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5 Objectives

= |dentify the basic components of a thread, and contrast threads
and processes

= Describe the benefits and challenges of designing
multithreaded applications

= [llustrate different approaches to implicit threading including
thread pools, fork-join, and Grand Central Dispatch

= Describe how the Windows and Linux operating systems
represent threads

= Designing multithreaded applications using the Pthreads, Java,
and Windows threading APIs
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Motivation

Most modern applications are multithreaded
Threads run within application

Multiple tasks with the application can be implemented by
separate threads

* Update display

* Fetch data

* Spell checking

* Answer a network request

Process creation is heavy-weight while thread creation is
light-weight

Can simplify code, increase efficiency
Kernels are generally multithreaded
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“4%7 Single and Multithreaded Processes
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4%  Multithreaded Server Architecture

(2) create new
(1) request thread to service
the request
client > server » thread

\_

(3) resume listening
for additional
client requests
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= Responsiveness — may allow continued execution if part of
process is blocked, especially important for user interfaces

= Resource Sharing — threads share resources of process, easier
than shared memory or message passing

= Economy - cheaper than process creation, thread switching
lower overhead than context switching

= Scalability — process can take advantage of multicore
architectures

SN 3
GBI 10 Edition 47 Uploagied By Maammedsraadas




ot Multicore Programming

= Multicore or multiprocessor systems puts pressure on programmers,
challenges include:

* Dividing activities

* Balance

* Data splitting

* Data dependency

* Testing and debugging

= Parallelism implies a system can perform more than one task
simultaneously

= Concurrency supports more than one task making progress
* Single processor / core, scheduler providing concurrency

e —
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> Concurrency vs. Parallelism

=  Concurrent execution on single-core system:

single core | T, T, Ts T, | T4 T, T, T, T,

time

\ 4

=  Parallelism on a multi-core system:

core 1 T1 T3 T1 T3 T1

core2 | T T 4 T2 T 4 T2
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G5 Multicore Programming

= Types of parallelism
Data parallelism — distributes subsets of the same data

across multiple cores, same operation on each
* Task parallelism — distributing threads across cores, each
thread performing unique operation
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‘tf%,}-{ Data and Task Parallelism

data
data l l l l
parallelism
core 0 core 1 core 2 core 3
data
task
parallelism
core 0 core 1 core 7) core 3
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= |dentifies performance gains from adding additional cores to an
application that has both serial and parallel components

= S is serial portion
= N processing cores

speedup <

= That is, if application is 75% parallel / 25% serial, moving from 1 to 2
cores results in speedup of 1.6 times

= As N approaches infinity, speedup approaches 1/ S

Serial portion of an application has disproportionate effect on
performance gained by adding additional cores

= But does the law take into account contemporary multicore systems? ..
AN
fa.:
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G Amdahl’s Law
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"‘“f},i"f’ User Threads and Kernel Threads

= User threads - management done by user-level threads library
= Three primary thread libraries:
* POSIX Pthreads
*  Windows threads
* Java threads
= Kernel threads - Supported by the Kernel
= Examples — virtually all general-purpose operating systems, including:
*  Windows
* Linux
* Mac OS X
* I0S
* Android

A8
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‘f«%ﬂ User and Kernel Threads
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user threads
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N _ _
o Multithreading Models

[\

L8 s

= Many-to-One
= One-to-One
= Many-to-Many
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o Many-to-One

= Many user-level threads mapped to single kernel thread
= One thread blocking causes all to block

= Multiple threads may not run in parallel on multicore system because
only one may be in kernel at a time

= Few systems currently use this model
= Examples:
e Solaris Green Threads
* GNU Portable Threads

user threads
user
space

g kernel
space

kernel threads
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One-to-One

= Each user-level thread maps to kernel thread

= Creating a user-level thread creates a kernel thread

= More concurrency than many-to-one

= Number of threads per process sometimes restricted due to overhead

= Examples
*  Windows
* Linux
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g Many-to-Many Model

= Allows many user level threads to be mapped to many kernel threads

= Allows the operating system to create a sufficient number of kernel
threads

= Windows with the ThreadFiber package
= Otherwise not very common

user threads

LS L e
S S5 lame

kernel threads
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Two-level Model

= Similar to M:M, except that it allows a user thread to be bound to

kernel thread

:

user threads

S

:

[N

kernel threads
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g Thread Libraries

= Thread library provides programmer with API for creating and
managing threads

= Two primary ways of implementing
* Library entirely in user space
* Kernel-level library supported by the OS

k g
ES’VA
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= May be provided either as user-level or kernel-level

= A POSIX standard (IEEE 1003.1c) API for thread creation and
synchronization

= Specification, not implementation

= API specifies behavior of the thread library, implementation is up to
development of the library

= Common in UNIX operating systems (Linux & Mac OS X)

e —

7 4 J}\E-;" %
GBI 10 Edition 4.22 Uploagied By Maammedsraadas




G5 Pthreads Example

#include <pthread.h>
#include <stdio.h>

#include <stdlib.h>

int sum; /* this data is shared by the thread(s) */
void *runner(void *param); /* threads call this function */

int main(int argc, char *argv([])

{
pthread t tid; /* the thread identifier */
pthread attr t attr; /* set of thread attributes */
/* set the default attributes of the thread */
pthread attr_init(&attr) ;
/* create the thread */
pthread create(&tid, &attr, runner, argv[1]);
/* wait for the thread to exit */
pthread_join(tid,NULL) ;
printf ("sum = %d\n",sum);

}

Wa
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@)—f Pthreads Example (Cont.)

L

/* The thread will execute in this function */
void *runner(void *param)

{

int i, upper = atoi(param);
sum = O;

for (i = 1; i <= upper; i++)
sum += 1i;

pthread exit(0) ;
}

£ g : N
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‘f’%;"}“ Pthreads Code for Joining 10 Threads

#define NUM_THREADS 10

/* an array of threads to be joined upon */
pthread t workers[NUM_THREADS] ;

for (int i = 0; i < NUM_THREADS; i++)
pthread_join(workers([i], NULL);
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Windows Multithreaded C Program

.l

#include <windows.h>
#include <stdio.h>
DWORD Sum; /* data is shared by the thread(s) */

/* The thread will execute in this function */
DWORD WINAPI Summation(LPVOID Param)

{
DWORD Upper = *(DWORD*)Param;
for (DWORD i = 1; i <= Upper; i++)
Sum += i;
return O;
}

: S
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%
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’Wlndows Multithreaded C Program (Cont.)

*L

int main(int argc, char *argv[])
{

DWORD ThreadId;

HANDLE ThreadHandle;

int Param;

Param = atoi(argv[1]);
/* create the thread */
ThreadHandle = CreateThread (
NULL, /* default security attributes */
0, /* default stack size */
Summation, /* thread function */
&Param, /* parameter to thread function */
0, /* default creation flags */
&ThreadlId); /* returns the thread identifier */

/* now wait for the thread to finish */
WaitForSingleObject(ThreadHandle, INFINITE) ;

/* close the thread handle */
CloseHandle (ThreadHandle) ;

printf ("sum = %d\n",Sum);

} §
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S5 Java Threads

= Java threads are managed by the JVM

= Typically implemented using the threads model provided by underlying
OS

= Java threads may be created by:
* Extending Thread class
* Implementing the Runnable interface

public interface Runnable

{
}

public abstract void runf();

* Standard practice is to implement Runnable interface

e —
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m,,.—/ Java Threads

Implementing Runnable interface:

class Task implements Runnable

{

public void run() {
System.out.println("I am a thread.");
}

}

Creating a thread:

Thread worker = new Thread(new Task());
worker.start() ;

Waiting on a thread:

try {
worker.join() ;
}

catch (InterruptedException ie) { }
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(D
o Java Executor Framework

= Rather than explicitly creating threads, Java also allows thread creation
around the Executor interface:

public interface Executor

{
}

void execute(Runnable command) ;

= The Executor is used as follows:

Executor service = new Executor;
service.execute (new Task());
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e Java Executor Framework
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import java.util.concurrent.x*;

class Summation implements Callable<Integer>

{

private int upper;

public Summation(int upper) {
this.upper = upper;

}

/* The thread will execute in this method */
public Integer call() {
int sum = 0;
for (int i = 1; i <= upper; i++)
sum += 1i;

return new Integer(sum) ;

}
}

<
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“$%7 Java Executor Framework (Cont.)

e

public class Driver

{

public static void main(Stringl[] args) {
int upper = Integer.parselnt(args[0]);

ExecutorService pool = Executors.newSingleThreadExecutor() ;
Future<Integer> result = pool.submit(new Summation(upper)) ;

try {
System.out.println("sum = " + result.get());
} catch (InterruptedException | ExecutionException ie) { }

Ia
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Implicit Threading

= Growing in popularity as numbers of threads increase, program
correctness more difficult with explicit threads

= Creation and management of threads done by compilers and run-time
libraries rather than programmers

= Five methods explored

Thread Pools

Fork-Join (reference only)

OpenMP (reference only)

Grand Central Dispatch (reference only)

Intel Threading Building Blocks (reference only)

e —
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g5 Thread Pools

y

= Create a number of threads in a pool where they await work

= Advantages:

* Usually slightly faster to service a request with an existing thread
than create a new thread

* Allows the number of threads in the application(s) to be bound to
the size of the pool

* Separating task to be performed from mechanics of creating task
allows different strategies for running task

» .e,Tasks could be scheduled to run periodically
= Windows API supports thread pools:

DWORD WINAPI PoolFunction (AVOID Param)

/*
* this function runs as a separate thread.
*/
} )
A 4 ‘F‘ g
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g T Java Thread Pools

= Three factory methods for creating thread pools in Executors class:

® static ExecutorService newSingleThreadExecutor()
e static ExecutorService newFixedThreadPool(int size)

e static ExecutorService newCachedThreadPool()

A AN
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ot Java Thread Pools (Cont.)

L8 s

import java.util.concurrent.x*;

public class ThreadPoolExample

{

public static void main(String[] args) {
int numTasks = Integer.parselnt(args[0].trim());

/* Create the thread pool */
ExecutorService pool = Executors.newCachedThreadPool();

/* Run each task using a thread in the pool */
for (int i = 0; i < numTasks; i++)
pool.execute(new Task());

/* Shut down the pool once all threads have completed */
pool.shutdown();

Ia
J N St U GO0 10w Ediition 4.36 Uploagied By Maammed 8




:\%
L A,f.m.k
o

= The following slides are
for reference only.
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&«:;;—( Fork-Join Parallelism

= Multiple threads (tasks) are forked, and then joined.

o ¥ | sk - Joi
main thread -7 S A main thread
—> >
~ . R 4
foy. ~ =
o~ ~al task |.- %
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ot Fork-Join Parallelism

L8 s

= General algorithm for fork-join strategy:

Task (problem)
if problem is small enough
solve the problem directly
else
subtaskl = fork(new Task(subset of problem)
subtask2 = fork(new Task(subset of problem)

resultl = join(subtaskl)
result2 = join(subtask2)

return combined results
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7 Fork-Join Parallelism

.

259
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~$»’  Fork-Join Parallelism in Java

ForkJoinPool pool = new ForkJoinPool();
// array contains the integers to be summed
int[] array = new int[SIZE];

SumTask task = new SumTask(0, SIZE - 1, array);
int sum = pool.invoke(task);

VD
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“$%7  Fork-Join Parallelism in Java

Q

LS

import java.util.concurrent.*;

public class SumTask extends RecursiveTask<Integer>

{

static final int THRESHOLD = 1000;

private int begin;
private int end;
private int[] array;

public SumTask(int begin, int end, int[] array) {
this.begin = begin;
this.end = end;
this.array = array;

}

protected Integer compute() {
if (end - begin < THRESHOLD) {
int sum = O;
for (int i = begin; i <= end; i++)
sum += arrayl[i];

return sum;

s

else {
int mid = (begin + end) / 2;

SumTask leftTask = new SumTask(begin, mid, array);
SumTask rightTask = new SumTask(mid + 1, end, array);

leftTask.fork() ;
rightTask.fork() ;

return rightTask.join() + leftTask.join();

}

} i
} v
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~%7/  Fork-Join Parallelism in Java

= The ForkJoinTask is an abstract base class

" RecursiveTask and RecursiveAction classes extend

ForkJoinTask

= RecursiveTask returns a result (via the return value from the

compute () method)

= RecursiveAction does not return a result

ForkdoinTask <V>
<abstract>

|

RecursiveTask <V>
<abstract>

V compute()

'(%Op@— 10t Edition

4.43

RecursiveAction
<abstract>

void compute()

UploagigdByMahanmmes,Saada



o OpenMP

= Set of compiler directives and
an API for C, C++,
FORTRAN

= Provides support for parallel
programming in shared-
memory environments

= |dentifies parallel regions —
blocks of code that can run in
parallel

#pragma omp parallel

Create as many threads as there
are cores

'(%Op@— 10t Edition

4.44

#include <omp.h>
#include <stdio.h>

int main(int argc, char *argv([])

{

/* sequential code */

#pragma omp parallel

{

printf ("I am a parallel region.");

}

/* sequential code */

return 0;
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= Run the for loop in parallel

#pragma omp parallel for
for (1 = 0; i < N; i++) {
c[i] = al[i] + b[i];

}

v
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o Grand Central Dispatch

= Apple technology for macOS and iOS operating systems

= Extensions to C, C++ and Objective-C languages, API, and run-time
library

= Allows identification of parallel sections
= Manages most of the details of threading
= Blockisin “M}":

“{ printf ("I am a block"); }

= Blocks placed in dispatch queue

* Assigned to available thread in thread pool when removed from
queue

e —
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M,»-f Grand Central Dispatch

= Two types of dispatch queues:

* serial — blocks removed in FIFO order, queue is per process,
called main queue

» Programmers can create additional serial queues within
program

e concurrent — removed in FIFO order but several may be removed
at atime

» Four system wide queues divided by quality of service:
o QOS CLASS USER INTERACTIVE

o QOS CLASS USER INITIATED
o QOS CLASS USER UTILITY
o QOS CLASS USER BACKGROUND
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&/:,,w Grand Central Dispatch

= For the Swift language a task is defined as a closure — similar to a
block, minus the caret

= Closures are submitted to the queue using the dispatch async ()
function:

let queue = dispatch get_global_queue
(QOS_CLASS_USER_INITIATED, O0)

dispatch_async(queue,{ print("I am a closure.") })

5_)&
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"—7—“”‘| tel Threading Building Blocks (TBB)

= Template library for designing parallel C++ programs
= A serial version of a simple for loop

for (int i = 0; i < n; i++) {
apply(v([il);

= The same for loop written using TBB with parallel for statement:

parallel for (size t(0), n, [=](size_t i) {apply(v[il);});

k g
ES’VA

Jplgr%)t!%lg\gge lC! ncepg1 10t Edition 4.49 UpIO'%m6&1Sg}él‘fZM;'Ar\]/ﬁ"lmflln@gggﬁék(a




o
Y,

g Threading Issues

= Semantics of fork() and exec() system calls
= Signal handling

* Synchronous and asynchronous
= Thread cancellation of target thread

* Asynchronous or deferred

k g
ES’VA
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ot Semantics of fork() and exec()

= Does fork () duplicate only the calling thread or all threads?

* Some UNIXes have two versions of fork

= exec() usually works as normal — replace the running process
including all threads
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= Signals are used in UNIX systems to notify a process that a particular
event has occurred.

= Asignal handler is used to process signals
1. Signal is generated by particular event
2. Signal is delivered to a process
3. Signal is handled by one of two signal handlers:
1. default
2. user-defined

= Every signal has default handler that kernel runs when handling
signal

* User-defined signal handler can override default
* For single-threaded, signal delivered to process

e —
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x‘,,,,.../ Sighal Handling (Cont.)

= Where should a signal be delivered for multi-threaded?
* Deliver the signal to the thread to which the signal applies
* Deliver the signal to every thread in the process
* Deliver the signal to certain threads in the process
* Assign a specific thread to receive all signals for the process

e —
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o Thread Cancellation

= Terminating a thread before it has finished
= Thread to be canceled is target thread
= Two general approaches:

* Asynchronous cancellation terminates the target thread
immediately

* Deferred cancellation allows the target thread to periodically
check if it should be cancelled

= Pthread code to create and cancel a thread:
pthread t tid;

/* create the thread */
pthread create(&tid, 0, worker, NULL);

/* cancel the thread */
pthread cancel (tid) ;

/* wait for the thread to terminate */
pthread join(tid,NULL);
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End of Chapter 4
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