
Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Chapter 4: Threads &

Concurrency

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

4.2 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Outline

 Overview

 Multicore Programming

 Multithreading Models

 Thread Libraries

 Implicit Threading

 Threading Issues

 Operating System Examples

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

4.3 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Objectives

 Identify the basic components of a thread, and contrast threads

and processes

 Describe the benefits and challenges of designing

multithreaded applications

 Illustrate different approaches to implicit threading including

thread pools, fork-join, and Grand Central Dispatch

 Describe how the Windows and Linux operating systems

represent threads

 Designing multithreaded applications using the Pthreads, Java,

and Windows threading APIs

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

4.4 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Motivation

 Most modern applications are multithreaded

 Threads run within application

 Multiple tasks with the application can be implemented by

separate threads

• Update display

• Fetch data

• Spell checking

• Answer a network request

 Process creation is heavy-weight while thread creation is

light-weight

 Can simplify code, increase efficiency

 Kernels are generally multithreaded

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

4.5 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Single and Multithreaded Processes

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

4.6 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Multithreaded Server Architecture

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

4.7 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Benefits

 Responsiveness – may allow continued execution if part of

process is blocked, especially important for user interfaces

 Resource Sharing – threads share resources of process, easier

than shared memory or message passing

 Economy – cheaper than process creation, thread switching

lower overhead than context switching

 Scalability – process can take advantage of multicore

architectures

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

4.8 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Multicore Programming

 Multicore or multiprocessor systems puts pressure on programmers,

challenges include:

• Dividing activities

• Balance

• Data splitting

• Data dependency

• Testing and debugging

 Parallelism implies a system can perform more than one task

simultaneously

 Concurrency supports more than one task making progress

• Single processor / core, scheduler providing concurrency

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

4.9 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Concurrency vs. Parallelism

 Concurrent execution on single-core system:

 Parallelism on a multi-core system:

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

4.10 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Multicore Programming

 Types of parallelism

• Data parallelism – distributes subsets of the same data

across multiple cores, same operation on each

• Task parallelism – distributing threads across cores, each

thread performing unique operation

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

4.11 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Data and Task Parallelism

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

4.12 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Amdahl’s Law

 Identifies performance gains from adding additional cores to an

application that has both serial and parallel components

 S is serial portion

 N processing cores

 That is, if application is 75% parallel / 25% serial, moving from 1 to 2

cores results in speedup of 1.6 times

 As N approaches infinity, speedup approaches 1 / S

Serial portion of an application has disproportionate effect on

performance gained by adding additional cores

 But does the law take into account contemporary multicore systems?

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

4.13 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Amdahl’s Law

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

4.14 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

User Threads and Kernel Threads

 User threads - management done by user-level threads library

 Three primary thread libraries:

• POSIX Pthreads

• Windows threads

• Java threads

 Kernel threads - Supported by the Kernel

 Examples – virtually all general-purpose operating systems, including:

• Windows

• Linux

• Mac OS X

• iOS

• Android

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

4.15 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

User and Kernel Threads

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

4.16 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Multithreading Models

 Many-to-One

 One-to-One

 Many-to-Many

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

4.17 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Many-to-One

 Many user-level threads mapped to single kernel thread

 One thread blocking causes all to block

 Multiple threads may not run in parallel on multicore system because

only one may be in kernel at a time

 Few systems currently use this model

 Examples:

• Solaris Green Threads

• GNU Portable Threads

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

4.18 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

One-to-One

 Each user-level thread maps to kernel thread

 Creating a user-level thread creates a kernel thread

 More concurrency than many-to-one

 Number of threads per process sometimes restricted due to overhead

 Examples

• Windows

• Linux

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

4.19 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Many-to-Many Model

 Allows many user level threads to be mapped to many kernel threads

 Allows the operating system to create a sufficient number of kernel

threads

 Windows with the ThreadFiber package

 Otherwise not very common

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

4.20 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Two-level Model

 Similar to M:M, except that it allows a user thread to be bound to

kernel thread

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

4.21 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Thread Libraries

 Thread library provides programmer with API for creating and

managing threads

 Two primary ways of implementing

• Library entirely in user space

• Kernel-level library supported by the OS

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

4.22 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Pthreads

 May be provided either as user-level or kernel-level

 A POSIX standard (IEEE 1003.1c) API for thread creation and

synchronization

 Specification, not implementation

 API specifies behavior of the thread library, implementation is up to

development of the library

 Common in UNIX operating systems (Linux & Mac OS X)

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

4.23 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Pthreads Example

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

4.24 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Pthreads Example (Cont.)

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

4.25 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Pthreads Code for Joining 10 Threads

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

4.26 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Windows Multithreaded C Program

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

4.27 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Windows Multithreaded C Program (Cont.)

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

4.28 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Java Threads

 Java threads are managed by the JVM

 Typically implemented using the threads model provided by underlying

OS

 Java threads may be created by:

• Extending Thread class

• Implementing the Runnable interface

• Standard practice is to implement Runnable interface

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

4.29 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Java Threads

Implementing Runnable interface:

Creating a thread:

Waiting on a thread:

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

4.30 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Java Executor Framework

 Rather than explicitly creating threads, Java also allows thread creation

around the Executor interface:

 The Executor is used as follows:

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

4.31 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Java Executor Framework

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

4.32 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Java Executor Framework (Cont.)

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

4.33 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Implicit Threading

 Growing in popularity as numbers of threads increase, program

correctness more difficult with explicit threads

 Creation and management of threads done by compilers and run-time

libraries rather than programmers

 Five methods explored

• Thread Pools

• Fork-Join (reference only)

• OpenMP (reference only)

• Grand Central Dispatch (reference only)

• Intel Threading Building Blocks (reference only)

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

4.34 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Thread Pools

 Create a number of threads in a pool where they await work

 Advantages:

• Usually slightly faster to service a request with an existing thread

than create a new thread

• Allows the number of threads in the application(s) to be bound to

the size of the pool

• Separating task to be performed from mechanics of creating task

allows different strategies for running task

 i.e,Tasks could be scheduled to run periodically

 Windows API supports thread pools:

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

4.35 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Java Thread Pools

 Three factory methods for creating thread pools in Executors class:

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

4.36 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Java Thread Pools (Cont.)

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

4.37 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

The following slides are

for reference only.

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

4.38 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Fork-Join Parallelism

 Multiple threads (tasks) are forked, and then joined.

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

4.39 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Fork-Join Parallelism

 General algorithm for fork-join strategy:

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

4.40 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Fork-Join Parallelism

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

4.41 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Fork-Join Parallelism in Java

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

4.42 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Fork-Join Parallelism in Java

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

4.43 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Fork-Join Parallelism in Java

 The ForkJoinTask is an abstract base class

 RecursiveTask and RecursiveAction classes extend

ForkJoinTask

 RecursiveTask returns a result (via the return value from the

compute() method)

 RecursiveAction does not return a result

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

4.44 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

OpenMP

 Set of compiler directives and

an API for C, C++,

FORTRAN

 Provides support for parallel

programming in shared-

memory environments

 Identifies parallel regions –

blocks of code that can run in

parallel

#pragma omp parallel

Create as many threads as there

are cores

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

4.45 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

 Run the for loop in parallel

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

4.46 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Grand Central Dispatch

 Apple technology for macOS and iOS operating systems

 Extensions to C, C++ and Objective-C languages, API, and run-time

library

 Allows identification of parallel sections

 Manages most of the details of threading

 Block is in “^{ }” :

ˆ{ printf("I am a block"); }

 Blocks placed in dispatch queue

• Assigned to available thread in thread pool when removed from

queue

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

4.47 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Grand Central Dispatch

 Two types of dispatch queues:

• serial – blocks removed in FIFO order, queue is per process,

called main queue

 Programmers can create additional serial queues within

program

• concurrent – removed in FIFO order but several may be removed

at a time

 Four system wide queues divided by quality of service:

o QOS_CLASS_USER_INTERACTIVE

o QOS_CLASS_USER_INITIATED

o QOS_CLASS_USER_UTILITY

o QOS_CLASS_USER_BACKGROUND

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

4.48 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Grand Central Dispatch

 For the Swift language a task is defined as a closure – similar to a

block, minus the caret

 Closures are submitted to the queue using the dispatch_async()

function:

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

4.49 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Intel Threading Building Blocks (TBB)

 Template library for designing parallel C++ programs

 A serial version of a simple for loop

 The same for loop written using TBB with parallel_for statement:

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

4.50 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Threading Issues

 Semantics of fork() and exec() system calls

 Signal handling

• Synchronous and asynchronous

 Thread cancellation of target thread

• Asynchronous or deferred

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

4.51 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Semantics of fork() and exec()

 Does fork()duplicate only the calling thread or all threads?

• Some UNIXes have two versions of fork

 exec() usually works as normal – replace the running process

including all threads

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

4.52 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Signal Handling

 Signals are used in UNIX systems to notify a process that a particular

event has occurred.

 A signal handler is used to process signals

1. Signal is generated by particular event

2. Signal is delivered to a process

3. Signal is handled by one of two signal handlers:

1. default

2. user-defined

 Every signal has default handler that kernel runs when handling

signal

• User-defined signal handler can override default

• For single-threaded, signal delivered to process

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

4.53 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Signal Handling (Cont.)

 Where should a signal be delivered for multi-threaded?

• Deliver the signal to the thread to which the signal applies

• Deliver the signal to every thread in the process

• Deliver the signal to certain threads in the process

• Assign a specific thread to receive all signals for the process

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

4.54 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Thread Cancellation

 Terminating a thread before it has finished

 Thread to be canceled is target thread

 Two general approaches:

• Asynchronous cancellation terminates the target thread

immediately

• Deferred cancellation allows the target thread to periodically

check if it should be cancelled

 Pthread code to create and cancel a thread:

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

End of Chapter 4

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com

