Data Structures
COMP24?2

Ala’ Hasheesh
ahashesh@birzeit.edu

Hashing

S el e -2
BIRZEITUNIVERSITY
STUDENTS-HUB.com Uploaded By: anonymous



Hashing (Properties)

1. Constant time access O(1). Or almost constant depending on the implementation!
Depending on the implementation this can grow to O(logn) or O(n)!

2. Hash Table: is an array of fixed size n (usually n is a prime).

3. General Idea is to map a key (i.e., our object) to an index and insert it into the table!

STUDENTS-HUB.com Uploaded By: anonymous



Hashing (Example)

Assume Table size is 7.

Input Space

Hash Function » QOutput

(Key Space)

ol W IN =L O

Hash Table

STUDENTS-HUB.com Uploaded By: anonymous



Hashing (Example)

Assume Table size is 7.

“Hello World!”

Input Space

» Qutput

(Key Space)

ol W IN =L O

Hash Table

STUDENTS-HUB.com Uploaded By: anonymous



Hashing (Example)

Assume Table size is 7.

“Hello World!”

Input Space

» Qutput

(Key Space)

ol W IN =L O

Hash Table

STUDENTS-HUB.com Uploaded By: anonymous



Hashing (Example)

Assume Table size is 7.

0
“Hello World!” 1
2 2 | Hello World!

Input Space » Output 3
(Key Space) 4
5

6

Hash Table

STUDENTS-HUB.com Uploaded By: anonymous



Hashing (Example)

Assume Table size is 7.

0
“Hello World!” 1
2 2 | Hello World!

Input Space » Output 3
(Key Space) 4
5

6

Hash Table

STUDENTS-HUB.com Uploaded By: anonymous



Hashing (Example)

Assume Table size is 7.

0
“Hello World!” 1
) 2 Hello World!

Input Space » Output 3 Banana
(Key Space) 3 1
5
6

Hash Table

STUDENTS-HUB.com Uploaded By: anonymous



Hashing (Definitions)

1. Constant time access O(1). Or almost constant depending on the implementation!
Depending on the implementation this can grow to O(logn) or O(n)!

0
2. Hash Table: is an array of fixed size n (usually n is a prime). 1
3. General Idea is to map a key to an index and insert it into the table!
4. Hash Function: is a special function than maps our element to another value.
In a hash table, hash function will map the input into a value in the range
[0—n). FromOto (n-1) -1
5. Hash Function in general maps values from one range (big) to another (small). Hash Table

One way to bound its values into [0 - n-1] is to use mod!

X % n will always produce values in the range [0 - n-1]
STUDENTS-HUB.com Uploaded By: anonymous



Hashing (Hash Function)

1. Don’t use the element directly (even if it’s an integer).
2. Map the element using the hash function into the range [0 - n-1] 0

3. In other words, given an array of size n, we use a hash function h(k) to map
Input x into some index in the array!

n-1

Hash Table

STUDENTS-HUB.com Uploaded By: anofymous



Hashing (Hash Function)

1. Don’t use the element directly (even if it’s an integer).
2. Map the element using the hash function into the range [0 - n-1] 0

3. In other words, given an array of size n, we use a hash function h(k) to map
Input x into some index in the array!

4. Mapping is not unique and different inputs can map to the same index!

n-1

Hash Table

STUDENTS-HUB.com Uploaded By: anohymous



Hashing (Hash Function)

1. Don’t use the element directly (even if it’s an integer).
2. Map the element using the hash function into the range [0 - n-1] 0

3. In other words, given an array of size n, we use a hash function h(k) to map
Input x into some index in the array!

4. Mapping is not unique and different inputs can map to the same index!
5. Good hash functions produce unique output (most of the time!). -1

Hash Table

STUDENTS-HUB.com Uploaded By: anonymous



Hashing (Hash Function)

1. Don’t use the element directly (even if it’s an integer).
2. Map the element using the hash function into the range [0 - n-1] 0

3. In other words, given an array of size n, we use a hash function h(k) to map
Input x into some index in the array!

4. Mapping is not unique and different inputs can map to the same index!
5. Good hash functions produce unique output (most of the time!). -1

6. When two inputs are mapped into the same output (same index) Hash Table
we call that a Collision.

STUDENTS-HUB.com Uploaded By: anonymous



Hashing

 Hash an input (any input of any type) and produce an index as an output!

n-1

Hash Table

STUDENTS-HUB.com Uploaded By: anofnymous



Hashing

 Hash an input (any input of any type) and produce an index as an output!

 If the hash function is good with unique output this will 0
give O(1) access time. Which is a great improvement over O(logn). 1
n-1

Hash Table

STUDENTS-HUB.com Uploaded By: anofiymous



Hashing

 Hash an input (any input of any type) and produce an index as an output!

 If the hash function is good with unique output this will 0
give O(1) access time. Which is a great improvement over O(logn). 1

« The main challenge is to find a good hashing function and storage strategy.

n-1

Hash Table

STUDENTS-HUB.com Uploaded By: anofymous



Hashing (Key, Value)

In most hashing data structure, we use two storing strategies

1. (Key, Value) pair where we feed the key to the hash function and store
the value.

STUDENTS-HUB.com Uploaded By: anohymous



Hashing (Key, Value)

In most hashing data structure, we use two storing strategies

1.

Input Space

(Key Space)

(Key, Value) pair where we feed the key to the hash function and store
the value.

Example: input is (“Hello World!”, “2023-01-14")

“Hello World!”

> Qutput

“Banana”
“1210000”, “Ahmad”

“1210001”, “Ahmad”

STUDENTS-HUB.com

0
1
2 “2023-01-14"
3
4
5
6
Hash Table

Uploaded By: anofymous



Hashing (Key, Value)

In most hashing data structure, we use two storing strategies

1. (Key, Value) pair where we feed the key to the hash function and store
the value.

Example: input is (“Hello World!”, “2023-01-14")

This way we can store any kind of value and build our hashing around
string keys for example!

“Hello World!”

Input Space + Output

(Key Space)

STUDENTS-HUB Bapana”

0
1
2 “2023-01-14"
3
4
5
6
Hash Table

Uploaded By: anofiymous



Hashing (Set)

In most hashing data structure, we use two storing strategies

1. (Key, Value) pair where we feed the key to the hash function and store
the value.

2. Just use the value directly to compute the hash and store the value!
Usually, we call this a HashSet!

STUDENTS-HUB.com Uploaded By: anofymous



Hashing (Set)

In most hashing data structure, we use two storing strategies

1. (Key, Value) pair where we feed the key to the hash function and store
the value.

2. Just use the value directly to compute the hash and store the value!
Usually, we call this a Set!

STUDENTS-HUB.com Uploaded By: anofhymous



Hashing (Set)

In most hashing data structure, we use two storing strategies

1. (Key, Value) pair where we feed the key to the hash function and store
the value.

2. Just use the value directly to compute the hash and store the value!
Usually, we call this a Set!

* Duplicate values are usually not allowed in a hash (We can allow them if we use key, value pair), but
even then duplicate keys are not allowed!

STUDENTS-HUB.com Uploaded By: anofiymous



Hashing (Set)

In most hashing data structure, we use two storing strategies

1. (Key, Value) pair where we feed the key to the hash function and store
the value.

2. Just use the value directly to compute the hash and store the value!
Usually, we call this a Set!

* Duplicate values are usually not allowed in a hash (We can allow them if we use key, value pair), but
even then duplicate keys are not allowed!

* Since duplicates are not allowed, we can use HashTables to remove them in O(n)!

STUDENTS-HUB.com Uploaded By: anonymous



Hashing (Implementation)

public class HashEntry<V> {
String key;

V value;

public HashEntry(String key, V value) {
this.key = key;
this.value = value;

}

@Override
public String toString() {
return String.format("(%s, %s)", key, value);

}
}

STUDENTS-HUB.com Uploaded By: anofymous



Hashing (Implementation)

public class HashEntry<V> { We will talk about how we can make HashEntry
String key; accept a generic key during the lab!
V value;

public HashEntry(String key, V value) {
this.key = key;
this.value = value;

}

@Override
public String toString() {
return String.format("(%s, %s)", key, value);

}
}

STUDENTS-HUB.com Uploaded By: anofiymous



Hashing (Implementation)

public interface Hashable<V> {
int getHash(String k);

void insert(String key, V value);
boolean contains(String key);
V find(String key);

int size();

boolean isEmpty();

STUDENTS-HUB.com Uploaded By: anofymous



Hashing (Implementation)

public class HashTable<V> {
HashEntry<V>[] data;

int size;

public HashTable() {
this(10);
}

public HashTable(int capacity) {
data = (HashEntry<V>[]) new Object[capacity];
size = 0;
}
}

STUDENTS-HUB.com Uploaded By: anofymous



Hashing (Implementation)

public void insert(String key, V value) {
if (shouldRehash()) {

rehash();
}

int hash = getHash(key);

// Perform quadratic probing
inti=1;

datalhash] = new HashEntry<>(key, value);

}

STUDENTS-HUB.com Uploaded By: anofymous



Hashing (Implementation)

We will do the rest during the lab!

STUDENTS-HUB.com Uploaded By: anofymous



