Part-of-Speech Tagging

based on Jimmy LinThe iSchool

University of Maryland



Outline

- What are parts of speech (POS)?
- What is POS tagging?
- Methods for automatic POS tagging
 - Rule-based POS tagging
 - Transformation-based learning for POS tagging
- Along the way...
 - Evaluation
 - Supervised machine learning

Parts of Speech

- "Equivalence class" of linguistic entities
 - "Categories" or "types" of words
- Study dates back to the ancient Greeks
 - Dionysius Thrax of Alexandria (c. 100 BC)
 - 8 parts of speech: noun, verb, pronoun, preposition, adverb, conjunction, participle, article
 - الاسم، الفعل، الحرف
 - اسماء الاشارة الافعال الناقصة الاسماء الخمسة ان واخواتها
 - Remarkably enduring list!

How do we define POS?

By meaning

- Unreliable! Think back to the comic!
- Adjectives are properties
- Nouns are things

Verbs are actions

- By the syntactic environment
 - What occurs nearby (in the sentence?)?
 - What does it act as?
- By what morphological processes affect it
 - What affixes does it take (un-, -able, -tion, ال ____، -ات، س- لم
- Combination of the above

Parts of Speech

- Open class
 - Impossible to completely enumerate
 - New words continuously being invented, borrowed, etc.
- Closed class
 - Closed, fixed membership
 - Reasonably easy to enumerate
 - Generally, short function words that "structure" sentences

Open Class POS

- Four major open classes in English
 - Nouns
 - Verbs
 - Adjectives
 - Adverbs
- All languages have nouns and verbs... but may not have the other two

Nouns

- Open class
 - New inventions all the time: muggle, webinar, .
 - كمبيوتر، تويتر، ايفون، جهاز لوحي
- Semantics:
 - Generally, words for people, places, things (entities?)
 - But not always (bandwidth, energy, ...)
- Syntactic environment:
 - Occurring with determiners (the, じ:not all languages, though)
 - Pluralizable, possessivizable: Ali's, towns, children, phenomena
- Other characteristics:
 - Mass vs. count nouns:

Verbs

- Open class
 - New inventions all the time: google, tweet, ..
 - شير، سيف، غرد، يفرمت
- Semantics:
 - Generally, denote actions, processes, etc.
- Syntactic environment:
 - Intransitive, transitive, ناقص Intransitive, transitive
 - Alternations
- Other characteristics:
 - Main vs. auxiliary verbs
 - Gerunds (verbs behaving like nouns)
 - Participles (verbs behaving like adjectives)

Adjectives and Adverbs

- Adjectives
 - Generally modify nouns, e.g., tall girl
- Adverbs
 - Sometimes modify verbs, e.g., sang beautifully
 - Sometimes modify adjectives, e.g., extremely hot

Closed Class POS

Prepositions

- In English, occurring before noun phrases
- Specifying some type of relation (spatial, temporal, ...)
- Examples: on the shelf, before noon
- حروف الجر مثلا

Particles

- Resembles a preposition, but used with a verb ("phrasal verbs")
- Examples: find out, turn over, go on

Particle vs. Prepositions

He came by the office in a hurry He came by his fortune honestly

(by = preposition)
(by = particle)

We ran *up* the phone bill We ran *up* the small hill

(up = particle)
(up = preposition)

He lived *down* the block
He never lived *down* the nicknames

(down = preposition) (down = particle)

More Closed Class POS

Determiners

- Establish reference for a noun
- Examples: a, an, the (articles), that, this, many, such, ...

Pronouns

- Refer to person or entities: he, she, it
- Possessive pronouns: his, her, its
- Wh-pronouns: what, who

Note variations between languages: compare with Arabic

Closed Class POS: Conjunctions

Coordinating conjunctions

- Join two elements of "equal status"
- Examples: cats and dogs, salad or soup
- Is و، مع، ثم، a conjunction: role? Is it separate from next word?

Subordinating conjunctions

- Join two elements of "unequal status"
- Examples: We'll leave after you finish eating. While I was waiting in line, I saw my friend.
- Complementizers are a special case: I think that you should finish your assignment

Digression

Language Variation

You already know that: Arabic and English:

Do you need definite articles?

Do you separate word parts: word vs sentence:

رايتهم

[Do you use compound names as one word:

بیرزیت، رام الله،

How many tenses: past, present, future, more:

Gender effects: extremes: from no to quite heavy:

Arabic, English, Russian, German,...

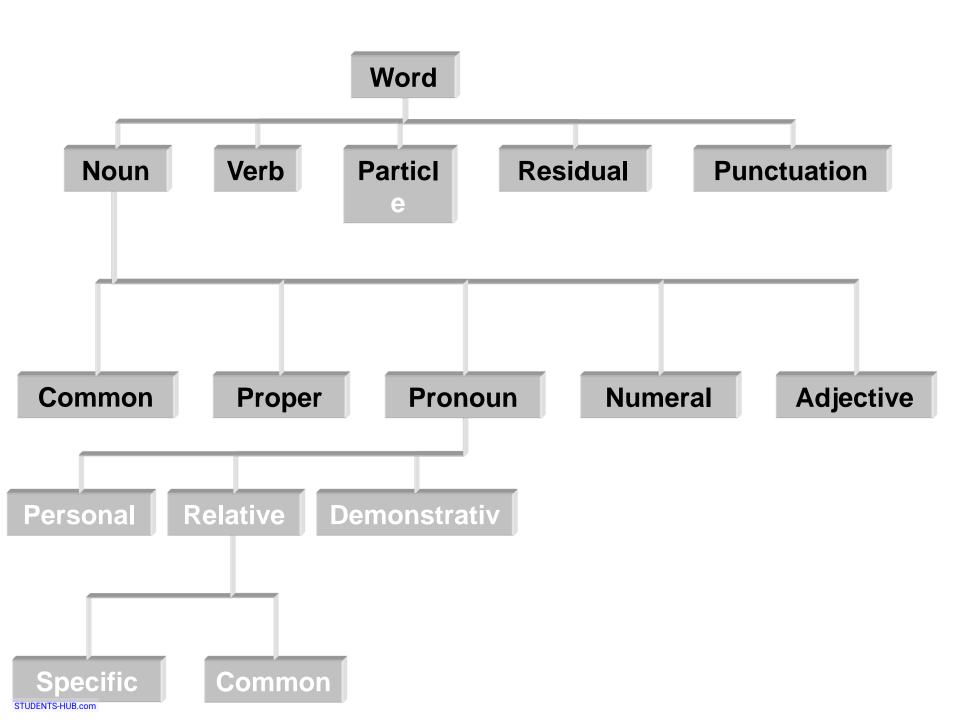
Much more!

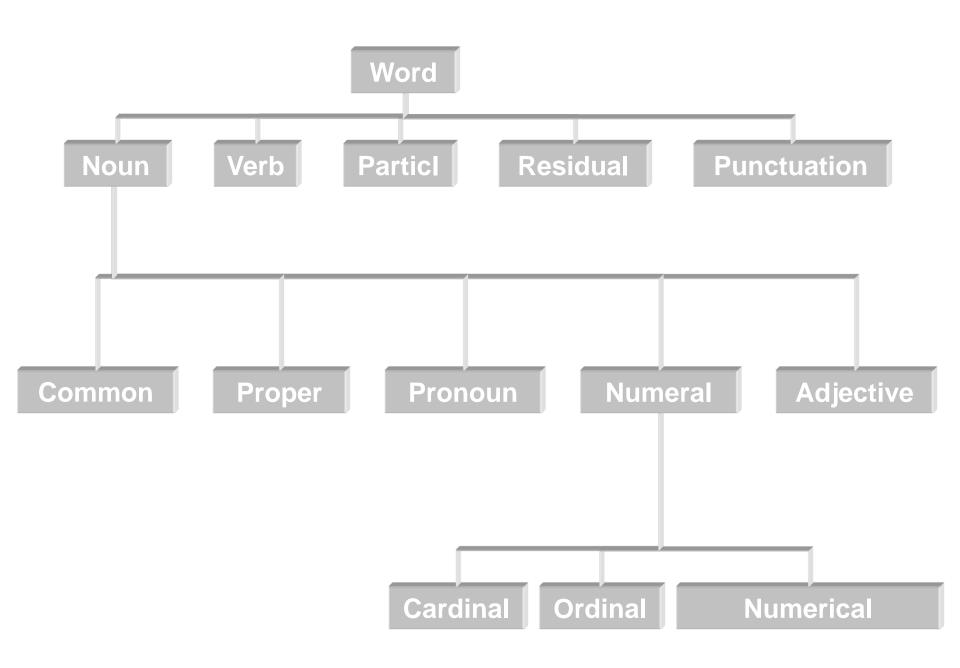
So be careful when working with Arabic using foreign literature!

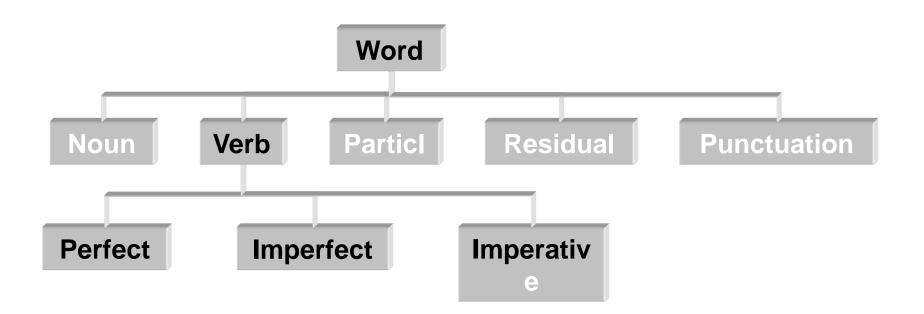
A must verb in sentence (En), not really (Ar)

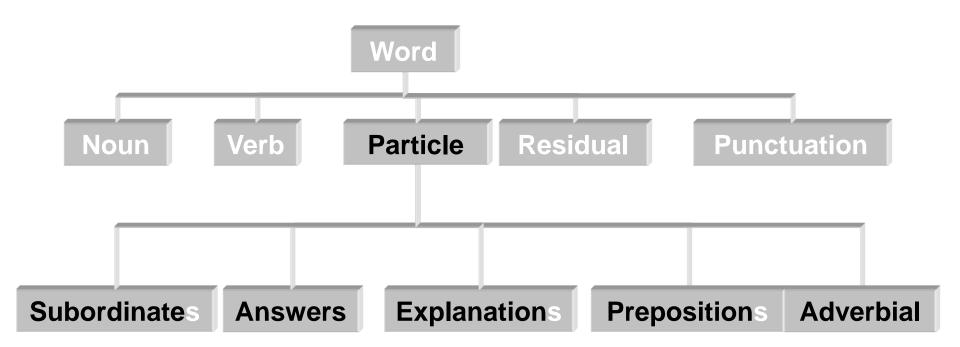
POS Tagging: What's the task?

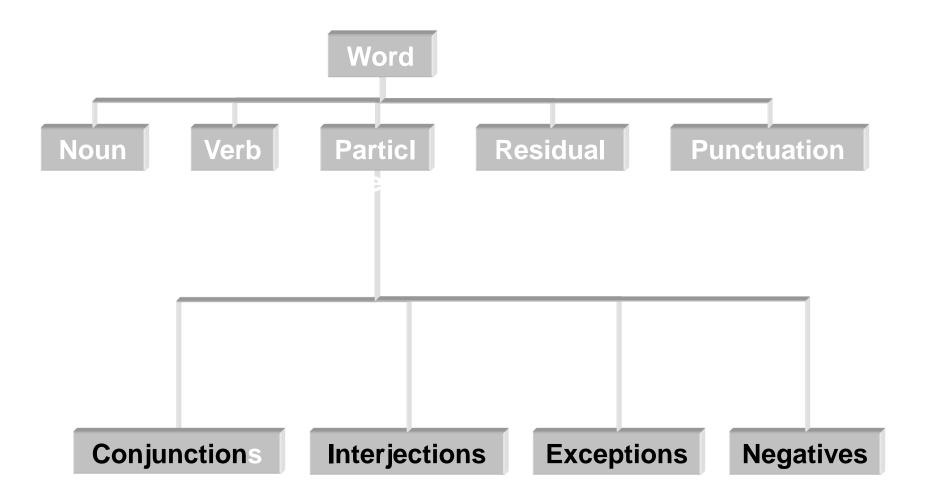
- Process of assigning part-of-speech (POS) tags to words
- But what tags are we going to assign? What's the tradeoff?
 - Coarse grained: noun, verb, adjective, adverb, ... (small list, large content in each) اسم، اسم علم، اسم علم مؤنث، اسم من الخمسة و هكذا
 - Fine grained: {proper, common} noun (Larger list, less content in each)
 - Even finer-grained: {proper, common} noun ± animate
- Important issues to remember
 - Choice of tags encodes certain distinctions/non-distinctions (see coarse vs fine grained just mentioned)
 - Tagsets will differ across languages!
- For English, Penn Treebank is the most common tagset
- What about Arabic: Noun, verb and particle (Sh. Khoja Slides)

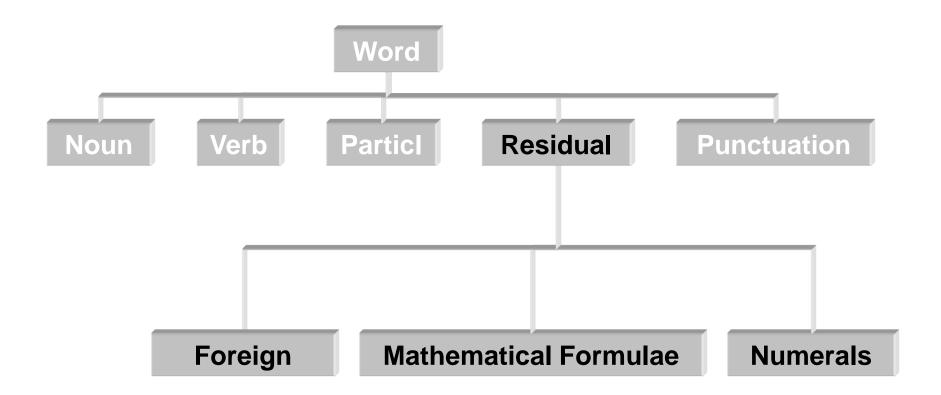


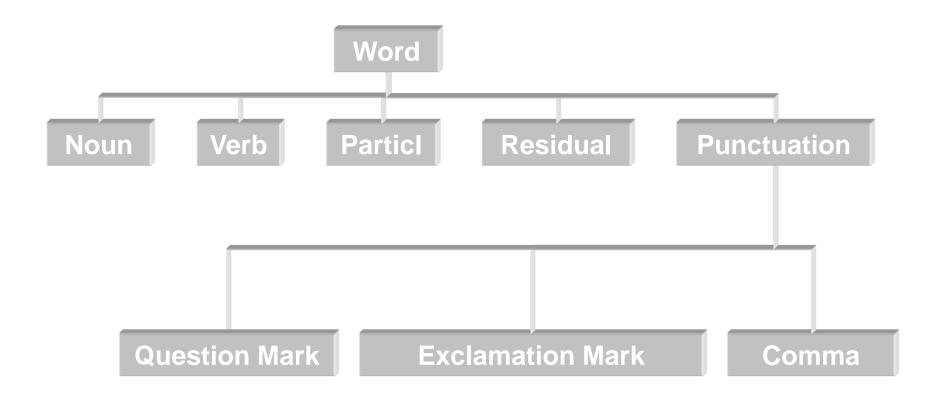












Penn Treebank Tagset: 45 Tags

Tag	Description	Example	Tag	Description	Example
CC	coordin. conjunction	and, but, or	SYM	symbol	+,%, &
CD	cardinal number	one, two, three	TO	"to"	to
DT	determiner	a, the	UH	interjection	ah, oops
EX	existential 'there'	there	VB	verb, base form	eat
FW	foreign word	mea culpa	VBD	verb, past tense	ate
IN	preposition/sub-conj	of, in, by	VBG	verb, gerund	eating
JJ	adjective	yellow	VBN	verb, past participle	eaten
JJR	adj., comparative	bigger	VBP	verb, non-3sg pres	eat
JJS	adj., superlative	wildest	VBZ	verb, 3sg pres	eats
LS	list item marker	1, 2, One	WDT	wh-determiner	which, that
MD	modal	can, should	WP	wh-pronoun	what, who
NN	noun, sing. or mass	llama	WP\$	possessive wh-	whose
NNS	noun, plural	llamas	WRB	wh-adverb	how, where
NNP	proper noun, singular	IBM	\$	dollar sign	\$
NNPS	proper noun, plural	Carolinas	#	pound sign	#
PDT	predeterminer	all, both	46)	left quote	' or "
POS	possessive ending	's	,,	right quote	or "
PRP	personal pronoun	I, you, he	(left parenthesis	[, (, {, <
PRP\$	possessive pronoun	your, one's)	right parenthesis],), }, >
RB	adverb	quickly, never	,	comma	
RBR	adverb, comparative	faster		sentence-final punc	.!?
RBS	adverb, superlative	fastest	:	mid-sentence punc	:;
RP	particle	up, off		. The second	

Penn Treebank Tagset: Choices

- Example:
 - The/DT grand/JJ jury/NN commmented/VBD on/IN a/DT number/NN of/IN other/JJ topics/NNS ./.
- Distinctions and non-distinctions
 - Prepositions and subordinating conjunctions are tagged "IN" ("Although/IN I/PRP..")
 - Except the preposition/complementizer "to" is tagged "TO"

Don't think this is correct? Doesn't make sense?

Often, must suspend linguistic intuition and defer to the annotation guidelines!

Why do POS tagging?

- One of the most basic NLP tasks
 - Nicely illustrates principles of statistical NLP
- Useful for higher-level analysis
 - Needed for syntactic analysis
 - Needed for semantic analysis
- Sample applications that require POS tagging
 - Machine translation
 - Information extraction
 - Lots more...

Why is it hard?

- Not only a lexical problem
 - Remember ambiguity?
- Better modeled as sequence labeling problem
 - Need to take into account Context!

Try tagging...

- The back door
- On my back
- Win the voters back
- Promised to back the bill
- o OR
- وضعت الكتاب على الطاولة ٥
- على كانت المتفوقة من أخواتها رغم مرضها المزمن
- على كل منكم حل الوظيفة منفردا
- على الباغي تدور الدوائر •
- القت الشرطة القبض على المجرم خلال ساعات •

Try your hand at tagging...

- I thought that you...
- That day was nice
- You can go that far

Why is it hard?*

		87-tag	Original Brown	45-tag	g Treebank Brown
Unambiguous (1 tag)		44,019		38,857	
Ambiguous (2–7 tags)		5,490		8844	
Details:	2 tags	4,967		6,731	,
	3 tags	411		1621	
	4 tags	91		357	
	5 tags	17		90	
	6 tags	2	(well, beat)	32	
	7 tags	2	(still, down)	6	(well, set, round,
					open, fit, down)
	8 tags			4	('s, half, back, a)
	9 tags			3	(that, more, in)

Part-of-Speech Tagging

- How do you do it automatically?
- How well does it work?

Evolution of the Evaluation

- Evaluation by argument
- Evaluation by inspection of examples
- Evaluation by demonstration
- Evaluation by improvised demonstration
- Evaluation on data using a figure of merit
- Evaluation on test data
- Evaluation on common test data
- Evaluation on common, unseen test data

Evaluation Metric

- Binary condition (correct/incorrect):
 - Accuracy
- Set-based metrics (illustrated with document retrieval):

	Relevant	Not relevant
Retrieved	Α	В
Not retrieved	С	D

Collection size = A+B+C+D Relevant = A+C Retrieved = A+B

- Precision = A / (A+B)
- Recall = A / (A+C)
- Miss = C / (A+C)
- False alarm (fallout) = B / (B+D)
- F-measure: (β²+1)PR
 So if we tested 1000 yords and 100 out of 150 were tagged correctly as names, 40 were tagged as names which are not: compute the above for this name tagger!

Components of a Proper Evaluation

- Figures(s) of merit
- Baseline
- Upper bound
- Tests of statistical significance

Part-of-Speech Tagging

• How do you do it automatically?

O How well does it work?

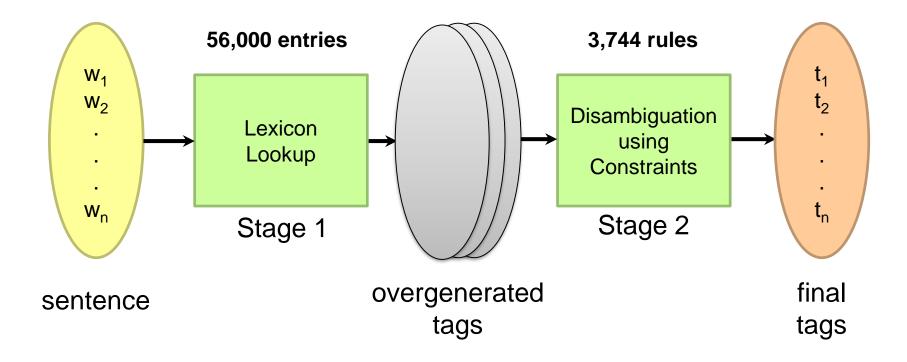
Automatic POS Tagging

- Rule-based POS tagging (now)
- Transformation-based learning for POS tagging (May be later)
- Hidden Markov Models (May be later)
- Maximum Entropy Models (you do it if needed)
- Conditional Random Fields (you do it if needed)

Rule-Based POS Tagging

- Dates back to the 1960's
- Combination of lexicon + hand crafted rules
 - Example: EngCG (English Constraint Grammar)

EngCG Architecture



EngCG: Sample Lexical Entries

Word	POS	Additional POS features
smaller	ADJ	COMPARATIVE
fast	ADV	SUPERLATIVE
that	DET	CENTRAL DEMONSTRATIVE SG
all	DET	PREDETERMINER SG/PL QUANTIFIER
dog's	N	GENITIVE SG
furniture	N	NOMINATIVE SG NOINDEFDETERMINER
one-third	NUM	SG
she	PRON	PERSONAL FEMININE NOMINATIVE SG3
show	V	PRESENT -SG3 VFIN
show	N	NOMINATIVE SG
shown	PCP2	SVOO SVO SV
occurred	PCP2	SV
occurred	V	PAST VFIN SV

EngCG: Constraint Rule Application

Example Sentence: Newman had originally practiced that ...

Newman had HAVE <SVO> V PAST VFIN HAVE <SVO> PCP2

originally practiced PRACTICE <SVO> <SV> V PAST VFIN PRACTICE <SVO> <SV> V PAST VFIN PRACTICE <SVO> <SV> PCP2

that ADV
PRON DEM SG
DET CENTRAL DEM SG
CS

```
ADVERBIAL-THAT Rule

Given input: that

if

(+1 A/ADV/QUANT);

(+2 SENT-LIM);

(NOT -1 SVOC/A);

then eliminate non-ADV tags

else eliminate ADV tag
```

disambiguation constraint

overgenerated tags

I thought that you... (subordinating conjunction)
That day was nice. (determiner)
You can go that far. (adverb)

EngCG: Evaluation

- Accuracy ~96%*
- A lot of effort to write the rules and create the lexicon
 - Try debugging interaction between thousands of rules!
 - Recall discussion from the first lecture?
- Assume we had a corpus annotated with POS tags
 - Can we learn POS tagging automatically?

Supervised Machine Learning

- Start with annotated corpus
 - Desired input/output behavior
- Training phase:
 - Represent the training data in some manner
 - Apply learning algorithm to produce a system (tagger)
- Testing phase:
 - Apply system to unseen test data
 - Evaluate output

Three Laws of Machine Learning

- Thou shalt not mingle training data with test data
- Thou shalt not mingle training data with test data
- Thou shalt not mingle training data with test data

But what do you do if you need more test data?

Three Pillars of Statistical NLP

- Corpora (training data)
- Representations (features)
- Learning approach (models and algorithms)

Automatic POS Tagging

- Rule-based POS tagging (before)
- Transformation-based learning for POS tagging (now)
- Hidden Markov Models (May be later)
- Maximum Entropy Models (you do it if needed)
- Conditional Random Fields (you do it if needed)

The problem isn't with rules per se...
but with manually writing rules!

TBL Painting Algorithm

```
function TBL - Paint
(given: empty canvas with goal painting)
begin
  apply initial transformation to canvas
  repeat
    try all color transformation rules
    find transformation rule yielding most improvements
    apply color transformation rule to canvas
  until improvement below some threshold
end
```

TBL Painting Algorithm

```
function TBL-Pa
(given: empty ca
                      Now, substitute:
begin
  apply initial
                        'tag' for 'color'
  repeat
                     'corpus' for 'canvas'
    try all cold
                    'untagged for 'empty'
                    'tagging' for 'painting'
    find transfo
                                               improvements
    apply color
  until improver
```

end

TBL Painting Algorithm

```
function TBL - Paint
(given: empty canvas with goal painting)
begin
  apply initial transformation to canvas
                                  mpossible!
  repeat
   try all color transformation rules
    find transformation rule yielding most improvements
    apply color transformation rule to canvas
  until improvement below some threshold
end
```

TBL Templates

```
Change tag t1 to tag t2 when:
w-1 (w+1) is tagged t3
w-2 (w+2) is tagged t3
w-1 is tagged t3 and w+1 is tagged t4
w-1 is tagged t3 and w+2 is tagged t4
```

Non-Lexicalized

```
Change tag t1 to tag t2 when:
w-1 (w+1) is foo
w-2 (w+2) is bar
w is foo and w-1 is bar
w is foo, w-2 is bar and w+1 is baz
```

Lexicalized

Only try instances of these (and their combinations)

TBL Example Rules

He/PRP is/VBZ as/IN tall/JJ as/IN her/PRP\$

Change from IN to RB if w+2 is as

He/PRP is/VBZ as/RB tall/JJ as/IN her/PRP\$

He/PRP is/VBZ expected/VBN to/TO race/NN today/NN

Change from NN to VB if w-1 is tagged as TO

He/PRP is/VBZ expected/VBN to/TO race/VB today/NN

STUDENTS-HUB.com

TBL POS Tagging

- Rule-based, but data-driven
 - No manual knowledge engineering!
- Training on 600k words, testing on known words only
 - Lexicalized rules: learned 447 rules, 97.2% accuracy
 - Early rules do most of the work: $100 \rightarrow 96.8\%$, $200 \rightarrow 97.0\%$
 - Non-lexicalized rules: learned 378 rules, 97.0% accuracy
 - Little difference... why?
- How good is it?
 - Baseline: 93-94%
 - Upper bound: 96-97%

Three Pillars of Statistical NLP

- Corpora (training data)
- Representations (features)
- Learning approach (models and algorithms)

Penn Treebank Tagset

- Why does everyone use it?
- What's the problem?
- How do we get around it?

What we covered today...

- What are parts of speech (POS)?
- What is POS tagging?
- Methods for automatic POS tagging
 - Rule-based POS tagging
 - Transformation-based learning for POS tagging
- Along the way...
 - Evaluation
 - Supervised machine learning

Information Extraction

- Identify phrases in language that refer to specific types of entities and relations in text.
- Named entity recognition is task of identifying names of people, places, organizations, etc. in text.
 - people organizations places
 - Michael Dell is the CEO of Dell Computer Corporation and lives in Austin Texas.
- Extract pieces of information relevant to a specific application, e.g. used car ads:
 - make model year mileage price
 - For sale, 2002 Toyota Prius, 20,000 mi, \$15K or best offer.
 Available starting July 30, 2006.

Semantic Role Labeling

 For each clause, determine the semantic role played by each noun phrase that is an argument to the verb.

agent patient source destination instrument

- John drove Mary from Austin to Dallas in his Toyota Prius.
- The hammer broke the window.
- Also referred to a "case role analysis," "thematic analysis," and "shallow semantic parsing"

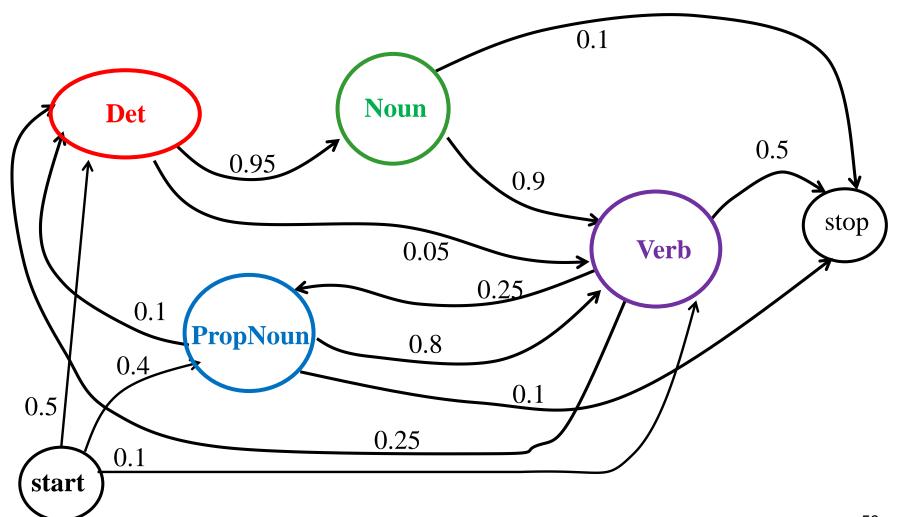
Probabilistic Sequence Models

- Probabilistic sequence models allow integrating uncertainty over multiple, interdependent classifications and collectively determine the most likely global assignment.
- Two standard models
 - Hidden Markov Model (HMM)
 - Conditional Random Field (CRF)

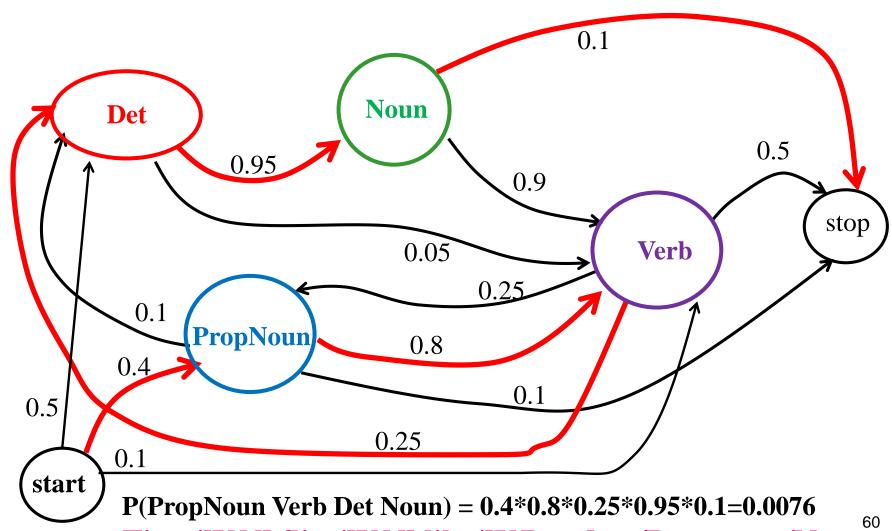
Markov Model / Markov Chain

- A finite state machine with probabilistic state transitions.
- Makes Markov assumption that next state only depends on the current state and independent of previous history.

Sample Markov Model for POS



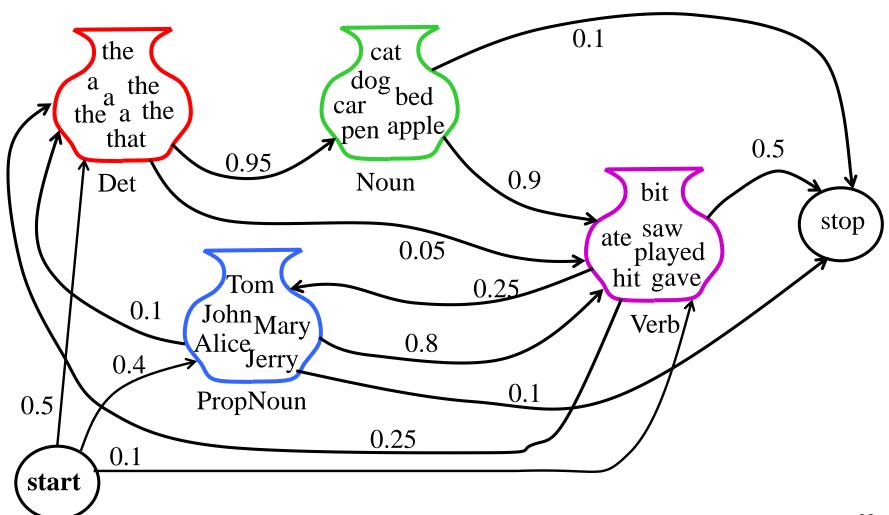
Sample Markov Model for POS

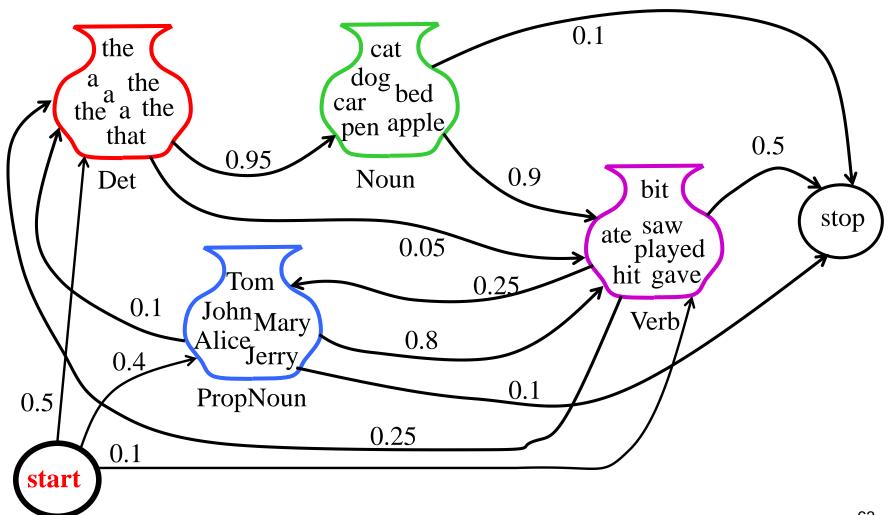


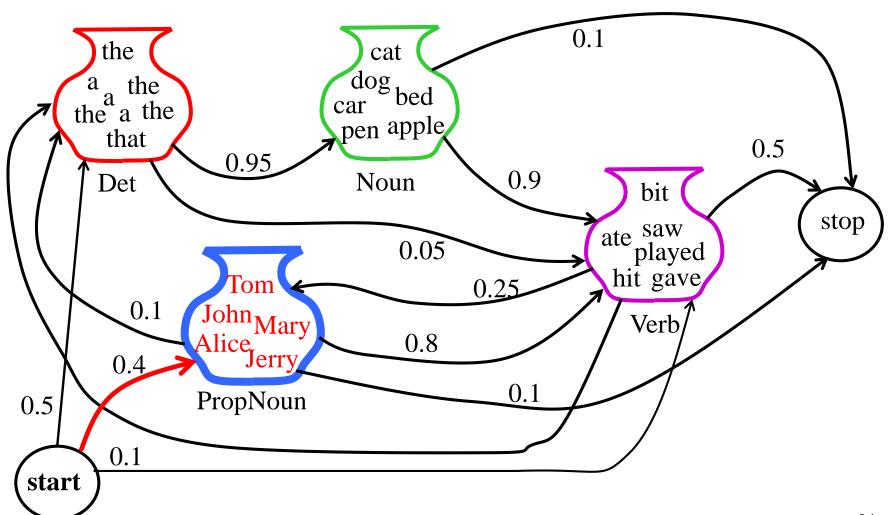
Hidden Markov Model

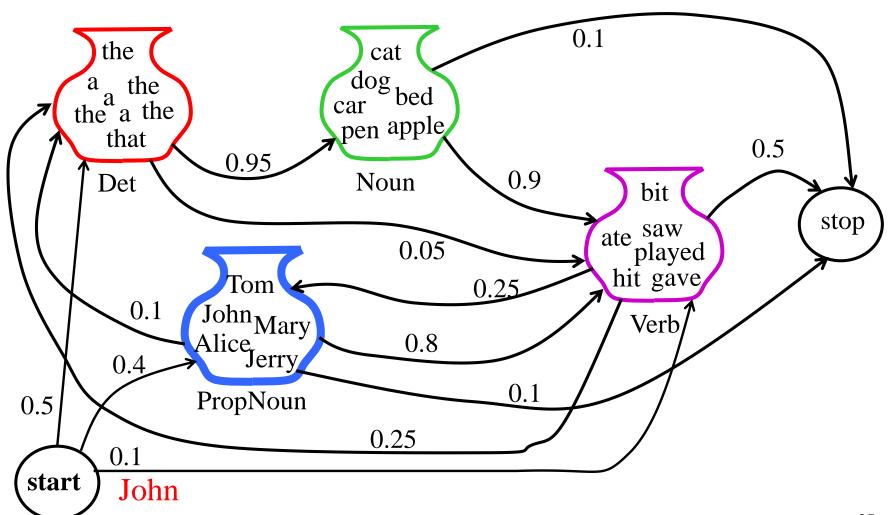
- Probabilistic generative model for sequences.
- Assume an underlying set of *hidden* (unobserved, latent) states in which the model can be (e.g. parts of speech).
- Assume probabilistic transitions between states over time (e.g. transition from POS to another POS as sequence is generated).
- Assume a *probabilistic* generation of tokens from states (e.g. words generated for each POS).
- May view as assigning POS tags that maximize the probabilities for the sentence(among all possible)!

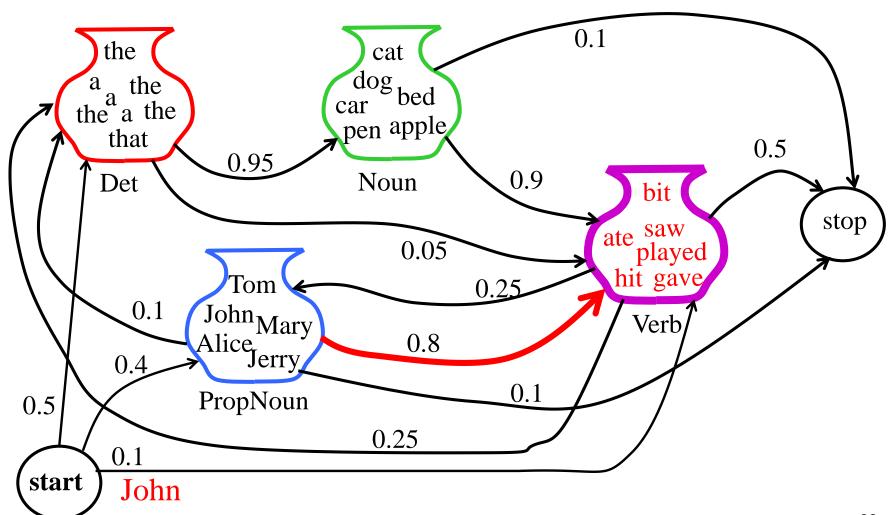
Sample HMM for POS

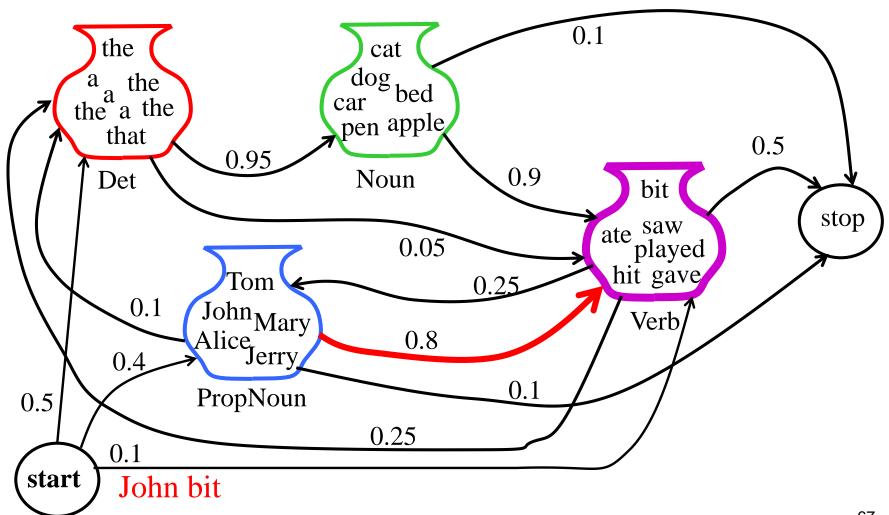


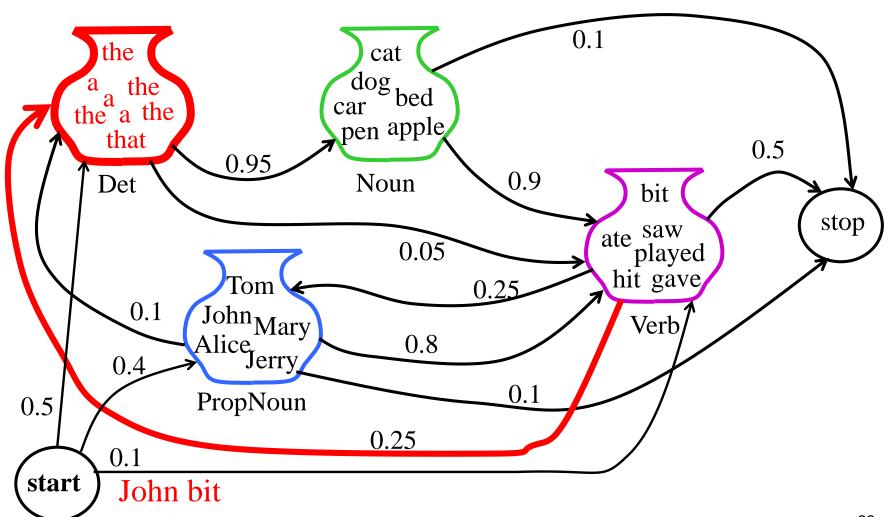


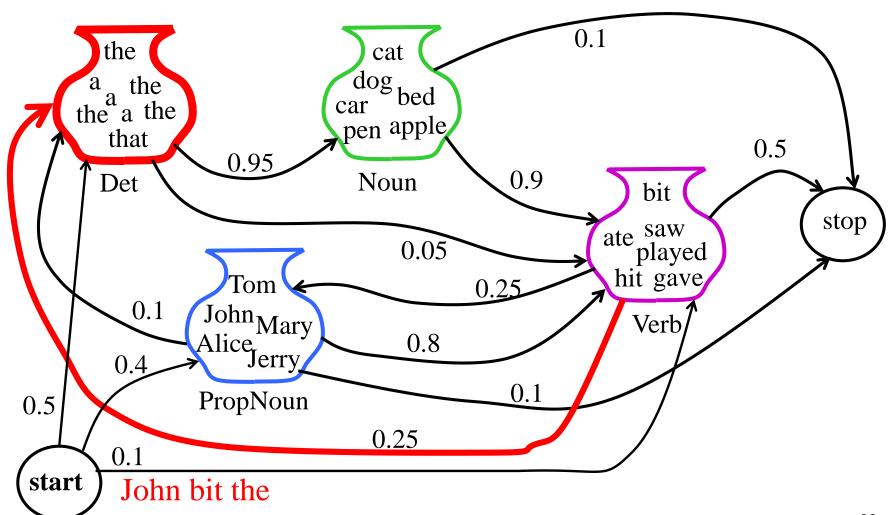


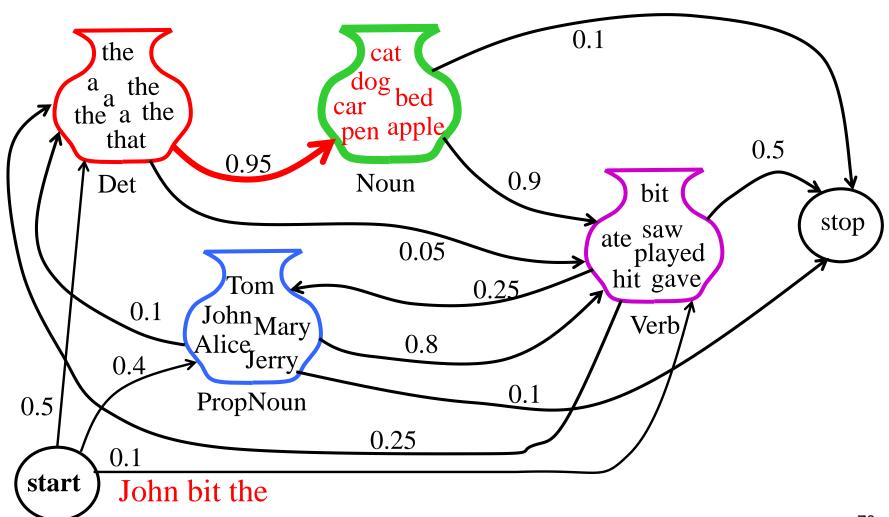


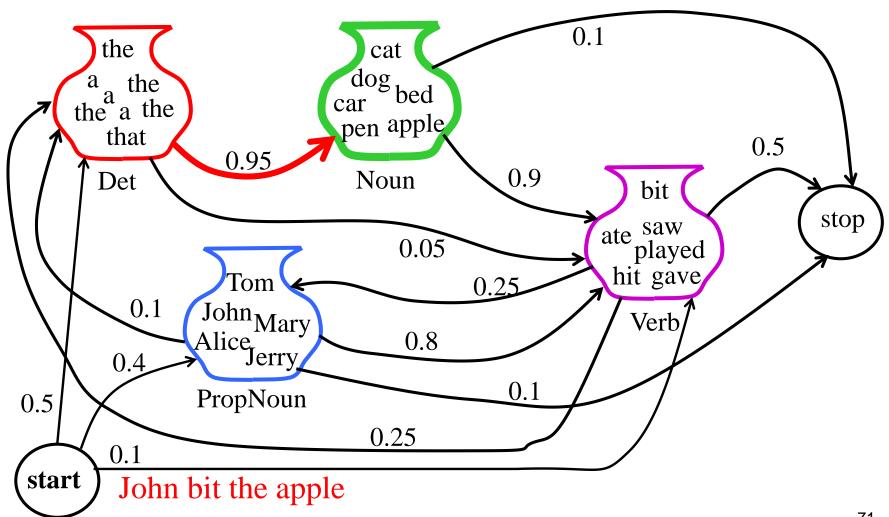


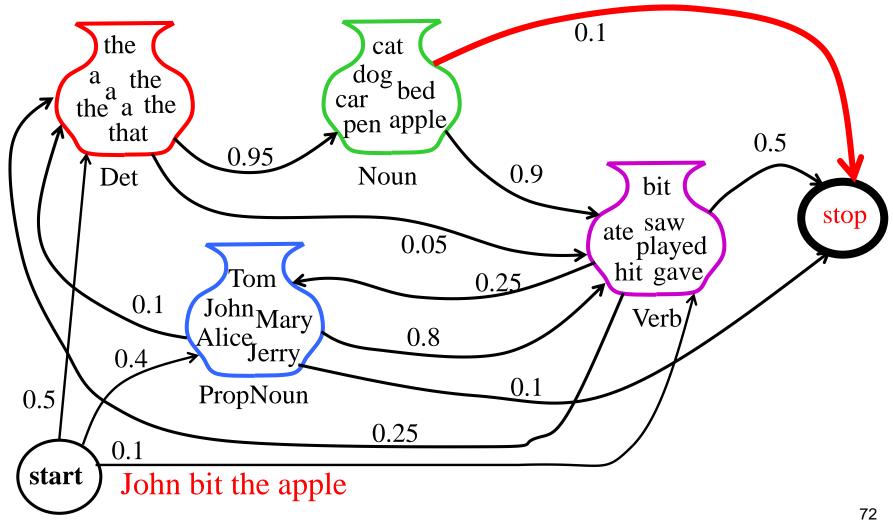












NER: Named Entity Recognition: who, where, when, how much

The task: identify atomic elements of information in text. Mostlt names, could be compound.

Imprtant in many tasks: IE, Translation, Summaries, Better IR

- person names
- company/organization names
- locations
- dates & times
- percentages
- monetary amounts
- Can be viewed as an extension of POS
- Rule based of Machine learning, or combined