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Discrete Probability

% Suppose that U is a finite set, e.g., U = {0,1}"

\_

UueEU

L. ...
Definition: A probability distribution over U is a function
Pr: U - [0, 1] such that z Prlu] =1

<> For example, U = {0,1}? = {00,01, 10,11} is the set of all

possible outcomes
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Discrete Probability

“ Asubset E € U is called an event, and Pr[E] = Y. ¢ 5 Pr|e]

U

» If each outcome is equally likely, then the probability of event
EcCcUis

< Pr[E] = # elements in E / # elements in U
“* For example, suppose we flip 2 coins, then ‘U = {hh, ht, th, tt}
<> Suppose E = "at least one tail” = {ht, th, tt}
< Then, Pr|E] = 3/4
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Exercise - Discrete Probability

Suppose U ={0,1}8, and E = {x € U | x = 1Ixx xxxx}, i.e., E c U.
With the uniform distribution over U, what is Pr[E]?

Solution:
Pr[E] = Pr[1100 0000] + Pr[1100 0001] + ---+ Pr[1111 1111]
— 26/ 28
= 1/2%
=1/4
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Discrete Probability - Complement

< If E is an event, the complement of E is U \ E and denoted E;
i.e., E is the event that E does not occur

< Fact: Pr[E] = 1 — Pr[E]

% Often, it's easier to compute Pr|E] = 1 — Pr[E]

% Again, suppose we flip 2 coins, then U = {hh, ht, th, tt}
<> Suppose E = "at least one tail” = {ht, th, tt}
<> Complement of E is "no tails" = {hh}

** Then,
& Pr[E]=1—Pr[E]=1—-1/4 =3/4

+» We make use of this trick often!

Pe§eItHQcEeMl§p’c'€LU B.com ENCS4320 — Applied Cryptography U pload %jAmd S%M% R@dtl 6



Disjunction and Union Bound

» If E; and E, are events, then E; U E, denotes the disjunction
of E; and E,; that is, E; U E, is the event that either E, or E,
OCcurs

<> By definition, Pr[E; U E,] = Pr|E;] and Pr[E; U E,] = Pr[E,]

gD

*» Union bound: For events E; and E, in U:
< Pr|E; UE,] < Pr[E;]| + Pr|E,]

< Repeated application of the union bound for any events Ey, ...,
Ey gives Pr|[UX, E;| < XK, Pr[E;]
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Conjunction and Independence

» If E; and E, are events, then E; N E, denotes their
conjunction; i.e., E; N E, is the event that both E; and E,
occur

< By definition, Pr[E; N E,| < Pr|E;] and Pr|E; N E,] < Pr[E,]

gD

*» Events E; and E, are said to be independent if
< Pr[E;N E,] = Pr|E ] : Pr|E,]
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Conditional Probability

*» The conditional probability of E;

given E,, denoted Pr|E;| E,],
represents the probability that event
E, occurs, given that event E, has =
occurred, is defined as @
def Pr[Elﬂ Ez]
< PrlEy| E7] = PrlE,]

Pr[A | B] > Pr[A]

as long as Pr[E,] # 0 (If Pr[E;] = 0 then Pr{A|C]=0

Pr|E| E,] is undefined)

¢ It follows immediately from the definition that
<> Pr[Eln Ez] — PI‘[E1| Ez] . Pr[Ez]
<> Pr[Ezn El] — PI‘[E2| El] . PI‘[El]

<> But, Pr[E1 ﬂ Ez] — PF[EZ ﬂ El] I
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Law of Total Probability

*+ Bayes’ Theorem:

. Pr[Elﬂ Ez] _ Pr[Ezﬂ El] _ Pr[E2| El] . Pr[El]
PrlE| Bl == = e~ piE

% Let E,, ..., E, be disjoint events, so that Pr|E; N E;| = 0 for
all i # j. That is, at most one of the {E;} occur. Assume
further that Pr[E;] > 0 for all i. Then for any event F

< Pr[F] = Pr[F | E{] - Pr[E{] + 1
Pr[F | E,] - Pr[E,] +
+
PI‘[F | En] ) Pr[En] :

= Z Pr|F | E;] - Pr[E;]
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Exercise - Probability Distribution

Consider the shift cipher, with the following distribution over M

Pr[M = "kim"|
Pr[M = "ann"
Pr[M = "boo"]

= 0.5,

= 0.3

= (0.2, and

1) What is the probability that the ciphertext is "DQQ"?

2) What is the probability that "ann" was encrypted, given
that we observe ciphertext "DQQ"?

Plaintext |a|b|c|d|e|f|g|h|i]|j|k|]I

Position |0(1(2|3(4|5|6|7|8]|9]10|11

12(13(14(15|16

17

18

19

20(2122]23|24

25
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Exercise - Probability Distribution

Solution:

1) The only way the ciphertext "DQQ“ can occur is if M = "ann" and
K = 3,0or M = "boo" and K = 2. By independence of M and K, we

have
Pr[M ="ann" N K = 3] = Pr[M = "ann"] - Pr[K = 3]
=0.2-(1/26)
Similarly,

Pr[M ="boo" N K = 2] = Pr[M = "boo"| - Pr|K = 2]

= 0.3-(1/26)
Therefore,

Pr[C ="DQQ"] = Pr[M ="ann" N K = 3] + Pr|[M = "boo" N K = 2]

—0.2-(1/26) + 03 - (1/26) = 0.5 - (1/26) = 1/52
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Exercise - Probability Distribution

Solution:
2) Using Bayes’ Theorem, we have

Pr[M = "ann" | C = "DQQ"]
Pr[C ="DQQ"|M = "ann"] - Pr[M = "ann"]

Pr[C = "DQQ’]
_ Pr[C ="DQQ"|M = "ann"] - 0.2
B 1/52

Note that, Pr[C = "DQQ" | M = "ann"] = 1/26, since if M = "ann"
then the only way C = "DQQ" can occur is if K = 3 (which occurs
with probability 1/26). We conclude that

Pr[M = "ann" | ¢ = "DQQ"] = d/ 216/)5 2 02 04
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Random Numbers

* Random numbers used to generate keys
< E.qg., independent, unbiased (i.e., uniform) bits for symmetric keys

* Random numbers used for nonces (used only-once values)
< Sometimes a sequence is OK
<> But sometimes nonces must be random

*+ Random numbers also used in simulations, statistics, etc.
< Such numbers need to be “statistically” random
¢ Two distinct and not necessarily compatible requirements for a
sequence of random numbers are:
<> Randomness (irreproducible)
< Unpredictability
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Random Numbers

*» Cryptographic random numbers must be statistically
random and unpredictable

** Suppose server generates symmetric keys ...
<> Alice: K,
<> Bob: Kg

<> Charlie: K,
<> Dave: Ky

+»» But Alice, Bob, and Charlie don’t like Dave

¢ Alice, Bob, and Charlie working together must not be able to
determine Ky
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Random Number Generators (RNGs)

RNG >
( True RNG > Gseudorandom NQ G%Eéﬁ?;aggﬁ:g@
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True Random Number Generators (TRNGs)

*» Based on physical random processes:

< Delays between network events, hard-disk access
times, keystrokes or mouse movements made by
the users, thermal/shot noise, or radioactive decay

*» However, high-entropy data is not necessarily
uniform. Thus, post-processing is needed to obtain
(nearly) independent and uniform key stream k::

< Pr(k, = 0) = Pr(k. = 1) = 50%
“* Entropy Is a measure of unpredictability

¢ Output can neither be predicted nor be
reproduced

s True “randomness” hard to define
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Exercise - TRNGs Post-Processing

Imagine that a processor generates high-entropy data containing
a sequence of biased bits, where 1 occurs with probability p and
O occurs with probability (1 - p). Thousands of such bits have
lots of entropy, but are not close to uniform. How can we obtain a
uniformly distributed output from the initial high-entropy pool?

Solution:

We can obtain a uniform sequence of bits by taking the original bits
in pairs: if we see a 1 followed by a O then we output O, and if we
see a O followed by a 1 then we output 1. (If we see two Os or two
1s in a row we output nothing, and simply move on to the next
pair.) The probability that any pair results ina O is p - (1 - p), which
Is exactly equal to the probability that any pair results in a 1. (Note
that we do not even need to know the value of p !)
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Pseudorandom Number Generator (PRNG)

*» Generate sequences from initial seed value
*» Typically, output stream has good statistical properties

*» However, output can be predicted and can be reproduced

s Often computed in a recursive way:

Sp = Seed

|+1 F(S,, Sl ll i-2 ¢ 00 - T)

< Example, rand() function in the standard C library <stdlib.h>:
SO - 12345
S.; = (1103515245 * s, + 12345) mod 23!

*» Most PRNGs have bad cryptographic properties!

<> Using them in cryptographic settings can have disastrous conseguences
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Cryptanalyzing a Simple PRNG

 Assume: Simple PRNG:
< Unknown A, B and s, as Linear Congruential Generator
key Sy = seed
< Size qf A, B and s; to be S,;= (A*s;+B)mod m
100 bit
% Solving:

Request 300 bit of output, i.e., s;, S, and s
s, =(A*s;+B)modm
s3=(A*s,+B)mod m
.. directly reveals A and B. All s; can be computed easily!
s Bad cryptographic properties due to the linearity of most PRNGs

<> Bottom line: “The use of pseudo-random processes to generate

secret quantities can result in pseudo-security” |
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Exercise

% Suppose a server generates 3-bit symmetric keys (m = 23 = 8)
using the Linear Congruential Generator. The assigned keys
for Alice, Bob, Charlie, and Dave are as follows:

" Alice: Ky,=s,=7

= Bob: K;=s,,1=4

* Charlie: K.=s,,,=5
= Dave: Ky =5;,3=2

a) Can Alice determine the keys for Bob, Charlie, and Dave?

b) If Alice and Bob work together, will they be able to determine
Charlie and Dave's keys?

c) If Alice, Bob, and Charlie work together, will they be able to
determine Dave's key?
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Cryptographically Secure PRNG (CSPRNG)

*» Special PRNG with additional property:
< Output must be unpredictable

“* More precisely: Given n consecutive bits of output s;, the
following output bits s,,; cannot be predicted (in polynomial
time)

** Needed in cryptography, in particular for stream ciphers

** Remark: There are almost no other applications that need

unpredictability, whereas many, many (technical) systems
need PRNGs
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Random Variables

» Arandom variable Xisafunction X : U >V

U V
. - R f R
% Example: 00000 0
00001 1
u : v 00010 | X 2
X :{0,1}>-1{0,1,2,..,10}
def
X(x) = xg+x; +x, +x3+ x4 ) 10

Pr[X = 0] = 1/32 )
Pr|[X =1] = 5/32

g > Uniform distribution on U
PriX = 2] = <2> /32 =10/32 but not on V!
Pr[X =10] = 0 y
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Deterministic and Randomized Algorithms

¢ Deterministic algorithm:
y < A(x)

*+ Randomized algorithm:
$
y « A(x,r) wherer«{0,1}"
$ !/
y < A(x)

perfeltly Setef Erctyption) B-COM
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Symmeftric Key Cryptography - Review

“* An encryption scheme is defined by:

< The key-generation algorithm (Gen): a probabilistic algorithm that
outputs a key k, k € K, chosen according to some distribution.
K is the set of all possible keys that can be output by Gen

<> The encryption algorithm (Enc): encrypt message m, m € M,
using the key k
Enc: X xM - ¢ , Enc(k, m)=Enc,(m)=c
where, C denote the set of all possible ciphertexts that can be
output by Enc, (m)

< The decryption algorithm (Dec): decrypt ciphertext c, ¢ € C, using
the key k

Dec: K x C - M, Dec(k, c)=Dec,(c)=m
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Perfectly Secret

/Definition: An encryption scheme (Gen, Enc, Dec) with )
message space M is perfectly secret if for every probability
distribution for M, every message m € M, and every
ciphertext ¢ € C for which Pr|C = c] > 0:

_ PriM =m | C = c] = Pr[M = m|

J

*» For an encryption scheme to be perfectly secret, the
ciphertext should have no effect on the adversary’'s knowledge
regarding the actual plaintext that was sent

< In other words, the ciphertext reveals nothing about the
underlying plaintext
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Exercise - Perfectly Secret

Show that the shift cipher is not perfectly secret when used with
the message space M consisting of all two-letter plaintexts

Solution:

The probability distribution over M, for every message m € M, is
Pr[M = m] = 1/(26)?

Consider the message is "hi" and the ciphertext is "XX" (i.e., m =
"hi" and ¢ = "XX"). Then, clearly Pr[M = "hi" | C = "XX"] = 0, as
there is no way that "XX" can ever result from the encryption of
"hi" (In the shift cipher, the relative shift between characters is
preserved). Therefore,

Pr[M = "hi" | ¢ = "XX"] # Pr[M = "hi"]

0+ 1/(26)2 # the scheme is not

perfectly secret
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Perfectly Secret

/LEMI\/IA: An encryption scheme 2 = (Gen, Enc, Dec) \
with message space M is perfectly secret if and only if

Pr|Encg(m) = c] = Pr[Encg(m’) = c]

for every two messages m,m' € M, and every ciphertext

$
c € C, with probability taken over the random choice K « K
Qnd the random coins used by Enc() (if any) /

*» For an encryption scheme to be perfectly secret, the
distribution of the ciphertext must not depend on the plaintext

< In other words, the distribution of the ciphertext when m is
encrypted should be identical to the distribution of the ciphertext
when m’ is encrypted
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Exercise

Given the following encryption scheme, where Enci{m) returns [m + k mod 3], and Dec(c)
returns [c - k mod 3], under which of the below message spaces and key spaces the encryption
scheme is perfectly secret?

Scheme 1: The message space is M = {0, 1}, and Gen chooses a uniform key from the key
space K = {0, 1}
Scheme 2: The message space is M = {0, 1}, and Gen chooses a uniform key from the key
space K ={0, 1, 2}
Scheme 3: The message space is M = {0, 1}, and Gen chooses a uniform key from the key
space K ={1, 2}
Scheme 4: The message space is M = {0, 1, 2}, and Gen chooses a uniform key from the
key space K ={0, 1, 2}
a) Scheme 1
b) Scheme 2
c) Scheme 3
d) Scheme 4
e) None
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Perfect (Adversarial) Indistinguishability

X = (Gen, Enc, Dec) with message

\_

Pr[Exp5®; "4st = 1] = Pr[b’ = b] =

/Definition: An encryption scheme \

space M is perfectly indistinguishable
If for every adversary A it holds that

1

2/

* An encryption scheme is perfectly

indistinguishable if no adversary A can
succeed with probability better than 1/2

-
LEMMA: An encryption scheme X
IS perfectly secret if and only if it is

\perfectly Indistinguishable

~

J
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Expger—lndist(A)
2~ = (Gen, Enc, Dec)
A: an adversary, a stateful
algorithm
e $T _____________________ 1_; -
1. b«{0,1} *
2. k < 2.Gen() %SL
3. myp< A my <A
4. ¢« X.Enc(k,my)
5. b« A(c)

?
6. return b'=b
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Exercise - Perfectly Secret

Show that the Vigenere cipher is not perfectly indistinguishable,
at least for certain parameters (e.g., for the message space of
two-letter strings and the upper bound of the period is 2)

Solution:

Let ¥ denote the Vigenere cipher for the message space of two-
letter strings, and where the period is chosen uniformly in {1, 2},
and adversary A does:

1. Output my = "aa" and m; = "ab"
2. Upon receiving the challenge ciphertext c = cyc4, do the following:
If co = ¢, output O; else output 1
Pr[ExpPer Indist _ 1]
= Pr[Exp3®, st = 1| b = 0] - Pr[b = 0]
+ Pr[Expt®; st = 1| p =1] - Pr[b = 1]
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Exercise - Perfectly Secret

PI‘[EXpPer Indist _ 1]
= Pr[A outputs 0| b =0]-1/2+ Pr[Aoutputs1 | b =1]-1/2

When b = 0 (so my = "aa" is encrypted) then ¢, = ¢4 (i.e.,
A outputs 0) if either (1) a key of period 1 is chosen, or (2) a key of
period 2 is chosen and both characters of the key are equal

Pr[A outputs 0 | b = 0] = 1+1 ! 1—27
rld outputs 0 | b = 27226 " T 52

When b = 1 (so m; = "ab" is encrypted) then ¢, = ¢4 (i.e.,
A outputs 0) only if a key of period 2 is chosen and the first character
of the key is one more than the second character of the key

1 1 51
Pr[Aoutputsl|b—1]—1—Pr[AoutputsO|b—1]—1—5-%-1_5

Plugging into the main Equation, then gives

1 (27 51 1 -
Per—Indist _ 11 _ - . [2° L. 27| _ - # the scheme is not
Pr[Exp 1] 2 (52 * 52) 0.75 > 2  perfectly indistinguishable
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One-Time Pad

*» A perfectly secret encryption scheme proposed in 1917

* Encryption:. K XM ->C
CMO®K
< Enc,(m; --- m;)=c, -~ Cc_,where c,=m, ® k;

* Decryption:. K XC->M
MeCPK
< Dec,(c, ---c))=m; ---m_,wherem, =c, @ k;

Where, @ denote the bitwise exclusive-or (XOR) operation,
and Dec (Enc,(m)) =k@®@k® m=m

x ={0,1) MmM={01}" ¢ ={0,1}"
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One-Time Pad: Encryption

e=000 h=001 i=010 k=011 |=100 r=101 s=110 t=111

“* Encryption: Plaintext @ Key = Ciphertext

h e i | h i t | e r

Plaintextt  9o1 000 010 100 001 010 111 100 000 101
Key: 111 101 110 101 111 100 000 101 110 000

Clphertext: 4110 101 100 001 110 110 111 001 110 101

s r | h s s t h s r
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One-Time Pad: Decryption

e=000 h=001 i=010 k=011 |=100 r=101 s=110 t=111

“* Decryption: Ciphertext @ Key = Plaintext

s r | h s s t h s r

Ciphertext: 110 101 100 001 110 110 111 001 110 101
Key: 111 101 110 101 111 100 000 101 110 000

Plaintext: 901 000 010 100 001 010 111 100 000 101

h e i | h i t | e r
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One-Time Pad: Decryption

e=000 h=001 i=010 k=011 |=100 r=101 s=110 t=111

¢ Double agent claims sender used following “key”

s r | h s s t h s r

Ciphertext: 110 101 100 001 110 110 111 001 110 101
Key: 101 111 000 101 111 100 000 101 110 000

Plaintext 11 010 100 100 001 010 111 100 000 101

kK i | | h i t | e r
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One-Time Pad: Decryption

e=000 h=001 i=010 k=011 |=100 r=101 s=110 t=111

¢ Or sender is captured and claims the key is...

s r | h s s t h s r

Ciphertext: 110 101 100 001 110 110 111 001 110 101
Key: 111 101 000 011 101 110 001 011 101 101

Plaintext: 901 000 100 010 011 000 110 010 011 000

h e | 1 k e s i k e
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Exercise - OTP Encryption

What is the ciphertext that results when the plaintext 0x012345
(written in hex) Is encrypted using the one-time pad with key

OXFFEEDD?

Solution:
Encryption: Plaintext @ Key = Ciphertext

0 1 2 3 4 5

Plaintext:  9oo0 0001 0010 0011 0100 0101
Key: 1111 1111 1110 1110 1101 1101

Clphertext: 1197 1110 1100 1101 1001 1000

F E C D 9 3
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One-Time Pad - Security

[Theorem: The one-time pad encryption scheme has one-time]

perfect privacy

*» From adversary's POV, the ciphertext is uniformly distributed
over C (C cannot give any information about M)

Prob K C=K®101 Prob K C=K® o001
1/8 000 101 1/8 000 001
1/8 001 100 1/8 001 000
1/8 010 111 1/8 010 011
1/8 011 110 1/8 011 010
1/8 100 001 1/8 100 101
1/8 101 000 1/8 101 100
1/8 110 011 1/8 110 111
1/8 111 010 1/8 111 110
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Proof of OTP One-Time Perfect Privacy

Theorem: The one-time pad encryption scheme has one-time
perfect privacy

Need to show: Pr[M =m | C = c] = Pr[M = m], where m,c € {0, 1}"

PriC =c|M =m]: Pr[M =m]

PriM=m|C =c] = PriC = o] (Bayes’ Theorem)

Pr[C =c|M =m] =Pr|Enc(K,M) =c| M = m]|

=Pr[K @ m=c] =Pr|[K =m e c] zzin
Pr[C=c]=),,emuPrlC =c|M=m]-Pr|[M =m]| (Law of Total Probability)
1

1 1

— ZmEMZ_n' Pr[M =m| = Z_n'ZmEMPr[M =m| = on
1/2" - Pr[M = m]

1/2n
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Proof of OTP One-Time Perfect Privacy

Theorem: The one-time pad encryption scheme has one-time
perfect privacy

Need to show: Pr[Encg(m) = c] = Pr|Encg(m') = c] for any two
messages m,m’' € M, and any ciphertext ¢ € ¢, where m,m’,c € {0,1}"

Pr|[Encg(m) = c] = Pr[K @ m = c]

:Pr[K=m€BC]=P1‘[K:k1]:2in

Pr[Encgy(m’) = c] = Pr|[K @& m' = ]

= Pr[K = m' @ c] = Pr|[K = k] =2in
We conclude that the one-time pad is perfectly secret.
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Exercise - Perfectly Secret

Prove or refute: An encryption scheme with message space M
IS perfectly secret if and only if for every probability distribution
on M and every c,, c; € C, we have

Pr|C = cy] = Pr[C = 4]

Solution:

This is not true. Consider modifying the one-time pad so encryption
appends a bit that is O with probability 1/4 and 1 with probability
3/4. This scheme will still be perfect secret, but ciphertexts ending
with 1 are more likely that ciphertexts ending with O.
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One-Time Pad - Perfect?

** Provably secure...
< Ciphertext provides no info about plaintext
< All plaintexts are equally likely
*» OTP has perfect privacy ... for one message

< What happens if you use the same (unknown) key for two messages”?

¢ Cl@CZ=(k@m1)@(k@m2)=m1@m2

< The adversary can learn where the two messages differ

*+ Key Is as long as the message Theorem: No encryption
o scheme can have perfect
<+ Key management becomes very difficult secrecy if || < |M]

< What happens if it is shorter?

*+ Nothing special about XOR: ROT-K also has one-time perfect privacy

< Why doesn't this contradict what we saw earlier about ROT-K?
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Exercise - OTP Key Limitation

The following questions concern multiple encryptions of single-
character ASCII plaintexts with the one-time pad using the
same 8-bit key. You may assume that the plaintexts are either
(upper- or lower-case) English letters or the space character.

a) Say you see the ciphertexts 1011 0111 and 1110 0111. What can
you deduce about the plaintext characters these correspond to?

b) Say you see the three ciphertexts 0110 0110, 0011 0010, and
0010 0011. What can you deduce about the plaintext characters
these correspond to?

Bit 4: ©0000000eeeReeee 1111111111111111 |
Bits ©-3: ©123456789ABCDEF ©123456789ABCDEF | Block:
_________ fm m e m e e m e e e m e mmmm e m e mmemm e adem—mmm——mem—m————m————————
Bits 00 | ..iiiiiiiii it i | Control characters
5-6: @1 | !"#$%&'()*+,-./ ©123456789:;<=>? | Numbers and punctuation
10 | @ABCDEFGHIJKLMNO PQRSTUVWXYZ[\]"_ | Uppercase letters (mostly)
11 | “abcdefghijklmno pgrstuvwxyz{|}~. | Lowercase letters (mostly)
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Presentation Outline

*» Basic Probability

*» Perfect Secrecy

“* The One-Time Pad

*» Crypto Requirements

*» Crypto Taxonomy
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Cryptography Requirements

*» Wanted: security definition for symmetric encryption
1
T2
<> Security holds for any adversary (no limit on resource usage)
< Very strict requirements:
» Keys need to be as long as message

= Key can only be used for one message

<> One-time perfect privacy: Pr[b’ = b]

*+ Modern cryptography — idea

< Computational privacy: Pr[b’ = b] =% T e

<> Security holds for any recourse bounded adversary

<> Very strict requirements:
= Want keys to be short
= Want to encrypt many messages using the same key
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Claude Shannon

¢ The founder of Information Theory
¢ 1949 paper: Comm. Thy. of Secrecy Systems

*» Fundamental concepts
< Diffusion — The statistical structure of the plaintext is
dissipated into long-range statistics of the ciphertext

* This is achieved by having each plaintext digit affect the value of
many ciphertext

< Confusion — Seeks to make the relationship between the
statistics of the ciphertext and the value of the encryption key
as complex as possible
» Even if the attacker can get some handle on the statistics of the

ciphertext, the way in which the key was used to produce that
ciphertext is so complex as to make it difficult to deduce the key

» Proved one-time pad Is secure

* One-time pad Is confusion-only |
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http://www.cs.ucla.edu/~jkong/research/security/shannon1949.pdf

Presentation Outline

*» Basic Probability

*» Perfect Secrecy

“* The One-Time Pad
“ Crypto Requirements

» Crypto Taxonomy
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Taxonomy of Cryptography

» Symmetric Key

<> Same key for encryption and decryption

< Two types: Stream ciphers and Block ciphers
“* Public Key (or asymmetric crypto)

< Two keys, one for encryption (public), and one for
decryption (private)

<> And digital signatures — nothing comparable Iin
symmetric key crypto

“* Hash Algorithms

<> Can be viewed as “one way” crypto

Peﬁe:&v@cﬁ!\él%?mu B.com ENCS4320 — Applied Cryptography U ploadggh%){Sh%mg— @@efgl



Outline of Course

Message Integrity /

Message Privacy Authentication

Symmetric Encryption Message Authentication

SYIIEG [Kete (private-key encryption) Codes (MAC) Part |

Asymmetric Encryption

Asymmetric Keys (public-key encryption)

Digital Signatures
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Outline of Course

Message Integrity /

Message Privacy Authentication

Symmetric Encryption Message Authentication

Symmetric Keys i ivate-key encryption) Codes (MAC)

Asymmetric Encryption

(public-key encryption) Digital Signatures Part Il

Asymmetric Keys

Peﬁel_tpgclr:e!\él%_tmu B.com ENCS4320 — Applied Cryptography U ploadgghr%){ShQ@Img— Eﬁ@efgs



Much More to Cryptography

fNIGH'I Password?
=

f
¢ Fully-homomorphic encryption
Enc(K,M; + M,) = Enc(K,M;) + Enc(K, M,)

*»» Zero-knowledge proofs

¢ Multi-party computation

s+ Blockchalin
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Exercise - OTP Key Limitation

The following question concerns multiple encryptions of single-character ASCII plaintexts with the
one-time pad using the same 8-bit key. You may assume that the plaintexts are either (upper-case or
lower-case) English letters or digit characters (0, 1, ..., 9). Say you see the three ciphertexts (EF)is,
(A4)16, and (D3)16. What can you deduce about the plaintext characters these correspond to?

Bit 4: 0000000eeEeeeeee 1111111111111111 |
Bits ©-3: ©123456789ABCDEF ©123456789ABCDEF | Block:
_________ o e e e e e e e e
Bits @08 | ...t i | Control characters
5-6: 01 | 1"#$%&'()*+,-./ ©123456789:;<=>? | Numbers and punctuation
10 | @ABCDEFGHIJKLMNO PQRSTUVWXYZ[\]"_ | Uppercase letters (mostly)
11 | "~ abcdefghijklmno pgrstuvwxyz{|}~. | Lowercase letters (mostly)
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Slides Original Source

+»» Jonathan Katz and Yehuda Lindell, “Introduction to Modern
Cryptography,” Third Edition, 2021

» M. Stamp, “Information Security: Principles and Practice,”
John Wiley

¢ B. Forouzan, “Cryptography and Network Security,” McGraw-
Hill
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