑋 ∙ |𝐻(𝜔)|𝜔0
, 𝜃 = 𝜑 +< 𝐻(𝜔)|𝜔0

Proof:

let 𝑥 𝑛 = 𝑋𝑒𝑗(𝜔0𝑛+𝜑) then 𝑦 𝑛 =  𝑘=0
∞ ℎ 𝑛 𝑋𝑒𝑗(𝜔0(𝑛−𝑘+𝜑) = 𝑋𝑒𝑗(𝜔0𝑛+𝜑) 𝑘=0

∞ ℎ 𝑛 𝑒−𝑗𝜔0𝑘 = 𝑋𝑒𝑗(𝜔0𝑡+𝜑) ∙ 𝐻(𝜔)|𝜔0

Where 𝐻 𝜔 is the frequency response of the system that characterizes the spectral response of the linear time invariant 
system. 𝐻 𝜔 is a complex function of the real variable 𝜔 that represents the DFT of the impulse response  ℎ 𝑛 . 
𝑅𝑒(𝑥 𝑛 ) = 𝑋𝑐𝑜𝑠 𝜔0𝑛 + 𝜑 → 𝑅𝑒(𝑦 𝑛 ) = 𝑌𝑐𝑜𝑠 𝜔0𝑛 + 𝜃 which proves the assertion of the theorem

Example (sinusoidal steady-state response): 

compute the steady-state response of the system with frequency response 𝐻 𝜔 =
1

1−
1

3
𝑒−𝑗𝜔

to the input signal

𝑥 𝑛 = 2 cos(𝜋𝑛 +
𝜋

3
)

Solution:

𝐻 𝜔 =
1

1 −
1
3
cos 𝜔 +

1
3
sin(𝜔)

→ 𝐻 𝜔 =
1

(1 −
1
3
cos 𝜔 )2+(

1
3
sin(𝜔))2

, < 𝐻 𝜔 = −𝑡𝑎𝑛−1(

1
3
sin(𝜔)

1 −
1
3
cos 𝜔

)

𝑦 𝑛 = 2 ∙
1

(1−
1

3
cos 𝜋 )2+(

1

3
sin(𝜋))2

cos(𝜋𝑛 +
𝜋

3
− 𝑡𝑎𝑛−1

1

3
sin(𝜋)

1−
1

3
cos 𝜋

=
2

(
4

3
)2
cos( 𝜋𝑡 +

𝜋

3
−𝑡𝑎𝑛−1 0 ) =

3

2
cos(𝜋𝑛 +

𝜋

3
)
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