
Data Structures
COMP242

Ala’ Hasheesh
ahashesh@birzeit.edu

Hashing

1Uploaded By: anonymousSTUDENTS-HUB.com

Hashing (Properties)

2

1. Constant time access O(1). Or almost constant depending on the implementation!
Depending on the implementation this can grow to O(logn) or O(n)!

2. Hash Table: is an array of fixed size n (usually n is a prime).

3. General Idea is to map a key (i.e., our object) to an index and insert it into the table!

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing (Example)

3

0

1

2

3

4

5

6

Hash Table

Assume Table size is 7.

Hash Function OutputInput Space
(Key Space)

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing (Example)

4

0

1

2

3

4

5

6

Hash Table

Assume Table size is 7.

Hash Function OutputInput

“Hello World!”

Input Space
(Key Space)

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing (Example)

5

0

1

2

3

4

5

6

Hash Table

Assume Table size is 7.

Hash Function OutputInput

2

“Hello World!”

Input Space
(Key Space)

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing (Example)

6

0

1

2 Hello World!

3

4

5

6

Hash Table

Assume Table size is 7.

Hash Function OutputInput

2

“Hello World!”

Input Space
(Key Space)

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing (Example)

7

0

1

2 Hello World!

3

4

5

6

Hash Table

Assume Table size is 7.

Hash Function OutputInput

2

“Banana”

“Hello World!”

Input Space
(Key Space)

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing (Example)

8

0

1

2 Hello World!

3 Banana

4

5

6

Hash Table

Assume Table size is 7.

Hash Function OutputInput

2

3

“Banana”

“Hello World!”

Input Space
(Key Space)

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing (Definitions)

9

0

1
…

n-1

Hash Table

1. Constant time access O(1). Or almost constant depending on the implementation!
Depending on the implementation this can grow to O(logn) or O(n)!

2. Hash Table: is an array of fixed size n (usually n is a prime).

3. General Idea is to map a key to an index and insert it into the table!

4. Hash Function: is a special function than maps our element to another value.
In a hash table, hash function will map the input into a value in the range
[0 – n). From 0 to (n - 1)

5. Hash Function in general maps values from one range (big) to another (small).
One way to bound its values into [0 - n-1] is to use mod!

x % n will always produce values in the range [0 - n-1]
Uploaded By: anonymousSTUDENTS-HUB.com

Hashing (Hash Function)

10

0

1
…

n-1

Hash Table

1. Don’t use the element directly (even if it’s an integer).

2. Map the element using the hash function into the range [0 - n-1]

3. In other words, given an array of size n, we use a hash function h(k) to map
Input x into some index in the array!

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing (Hash Function)

11

0

1
…

n-1

Hash Table

1. Don’t use the element directly (even if it’s an integer).

2. Map the element using the hash function into the range [0 - n-1]

3. In other words, given an array of size n, we use a hash function h(k) to map
Input x into some index in the array!

4. Mapping is not unique and different inputs can map to the same index!

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing (Hash Function)

12

0

1
…

n-1

Hash Table

1. Don’t use the element directly (even if it’s an integer).

2. Map the element using the hash function into the range [0 - n-1]

3. In other words, given an array of size n, we use a hash function h(k) to map
Input x into some index in the array!

4. Mapping is not unique and different inputs can map to the same index!

5. Good hash functions produce unique output (most of the time!).

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing (Hash Function)

13

0

1
…

n-1

Hash Table

1. Don’t use the element directly (even if it’s an integer).

2. Map the element using the hash function into the range [0 - n-1]

3. In other words, given an array of size n, we use a hash function h(k) to map
Input x into some index in the array!

4. Mapping is not unique and different inputs can map to the same index!

5. Good hash functions produce unique output (most of the time!).

6. When two inputs are mapped into the same output (same index)
we call that a Collision.

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing

14

0

1
…

n-1

Hash Table

• Hash an input (any input of any type) and produce an index as an output!

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing

15

0

1
…

n-1

Hash Table

• Hash an input (any input of any type) and produce an index as an output!

• If the hash function is good with unique output this will
give O(1) access time. Which is a great improvement over O(logn).

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing

16

0

1
…

n-1

Hash Table

• Hash an input (any input of any type) and produce an index as an output!

• If the hash function is good with unique output this will
give O(1) access time. Which is a great improvement over O(logn).

• The main challenge is to find a good hashing function and storage strategy.

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing (Key, Value)

17

In most hashing data structure, we use two storing strategies

1. (Key, Value) pair where we feed the key to the hash function and store
the value.

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing (Key, Value)

18

In most hashing data structure, we use two storing strategies

1. (Key, Value) pair where we feed the key to the hash function and store
the value.

Example: input is (“Hello World!”, “2023-01-14”)

0

1

2 “2023-01-14”

3

4

5

6

Hash Table

Hash Function OutputInput

2

“Banana”

“Hello World!”

Input Space
(Key Space)

“1210000”, “Ahmad”
“1210001”, “Ahmad”

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing (Key, Value)

19

In most hashing data structure, we use two storing strategies

1. (Key, Value) pair where we feed the key to the hash function and store
the value.

Example: input is (“Hello World!”, “2023-01-14”)

This way we can store any kind of value and build our hashing around
string keys for example!

0

1

2 “2023-01-14”

3

4

5

6

Hash Table
Hash Function OutputInput

2

“Banana”

“Hello World!”

Input Space
(Key Space)

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing (Set)

20

In most hashing data structure, we use two storing strategies

1. (Key, Value) pair where we feed the key to the hash function and store
the value.

2. Just use the value directly to compute the hash and store the value!
Usually, we call this a HashSet!

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing (Set)

21

In most hashing data structure, we use two storing strategies

1. (Key, Value) pair where we feed the key to the hash function and store
the value.

2. Just use the value directly to compute the hash and store the value!
Usually, we call this a Set!

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing (Set)

22

In most hashing data structure, we use two storing strategies

1. (Key, Value) pair where we feed the key to the hash function and store
the value.

2. Just use the value directly to compute the hash and store the value!
Usually, we call this a Set!

• Duplicate values are usually not allowed in a hash (We can allow them if we use key, value pair), but
even then duplicate keys are not allowed!

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing (Set)

23

In most hashing data structure, we use two storing strategies

1. (Key, Value) pair where we feed the key to the hash function and store
the value.

2. Just use the value directly to compute the hash and store the value!
Usually, we call this a Set!

• Duplicate values are usually not allowed in a hash (We can allow them if we use key, value pair), but
even then duplicate keys are not allowed!

• Since duplicates are not allowed, we can use HashTables to remove them in O(n)!

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing (Implementation)

24

public class HashEntry<V> {
 String key;

 V value;

 public HashEntry(String key, V value) {
 this.key = key;
 this.value = value;
 }

 @Override
 public String toString() {
 return String.format("(%s, %s)", key, value);
 }
}

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing (Implementation)

25

public class HashEntry<V> {
 String key;

 V value;

 public HashEntry(String key, V value) {
 this.key = key;
 this.value = value;
 }

 @Override
 public String toString() {
 return String.format("(%s, %s)", key, value);
 }
}

We will talk about how we can make HashEntry
accept a generic key during the lab!

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing (Implementation)

26

public interface Hashable<V> {
 int getHash(String k);

 void insert(String key, V value);

 boolean contains(String key);

 V find(String key);

 int size();

 boolean isEmpty();
}

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing (Implementation)

27

public class HashTable<V> {
 HashEntry<V>[] data;

 int size;

 public HashTable() {
 this(10);
 }

 public HashTable(int capacity) {
 data = (HashEntry<V>[]) new Object[capacity];
 size = 0;
 }
}

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing (Implementation)

28

public void insert(String key, V value) {
 if (shouldRehash()) {
 rehash();
 }

 int hash = getHash(key);

 // Perform quadratic probing
 int i = 1;

 data[hash] = new HashEntry<>(key, value);
}

Uploaded By: anonymousSTUDENTS-HUB.com

Hashing (Implementation)

29

We will do the rest during the lab!

Uploaded By: anonymousSTUDENTS-HUB.com

