Chapter 4. Threads &
Cconcurrency

operititFlenr BB £9M oen Egition UploagedByMahammed,Raadas

Outline

= Qverview

= Multicore Programming

= Multithreading Models

= Thread Libraries

= Implicit Threading

= Threading Issues

= QOperating System Examples

» b=
& 5 7

Jplgr%)t!%wge lC! ncepg1 10t Edition 4.2 UpIO'%mg(gSg}élfZN&Qr\]/ﬁ"lmfm@g9§«3@§(a

=
,_ﬁﬂ’?»"“‘-’-l

5 Objectives

= |dentify the basic components of a thread, and contrast threads
and processes

= Describe the benefits and challenges of designing
multithreaded applications

= [llustrate different approaches to implicit threading including
thread pools, fork-join, and Grand Central Dispatch

= Describe how the Windows and Linux operating systems
represent threads

= Designing multithreaded applications using the Pthreads, Java,
and Windows threading APIs

GBI 10 Edition 43 Uploagied By Maammedsraadas

Motivation

Most modern applications are multithreaded
Threads run within application

Multiple tasks with the application can be implemented by
separate threads

* Update display

* Fetch data

* Spell checking

* Answer a network request

Process creation is heavy-weight while thread creation is
light-weight

Can simplify code, increase efficiency
Kernels are generally multithreaded

e —

v
GBI 10 Edition 4.4 Uploagied By Maammedsraadas

-

“4%7 Single and Multithreaded Processes

y -

i

e)

code data files code data files
registers PC stack registers| | |registers| | [registers
stack stack stack
PC PC PC
thread—— ;
<«—— thread

single-threaded process multithreaded process

W

AU AN

J N St U GO0 10w Ediition 45 Uploagied By Maammedyraad

NS ”\\
W

A

4% Multithreaded Server Architecture

(2) create new
(1) request thread to service
the request
client > server » thread

_

(3) resume listening
for additional
client requests

Jpléer!%gNJy%eH lc!clygn'c%%@— 10t Edition 4.6

= Responsiveness — may allow continued execution if part of
process is blocked, especially important for user interfaces

= Resource Sharing — threads share resources of process, easier
than shared memory or message passing

= Economy - cheaper than process creation, thread switching
lower overhead than context switching

= Scalability — process can take advantage of multicore
architectures

SN 3
GBI 10 Edition 47 Uploagied By Maammedsraadas

ot Multicore Programming

= Multicore or multiprocessor systems puts pressure on programmers,
challenges include:

* Dividing activities

* Balance

* Data splitting

* Data dependency

* Testing and debugging

= Parallelism implies a system can perform more than one task
simultaneously

= Concurrency supports more than one task making progress
* Single processor / core, scheduler providing concurrency

e —

GBI 10 Edition 48 Uploagied By Maammedsraadas

> Concurrency vs. Parallelism

= Concurrent execution on single-core system:

single core | T, T, Ts T, | T4 T, T, T, T,

time

\ 4

= Parallelism on a multi-core system:

core 1 T1 T3 T1 T3 T1

core2 | T T 4 T2 T 4 T2

\ 4

‘.‘\‘\‘l‘\x‘

P v |

o ..
- \,w
/ P

Ul A
A X

Uploagigd By Malammed,maad

~
¥

J&é@r%’}@?@ﬁ léc?n‘c%%@- 10t Edition 4.9

g | .
G5 Multicore Programming

= Types of parallelism
Data parallelism — distributes subsets of the same data

across multiple cores, same operation on each
* Task parallelism — distributing threads across cores, each
thread performing unique operation

\

AT
> \

.\\ A
. S/
(
>
AX

Up|06§ﬂ§Qs§5étzl\&W@Qg§a@G%

Jplgr%)t!%wge lC! ncepg1 10t Edition 4.10

o
Y,

‘tf%,}-{ Data and Task Parallelism

data
data l l l l
parallelism
core 0 core 1 core 2 core 3
data
task
parallelism
core 0 core 1 core 7) core 3

thér%g'\géém léan.(%%@_ 10t Edition 4.11

= |dentifies performance gains from adding additional cores to an
application that has both serial and parallel components

= S is serial portion
= N processing cores

speedup <

= That is, if application is 75% parallel / 25% serial, moving from 1 to 2
cores results in speedup of 1.6 times

= As N approaches infinity, speedup approaches 1/ S

Serial portion of an application has disproportionate effect on
performance gained by adding additional cores

= But does the law take into account contemporary multicore systems? ..
AN
fa.:
GBI 10 Edition 4.12 Uploagied By Maammedsraadas

G Amdahl’s Law

16

L]
Ideal
= 0.05
S=0.1
14 |- i S= e o

12

10

i 1 1 1 1
0 2 a4 6 8 10 12 14 16
Number of Processing Cores

<

J RN S UB SO 10m Edition 4.13 Uploagigd By Mahammed,saades

‘;

4
Y,

m.f‘»'""’“'.“
"‘“f},i"f’ User Threads and Kernel Threads

= User threads - management done by user-level threads library
= Three primary thread libraries:
* POSIX Pthreads
* Windows threads
* Java threads
= Kernel threads - Supported by the Kernel
= Examples — virtually all general-purpose operating systems, including:
* Windows
* Linux
* Mac OS X
* I0S
* Android

A8
v
J N St U GO0 10w Ediition 4.14 Uploagied By Maammedsraadas

el
‘f«%ﬂ User and Kernel Threads

:

user threads

$ S

:

:

S

kernel threads

Ird RN SR GO 100 Edition

4.15

user
space

kernel
space

N _ _
o Multithreading Models

[\

L8 s

= Many-to-One
= One-to-One
= Many-to-Many

.8

/4 PAY

J RN S UB SO 10m Edition 4.16 Uploagigd By Mahammesd,meadas

o Many-to-One

= Many user-level threads mapped to single kernel thread
= One thread blocking causes all to block

= Multiple threads may not run in parallel on multicore system because
only one may be in kernel at a time

= Few systems currently use this model
= Examples:
e Solaris Green Threads
* GNU Portable Threads

user threads
user
space

g kernel
space

kernel threads

e —

- : v\ :“'A\I
4 W
GBI 10t Edition 4.17 Uploagigd By Mahammed,Rasdss

One-to-One

= Each user-level thread maps to kernel thread

= Creating a user-level thread creates a kernel thread

= More concurrency than many-to-one

= Number of threads per process sometimes restricted due to overhead

= Examples
* Windows
* Linux

'(%Op@— 10t Edition

user threads

kernel threads

user
space

kernel
space

n Uploagigd-BiMohanmmes,Saada

s
g Many-to-Many Model

= Allows many user level threads to be mapped to many kernel threads

= Allows the operating system to create a sufficient number of kernel
threads

= Windows with the ThreadFiber package
= Otherwise not very common

user threads

LS L e
S S5 lame

kernel threads

4 W
GBI 10 Edition 4.19 Uploagigd B Maammedyrasdas

Two-level Model

= Similar to M:M, except that it allows a user thread to be bound to

kernel thread

:

user threads

S

:

[N

kernel threads

Jplgr%)t!%é\g§e lC! nc:epg1 10t Edition

4.20

user
space

kernel
space

Uplo%qsgsmtmnmm@ggg@@m‘

g Thread Libraries

= Thread library provides programmer with API for creating and
managing threads

= Two primary ways of implementing
* Library entirely in user space
* Kernel-level library supported by the OS

k g
ES’VA

Jplgr%)t!%lg\gge lC! ncepg1 10t Edition 4.21 UpIO'%m6&1Sg}él‘fZM;'Ar\]/ﬁ"lmflln@gggﬁék(a

.

= May be provided either as user-level or kernel-level

= A POSIX standard (IEEE 1003.1c) API for thread creation and
synchronization

= Specification, not implementation

= API specifies behavior of the thread library, implementation is up to
development of the library

= Common in UNIX operating systems (Linux & Mac OS X)

e —

7 4 J}\E-;" %
GBI 10 Edition 4.22 Uploagied By Maammedsraadas

G5 Pthreads Example

#include <pthread.h>
#include <stdio.h>

#include <stdlib.h>

int sum; /* this data is shared by the thread(s) */
void *runner(void *param); /* threads call this function */

int main(int argc, char *argv([])

{
pthread t tid; /* the thread identifier */
pthread attr t attr; /* set of thread attributes */
/* set the default attributes of the thread */
pthread attr_init(&attr) ;
/* create the thread */
pthread create(&tid, &attr, runner, argv[1]);
/* wait for the thread to exit */
pthread_join(tid,NULL) ;
printf ("sum = %d\n",sum);

}

Wa
J N St U GO0 10w Ediition 423 Uploagied By Maammed 8

fwmlz&
@)—f Pthreads Example (Cont.)

L

/* The thread will execute in this function */
void *runner(void *param)

{

int i, upper = atoi(param);
sum = O;

for (i = 1; i <= upper; i++)
sum += 1i;

pthread exit(0) ;
}

£ g : N
A ﬁ;:
J RN S UB SO 10m Edition 4.24 Uploagigd B Mahammedsraada

‘f’%;"}“ Pthreads Code for Joining 10 Threads

#define NUM_THREADS 10

/* an array of threads to be joined upon */
pthread t workers[NUM_THREADS] ;

for (int i = 0; i < NUM_THREADS; i++)
pthread_join(workers([i], NULL);

thér%g'\géém léan.(%%@_ 10t Edition 4.25

=

Windows Multithreaded C Program

.l

#include <windows.h>
#include <stdio.h>
DWORD Sum; /* data is shared by the thread(s) */

/* The thread will execute in this function */
DWORD WINAPI Summation(LPVOID Param)

{
DWORD Upper = *(DWORD*)Param;
for (DWORD i = 1; i <= Upper; i++)
Sum += i;
return O;
}

: S
A A
%

J N St U GO0 10w Ediition 4.26 Uploagied By Maammed

=

’Wlndows Multithreaded C Program (Cont.)

*L

int main(int argc, char *argv[])
{

DWORD ThreadId;

HANDLE ThreadHandle;

int Param;

Param = atoi(argv[1]);
/* create the thread */
ThreadHandle = CreateThread (
NULL, /* default security attributes */
0, /* default stack size */
Summation, /* thread function */
&Param, /* parameter to thread function */
0, /* default creation flags */
&ThreadlId); /* returns the thread identifier */

/* now wait for the thread to finish */
WaitForSingleObject(ThreadHandle, INFINITE) ;

/* close the thread handle */
CloseHandle (ThreadHandle) ;

printf ("sum = %d\n",Sum);

} §
Jplgrga)t!%é\lg/§e l(! ng’aps 10t Edition 4.27 Uplo%ﬂ&gsg}é{zl\@mm@%m@?g

S5 Java Threads

= Java threads are managed by the JVM

= Typically implemented using the threads model provided by underlying
OS

= Java threads may be created by:
* Extending Thread class
* Implementing the Runnable interface

public interface Runnable

{
}

public abstract void runf();

* Standard practice is to implement Runnable interface

e —

£ ’fE;S‘
GBI 10 Edition 4.28 Uploagied By Maammedsraadas

m,,.—/ Java Threads

Implementing Runnable interface:

class Task implements Runnable

{

public void run() {
System.out.println("I am a thread.");
}

}

Creating a thread:

Thread worker = new Thread(new Task());
worker.start() ;

Waiting on a thread:

try {
worker.join() ;
}

catch (InterruptedException ie) { }

Jplgr%)t!%é\lg/ge lC! ncepg1 10t Edition 4.29 Uploaggsaﬁle\&m:a@ggm@ag

(D
o Java Executor Framework

= Rather than explicitly creating threads, Java also allows thread creation
around the Executor interface:

public interface Executor

{
}

void execute(Runnable command) ;

= The Executor is used as follows:

Executor service = new Executor;
service.execute (new Task());

thér%)t!%g'\géém UG 10 Edition 430 Uplo@@s@ﬁ%ﬂy&m@@%m@ﬁ

: ﬂ_j%
e Java Executor Framework

[\

L8 s

import java.util.concurrent.x*;

class Summation implements Callable<Integer>

{

private int upper;

public Summation(int upper) {
this.upper = upper;

}

/* The thread will execute in this method */
public Integer call() {
int sum = 0;
for (int i = 1; i <= upper; i++)
sum += 1i;

return new Integer(sum) ;

}
}

<

| A ﬁ:‘
J N St U GO0 10w Ediition 431 Uploagied By Maammed 8

=

“$%7 Java Executor Framework (Cont.)

e

public class Driver

{

public static void main(Stringl[] args) {
int upper = Integer.parselnt(args[0]);

ExecutorService pool = Executors.newSingleThreadExecutor() ;
Future<Integer> result = pool.submit(new Summation(upper)) ;

try {
System.out.println("sum = " + result.get());
} catch (InterruptedException | ExecutionException ie) { }

Ia
J N St U GO0 10w Ediition 4.32 Uploagied By Maammed 8

Implicit Threading

= Growing in popularity as numbers of threads increase, program
correctness more difficult with explicit threads

= Creation and management of threads done by compilers and run-time
libraries rather than programmers

= Five methods explored

Thread Pools

Fork-Join (reference only)

OpenMP (reference only)

Grand Central Dispatch (reference only)

Intel Threading Building Blocks (reference only)

e —

a:

.CO

&M 10t Egition 433 Uplo@ﬂ@gsgﬁzlwﬁmm@ggm?é

=

=
> ﬂ’?»"“"-l

g5 Thread Pools

y

= Create a number of threads in a pool where they await work

= Advantages:

* Usually slightly faster to service a request with an existing thread
than create a new thread

* Allows the number of threads in the application(s) to be bound to
the size of the pool

* Separating task to be performed from mechanics of creating task
allows different strategies for running task

» .e,Tasks could be scheduled to run periodically
= Windows API supports thread pools:

DWORD WINAPI PoolFunction (AVOID Param)

/*
* this function runs as a separate thread.
*/
})
A 4 ‘F‘ g
9 Uploagigd By Mahammesd,meadas

cep@— 10t Edition 4.34

g T Java Thread Pools

= Three factory methods for creating thread pools in Executors class:

® static ExecutorService newSingleThreadExecutor()
e static ExecutorService newFixedThreadPool(int size)

e static ExecutorService newCachedThreadPool()

A AN
J N St U GO0 10w Ediition 435 Uploagied By Maammedsraadas

| A«J%
ot Java Thread Pools (Cont.)

L8 s

import java.util.concurrent.x*;

public class ThreadPoolExample

{

public static void main(String[] args) {
int numTasks = Integer.parselnt(args[0].trim());

/* Create the thread pool */
ExecutorService pool = Executors.newCachedThreadPool();

/* Run each task using a thread in the pool */
for (int i = 0; i < numTasks; i++)
pool.execute(new Task());

/* Shut down the pool once all threads have completed */
pool.shutdown();

Ia
J N St U GO0 10w Ediition 4.36 Uploagied By Maammed 8

:\%
L A,f.m.k
o

= The following slides are
for reference only.

J N St U GO0 10w Ediition 437 Uploagied By Maammedsraadas

&«:;;—(Fork-Join Parallelism

= Multiple threads (tasks) are forked, and then joined.

o ¥ | sk - Joi
main thread -7 S A main thread
—> >
~ . R 4
foy. ~ =
o~ ~al task |.- %

E f:-v,:’
» H

Jplgr%)t!%wge lC! ncepg1 10t Edition 4.38 UpIO'%mg(gSg}élfZN&Qr\]/ﬁ"lmfm@g9§«3@§(a

| ««J% _ :
ot Fork-Join Parallelism

L8 s

= General algorithm for fork-join strategy:

Task (problem)
if problem is small enough
solve the problem directly
else
subtaskl = fork(new Task(subset of problem)
subtask2 = fork(new Task(subset of problem)

resultl = join(subtaskl)
result2 = join(subtask2)

return combined results

J N St U GO0 10w Ediition 4.39 Uploagied By Maammed 8

7 Fork-Join Parallelism

.

259

e

a I
J N St U GO0 10w Ediition 4.40 Uploagied By Maammed 8

~$»’ Fork-Join Parallelism in Java

ForkJoinPool pool = new ForkJoinPool();
// array contains the integers to be summed
int[] array = new int[SIZE];

SumTask task = new SumTask(0, SIZE - 1, array);
int sum = pool.invoke(task);

VD
J RN S UB SO 10m Edition 4.41 Uploagigd By Maharhedymaadas

e _ . .
“$%7 Fork-Join Parallelism in Java

Q

LS

import java.util.concurrent.*;

public class SumTask extends RecursiveTask<Integer>

{

static final int THRESHOLD = 1000;

private int begin;
private int end;
private int[] array;

public SumTask(int begin, int end, int[] array) {
this.begin = begin;
this.end = end;
this.array = array;

}

protected Integer compute() {
if (end - begin < THRESHOLD) {
int sum = O;
for (int i = begin; i <= end; i++)
sum += arrayl[i];

return sum;

s

else {
int mid = (begin + end) / 2;

SumTask leftTask = new SumTask(begin, mid, array);
SumTask rightTask = new SumTask(mid + 1, end, array);

leftTask.fork() ;
rightTask.fork() ;

return rightTask.join() + leftTask.join();

}

} i
} v
J N St U GO0 10w Ediition 4.42 Uploagied By Maammed 8

A”“m‘\ . I I
~%7/ Fork-Join Parallelism in Java

= The ForkJoinTask is an abstract base class

" RecursiveTask and RecursiveAction classes extend

ForkJoinTask

= RecursiveTask returns a result (via the return value from the

compute () method)

= RecursiveAction does not return a result

ForkdoinTask <V>
<abstract>

|

RecursiveTask <V>
<abstract>

V compute()

'(%Op@— 10t Edition

4.43

RecursiveAction
<abstract>

void compute()

UploagigdByMahanmmes,Saada

o OpenMP

= Set of compiler directives and
an API for C, C++,
FORTRAN

= Provides support for parallel
programming in shared-
memory environments

= |dentifies parallel regions —
blocks of code that can run in
parallel

#pragma omp parallel

Create as many threads as there
are cores

'(%Op@— 10t Edition

4.44

#include <omp.h>
#include <stdio.h>

int main(int argc, char *argv([])

{

/* sequential code */

#pragma omp parallel

{

printf ("I am a parallel region.");

}

/* sequential code */

return 0;

UploagigdByMahanmmes,Saada

= Run the for loop in parallel

#pragma omp parallel for
for (1 = 0; i < N; i++) {
c[i] = al[i] + b[i];

}

v
J RN S UB SO 10m Edition 4.45 Uploagigd By Maharhedymaadas

%

,ﬁ.m.‘\
o

o Grand Central Dispatch

= Apple technology for macOS and iOS operating systems

= Extensions to C, C++ and Objective-C languages, API, and run-time
library

= Allows identification of parallel sections
= Manages most of the details of threading
= Blockisin “M}":

“{ printf ("I am a block"); }

= Blocks placed in dispatch queue

* Assigned to available thread in thread pool when removed from
queue

e —

GBI 10 Edition 4.46 Uploagied By Maammedsraadas

M,»-f Grand Central Dispatch

= Two types of dispatch queues:

* serial — blocks removed in FIFO order, queue is per process,
called main queue

» Programmers can create additional serial queues within
program

e concurrent — removed in FIFO order but several may be removed
at atime

» Four system wide queues divided by quality of service:
o QOS CLASS USER INTERACTIVE

o QOS CLASS USER INITIATED
o QOS CLASS USER UTILITY
o QOS CLASS USER BACKGROUND

GBI 10 Edition 4.47 Uplo@ﬂ@gsgﬁ%mmm@gﬁé@dé

&/:,,w Grand Central Dispatch

= For the Swift language a task is defined as a closure — similar to a
block, minus the caret

= Closures are submitted to the queue using the dispatch async ()
function:

let queue = dispatch get_global_queue
(QOS_CLASS_USER_INITIATED, O0)

dispatch_async(queue,{ print("I am a closure.") })

5_)&

Jplgr%)t!%lg\lg/ge lC! ncepg1 10t Edition 4.48 UpIO'%m6&1Sg}él‘fZM;'Ar\]/ﬁ"lmflln@gggﬁék(a

"—7—“”‘| tel Threading Building Blocks (TBB)

= Template library for designing parallel C++ programs
= A serial version of a simple for loop

for (int i = 0; i < n; i++) {
apply(v([il);

= The same for loop written using TBB with parallel for statement:

parallel for (size t(0), n, [=](size_t i) {apply(v[il);});

k g
ES’VA

Jplgr%)t!%lg\gge lC! ncepg1 10t Edition 4.49 UpIO'%m6&1Sg}él‘fZM;'Ar\]/ﬁ"lmflln@gggﬁék(a

o
Y,

g Threading Issues

= Semantics of fork() and exec() system calls
= Signal handling

* Synchronous and asynchronous
= Thread cancellation of target thread

* Asynchronous or deferred

k g
ES’VA

Jplgr%)t!%lg\gge lC! ncepg1 10t Edition 4.50 UpIO'%m6&1Sg}él‘fZM;'Ar\]/ﬁ"lmflln@gggﬁék(a

ot Semantics of fork() and exec()

= Does fork () duplicate only the calling thread or all threads?

* Some UNIXes have two versions of fork

= exec() usually works as normal — replace the running process
including all threads

\

ALY
\

AT
7 s !
_— ;V}i;, M

)
AX

Jplgr%)t!%wge lC! ncepg1 10t Edition 4.51 Uploaggsaﬁle\&m:a@ggm@ag

= Signals are used in UNIX systems to notify a process that a particular
event has occurred.

= Asignal handler is used to process signals
1. Signal is generated by particular event
2. Signal is delivered to a process
3. Signal is handled by one of two signal handlers:
1. default
2. user-defined

= Every signal has default handler that kernel runs when handling
signal

* User-defined signal handler can override default
* For single-threaded, signal delivered to process

e —

GBI 10 Edition 452 Uploagied By Maammedsraadas

x‘,,,,.../ Sighal Handling (Cont.)

= Where should a signal be delivered for multi-threaded?
* Deliver the signal to the thread to which the signal applies
* Deliver the signal to every thread in the process
* Deliver the signal to certain threads in the process
* Assign a specific thread to receive all signals for the process

e —

- : v\ :“'A\I
4 W
GBI 10t Edition 453 Uploagigd By Mahammed,Rasdss

,«f”“ﬂml .
o Thread Cancellation

= Terminating a thread before it has finished
= Thread to be canceled is target thread
= Two general approaches:

* Asynchronous cancellation terminates the target thread
immediately

* Deferred cancellation allows the target thread to periodically
check if it should be cancelled

= Pthread code to create and cancel a thread:
pthread t tid;

/* create the thread */
pthread create(&tid, 0, worker, NULL);

/* cancel the thread */
pthread cancel (tid) ;

/* wait for the thread to terminate */
pthread join(tid,NULL);

GBI 10 Edition 454 UD'O@EQSE%%MW%%M?Q

End of Chapter 4

operititFlenr BB £9M oen Egition UploagedByMahammed,Raadas

