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Discrete Probability

❖ Suppose that 𝒰 is a finite set, e.g., 𝒰 = 0, 1 𝑛  

 For example, 𝒰 = 0, 1 2 = 00, 01, 10, 11  is the set of all 

possible outcomes

Definition: A probability distribution over 𝒰 is a function 

Pr ∶ 𝒰 → [0, 1] such that 
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❖ A subset 𝐸 ⊆ 𝒰 is called an event, and Pr 𝐸 = σe ∈ 𝐸 Pr 𝑒

❖ If each outcome is equally likely, then the probability of event 

𝐸 ⊆ 𝒰 is

 Pr 𝐸  = # elements in 𝐸 / # elements in 𝒰

❖ For example, suppose we flip 2 coins, then 𝒰 = ℎℎ, ℎ𝑡, 𝑡ℎ, 𝑡𝑡

 Suppose 𝐸 = “at least one tail” = ℎ𝑡, 𝑡ℎ, 𝑡𝑡

 Then, Pr 𝐸 = 3/4

Discrete Probability

𝐸

𝒰
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Exercise - Discrete Probability

Suppose 𝒰 = 0, 1 8, and 𝐸 = 𝑥 ∈ 𝒰 ∣ 𝑥 = 11xx xxxx , i.e., 𝐸 ⊂ 𝒰. 

With the uniform distribution over 𝒰, what is Pr 𝐸 ?

Solution: 

Pr 𝐸 = Pr 1100 0000 + Pr[1100 0001] + ⋯ + Pr 1111 1111

= 26/ 28

                   = 1/22

= 1/4
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Discrete Probability - Complement

❖ If 𝐸 is an event, the complement of 𝐸 is 𝒰 ∖ 𝐸 and denoted ത𝐸; 

i.e., ത𝐸 is the event that 𝐸 does not occur

 Fact: Pr ത𝐸 = 1 − Pr 𝐸

❖ Often, it’s easier to compute Pr 𝐸 = 1 − Pr ത𝐸  

❖ Again, suppose we flip 2 coins, then 𝒰 = ℎℎ, ℎ𝑡, 𝑡ℎ, 𝑡𝑡

 Suppose 𝐸 = “at least one tail” = ℎ𝑡, 𝑡ℎ, 𝑡𝑡

 Complement of 𝐸 is “no tails” = ℎℎ

❖ Then,

 Pr 𝐸 = 1 − Pr ത𝐸 = 1 − 1/4 = 3/4

❖ We make use of this trick often!
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Disjunction and Union Bound 

❖ If 𝐸1 and 𝐸2 are events, then 𝐸1 ∪ 𝐸2 denotes the disjunction 

of 𝐸1 and 𝐸2; that is, 𝐸1 ∪ 𝐸2 is the event that either 𝐸1 or 𝐸2 

occurs

 By definition, Pr 𝐸1 ∪ 𝐸2 ≥ Pr 𝐸1   and  Pr 𝐸1 ∪ 𝐸2 ≥ Pr 𝐸2

❖ Union bound: For events 𝐸1 and 𝐸2 in 𝒰:

 Pr 𝐸1 ∪ 𝐸2 ≤ Pr 𝐸1 + Pr 𝐸2

 Repeated application of the union bound for any events 𝐸1, …, 

𝐸𝑘 gives Pr ∪𝑖=1
𝑘 𝐸𝑖 ≤ σ𝑖=1

𝑘 Pr 𝐸𝑖

𝐸1
𝐸2

𝒰
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Conjunction and Independence 

❖ If 𝐸1 and 𝐸2 are events, then 𝐸1 ⋂ 𝐸2 denotes their 

conjunction; i.e., 𝐸1 ⋂ 𝐸2 is the event that both 𝐸1 and 𝐸2 

occur

 By definition, Pr 𝐸1 ⋂ 𝐸2 ≤ Pr 𝐸1   and  Pr 𝐸1 ⋂ 𝐸2 ≤ Pr 𝐸2

❖ Events 𝐸1 and 𝐸2 are said to be independent if

 Pr 𝐸1⋂ 𝐸2 = Pr 𝐸1 ⋅ Pr 𝐸2

𝐸1
𝐸2

𝒰

Uploaded By: Dana RafiSTUDENTS-HUB.com



Perfectly Secret Encryption ENCS4320 – Applied Cryptography © Ahmed Shawahna – slide 9

Conditional Probability 

❖ The conditional probability of 𝐸1 

given 𝐸2, denoted Pr 𝐸1| 𝐸2 , 

represents the probability that event 

𝐸1 occurs, given that event 𝐸2 has 

occurred, is defined as

 Pr 𝐸1| 𝐸2 ≝
Pr 𝐸1⋂ 𝐸2

Pr 𝐸2

as long as Pr 𝐸2 ≠ 0 (If Pr 𝐸2 = 0 then 
Pr 𝐸1| 𝐸2  is undefined)

Pr 𝐴Pr 𝐴 ∣ 𝐵

Pr 𝐴 ∣ 𝐶 = 0

>

𝐵

𝐴

𝐶

𝒰

❖ It follows immediately from the definition that

 Pr 𝐸1⋂ 𝐸2 = Pr 𝐸1| 𝐸2 ⋅ Pr 𝐸2

 Pr 𝐸2⋂ 𝐸1 = Pr 𝐸2| 𝐸1 ⋅ Pr 𝐸1

 But, Pr 𝐸1⋂ 𝐸2 = Pr 𝐸2⋂ 𝐸1  !!
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Law of Total Probability

❖ Bayes’ Theorem:

 Pr 𝐸1| 𝐸2 =
Pr 𝐸1⋂ 𝐸2

Pr 𝐸2
=

Pr 𝐸2⋂ 𝐸1

Pr 𝐸2
=

Pr 𝐸2| 𝐸1  ⋅ Pr 𝐸1

Pr 𝐸2
 

❖ Let 𝐸1, …, 𝐸𝑛 be disjoint events, so that Pr 𝐸𝑖 ⋂ 𝐸𝑗 = 0 for 

all 𝑖 ≠ 𝑗. That is, at most one of the 𝐸𝑖  occur. Assume 

further that Pr 𝐸𝑖 > 0 for all 𝑖. Then for any event 𝐹

 Pr 𝐹 = Pr 𝐹 | 𝐸1 ⋅  Pr 𝐸1 + 
 Pr 𝐹 | 𝐸2 ⋅  Pr 𝐸2 +
 … +
 Pr 𝐹 | 𝐸𝑛 ⋅  Pr 𝐸𝑛

 = ෍

𝑖=1

𝑛

Pr 𝐹 | 𝐸𝑖 ⋅  Pr 𝐸𝑖

𝐸1

𝐸2

𝐸3

𝐸𝑛

𝒰
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Exercise - Probability Distribution

Consider the shift cipher, with the following distribution over ℳ:

   Pr 𝑀 = "kim" = 0.5,

   Pr 𝑀 = "ann" = 0.2, and

   Pr 𝑀 = "boo" = 0.3

1) What is the probability that the ciphertext is "DQQ"?

2) What is the probability that "ann" was encrypted, given 

that we observe ciphertext "DQQ"?

Plaintext

Position

a b c d e f g h i j k l m n o p q r s t u v w x y z

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 222324 25
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Exercise - Probability Distribution

Solution: 

1) The only way the ciphertext "DQQ“ can occur is if 𝑀 = "ann" and 

𝐾 = 3, or 𝑀 = "boo" and 𝐾 = 2. By independence of 𝑀 and 𝐾, we 

have

Pr 𝑀 = "ann" ⋂ 𝐾 = 3 = Pr 𝑀 = "ann" ⋅ Pr 𝐾 = 3

                                              = 0.2 ⋅ 1/26

Similarly, 

     Pr 𝑀 = "boo" ⋂ 𝐾 = 2 = Pr 𝑀 = "boo" ⋅ Pr 𝐾 = 2

                                               = 0.3 ⋅ 1/26

Therefore, 

Pr 𝐶 = "DQQ" = Pr 𝑀 = "ann" ⋂ 𝐾 = 3 + Pr 𝑀 = "boo" ⋂ 𝐾 = 2

                        = 0.2 ⋅ 1/26 + 0.3 ⋅ 1/26 = 0.5 ⋅ 1/26 = 1/52
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Exercise - Probability Distribution

Solution: 

2) Using Bayes’ Theorem, we have

Pr 𝑀 = "ann" | 𝐶 = "DQQ"

=
Pr 𝐶 = "DQQ" | 𝑀 = "ann"  ⋅  Pr 𝑀 = "ann"

Pr 𝐶 = "DQQ"

=
Pr 𝐶 = "DQQ" | 𝑀 = "ann"  ⋅  0.2

1/52

Note that, Pr 𝐶 = "DQQ" | 𝑀 = "ann" = 1/26, since if 𝑀 = "ann" 

then the only way 𝐶 = "DQQ" can occur is if 𝐾 = 3 (which occurs 

with probability 1/26). We conclude that

Pr 𝑀 = "ann" | 𝐶 = "DQQ" =
(1/26)  ⋅  0.2

1/52
= 0.4
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Random Numbers

❖ Random numbers used to generate keys

 E.g., independent, unbiased (i.e., uniform) bits for symmetric keys 

❖ Random numbers used for nonces (used only-once values)

 Sometimes a sequence is OK

 But sometimes nonces must be random

❖ Random numbers also used in simulations, statistics, etc.

 Such numbers need to be “statistically” random

❖ Two distinct and not necessarily compatible requirements for a 

sequence of random numbers are:

 Randomness (irreproducible)

 Unpredictability
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Random Numbers

❖ Cryptographic random numbers must be statistically 

random and unpredictable

❖ Suppose server generates symmetric keys …

 Alice: KA

 Bob: KB

 Charlie: KC

 Dave: KD

❖ But Alice, Bob, and Charlie don’t like Dave

❖ Alice, Bob, and Charlie working together must not be able to 

determine KD
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Random Number Generators (RNGs)

RNG

Cryptographically 

Secure PRNG
Pseudorandom NGTrue RNG
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True Random Number Generators (TRNGs)

❖ Based on physical random processes: 

 Delays between network events, hard-disk access 

times, keystrokes or mouse movements made by 

the users, thermal/shot noise, or radioactive decay

❖ However, high-entropy data is not necessarily 

uniform. Thus, post-processing is needed to obtain 

(nearly) independent and uniform key stream ki:

 Pr(ki = 0) = Pr(ki = 1) = 50%

❖ Entropy is a measure of unpredictability

❖ Output can neither be predicted nor be 

reproduced

❖ True “randomness” hard to define
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Exercise - TRNGs Post-Processing

Imagine that a processor generates high-entropy data containing 

a sequence of biased bits, where 1 occurs with probability p and 

0 occurs with probability (1 − p). Thousands of such bits have 

lots of entropy, but are not close to uniform. How can we obtain a 

uniformly distributed output from the initial high-entropy pool?

Solution: 

We can obtain a uniform sequence of bits by taking the original bits 

in pairs: if we see a 1 followed by a 0 then we output 0, and if we 

see a 0 followed by a 1 then we output 1. (If we see two 0s or two 

1s in a row we output nothing, and simply move on to the next 

pair.) The probability that any pair results in a 0 is p · (1 − p), which 

is exactly equal to the probability that any pair results in a 1. (Note 

that we do not even need to know the value of p !) 
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❖ Generate sequences from initial seed value

❖ Typically, output stream has good statistical properties

❖ However, output can be predicted and can be reproduced

❖ Often computed in a recursive way:

 s0 = seed

 si+1 = F(si, si-1, si-2 , …, si-t)

❖ Example, rand() function in the standard C library <stdlib.h>:

 s0 = 12345

 si+1 = (1103515245 * si + 12345) mod 231

❖ Most PRNGs have bad cryptographic properties!

 Using them in cryptographic settings can have disastrous consequences

Pseudorandom Number Generator (PRNG)
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    Simple PRNG: 

       Linear Congruential Generator

          s0 = seed

          si+1 = (A * si + B) mod m

❖ Solving:

Request 300 bit of output, i.e., s1, s2 and s3 

 s2 = (A * s1 + B) mod m

 s3 = (A * s2 + B) mod m

… directly reveals A and B. All si can be computed easily!

❖ Bad cryptographic properties due to the linearity of most PRNGs 

 Bottom line: “The use of pseudo-random processes to generate  

secret quantities can result in pseudo-security”

❖ Assume:

 Unknown A, B and s0 as 

key

 Size of A, B and si to be 

100 bit

Cryptanalyzing a Simple PRNG
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Exercise

❖ Suppose a server generates 3-bit symmetric keys (m = 23 = 8) 

using the Linear Congruential Generator. The assigned keys 

for Alice, Bob, Charlie, and Dave are as follows:

▪ Alice: KA = si = 7

▪ Bob: KB = si+1 = 4

▪ Charlie: KC = si+2 = 5

▪ Dave: KD = si+3 = 2

a) Can Alice determine the keys for Bob, Charlie, and Dave?

b) If Alice and Bob work together, will they be able to determine 

Charlie and Dave's keys?

c) If Alice, Bob, and Charlie work together, will they be able to 

determine Dave's key?
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❖ Special PRNG with additional property:

 Output must be unpredictable

❖ More precisely: Given n consecutive bits of output si, the 

following output bits sn+1 cannot be predicted (in polynomial 

time)

❖ Needed in cryptography, in particular for stream ciphers

❖ Remark: There are almost no other applications that need 

unpredictability, whereas many, many (technical) systems 

need PRNGs

Cryptographically Secure PRNG (CSPRNG)
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Random Variables

❖ A random variable X is a function 𝒳 ∶ 𝒰 → 𝒱

❖ Example: 

𝒰

00000
00001
00010

11111

⋮

𝒱

0
1
2

10

⋮

𝒳𝒰 𝒱

𝒳 𝑥 =
def

𝑥0 + 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4

Pr 𝑋 = 0 =

𝒳 ∶ 0,1 5 → {0,1, 2, … , 10}

Pr 𝑋 = 1 =

Pr 𝑋 = 2 =

Pr 𝑋 = 10 =

1/32

5/32

5

2
/ 32 = 10/32

0

Uniform distribution on 𝒰

but not on 𝒱!

⋮
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Deterministic and Randomized Algorithms

❖ Deterministic algorithm:        

       𝑦 ← 𝐴(𝑥)

❖ Randomized algorithm:      

       𝑦 ← 𝐴(𝑥, 𝑟)    where 𝑟 ←
$

0,1 𝑛

       𝑦 ←
$

𝐴(𝑥′)

Inputs

𝑥
𝐴(𝑥)

𝑥

𝑥′

𝐴(𝑥)

𝐴(𝑥′)

Outputs
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Symmetric Key Cryptography - Review

❖ An encryption scheme is defined by:

 The key-generation algorithm (Gen): a probabilistic algorithm that 

outputs a key 𝑘, 𝑘 ∈ 𝒦, chosen according to some distribution. 

𝒦 is the set of all possible keys that can be output by Gen

 The encryption algorithm (Enc): encrypt message 𝑚, 𝑚 ∈ ℳ, 

using the key 𝑘

 Enc ∶ 𝒦 × ℳ → 𝒞  ,  Enc(𝑘, 𝑚) = Enck (𝑚) = 𝑐 

where, 𝒞 denote the set of all possible ciphertexts that can be 

output by Enck (𝑚)

 The decryption algorithm (Dec): decrypt ciphertext 𝑐, 𝑐 ∈ 𝒞, using 

the key 𝑘

 Dec ∶ 𝒦 × 𝒞 → ℳ,  Dec(𝑘, 𝑐) = Deck (𝑐) = 𝑚
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Presentation Outline

❖ Basic Probability

❖ Perfect Secrecy

❖ The One-Time Pad

❖ Crypto Requirements

❖ Crypto Taxonomy
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Perfectly Secret

❖ For an encryption scheme to be perfectly secret, the 

ciphertext should have no effect on the adversary’s knowledge 

regarding the actual plaintext that was sent

 In other words, the ciphertext reveals nothing about the 

underlying plaintext

Definition: An encryption scheme (Gen, Enc, Dec) with 

message space ℳ is perfectly secret if for every probability 

distribution for 𝑀, every message 𝑚 ∈ ℳ, and every 

ciphertext 𝑐 ∈ 𝒞 for which Pr 𝐶 = 𝑐 > 0:

Pr 𝑀 = 𝑚 | 𝐶 = 𝑐 = Pr 𝑀 = 𝑚
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Exercise - Perfectly Secret

Show that the shift cipher is not perfectly secret when used with 

the message space ℳ consisting of all two-letter plaintexts

Solution: 

The probability distribution over ℳ, for every message 𝑚 ∈ ℳ, is 

Pr 𝑀 = 𝑚 = 1/ 26 2

Consider the message is “hi“ and the ciphertext is “XX” (i.e., 𝑚 =

"hi" and 𝑐 = "XX"). Then, clearly Pr 𝑀 = "hi" | 𝐶 = "XX" = 0, as 

there is no way that “XX” can ever result from the encryption of 

“hi“ (In the shift cipher, the relative shift between characters is 

preserved). Therefore,  

Pr 𝑀 = "hi" | 𝐶 = "XX" ≠ Pr 𝑀 = "hi" 

                                                   0 ≠ 1/ 26 2 # the scheme is not 

perfectly secret 
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Perfectly Secret

❖ For an encryption scheme to be perfectly secret, the 

distribution of the ciphertext must not depend on the plaintext

 In other words, the distribution of the ciphertext when 𝑚 is 

encrypted should be identical to the distribution of the ciphertext 

when 𝑚′ is encrypted

LEMMA: An encryption scheme Σ = (Gen, Enc, Dec)    

with message space ℳ is perfectly secret if and only if 

Pr Enc𝐾(𝑚) = 𝑐 = Pr Enc𝐾(𝑚′) = 𝑐

for every two messages 𝑚, 𝑚′ ∈ ℳ, and every ciphertext 

𝑐 ∈ 𝒞, with probability taken over the random choice 𝐾 ←
$

𝒦 

and the random coins used by Enc() (if any)
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Exercise
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❖ An encryption scheme is perfectly 

indistinguishable if no adversary 𝐴 can 

succeed with probability better than 1/2

Definition: An encryption scheme  

Σ = (Gen, Enc, Dec) with message 

space ℳ is perfectly indistinguishable 

if for every adversary 𝐴 it holds that

Pr 𝐄𝐱𝐩Σ, 𝐴
Per−Indist = 1 = Pr 𝑏′ = 𝑏 =

Perfect (Adversarial) Indistinguishability

𝐄𝐱𝐩Σ
Per−Indist 𝐴

Σ = (Gen, Enc, Dec)

𝐴: an adversary, a stateful 

algorithm

----------------------------------

1. 𝑏 ←
$

0, 1

2.  𝑘 ← Σ. Gen()

3.  𝑚0 ← 𝐴, 𝑚1 ← 𝐴

4.  𝑐 ← Σ. Enc 𝑘, 𝑚𝑏

5. 𝑏′ ← 𝐴 𝑐

6. 𝐫𝐞𝐭𝐮𝐫𝐧 𝑏′ =
?

𝑏

𝑏

LEMMA: An encryption scheme Σ 

is perfectly secret if and only if it is 

perfectly indistinguishable

1

2

Uploaded By: Dana RafiSTUDENTS-HUB.com



Perfectly Secret Encryption ENCS4320 – Applied Cryptography © Ahmed Shawahna – slide 32

Exercise - Perfectly Secret

Show that the Vigenère cipher is not perfectly indistinguishable, 

at least for certain parameters (e.g., for the message space of 

two-letter strings and the upper bound of the period is 2)

Solution: 

Let Σ denote the Vigenère cipher for the message space of two-

letter strings, and where the period is chosen uniformly in {1, 2}, 

and adversary 𝐴 does:

1. Output 𝑚0 = "aa" and 𝑚1 = "ab" 

2. Upon receiving the challenge ciphertext c = 𝑐0𝑐1, do the following: 

if 𝑐0 = 𝑐1 output 0; else output 1

Pr 𝐄𝐱𝐩Σ, 𝐴
Per−Indist = 1

= Pr 𝐄𝐱𝐩Σ, 𝐴
Per−Indist = 1 | 𝑏 = 0 ⋅ Pr 𝑏 = 0  

+ Pr 𝐄𝐱𝐩Σ, 𝐴
Per−Indist = 1 | 𝑏 = 1 ⋅ Pr 𝑏 = 1
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Exercise - Perfectly Secret

Pr 𝐄𝐱𝐩Σ, 𝐴
Per−Indist = 1

= Pr 𝐴 outputs 0 | 𝑏 = 0 ⋅ 1/2 + Pr 𝐴 outputs 1 | 𝑏 = 1 ⋅ 1/2

When 𝑏 = 0 (so 𝑚0 = "aa" is encrypted) then 𝑐0 = 𝑐1 (i.e., 

𝐴 outputs 0) if either (1) a key of period 1 is chosen, or (2) a key of 

period 2 is chosen and both characters of the key are equal

Pr 𝐴 outputs 0 | 𝑏 = 0 =
1

2
+

1

2
⋅

1

26
⋅ 1 =

27

52

When 𝑏 = 1 (so 𝑚1 = "ab" is encrypted) then 𝑐0 = 𝑐1 (i.e., 

𝐴 outputs 0) only if a key of period 2 is chosen and the first character 

of the key is one more than the second character of the key

Pr 𝐴 outputs 1 | 𝑏 = 1 = 1 − Pr 𝐴 outputs 0 | 𝑏 = 1 = 1 −
1

2
⋅

1

26
⋅ 1 =

51

52
Plugging into the main Equation, then gives 

Pr 𝐄𝐱𝐩Σ, 𝐴
Per−Indist = 1 =

1

2
⋅

27

52
+

51

52
= 0.75 >

1

2
#  the scheme is not 

perfectly indistinguishable 
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Presentation Outline

❖ Basic Probability

❖ Perfect Secrecy

❖ The One-Time Pad

❖ Crypto Requirements

❖ Crypto Taxonomy
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One-Time Pad

❖ A perfectly secret encryption scheme proposed in 1917

❖ Encryption:      𝒦 × ℳ → 𝒞

                       𝐶 ← 𝑀  𝐾

 Enck(m1 ··· mL) = c1 ··· cL , where ci = mi  ki

❖ Decryption:      𝒦 × 𝒞 → ℳ

𝑀 ← 𝐶  𝐾

Deck(c1 ··· cL) = m1 ··· mL , where mi = ci  ki

Where, ⊕ denote the bitwise exclusive-or (XOR) operation, 

and Deck(Enck(m)) = k  k  m = m

𝒦 = 0,1 𝑛 ℳ = 0,1 𝑛 𝒞 = 0,1 𝑛
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One-Time Pad: Encryption

❖ Encryption: Plaintext  Key = Ciphertext

e=000  h=001  i=010  k=011  l=100  r=101  s=110  t=111

h e i l h i t l e r

001 000 010 100 001 010 111 100 000 101

111 101 110 101 111 100 000 101 110 000

110 101 100 001 110 110 111 001 110 101

s r l h s s t h s r

Plaintext:

Key:

Ciphertext:
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One-Time Pad: Decryption

❖ Decryption: Ciphertext  Key = Plaintext

e=000  h=001  i=010  k=011  l=100  r=101  s=110  t=111

s r l h s s t h s r

110 101 100 001 110 110 111 001 110 101

111 101 110 101 111 100 000 101 110 000

001 000 010 100 001 010 111 100 000 101

h e i l h i t l e r

Ciphertext:

Key:

Plaintext:
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One-Time Pad: Decryption

❖ Double agent claims sender used following “key”

e=000  h=001  i=010  k=011  l=100  r=101  s=110  t=111

s r l h s s t h s r

110 101 100 001 110 110 111 001 110 101

101 111 000 101 111 100 000 101 110 000

011 010 100 100 001 010 111 100 000 101

k i l l h i t l e r

Ciphertext:

Key:

Plaintext:
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One-Time Pad: Decryption

❖ Or sender is captured and claims the key is…

e=000  h=001  i=010  k=011  l=100  r=101  s=110  t=111

s r l h s s t h s r

110 101 100 001 110 110 111 001 110 101

111 101 000 011 101 110 001 011 101 101

001 000 100 010 011 000 110 010 011 000

h e l i k e s i k e

Ciphertext:

Key:

Plaintext:
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Exercise – OTP Encryption

What is the ciphertext that results when the plaintext 0x012345 

(written in hex) is encrypted using the one-time pad with key 

0xFFEEDD?

Solution: 

Encryption: Plaintext  Key = Ciphertext

0 1 2 3 4 5

0000 0001 0010 0011 0100 0101

1111 1111 1110 1110 1101 1101

1111 1110 1100 1101 1001 1000

F E C D 9 8

Plaintext:

Key:

Ciphertext:
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❖ From adversary's POV, the ciphertext is uniformly distributed 

over 𝒞 (𝐶 cannot give any information about 𝑀)

One-Time Pad – Security 

Theorem: The one-time pad encryption scheme has one-time 

perfect privacy

𝐏𝐫𝐨𝐛 𝑲 𝑪 = 𝑲 ⊕ 𝟏𝟎𝟏

1/8 000 101

1/8 001 100

1/8 010 111

1/8 011 110

1/8 100 001

1/8 101 000

1/8 110 011

1/8 111 010

𝐏𝐫𝐨𝐛 𝑲 𝑪 = 𝑲 ⊕ 𝟎𝟎𝟏

1/8 000 001

1/8 001 000

1/8 010 011

1/8 011 010

1/8 100 101

1/8 101 100

1/8 110 111

1/8 111 110
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Need to show: Pr 𝑀 = 𝑚 | 𝐶 = 𝑐 = Pr 𝑀 = 𝑚 , where 𝑚, 𝑐 ∈ 0, 1 𝑛

Pr 𝑀 = 𝑚 | 𝐶 = 𝑐 =
Pr 𝐶 = 𝑐 | 𝑀 = 𝑚 ⋅ Pr 𝑀 = 𝑚

Pr 𝐶 = 𝑐

 Pr 𝐶 = 𝑐 | 𝑀 = 𝑚 = Pr Enc(𝐾, 𝑀) = 𝑐 | 𝑀 = 𝑚

           = Pr 𝐾 ⊕ 𝑚 = 𝑐 = Pr 𝐾 = 𝑚 ⊕ 𝑐 =
1

2𝑛

 Pr 𝐶 = 𝑐 = σ𝑚 ∈ 𝑀 Pr 𝐶 = 𝑐 | 𝑀 = 𝑚 ⋅ Pr 𝑀 = 𝑚

                 = σ𝑚 ∈ 𝑀
1

2n ⋅ Pr 𝑀 = 𝑚 =
1

2n ⋅ σ𝑚 ∈ 𝑀 Pr 𝑀 = 𝑚 =
1

2𝑛

Pr 𝑀 = 𝑚 | 𝐶 = 𝑐 =
1/2n ⋅ Pr 𝑀 = 𝑚

1/2n = Pr 𝑀 = 𝑚

Proof of OTP One-Time Perfect Privacy

Theorem: The one-time pad encryption scheme has one-time 

perfect privacy

(Bayes’ Theorem) 

(Law of Total Probability)
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Need to show: Pr Enc𝐾(𝑚) = 𝑐 = Pr Enc𝐾(𝑚′) = 𝑐  for any two 

messages 𝑚, 𝑚′ ∈ ℳ, and any ciphertext 𝑐 ∈ 𝒞, where 𝑚, 𝑚′, 𝑐 ∈ 0, 1 𝑛

 Pr Enc𝐾(𝑚) = 𝑐 = Pr 𝐾 ⊕ 𝑚 = 𝑐

                            = Pr 𝐾 = 𝑚 ⊕ 𝑐 = Pr 𝐾 = 𝑘1 =
1

2𝑛

 Pr Enc𝐾(𝑚′) = 𝑐 = Pr 𝐾 ⊕ 𝑚′ = 𝑐

        = Pr 𝐾 = 𝑚′ ⊕ 𝑐 = Pr 𝐾 = 𝑘2 =
1

2𝑛

We conclude that the one-time pad is perfectly secret.

Proof of OTP One-Time Perfect Privacy

Theorem: The one-time pad encryption scheme has one-time 

perfect privacy

Uploaded By: Dana RafiSTUDENTS-HUB.com



Perfectly Secret Encryption ENCS4320 – Applied Cryptography © Ahmed Shawahna – slide 44

Exercise - Perfectly Secret

Prove or refute: An encryption scheme with message space ℳ 

is perfectly secret if and only if for every probability distribution 

on ℳ and every 𝑐0, 𝑐1 ∈ 𝒞, we have 

Pr 𝐶 = 𝑐0 = Pr 𝐶 = 𝑐1  

Solution: 

This is not true. Consider modifying the one-time pad so encryption 

appends a bit that is 0 with probability 1/4 and 1 with probability 

3/4. This scheme will still be perfect secret, but ciphertexts ending 

with 1 are more likely that ciphertexts ending with 0.
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One-Time Pad – Perfect?

❖ Provably secure…

 Ciphertext provides no info about plaintext

 All plaintexts are equally likely

❖ OTP has perfect privacy … for one message

 What happens if you use the same (unknown) key for two messages?

 𝑐1 ⊕ 𝑐2 = 𝑘 ⊕ 𝑚1 ⊕ 𝑘 ⊕ 𝑚2 = 𝑚1 ⊕ 𝑚2

 The adversary can learn where the two messages differ

❖ Key is as long as the message

 Key management becomes very difficult

 What happens if it is shorter?

❖ Nothing special about XOR: ROT-K also has one-time perfect privacy

 Why doesn't this contradict what we saw earlier about ROT-K?

Theorem: No encryption 

scheme can have perfect 

secrecy if 𝒦 < ℳ
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Exercise – OTP Key Limitation

The following questions concern multiple encryptions of single-

character ASCII plaintexts with the one-time pad using the 

same 8-bit key. You may assume that the plaintexts are either 

(upper- or lower-case) English letters or the space character.

a) Say you see the ciphertexts 1011 0111 and 1110 0111. What can 

you deduce about the plaintext characters these correspond to?

b) Say you see the three ciphertexts 0110 0110, 0011 0010, and 

0010 0011. What can you deduce about the plaintext characters 

these correspond to?
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Presentation Outline

❖ Basic Probability

❖ Perfect Secrecy

❖ The One-Time Pad

❖ Crypto Requirements

❖ Crypto Taxonomy
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Cryptography Requirements

❖ Wanted: security definition for symmetric encryption

 One-time perfect privacy:   Pr 𝑏′ = 𝑏 =
1

2

 Security holds for any adversary (no limit on resource usage)

 Very strict requirements:

▪ Keys need to be as long as message

▪ Key can only be used for one message

❖ Modern cryptography – idea

 Computational privacy:   Pr 𝑏′ = 𝑏 =
1

2

 Security holds for any recourse bounded adversary

 Very strict requirements:

▪ Want keys to be short

▪ Want to encrypt many messages using the same key

± 𝜀
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Claude Shannon

❖ The founder of Information Theory

❖ 1949 paper: Comm. Thy. of Secrecy Systems

❖ Fundamental concepts

Diffusion ⎯ The statistical structure of the plaintext is 

dissipated into long-range statistics of the ciphertext
▪ This is achieved by having each plaintext digit affect the value of 

many ciphertext

Confusion ⎯ Seeks to make the relationship between the 

statistics of the ciphertext and the value of the encryption key 

as complex as possible
▪ Even if the attacker can get some handle on the statistics of the 

ciphertext, the way in which the key was used to produce that 

ciphertext is so complex as to make it difficult to deduce the key

❖ Proved one-time pad is secure

❖ One-time pad is confusion-only
Uploaded By: Dana RafiSTUDENTS-HUB.com

http://www.cs.ucla.edu/~jkong/research/security/shannon1949.pdf


Perfectly Secret Encryption ENCS4320 – Applied Cryptography © Ahmed Shawahna – slide 50

Presentation Outline

❖ Basic Probability

❖ Perfect Secrecy

❖ The One-Time Pad

❖ Crypto Requirements

❖ Crypto Taxonomy
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Taxonomy of Cryptography

❖ Symmetric Key

 Same key for encryption and decryption

 Two types: Stream ciphers and Block ciphers

❖ Public Key (or asymmetric crypto)

 Two keys, one for encryption (public), and one for 

decryption (private)

 And digital signatures ⎯ nothing comparable in 

symmetric key crypto

❖ Hash Algorithms

Can be viewed as “one way” crypto
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Outline of Course

Message Privacy
Message Integrity / 

Authentication

Symmetric Keys
Symmetric Encryption 

(private-key encryption)

Message Authentication 

Codes (MAC)

Asymmetric Keys 
Asymmetric Encryption 

(public-key encryption)
Digital Signatures

Part I
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Outline of Course

Message Privacy
Message Integrity / 

Authentication

Symmetric Keys
Symmetric Encryption 

(private-key encryption)

Message Authentication 

Codes (MAC)

Asymmetric Keys 
Asymmetric Encryption 

(public-key encryption)
Digital Signatures Part II
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Much More to Cryptography

❖ Zero-knowledge proofs

❖ Fully-homomorphic encryption

❖ Multi-party computation

❖ Blockchain

𝐸𝑛𝑐 𝐾, 𝑀1 + 𝑀2 = 𝐸𝑛𝑐 𝐾, 𝑀1 + 𝐸𝑛𝑐 𝐾, 𝑀2

Password? I know it Welcome!
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Exercise – OTP Key Limitation
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