EXP#10 Internet Protocol Version 6 (IPv6) Configuration

Slides By: Eng.Tariq Odeh

Uploaded By: anonymous

Objectives

- Learn how to configure a Cisco IOS router using the IOS command-line interface (CLI).
- Learn how to use router simulator.
- Learn how to configure and verify IPv6 routing with Cisco routers.
- Static IPv6 routing.
- Dynamic routing RIPng.

IPv4

STUDENTS-HUB.com

•

Why Do We Need IPv6?

IPv4 is Out of Addresses

- IPv4 can't support the growing number of devices.
- IPv6 Offers Unlimited Space
 - Provides billions of times more addresses than IPv4.
- Better Performance
 - Making networks faster and simpler.
- Built-in Security
 - Includes encryption and authentication features.
- Future-Proof

STUDENTS-HUB.com

- Supports new technologies like IoT and 5G.

IPv6

- 128-bit Addressing Scheme:
 - Total: 3.4×10^{38} addresses.
- Example:
 - AA76:0000:0000:00012:A322:FE33:2267.
- Hexadecimal Format:
 - Groups of 4 hex digits separated by colons (:).

STUDENTS-HUB.com

0

IPv6 (Cont.) 2001:23ab:7612:0000:0000:11aa:ac61:fde2 subnet 64 bit 64 bit Interface ID Network prefix

Uploaded By: anonymous

IPv6 Address Simplification

- Leading Zeros Removal:
 - Before: AA76:0000:0000:00012:A322:FE33:2267
 - After: AA76:0:0:12:A322:FE33:2267
- Consecutive Zeros Compression (Use :: once per address):
 - Before: AA76:0000:0000:0012:A322:FE33:2267
 - After: AA76::12:A322:FE33:2267

IPv6 Address Simplification Example

• Which address simplifications are valid for AA76:0000:0000:0012:A322:0000:0000:2267

Address Simplifications	Valid?			
AA76::12:A322:0:0:2267	Valid			
AA76:0:0:12:A322::2267	Valid			
AA76::12:A322::2267	Invalid			

- ::

- ::1

Uploaded By: anon

IPv6 Address Types

- 1. Unicast (One to One): Delivered to a single interface.
 - Global Unicast:
 - Equivalent to IPv4 public addresses.
 - Range: 2000::/3 (Globally routable)
 - Link-Local:
 - Equivalent to IPv4 private addresses.
 - Range: FE80::/10 (Not routed, local use only).

Uploaded By: a

IPv6 Address Types

2. Multicast (One to Many)

- Packets delivered to all interfaces tuned to the multicast address.
- Supports one-to-many communication.
- Range: FF00::/8

Reserved Multicast Address	Description				
FF02::1	All nodes on a link (broadcast).				
FF02::2	All routers on a link				
FF02::9	All (RIP) routers on a link				

3. Anycast (One to Nearest)

- Identifies multiple interfaces on multiple devices.

STUDENTS-Pelipered to the closest device based on routing distance.

Uploaded By: and

Reserved IPv6 Addresses

Loopback Address

- ::1 (Equivalent to 127.0.0.1 in IPv4, used for testing locally)
- IPv4-Mapped IPv6 Address
 - ::192.X.100.1 (Used in IPv6/IPv4 mixed networks)
- Global Unicast Address Range
 - 2000::/3 (Globally routable public addresses)
- Link-Local Address Range
 - FE80::/10 (Used for local communication, not routable)

Uploaded By: ar

Configuring Cisco Routers with IPv6

- Assigning IPv6 Address to an Interface:
 - (An interface can have multiple IPv6 addresses assigned.)
 - Router(config)# interface <TYPE> <SLOT>/<PORT>
 - Router(config-if)# ipv6 address <IPV6-PREFIX>/<PREFIX-LENGTH>
- Enabling IPv6 Routing:
 - (Enables IPv6 forwarding, which is disabled by default.)
 - Router(config)# ipv6 unicast-routing
- Enabling Static Routing:
 - (Directs traffic to the next-hop address for specified destination.)
 - Router(config)# ipv6 route <IPV6-PREFIX>/<PREFIX-LENGTH> <IPV6-NEXT-HOP-ADDRESS>

Configuring Cisco Routers with IPv6 (Cont.)

- Enabling RIPng (Routing Information Protocol Next Generation):
 - (Starts a new RIPng process directly from interface config mode.)
 - Router(config)# interface <TYPE> <SLOT>/<PORT>
 - Router(config)# ipv6 rip <RIP-ID> enable
- Cisco Discovery Protocol (CDP):
 - CDP is a device-discovery protocol that operates on all Cisco devices.
 - It helps to discover directly connected Cisco devices and exchange information like OS version and IP address.

Uploaded By: ano

Procedure

STUDENTS-HUB.com

σ

b

-0

Step 1: Build the Topology

- Use Router-2811
- Add an extra interface physically to Router1

Uploaded By: anonymous

o

Step 2: Configuring IPv6 for the PCs

🐙 РСО						-		×
Physical	hysical Config Desktop Custom Interface							
IP Cor IP Cor O DHC IP Addr Subnet Default DNS Se	onfiguration P ress Mask Gateway erver	Stat	ic				X	
	Configurati P () Auto	on Config ()	Static			2		
1 IPv6 Ad	ldress	2001:	11AA::2				/ 64	
Link Lo	cal Addres	ss FE80:	FE80::260:2FFF:FEB1:BB22					or
3 IPv6 Ga	ateway	2001:	11AA::1					
IPv6 DN	NS Server							
8								

Step 3: Configuring IPv6 for the routers

- Router0(config)# interface Fa0/1
- Router0(config-if)# no shutdown
- Router0(config-if)# ipv6 address 2001:11AA::1/64
- Repeat steps for all interfaces on routers 0,1 and 2 with the correct IPv6.

Step 4: Configuring routing protocols

- Router0(config)# ipv6 unicast-routing
- Repeat step for all routers 1 and 2.

Step 5: Configuring Static routing

- Router0(config)# ipv6 route 2001:33AA::/64 2001:22AA::2
- Router0(config)# ipv6 route 2001:44AA::/64 2001:22AA::2
- Router0(config)# ipv6 route 2001:55AA::/64 2001:22AA::2
- Repeat step for all routers 1 and 2.

Uploaded By: anonymous

Step 6: Configuring RIPng routing protocol

- Router2(config)# interface Fa0/0
- Router2(config-if)# ipv6 rip 1 enable
- Repeat steps for router 2 Fa0/1 and for router 1 interfaces Fa0/1 and Fa1/0 only.

Uploaded By: anon

Monitoring and Maintaining CDP

- Router# sh cdp neighbors
- Router# sh cdp neighbors detail
- Disabling CDP on an Interface
 - Router(config-if)# no cdp enable
- Disabling CDP
 - Router(config)# no cdp run

Saving Configurations

• Don't forget to save the configurations on your router.

→ Router# write

0

Video explaining the experiment

--Soon--

o

References

• Manual for ENCS4130 Computer Networks Laboratory.

