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Parts of Speech

 “Equivalence class” of linguistic entities

 “Categories” or “types” of words

 Study dates back to the ancient Greeks

 Dionysius Thrax of Alexandria (c. 100 BC)

 8 parts of speech: noun, verb, pronoun, preposition, adverb, 

conjunction, participle, article

 الاسم، الفعل، الحرف     

 واخواتهاانالخمسة  الاسماءالناقصة  الافعالالاشارةاسماء

 Remarkably enduring list!

4STUDENTS-HUB.com

https://students-hub.com


How do we define POS?

 By meaning

 Verbs are actions

 Adjectives are properties

 Nouns are things

 By the syntactic environment

 What occurs nearby (in the sentence?)?

 What does it act as?

 By what morphological processes affect it

 What affixes does it take (un-, -able, -tion,  لم  -،  سات-، ___ال ?

 Combination of the above
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Parts of Speech

 Open class

 Impossible to completely enumerate

 New words continuously being invented, borrowed, etc.

 Closed class

 Closed, fixed membership

 Reasonably easy to enumerate

 Generally, short function words that “structure” sentences
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Open Class POS

 Four major open classes in English

 Nouns

 Verbs

 Adjectives

 Adverbs

 All languages have nouns and verbs... but may not have 

the other two
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Nouns

 Open class

 New inventions all the time: muggle, webinar, .

 ، جهاز لوحيايفون، تويتركمبيوتر، 

 Semantics:

 Generally, words for people, places, things (entities?)

 But not always (bandwidth, energy, ...)

 Syntactic environment:

 Occurring with determiners (the, ال:not all languages, though)

 Pluralizable, possessivizable: Ali’s, towns, children, phenomena

 Other characteristics:

 Mass vs. count nouns: 
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Verbs

 Open class

 New inventions all the time: google, tweet, ..

 يفرمتشير، سيف، غرد،  .

 Semantics:

 Generally, denote actions, processes, etc.

 Syntactic environment:

 Intransitive, transitive, لازم ومتعدي بمفعول أو اكثر، ناقص

 Alternations

 Other characteristics:

 Main vs. auxiliary verbs ناقصاوتام :  

 Gerunds (verbs behaving like nouns)

 Participles (verbs behaving like adjectives)
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Adjectives and Adverbs

 Adjectives

 Generally modify nouns, e.g., tall girlصفات

 Adverbs

 Sometimes modify verbs, e.g., sang beautifully

 Sometimes modify adjectives, e.g., extremely hot
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Closed Class POS

 Prepositions

 In English, occurring before noun phrases

 Specifying some type of relation (spatial, temporal, …)

 Examples: on the shelf, before noon

 حروف الجر مثلا 

 Particles

 Resembles a preposition, but used with a verb (“phrasal verbs”)

 Examples: find out, turn over, go on
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Particle vs. Prepositions

He came by the office in a hurry

He came by his fortune honestly

We ran up the phone bill

We ran up the small hill

He lived down the block

He never lived down the nicknames

(by = preposition)
(by = particle)

(up = particle)
(up = preposition)

(down = preposition)
(down = particle)
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More Closed Class POS

 Determiners

 Establish reference for a noun

 Examples: a, an, the (articles), that, this, many, such, …

 Pronouns

 Refer to person or entities: he, she, it

 Possessive pronouns: his, her, its

 Wh-pronouns: what, who

Note variations between languages:  compare with Arabic
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Closed Class POS: Conjunctions

 Coordinating conjunctions

 Join two elements of “equal status”

 Examples: cats and dogs, salad or soup

 Is  ،و، مع، ثم‘  a conjunction: role? Is it separate from  next word?

 Subordinating conjunctions

 Join two elements of “unequal status”

 Examples: We’ll leave after you finish eating. While I was waiting 

in line, I saw my friend.

 Complementizers are a special case: I think that you should finish 

your assignment
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You already know that: Arabic and English:
Do you need definite articles?

Do you separate word parts: word vs sentence: 

رايتهم 

]Do you use compound names as one word: 

بيرزيت، رام الله، 

How many tenses: past, present, future, more:

Gender effects: extremes: from no to quite heavy: 

Arabic, English, Russian, German,…

Much more!

So be careful when working with Arabic using 

foreign literature!

A must verb in sentence (En), not really (Ar)

Digression
Language Variation
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POS Tagging: What’s the task?

 Process of assigning part-of-speech (POS) tags to words

 But what tags are we going to assign?

 Coarse grained: noun, verb, adjective, adverb, … (small list, large 

content in each) اسم، اسم علم، اسم علم مؤنث، اسم من الخمسة وهكذا

 Fine grained: {proper, common} noun (Larger list, less content in each)

 Even finer-grained: {proper, common} noun  animate

 Important issues to remember

 Choice of tags encodes certain distinctions/non-distinctions (see 

coarse vs fine grained just mentioned)

 Tagsets will differ across languages!

 For English, Penn Treebank is the most common tagset

 What about Arabic: Noun, verb and particle (Sh. Khoja Slides)
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Numerical 

Adjective
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Imperativ

e

Perfect Imperfect

PunctuationResidualParticl

e

VerbNoun

Word
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PrepositionsExplanationsAnswersSubordinates Adverbial

PunctuationResidualParticleVerbNoun

Word
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NegativesExceptionsInterjectionsConjunctions

PunctuationResidualParticl

e

VerbNoun

Word
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NumeralsMathematical FormulaeForeign

PunctuationResidualParticl

e

VerbNoun

Word
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CommaExclamation MarkQuestion Mark

PunctuationResidualParticl

e

VerbNoun

Word
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Penn Treebank Tagset: 45 Tags
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Penn Treebank Tagset: Choices

 Example:

 The/DT grand/JJ jury/NN commmented/VBD on/IN a/DT 

number/NN of/IN other/JJ topics/NNS ./.

 Distinctions and non-distinctions

 Prepositions and subordinating conjunctions are tagged “IN” 

(“Although/IN I/PRP..”)

 Except the preposition/complementizer “to” is tagged “TO”

Don’t think this is correct? Doesn’t make sense?

Often, must suspend linguistic intuition 

and defer to the annotation guidelines!
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Why do POS tagging?

 One of the most basic NLP tasks

 Nicely illustrates principles of statistical NLP

 Useful for higher-level analysis

 Needed for syntactic analysis

 Needed for semantic analysis

 Sample applications that require POS tagging

 Machine translation

 Information extraction

 Lots more…
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Why is it hard?

 Not only a lexical problem

 Remember ambiguity?

 Better modeled as sequence labeling problem

 Need to take into account context!
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Try tagging…

 The back door

 On my back

 Win the voters back

 Promised to back the bill

 OR

 الطاولةعلىوضعت الكتاب 

 كانت المتفوقة من أخواتها رغم مرضها المزمنعلى

 كل منكم حل الوظيفة منفرداعلى

 الباغي تدور الدوائرعلى

 المجرم خلال ساعاتعلىالقت الشرطة القبض 

STUDENTS-HUB.com

https://students-hub.com


Try your hand at tagging…

 I thought that you...

 That day was nice

 You can go that far
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Why is it hard?*
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Part-of-Speech Tagging

 How do you do it automatically?

 How well does it work? This first
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Evolution of the Evaluation

 Evaluation by argument

 Evaluation by inspection of examples

 Evaluation by demonstration

 Evaluation by improvised demonstration

 Evaluation on data using a figure of merit

 Evaluation on test data

 Evaluation on common test data

 Evaluation on common, unseen test data
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Evaluation Metric

 Binary condition (correct/incorrect):

 Accuracy

 Set-based metrics (illustrated with document retrieval):

 Precision = A / (A+B)

 Recall = A / (A+C)

 Miss = C / (A+C)

 False alarm (fallout) = B / (B+D)

 F-measure:

 So if we tested 1000 words and 100 out of 150 were tagged correctly 

as names, 40 were  tagged as names which are not: compute the 

above for this name tagger!

Relevant Not relevant

Retrieved A B

Not retrieved C D

Collection size = A+B+C+D

Relevant = A+C

Retrieved = A+B

 
RP

PR
F






2

2 1




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Components of a Proper Evaluation

 Figures(s) of merit

 Baseline

 Upper bound

 Tests of statistical significance
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Part-of-Speech Tagging

 How do you do it automatically?

 How well does it work?

Now this
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Automatic POS Tagging

 Rule-based POS tagging (now)

 Transformation-based learning for POS tagging (May be 

later) 

 Hidden Markov Models (May be later)

 Maximum Entropy Models (you do it if needed)

 Conditional Random Fields (you do it if needed)
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Rule-Based POS Tagging

 Dates back to the 1960’s

 Combination of lexicon + hand crafted rules

 Example: EngCG (English Constraint Grammar)
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EngCG Architecture
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EngCG: Sample Lexical Entries
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EngCG: Constraint Rule Application

Example Sentence: Newman had originally practiced that ...

Newman NEWMAN N NOM SG PROPER

had           HAVE <SVO> V PAST VFIN

HAVE <SVO> PCP2

originally    ORIGINAL ADV

practiced PRACTICE <SVO> <SV> V PAST VFIN

PRACTICE <SVO> <SV> PCP2

that            ADV

PRON DEM SG

DET CENTRAL DEM SG

CS

overgenerated tags

ADVERBIAL-THAT Rule
Given input: that
if

(+1 A/ADV/QUANT);
(+2 SENT-LIM);
(NOT -1 SVOC/A);

then eliminate non-ADV tags
else eliminate ADV tag

disambiguation constraint

I thought that you... (subordinating conjunction)

That day was nice. (determiner)

You can go that far. (adverb)
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EngCG: Evaluation

 Accuracy ~96%*

 A lot of effort to write the rules and create the lexicon

 Try debugging interaction between thousands of rules!

 Recall discussion from the first lecture?

 Assume we had a corpus annotated with POS tags

 Can we learn POS tagging automatically?
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Supervised Machine Learning

 Start with annotated corpus

 Desired input/output behavior

 Training phase:

 Represent the training data in some manner

 Apply learning algorithm to produce a system (tagger)

 Testing phase:

 Apply system to unseen test data

 Evaluate output
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Three Laws of Machine Learning

 Thou shalt not mingle training data with test data

 Thou shalt not mingle training data with test data

 Thou shalt not mingle training data with test data
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Three Pillars of Statistical NLP

 Corpora (training data)

 Representations (features)

 Learning approach (models and algorithms)
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Automatic POS Tagging

 Rule-based POS tagging (before)

 Transformation-based learning for POS tagging (now) 

 Hidden Markov Models (May be later)

 Maximum Entropy Models (you do it if needed)

 Conditional Random Fields (you do it if needed)
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TBL Painting Algorithm

function TBL-Paint
(given: empty canvas with goal painting)

begin

apply initial transformation to canvas

repeat

try all color transformation rules

find transformation rule yielding most improvements

apply color transformation rule to canvas

until improvement below some threshold

end
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TBL Painting Algorithm

function TBL-Paint
(given: empty canvas with goal painting)

begin

apply initial transformation to canvas

repeat

try all color transformation rules

find transformation rule yielding most improvements

apply color transformation rule to canvas

until improvement below some threshold

end

Now, substitute:

‘tag’ for ‘color’
‘corpus’ for ‘canvas’

‘untagged’ for ‘empty’

‘tagging’ for ‘painting’
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TBL Painting Algorithm

function TBL-Paint
(given: empty canvas with goal painting)

begin

apply initial transformation to canvas

repeat

try all color transformation rules

find transformation rule yielding most improvements

apply color transformation rule to canvas

until improvement below some threshold

end
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TBL Templates

Change tag t1 to tag t2 when:
w-1 (w+1) is tagged t3
w-2 (w+2) is tagged t3
w-1 is tagged t3 and w+1 is tagged t4
w-1 is tagged t3 and w+2 is tagged t4

Change tag t1 to tag t2 when:
w-1 (w+1) is foo
w-2 (w+2) is bar
w is foo and w-1 is bar
w is foo, w-2 is bar and w+1 is baz

Non-Lexicalized

Lexicalized

Only try instances of these (and their combinations)
STUDENTS-HUB.com

https://students-hub.com


TBL Example Rules

He/PRP is/VBZ as/IN tall/JJ as/IN her/PRP$

Change from IN to RB if w+2 is as

He/PRP is/VBZ as/RB tall/JJ as/IN her/PRP$

He/PRP is/VBZ expected/VBN to/TO race/NN today/NN

Change from NN to VB if w-1 is tagged as TO

He/PRP is/VBZ expected/VBN to/TO race/VB today/NN
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TBL POS Tagging

 Rule-based, but data-driven

 No manual knowledge engineering!

 Training on 600k words, testing on known words only

 Lexicalized rules: learned 447 rules, 97.2% accuracy

 Early rules do most of the work: 100 → 96.8%, 200 → 97.0%

 Non-lexicalized rules: learned 378 rules, 97.0% accuracy

 Little difference… why?

 How good is it?

 Baseline: 93-94%

 Upper bound: 96-97%

Source: Brill (Computational Linguistics, 1995)STUDENTS-HUB.com
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Three Pillars of Statistical NLP

 Corpora (training data)

 Representations (features)

 Learning approach (models and algorithms)
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Penn Treebank Tagset

 Why does everyone use it?

 What’s the problem?

 How do we get around it?
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What we covered today…

 What are parts of speech (POS)?

 What is POS tagging?

 Methods for automatic POS tagging

 Rule-based POS tagging

 Transformation-based learning for POS tagging

 Along the way…

 Evaluation

 Supervised machine learning
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Information Extraction

 Identify phrases in language that refer to specific 
types of entities and relations in text.

 Named entity recognition is task of identifying names 
of people, places, organizations, etc. in text.

people organizations places

 Michael Dell is the CEO of  Dell Computer Corporation and 
lives in Austin Texas. 

 Extract pieces of information relevant to a specific  
application, e.g. used car ads:

make model year mileage price

 For sale, 2002 Toyota Prius,  20,000 mi, $15K or best offer. 
Available starting July 30, 2006.
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Semantic Role Labeling

 For each clause, determine the semantic role played by 
each noun phrase that is an argument to the verb.

agent patient source destination instrument

 John drove Mary from Austin to Dallas in his Toyota Prius.

 The hammer broke the window.

 Also referred to a “case role analysis,” “thematic analysis,” 
and “shallow semantic parsing”
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Probabilistic Sequence Models

• Probabilistic sequence models allow 

integrating uncertainty over multiple, 

interdependent classifications and 

collectively determine the most likely 

global assignment.

• Two standard models

– Hidden Markov Model  (HMM)

– Conditional Random Field (CRF)
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Markov Model / Markov Chain

• A finite state machine with probabilistic 

state transitions.

• Makes Markov assumption that next state 

only depends on the current state and 

independent of previous history.
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Sample Markov Model for POS

0.95
0.9

0.05
stop

0.5

0.1

0.8

0.1

0.1

0.25

0.25

start
0.1

0.5

0.4

Det Noun

PropNoun

Verb
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Sample Markov Model for POS

0.95
0.9

0.05
stop

0.5

0.1

0.8

0.1

0.1

0.25

0.25

start
0.1

0.5

0.4

Det Noun

PropNoun

Verb

P(PropNoun Verb Det Noun) = 0.4*0.8*0.25*0.95*0.1=0.0076

Time/[V,N] flies/[V,N] like/[V,Prep] an/Det arrow/NSTUDENTS-HUB.com
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Hidden Markov Model

• Probabilistic generative model for sequences.

• Assume an underlying set of hidden (unobserved, 
latent) states in which the model can be (e.g. parts of 
speech).

• Assume probabilistic transitions between states over 
time (e.g. transition from POS to another POS as 
sequence is generated).

• Assume a probabilistic generation of tokens from 
states (e.g. words generated for each POS).

• May view as assigning POS tags that maximize the 
probabilities for the sentence(among all possible)!
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Sample HMM for POS

PropNoun

JohnMary
Alice

Jerry

Tom

Noun

cat
dog

car
pen

bed
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a the
the
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a
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Verb

bit

ate saw
played

hit
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gave
0.05

stop

0.5
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Sample HMM Generation

PropNoun
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Sample HMM Generation

PropNoun
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Sample HMM Generation

PropNoun
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Sample HMM Generation
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Sample HMM Generation
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Sample HMM Generation
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NER: Named Entity Recognition:

who, where, when,  how much

The task: identify atomic elements of information in text. Mostlt 

names, could be compound.

Imprtant in many tasks: IE, Translation, Summaries, Better  IR

• person names

• company/organization names

• locations

• dates & times

• percentages

• monetary amounts

• Can be viewed as an extension of POS

• Rule based of Machine learning, or combined
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