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Introduction to First Edition

The opening session of the physics degree course at Imperial College includes an
introduction to vibrations and waves where the stress is laid on the underlying unity of
concepts which are studied separately and in more detail at later stages. The origin of this
short textbook lies in that lecture course which the author has given for a number of years.
Sections on Fourier transforms and non-linear oscillations have been added to extend the
range of interest and application.

At the beginning no more than school-leaving mathematics is assumed and more
advanced techniques are outlined as they arise. This involves explaining the use of
exponential series, the notation of complex numbers and partial differentiation and putting
trial solutions into differential equations. Only plane waves are considered and, with two
exceptions, Cartesian coordinates are used throughout. Vector methods are avoided except
for the scalar product and, on one occasion, the vector product.

Opinion canvassed amongst many undergraduates has argued for a ‘working’ as much as
for a ‘reading’ book; the result is a concise text amplified by many problems over a wide
range of content and sophistication. Hints for solution are freely given on the principle that
an undergraduates gains more from being guided to a result of physical significance than
from carrying out a limited arithmetical exercise.

The main theme of the book is that a medium through which energy is transmitted via
wave propagation behaves essentially as a continuum of coupled oscillators. A simple
oscillator is characterized by three parameters, two of which are capable of storing and
exchanging energy, whilst the third is energy dissipating. This is equally true of any medium.

The product of the energy storing parameters determines the velocity of wave
propagation through the medium and, in the absence of the third parameter, their ratio
governs the impedance which the medium presents to the waves. The energy dissipating
parameter introduces a loss term into the impedance; energy is absorbed from the wave
system and it attenuates.

This viewpoint allows a discussion of simple harmonic, damped, forced and coupled
oscillators which leads naturally to the behaviour of transverse waves on a string,
longitudinal waves in a gas and a solid, voltage and current waves on a transmission line
and electromagnetic waves in a dielectric and a conductor. All are amenable to this
common treatment, and it is the wide validity of relatively few physical principles which
this book seeks to demonstrate.

H. J. PAIN
May 1968

Xi
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Introduction to Second Edition

The main theme of the book remains unchanged but an extra chapter on Wave Mechanics
illustrates the application of classical principles to modern physics.

Any revision has been towards a simpler approach especially in the early chapters and
additional problems. Reference to a problem in the course of a chapter indicates its
relevance to the preceding text. Each chapter ends with a summary of its important results.

Constructive criticism of the first edition has come from many quarters, not least from
successive generations of physics and engineering students who have used the book; a
second edition which incorporates so much of this advice is the best acknowledgement of
its value.

H. J. PAIN
June 1976

xii
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Introduction to Third Edition

Since this book was first published the physics of optical systems has been a major area of
growth and this development is reflected in the present edition. Chapter 10 has been
rewritten to form the basis of an introductory course in optics and there are further

applications in Chapters 7 and 8.
The level of this book remains unchanged.

H. J. PAIN
January 1983
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Introduction to Fourth Edition

Interest in non-linear dynamics has grown in recent years through the application of chaos
theory to problems in engineering, economics, physiology, ecology, meteorology and
astronomy as well as in physics, biology and fluid dynamics. The chapter on non-linear
oscillations has been revised to include topics from several of these disciplines at a level
appropriate to this book. This has required an introduction to the concept of phase space
which combines with that of normal modes from earlier chapters to explain how energy is
distributed in statistical physics. The book ends with an appendix on this subject.

H. J. PAIN
September 1992

Xiv
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Introduction to Fifth Edition

In this edition, three of the longer chapters of earlier versions have been split in two:
Simple Harmonic Motion is now the first chapter and Damped Simple Harmonic Motion
the second. Chapter 10 on waves in optical systems now becomes Chapters 11 and 12,
Waves in Optical Systems, and Interference and Diffraction respectively through a
reordering of topics. A final chapter on non-linear waves, shocks and solitons now follows
that on non-linear oscillations and chaos.

New material includes matrix applications to coupled oscillations, optical systems and
multilayer dielectric films. There are now sections on e.m. waves in the ionosphere and
other plasmas, on the laser cavity and on optical wave guides. An extended treatment of
solitons includes their role in optical transmission lines, in collisionless shocks in space, in
non-periodic lattices and their connection with Schrodinger’s equation.

H. J. PAIN
March 1998

Acknowledgement

The author is most grateful to Professor L. D. Roelofs of the Physics Department,
Haverford College, Haverford, PA, USA. After using the last edition he provided an
informed, extended and valuable critique that has led to many improvements in the text and
questions of this book. Any faults remain the author’s responsibility.
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Introduction to Sixth Edition

This edition includes new material on electron waves in solids using the Kronig — Penney
model to show how their allowed energies are limited to Brillouin zones. The role of
phonons is also discussed. Convolutions are introduced and applied to optical problems via
the Array Theorem in Young’s experiment and the Optical Transfer Function. In the last
two chapters the sections on Chaos and Solutions have been reduced but their essential
contents remain.

I am grateful to my colleague Professor Robin Smith of Imperial College for his advice
on the Optical Transfer Function. I would like to thank my wife for typing the manuscript
of every edition except the first.

H. J. PAIN
January 2005, Oxford
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1

Simple Harmonic Motion

At first sight the eight physical systems in Figure 1.1 appear to have little in common.

1.1(a) is a simple pendulum, a mass m swinging at the end of a light rigid rod of length /.

1.1(b) is a flat disc supported by a rigid wire through its centre and oscillating through
small angles in the plane of its circumference.

1.1(c) 1is a mass fixed to a wall via a spring of stiffness s sliding to and fro in the x
direction on a frictionless plane.

1.1(d) 1is a mass m at the centre of a light string of length 2/ fixed at both ends under a
constant tension 7. The mass vibrates in the plane of the paper.

1.1(e) is a frictionless U-tube of constant cross-sectional area containing a length / of
liquid, density p, oscillating about its equilibrium position of equal levels in each
limb.

1.1(f) 1is an open flask of volume V and a neck of length / and constant cross-sectional
area A in which the air of density p vibrates as sound passes across the neck.

1.1(g) is a hydrometer, a body of mass m floating in a liquid of density p with a neck of
constant cross-sectional area cutting the liquid surface. When depressed slightly
from its equilibrium position it performs small vertical oscillations.

1.1(h) is an electrical circuit, an inductance L connected across a capacitance C carrying
a charge q.

All of these systems are simple harmonic oscillators which, when slightly disturbed from

their equilibrium or rest postion, will oscillate with simple harmonic motion. This is the

most fundamental vibration of a single particle or one-dimensional system. A small
displacement x from its equilibrium position sets up a restoring force which is proportional
to x acting in a direction towards the equilibrium position.

Thus, this restoring force F may be written

F = —sx

where s, the constant of proportionality, is called the stiffness and the negative sign shows
that the force is acting against the direction of increasing displacement and back towards

The Physics of Vibrations and Waves, 6th Edition H. J. Pain
© 2005 John Wiley & Sons, Ltd., ISBN: 0-470-01295-1(hardback); 0-470-01296-X(paperback)
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2 Simple Harmonic Motion
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(9) (h)
A
N——1
I Al
X
v
o~ ~ q
P -
-~ p L c
m

mx + Apgx =0 LG+

0
®? = A pg/m 2 = 1
\/ Lc

Figure 1.1 Simple harmonic oscillators with their equations of motion and angular frequencies w of
oscillation. (a) A simple pendulum. (b) A torsional pendulum. (c) A mass on a frictionless plane
connected by a spring to a wall. (d) A mass at the centre of a string under constant tension T. (e) A
fixed length of non-viscous liquid in a U-tube of constant cross-section. (f) An acoustic Helmholtz
resonator. (g) A hydrometer mass m in a liquid of density p. (h) An electrical L C resonant circuit

4
c

the equilibrium position. A constant value of the stiffness restricts the displacement x to
small values (this is Hooke’s Law of Elasticity). The stiffness s is obviously the restoring
force per unit distance (or displacement) and has the dimensions

force  MLT 2
distance =~ L

The equation of motion of such a disturbed system is given by the dynamic balance
between the forces acting on the system, which by Newton’s Law is

mass times acceleration = restoring force

or
mx = —sx
where the acceleration
_ d2x
ST

This gives

mx—+sx=0
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4 Simple Harmonic Motion
or
.. N
xX+—x=0
m
where the dimensions of

s MLT 2

:T72:]/2

Here T is a time, or period of oscillation, the reciprocal of v which is the frequency with
which the system oscillates.

However, when we solve the equation of motion we shall find that the behaviour of x
with time has a sinusoidal or cosinusoidal dependence, and it will prove more appropriate
to consider, not v, but the angular frequency w = 27v so that the period

1
T=-=2m/"
v s

where s/m is now written as w?. Thus the equation of simple harmonic motion
. N
X+—x=0
m
becomes
(L.1)

(Problem 1.1)

Displacement in Simple Harmonic Motion

The behaviour of a simple harmonic oscillator is expressed in terms of its displacement x
from equilibrium, its velocity x, and its acceleration X at any given time. If we try the solution

x =Acoswt

where A is a constant with the same dimensions as x, we shall find that it satisfies the
equation of motion

F+wix=0
for
X = —Awsinwt
and

¥ = —Aw’ coswt = —w’x
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Displacement in Simple Harmonic Motion 5
Another solution
x = Bsinwt
is equally valid, where B has the same dimensions as A, for then
X = Bwcos wt
and

¥ = —Bw?sinwt = —w’x

The complete or general solution of equation (1.1) is given by the addition or
superposition of both values for x so we have

x =Acoswt + Bsinwt (1.2)
with

% = —w?(Acoswt + Bsinwt) = —w?x

where A and B are determined by the values of x and x at a specified time. If we rewrite the
constants as

A=asing and B =acos¢
where ¢ is a constant angle, then
A% + B? = a?(sin’¢ + cos?¢) = a?

so that

a=+\VA?2+B?
and

X = asin ¢ cos wt + a cos ¢ sin wt
= asin (wt + @)

The maximum value of sin (wt + ¢) is unity so the constant a is the maximum value of x,
known as the amplitude of displacement. The limiting values of sin (wf 4 ¢) are 1 so the
system will oscillate between the values of x = 4+-a and we shall see that the magnitude of a
is determined by the total energy of the oscillator.

The angle ¢ is called the ‘phase constant’ for the following reason. Simple harmonic
motion is often introduced by reference to ‘circular motion’ because each possible value of
the displacement x can be represented by the projection of a radius vector of constant
length a on the diameter of the circle traced by the tip of the vector as it rotates in a positive
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6 Simple Harmonic Motion

Xx=a Sin(ot +¢)

/

ot

Figure 1.2 Sinusoidal displacement of simple harmonic oscillator with time, showing variation of
starting point in cycle in terms of phase angle ¢

anticlockwise direction with a constant angular velocity w. Each rotation, as the radius
vector sweeps through a phase angle of 27 rad, therefore corresponds to a complete
vibration of the oscillator. In the solution

x = asin (wt + ¢)

the phase constant ¢, measured in radians, defines the position in the cycle of oscillation at
the time ¢ = 0, so that the position in the cycle from which the oscillator started to move is

X =asing
The solution
X = asinwt

defines the displacement only of that system which starts from the origin x = 0 at time
t = 0 but the inclusion of ¢ in the solution

x = asin (wt + @)

where ¢ may take all values between zero and 27 allows the motion to be defined from any
starting point in the cycle. This is illustrated in Figure 1.2 for various values of ¢.

(Problems 1.2, 1.3, 1.4, 1.5)

Velocity and Acceleration in Simple Harmonic Motion
The values of the velocity and acceleration in simple harmonic motion for

x = asin (wt + @)
are given by

d
d—j:x:awcos(wt—l—qﬁ)
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Velocity and Acceleration in Simple Harmonic Motion 7

and

d2
?;C =i = —aw?sin (wt + ¢)

The maximum value of the velocity aw is called the velocity amplitude and the
acceleration amplitude is given by aw?.

From Figure 1.2 we see that a positive phase angle of 7/2 rad converts a sine into a
cosine curve. Thus the velocity

X = awcos (Wt + @)
leads the displacement
x = asin(wt + ¢)

by a phase angle of 7/2 rad and its maxima and minima are always a quarter of a cycle
ahead of those of the displacement; the velocity is a maximum when the displacement is
zero and is zero at maximum displacement. The acceleration is ‘anti-phase’ (7 rad) with
respect to the displacement, being maximum positive when the displacement is maximum
negative and vice versa. These features are shown in Figure 1.3.

Often, the relative displacement or motion between two oscillators having the same
frequency and amplitude may be considered in terms of their phase difference ¢; — ¢»
which can have any value because one system may have started several cycles before the
other and each complete cycle of vibration represents a change in the phase angle of
¢ = 2m. When the motions of the two systems are diametrically opposed; that is, one has

< 4
‘g a X = asin(ot +¢)
E
8
< —> ot
2 \/
fa}
X an \ X = amn cos(ot + ¢)
£ 94
< —> ot
2
[ —
:>< T
amn? .. .
s, X = —ao? sin(wt +¢)
o
2 — ot
3
<

Figure 1.3 \Variation with time of displacement, velocity and acceleration in simple harmonic
motion. Displacement lags velocity by 7/2 rad and is 7 rad out of phase with the acceleration. The
initial phase constant ¢ is taken as zero
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8 Simple Harmonic Motion

x = +a whilst the other is at x = —a, the systems are ‘anti-phase’ and the total phase
difference

¢1 — ¢2 = nrrad
where 7 is an odd integer. Identical systems ‘in phase’ have
¢1 — ¢2 = 2nnrad

where n is any integer. They have exactly equal values of displacement, velocity and
acceleration at any instant.

(Problems 1.6, 1.7, 1.8, 1.9)

Non-linearity

If the stiffness s is constant, then the restoring force F = —sx, when plotted versus x, will
produce a straight line and the system is said to be linear. The displacement of a linear
simple harmonic motion system follows a sine or cosine behaviour. Non-linearity results
when the stiffness s is not constant but varies with displacement x (see the beginning of
Chapter 14).

Energy of a Simple Harmonic Oscillator

The fact that the velocity is zero at maximum displacement in simple harmonic motion and
is a maximum at zero displacement illustrates the important concept of an exchange
between kinetic and potential energy. In an ideal case the total energy remains constant but
this is never realized in practice. If no energy is dissipated then all the potential energy
becomes kinetic energy and vice versa, so that the values of (a) the total energy at any time,
(b) the maximum potential energy and (c) the maximum kinetic energy will all be equal;
that is

E o = KE +PE = KEmax = PEmax

The solution x = a sin (wt + ¢) implies that the total energy remains constant because the
amplitude of displacement x = +a is regained every half cycle at the position of maximum
potential energy; when energy is lost the amplitude gradually decays as we shall see later in
Chapter 2. The potential energy is found by summing all the small elements of work sx. dx
(force sx times distance dx) done by the system against the restoring force over the range
zero to x where x = 0 gives zero potential energy.

Thus the potential energy =

X
J sx-d)c:%sx2
0

The kinetic energy is given by 3mx? so that the total energy

‘E = %m)'cz —l—%sxz
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Energy of a Simple Harmonic Oscillator 9

Since E is constant we have

dE

E:(mjé—l—sx)jc:o

giving again the equation of motion
mx+sx =0
The maximum potential energy occurs at x = £a and is therefore
PE hax = %sa
The maximum kinetic energy is

KE max = (3152) gy = 3ma?w?[c0s (Wl + 6)] o
1,22
= Ema w
when the cosine factor is unity.
But mw? = s so the maximum values of the potential and kinetic energies are equal,
showing that the energy exchange is complete.
The total energy at any instant of time or value of x is
12 12
E=3smx*+3sx
= Lma’w?[cos?(wt + ¢) + sin*(wt + ¢)]
1,22
=sma‘w
_ 1,2
= Esa
as we should expect.
Figure 1.4 shows the distribution of energy versus displacement for simple harmonic
motion. Note that the potential energy curve

PE =1 sx? = 1 ma?w? sin?(wt + ¢)

is parabolic with respect to x and is symmetric about x = 0, so that energy is stored in the
oscillator both when x is positive and when it is negative, e.g. a spring stores energy
whether compressed or extended, as does a gas in compression or rarefaction. The kinetic
energy curve
KE = imx* = fma*w? cos*(wt + )

is parabolic with respect to both x and x. The inversion of one curve with respect to the
other displays the 7/2 phase difference between the displacement (related to the potential
energy) and the velocity (related to the kinetic energy).

For any value of the displacement x the sum of the ordinates of both curves equals the
total constant energy E.
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10 Simple Harmonic Motion

Total energy E = KE + PE

E
PE =L sx2
=
E ) ___ E
2 "7 ] | 2
I
. :
I |
KE=Lm |! ;
f I |
— 2 I
—E—Esx : E
1 1 X—
—a _a a +a
2 2

Displacement

Figure 1.4 Parabolic representation of potential energy and kinetic energy of simple harmonic
motion versus displacement. Inversion of one curve with respect to the other shows a 90° phase
difference. At any displacement value the sum of the ordinates of the curves equals the total
constant energy £

(Problems 1.10, 1.11, 1.12)

Simple Harmonic Oscillations in an Electrical System

So far we have discussed the simple harmonic motion of the mechanical and fluid systems
of Figure 1.1, chiefly in terms of the inertial mass stretching the weightless spring of
stiffness s. The stiffness s of a spring defines the difficulty of stretching; the reciprocal of
the stiffness, the compliance C (where s = 1/C) defines the ease with which the spring is
stretched and potential energy stored. This notation of compliance C is useful when
discussing the simple harmonic oscillations of the electrical circuit of Figure 1.1(h) and
Figure 1.5, where an inductance L is connected across the plates of a capacitance C. The
force equation of the mechanical and fluid examples now becomes the voltage equation

YRS

ﬂ:
c

Lg+ 0

Figure 1.5 Electrical system which oscillates simple harmonically. The sum of the voltages around
the circuit is given by Kirchhoff's law as LdI/dt +q/C =0
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Simple Harmonic Oscillations in an Electrical System 11

(balance of voltages) of the electrical circuit, but the form and solution of the equations and
the oscillatory behaviour of the systems are identical.

In the absence of resistance the energy of the electrical system remains constant and is
exchanged between the magnetic field energy stored in the inductance and the electric field
energy stored between the plates of the capacitance. At any instant, the voltage across the
inductance is

Vv LdI_ Ldzq
o Tdr T dr?

where [ is the current flowing and g is the charge on the capacitor, the negative sign
showing that the voltage opposes the increase of current. This equals the voltage q/C
across the capacitance so that

Li+q/C=0 (Kirchhoff’s Law)
or
q+ wlg=0
where
1
2 _ -
Y TLc

The energy stored in the magnetic field or inductive part of the circuit throughout the
cycle, as the current increases from O to /, is formed by integrating the power at any instant
with respect to time; that is

EL:JVI-dt

(where V is the magnitude of the voltage across the inductance).
So

d/ 4
E.=|VIdt=|L—Idt=| LIdI
dr 0

1 2 _ 17,2

The potential energy stored mechanically by the spring is now stored electrostatically by
the capacitance and equals
2
levi =L
2 2C
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12 Simple Harmonic Motion

Comparison between the equations for the mechanical and electrical oscillators
mechanical (force) — mx +sx =0

electrical (voltage) — Lg + 1_9

C
mechanical (energy) — ymx* 4+ fsx* = E
electrical (energy) lL' 24 La’ E
1 i _—=
R W

shows that magnetic field inertia (defined by the inductance L) controls the rate of change
of current for a given voltage in a circuit in exactly the same way as the inertial mass
controls the change of velocity for a given force. Magnetic inertial or inductive behaviour
arises from the tendency of the magnetic flux threading a circuit to remain constant and
reaction to any change in its value generates a voltage and hence a current which flows to
oppose the change of flux. This is the physical basis of Fleming’s right-hand rule.

Superposition of Two Simple Harmonic Vibrations in One
Dimension

(1) Vibrations Having Equal Frequencies

In the following chapters we shall meet physical situations which involve the superposition
of two or more simple harmonic vibrations on the same system.

We have already seen how the displacement in simple harmonic motion may be
represented in magnitude and phase by a constant length vector rotating in the positive
(anticlockwise) sense with a constant angular velocity w. To find the resulting motion of a
system which moves in the x direction under the simultaneous effect of two simple
harmonic oscillations of equal angular frequencies but of different amplitudes and phases,
we can represent each simple harmonic motion by its appropriate vector and carry out a
vector addition.

If the displacement of the first motion is given by

X1 =ajcos (wt—l— (,251)
and that of the second by
X2 = d, COS (wt + ¢2)
then Figure 1.6 shows that the resulting displacement amplitude R is given by

R? = (a; +aycos6)* + (aysin6)>

=ai + a3+ 2aja,cosé

where 6 = ¢, — ¢ is constant.
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Superposition of Two Simple Harmonic Vibrations in One Dimension 13

\ a,sind
\
R a \
y a \
2 b, —04,=0
1
9,X 6 r \-azcosa
X

Figure 1.6 Addition of vectors, each representing simple harmonic motion along the x axis at

angular frequency w to give a resulting simple harmonic motion displacement x = R cos (wt + 6) ---
here shown for t =0

The phase constant 6 of R is given by

aising; + a; sing,
ajcos¢) +apcospy

tanf =

so the resulting simple harmonic motion has a displacement
x = Rcos (wt + 0)
an oscillation of the same frequency w but having an amplitude R and a phase constant 6.

(Problem 1.13)

(2) Vibrations Having Different Frequencies

Suppose we now consider what happens when two vibrations of equal amplitudes but
different frequencies are superposed. If we express them as

x| =asinwt
and
Xy = asinw,t

where

Wy > Wi
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14 Simple Harmonic Motion

then the resulting displacement is given by

X =x1 +x2 =a(sinwt + sinwyt)

= 2asin

(w1 +W2)l‘ (LUQ —wl)t
3 COS >

This expression is illustrated in Figure 1.7. It represents a sinusoidal oscillation at the
average frequency (w; + w,)/2 having a displacement amplitude of 2a which modulates;
that 1s, varies between 2a and zero under the influence of the cosine term of a much slower
frequency equal to half the difference (w, — w;)/2 between the original frequencies.

When w; and w; are almost equal the sine term has a frequency very close to both w
and w, whilst the cosine envelope modulates the amplitude 2a at a frequency (W, — w1)/2
which is very slow.

Acoustically this growth and decay of the amplitude is registered as ‘beats’ of strong
reinforcement when two sounds of almost equal frequency are heard. The frequency of the
‘beats’ is (wp —w;), the difference between the separate frequencies (not half the
difference) because the maximum amplitude of 2a occurs twice in every period associated
with the frequency (w, —wi)/2. We shall meet this situation again when we consider
the coupling of two oscillators in Chapter 4 and the wave group of two components in
Chapter 5.

Figure 1.7 Superposition of two simple harmonic displacements x; = asinwqt and x, = asinw,t
when w;, > wq. The slow cos [(w, —w1)/2]t envelope modulates the sin [(w, + w1)/2]t curve
between the values x = +-2a
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Superposition of Two Perpendicular Simple Harmonic Vibrations 15

Superposition of Two Perpendicular Simple Harmonic
Vibrations
(1) Vibrations Having Equal Frequencies

Suppose that a particle moves under the simultaneous influence of two simple harmonic
vibrations of equal frequency, one along the x axis, the other along the perpendicular y axis.
What is its subsequent motion?
This displacements may be written
x =ajsin (wt + ¢1)
y = asin (wt + ¢2)
and the path followed by the particle is formed by eliminating the time # from these

equations to leave an expression involving only x and y and the constants ¢; and ¢,.
Expanding the arguments of the sines we have

X . .
— = sinwtcos ¢| + coswtsin ¢
aj

and

y . .
—— = sinwf coS ¢ + cos wt Sin ¢,
ar

If we carry out the process
X y 2 y X 2
<— sin g, — — sind)l) —|—<— cos¢p; —— cosqu)
aq ajn an aq
this will yield

ot 2xy2 cos (¢2 — ¢1) = sin* (2 — ¢1) (1.3)

which is the general equation for an ellipse.
In the most general case the axes of the ellipse are inclined to the x and y axes, but these
become the principal axes when the phase difference

¢2—¢1=g

Equation (1.3) then takes the familiar form

Q|><

—
Q|‘<

[SISIESY

+

that is, an ellipse with semi-axes a; and a,.
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16 Simple Harmonic Motion

If a; = a, = a this becomes the circle

24y =a?

When
¢2 — ¢ = 0,27, 47w, etc.

the equation simplifies to

which is a straight line through the origin of slope a,/a;.
Again for ¢, — ¢ = m, 37, 57, etc., we obtain
az
y=-—x
ai
a straight line through the origin of equal but opposite slope.
The paths traced out by the particle for various values of § = ¢, — ¢ are shown in
Figure 1.8 and are most easily demonstrated on a cathode ray oscilloscope.
When

¢ — ¢ =0, m, 27, etc.

and the ellipse degenerates into a straight line, the resulting vibration lies wholly in one
plane and the oscillations are said to be plane polarized.

a

_ 3T _
6—4 d="m

S

+

— 3 7 9
T T T

% S = T S—T S =27 S = T

M

1

>

x=asin (ot +¢) o, — ¢, =9

Figure 1.8  Paths traced by a system vibrating simultaneously in two perpendicular directions with
simple harmonic motions of equal frequency. The phase angle 6 is the angle by which the y motion
leads the x motion
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Convention defines the plane of polarization as that plane perpendicular to the plane
containing the vibrations. Similarly the other values of

P2 — P

yield circular or elliptic polarization where the tip of the vector resultant traces out the
appropriate conic section.

(Problems 1.14, 1.15, 1.16)

*Polarization

Polarization is a fundamental topic in optics and arises from the superposition of two
perpendicular simple harmonic optical vibrations. We shall see in Chapter 8 that when a
light wave is plane polarized its electrical field oscillation lies within a single plane and
traces a sinusoidal curve along the direction of wave motion. Substances such as quartz and
calcite are capable of splitting light into two waves whose planes of polarization are
perpendicular to each other. Except in a specified direction, known as the optic axis, these
waves have different velocities. One wave, the ordinary or O wave, travels at the same
velocity in all directions and its electric field vibrations are always perpendicular to the
optic axis. The extraordinary or E wave has a velocity which is direction-dependent. Both
ordinary and extraordinary light have their own refractive indices, and thus quartz and
calcite are known as doubly refracting materials. When the ordinary light is faster, as in
quartz, a crystal of the substance is defined as positive, but in calcite the extraordinary light
is faster and its crystal is negative. The surfaces, spheres and ellipsoids, which are the loci
of the values of the wave velocities in any direction are shown in Figure 1.9(a), and for a

Optic axis Optic axis

O vibration E ellipsoid

E vibration
O sphere

Y. E ellipsoid

Calcite (—ve) Quartz (+ve)

Figure 1.9a  Ordinary (spherical) and extraordinary (elliposoidal) wave surfaces in doubly refracting
calcite and quartz. In calcite the £ wave is faster than the 0 wave, except along the optic axis. In
quartz the 0 wave is faster. The 0 vibrations are always perpendicular to the optic axis, and the 0 and
E vibrations are always tangential to their wave surfaces

*This section may be omitted at a first reading.

STUDENTS-HUB.com Uploaded By: Jibreel Bornat


https://students-hub.com

18 Simple Harmonic Motion

light normally

l Plane polarized
incident

X - O vibration
Calcite A A L to plane of paper
crystal —— .,
E vibration Optic
axis

Figure 1.9b Plane polarized light normally incident on a calcite crystal face cut parallel to its optic
axis. The advance of the £ wave over the 0 wave is equivalent to a gain in phase

given direction the electric field vibrations of the separate waves are tangential to the
surface of the sphere or ellipsoid as shown. Figure 1.9(b) shows plane polarized light
normally incident on a calcite crystal cut parallel to its optic axis. Within the crystal the
faster E wave has vibrations parallel to the optic axis, while the O wave vibrations are
perpendicular to the plane of the paper. The velocity difference results in a phase gain of
the E vibration over the O vibration which increases with the thickness of the crystal.
Figure 1.9(c) shows plane polarized light normally incident on the crystal of Figure 1.9(b)
with its vibration at an angle of 45° of the optic axis. The crystal splits the vibration into

Calcite
crystal

Optic axis

Sinusoidal
vibration of
electric field

E vibration 90°

ahead in phase

of O vibration Phase difference
causes rotation of
resulting electric
field vector

Figure 1.9c The crystal of Fig. 1.9c is thick enough to produce a phase gain of 7/2 rad in the
E wave over the 0 wave. Wave recombination on leaving the crystal produces circularly polarized

light
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Polarization 19

equal E and O components, and for a given thickness the E wave emerges with a phase gain
of 90° over the O component. Recombination of the two vibrations produces circularly
polarized light, of which the electric field vector now traces a helix in the anticlockwise
direction as shown.

(2) Vibrations Having Different Frequencies (Lissajous Figures)

When the frequencies of the two perpendicular simple harmonic vibrations are not equal
the resulting motion becomes more complicated. The patterns which are traced are called
Lissajous figures and examples of these are shown in Figure 1.10 where the axial
frequencies bear the simple ratios shown and

0= ¢r— ¢ =0 (on the left)

= g (on the right)

If the amplitudes of the vibrations are respectively a and b the resulting Lissajous figure
will always be contained within the rectangle of sides 2a and 2b. The sides of the rectangle
will be tangential to the curve at a number of points and the ratio of the numbers of these
tangential points along the x axis to those along the y axis is the inverse of the ratio of the
corresponding frequencies (as indicated in Figure 1.10).

1
w

8|X8
8|X8

<
1
N
>
<
>

<« P —>

218
0
N
\ y
—
RS |\<8
i
w
—

2b 2b

l l

Figure 1.10 Simple Lissajous figures produced by perpendicular simple harmonic motions of
different angular frequencies
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Superposition of a Large Number n of Simple Harmonic Vibrations
of Equal Amplitude a and Equal Successive Phase Difference o

Figure 1.11 shows the addition of n vectors of equal length a, each representing a simple
harmonic vibration with a constant phase difference ¢ from its neighbour. Two general
physical situations are characterized by such a superposition. The first is met in Chapter 5
as a wave group problem where the phase difference 6 arises from a small frequency
difference, 6w, between consecutive components. The second appears in Chapter 12 where
the intensity of optical interference and diffraction patterns are considered. There, the
superposed harmonic vibrations will have the same frequency but each component will have
a constant phase difference from its neighbour because of the extra distance it has travelled.
The figure displays the mathematical expression

R cos (wf + a) = acoswt + acos (wt + 6) + acos (wr + 20)
+ -+ +acos (wt + [n— 1]6)

5.
a B

Figure 1.11 Vector superposition of a large number n of simple harmonic vibrations of equal
amplitude a and equal successive phase difference 6. The amplitude of the resultant

. nd sinné/2
R=2rsin —=ag————
2 siné/2

and its phase with respect to the first contribution is given by

a=(n-1)5/2

STUDENTS-HUB.com Uploaded By: Jibreel Bornat


https://students-hub.com

Superposition of a Large Number n of Simple Harmonic Vibrations 21

where R is the magnitude of the resultant and « is its phase difference with respect to the
first component a cos wt.
Geometrically we see that each length

= 2 1 —
a rsin 5
where r is the radius of the circle enclosing the (incomplete) polygon.
From the isosceles triangle OAC the magnitude of the resultant
né  sinné/2

R = 2rsin = =
Ty T ine)2

and its phase angle is seen to be
o = OAB — OAC

In the isosceles triangle OAC

OAC = 90° — %
2

and in the isosceles triangle OAB
OAB = 90° — g

SO

o= (90°—§> - <90°—"2‘5> :(n_1)g

that is, half the phase difference between the first and the last contributions. Hence the
resultant

sinnd/2
sin/2

Rcos (wt+a)=a

cos [wt+ (n— l)ﬂ

We shall obtain the same result later in this chapter as an example on the use of exponential
notation.
For the moment let us examine the behaviour of the magnitude of the resultant

sinnd/2
a—;
sin6/2

which is not constant but depends on the value of 4. When n is very large ¢ is very small
and the polygon becomes an arc of the circle centre O, of length na = A, with R as the
chord. Then

6 nd

04:(n—1)§z7
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Asi
R=2C5 o) D
//'\ < o
\/ \;/
(e)
(d)
A A= % circumference

Figure 1.12 (a) Graph of A sin «/«a versus «, showing the magnitude of the resultants for (b)
a=0; (c) a=7n/2; (d) a =mand () a =3n/2

and
.60 6 «
sin— — — ~ —
2 2 n
Hence, in this limit,
sinnd/2 sina siha  Asina
=a— =a =na =
sin6/2 a/n « !

The behaviour of A sin«/« versus « is shown in Figure 1.12. The pattern is symmetric
about the value @ = 0 and is zero whenever sin o = 0 except at &« — 0 that is, when sin
a/a — 1. When a = 0, 6 = 0 and the resultant of the n vectors is the straight line of length
A, Figure 1.12(b). As 6 increases A becomes the arc of a circle until at & = 7/2 the first and
last contributions are out of phase (2c = m) and the arc A has become a semicircle of
which the diameter is the resultant R Figure 1.12(c). A further increase in ¢ increases o and
curls the constant length A into the circumference of a circle (o« = ) with a zero resultant,
Figure 1.12(d). At o =3w/2, Figure 1.12(¢) the length A is now 3/2 times the
circumference of a circle whose diameter is the amplitude of the first minimum.

*Superposition of n Equal SHM Vectors of Length a with
Random Phase

When the phase difference between the successive vectors of the last section may take
random values ¢ between zero and 27 (measured from the x axis) the vector superposition
and resultant R may be represented by Figure 1.13.

*This section may be omitted at a first reading.
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y

> X

Figure 1.13 The resultant R = \/na of n vectors, each of length a, having random phase. This result
is important in optical incoherence and in energy loss from waves from random dissipation processes

The components of R on the x and y axes are given by

R, =acos¢|+acosp, +acoseps...acos o,

n
=a Z cos ¢;
=1

and
n
R, = az sin ¢;
i=1
where
R* =R} +R;
Now

n 2 n n n
RJZC = a2<z cosgb,-) =a? Z cos? ¢; + Z cosqﬁiz COS @;
i=1 i=1 i=1 j=1

i

In the typical term 2 cos ¢; cos ¢; of the double summation, cos ¢; and cos ¢; have random
values between =4 1 and the averaged sum of sets of these products is effectively zero.
The summation

n
Z cos?p; =ncos2 ¢
i=1
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24 Simple Harmonic Motion

that is, the number of terms n times the average value cos? ¢ which is the integrated value
of cos? ¢ over the interval zero to 27 divided by the total interval 27, or

27 1

B | -
cos2¢—2J cosz¢d¢:§:sin2¢
™

0

So
a ———  na?
R?=4d? g cos? ¢; = na’cos? ¢p; = —
. 2
i=1
and
n - naz
Ri =a’ g sin? o= na’sin? ;i =—
: 2
i=1
giving
R? :Rf—l—Ri = na*
or

Thus, the amplitude R of a system subjected to n equal simple harmonic motions of
amplitude a with random phases in only y/na whereas, if the motions were all in phase R
would equal na.

Such a result illustrates a very important principle of random behaviour.

(Problem 1.17)

Applications

Incoherent Sources in Optics The result above is directly applicable to the problem of
coherence in optics. Light sources which are in phase are said to be coherent and this
condition is essential for producing optical interference effects experimentally. If the
amplitude of a light source is given by the quantity a its intensity is proportional to a2, n
coherent sources have a resulting amplitude na and a total intensity n2a®. Incoherent
sources have random phases, n such sources each of amplitude @ have a resulting amplitude

V/na and a total intensity of na?.
Random Processes and Energy Absorption From our present point of view the

importance of random behaviour is the contribution it makes to energy loss or absorption
from waves moving through a medium. We shall meet this in all the waves we discuss.
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Random processes, for example collisions between particles, in Brownian motion, are of
great significance in physics. Diffusion, viscosity or frictional resistance and thermal
conductivity are all the result of random collision processes. These energy dissipating
phenomena represent the transport of mass, momentum and energy, and change only in the
direction of increasing disorder. They are known as ‘thermodynamically irreversible’
processes and are associated with the increase of entropy. Heat, for example, can flow only
from a body at a higher temperature to one at a lower temperature. Using the earlier
analysis where the length a is no longer a simple harmonic amplitude but is now the
average distance a particle travels between random collisions (its mean free path), we see
that after n such collisions (with, on average, equal time intervals between collisions) the
particle will, on average, have travelled only a distance /na from its position at time 7 = 0,
so that the distance travelled varies only with the square root of the time elapsed instead of
being directly proportional to it. This is a feature of all random processes.

Not all the particles of the system will have travelled a distance \/na but this distance is
the most probable and represents a statistical average.

Random behaviour is described by the diffusion equation (see the last section of
Chapter 7) and a constant coefficient called the diffusivity of the process will always
arise. The dimensions of a diffusivity are always length?/time and must be interpreted in
terms of a characteristic distance of the process which varies only with the square root of
time.

Some Useful Mathematics
The Exponential Series

By a ‘natural process’ of growth or decay we mean a process in which a quantity changes
by a constant fraction of itself in a given interval of space or time. A 5% per annum
compound interest represents a natural growth law; attenuation processes in physics usually
describe natural decay.

The law is expressed differentially as

d—N: +adx or d—N: +adt
N N

where N is the changing quantity, « is a constant and the positive and negative signs
represent growth and decay respectively. The derivatives dN/dx or dN/dt¢ are therefore
proportional to the value of N at which the derivative is measured.
Integration yields N = Noe™ or N = Noe** where Ny is the value at x or = 0 and e
is the exponential or the base of natural logarithms. The exponential series is defined as
. 2 X3 X"
e :1+x+§+§+---+ﬁ+~--

and is shown graphically for positive and negative x in Figure 1.14. It is important to note
that whatever the form of the index of the logarithmic base e, it is the power to which the
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26 Simple Harmonic Motion

y=e* y y=e"

Figure 1.14 The behaviour of the exponential seriesy =e* andy =e™*

base is raised, and is therefore always non-dimensional. Thus ¢“* is non-dimensional and «
must have the dimensions of x~!. Writing

()”  (ax)®

ax —_— —_— DEEE
e =1+oax+ T + 3 +
it follows immediately that
d .. 202 3a? ,
a(e )—a+7x+?x +---
B (ax)2 (ax)3
=a|l+ax+ 1 + 3 + e
— ae(xx
Similarly
d2
@(eax) _ Ck2€ax

In Chapter 2 we shall use d(e®)/dt = ae® and d? (e™)/dt> = a?e on a number of
occasions.

By taking logarithms it is easily shown that e*e’ =e*™ since log. (e*e”) =
log.e* +logee” = x +y.

The Notation i = +/—1

The combination of the exponential series with the complex number notation i = v/—1 is
particularly convenient in physics. Here we shall show the mathematical convenience in
expressing sine or cosine (oscillatory) behaviour in the form e” = cosx + i sin x.
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In Chapter 3 we shall see the additional merit of i in its role of vector operator.
The series representation of sin x is written

)C3 5 7

o X X
SNy =x S g
and that of cos x is
)CZ x4 x6
cosx=1-ort3 "6 "

Since

i=v-1,i’=—-1,i*=—i

etc. we have

ei"zl—i—ix-i-(ix) L +(ix)

2! 3! 4!
4 x2 ixd x4
= +M—E—¥+E+---
P — w3
21—5+E+1<x—§+§+“'>

= cosx +isinx
We also see that
d

a(e”) —ie” =icosx — sinx

Often we shall represent a sine or cosine oscillation by the form e'* and recover the original
form by taking that part of the solution preceded by i in the case of the sine, and the real
part of the solution in the case of the cosine.

Examples

(1) In simple harmonic motion (¥ + w?x = 0) let us try the solution x = ae'“’ e!?, where a
is a constant length, and ¢ (and therefore e'?) is a constant.

dx .. e

— =x=iwae e’ = iwx

dr
dzx . . . .
——=i= i‘wlae“ el = —wix
dr

Therefore
X = qgel“ it — ael(wt+¢)

= acos (wt + ¢) +iasin (Wt + ¢)

is a complete solution of ¥ 4+ w?x = 0.
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28 Simple Harmonic Motion

On p. 6 we used the sine form of the solution; the cosine form is equally valid and merely
involves an advance of 7/2 in the phase ¢.

)
X x 'x2 'x4
e’ +e "= <1—E+I—~~~>=2cosx
ix —ix . X L
et —e :21(x—§+§—~--):21smx

(3) On p. 21 we used a geometrical method to show that the resultant of the superposed
harmonic vibrations

acoswt + acos (wt + 6) + acos (wt + 26) + - - - + acos (wt + [n — 1]6)
sinnd/2 n—1
=a Sin6/2 cos {wt+ (—2 >6}

We can derive the same result using the complex exponential notation and taking the real
part of the series expressed as the geometrical progression

aeiwt + aei(wt-‘rﬁ) + aei(wt+2(5) 4t aei[wt+(n—1)(5]
=ae(1+z+22+- - +z")

where 7 = e,

Writing
S =1+z+z2"+-+7""
and
S@)=z+22+-+7"
we have
1—z" 1— einé
S(z) = = .
e S
So
. 1= iné
aelw[S(Z) — aelwl ] _eelé

einé/Z(efinéﬂ _ einé/2)
eib/2(e—18/2 _ ¢ib)2)

ifwr+ (152)g) SN 128/2
siné/2

=a elw[

=ac
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with the real part

B - n—1 5 sinnd/2
T acos @ 2 sin6/2

which recovers the original cosine term from the complex exponential notation.
(Problem 1.18)
(4) Suppose we represent a harmonic oscillation by the complex exponential form
z=ae
where a is the amplitude. Replacing i by —1i defines the complex conjugate
F=ae
The use of this conjugate is discussed more fully in Chapter 3 but here we can note that the

product of a complex quantity and its conjugate is always equal to the square of the
amplitude for

2z _aQe‘iwtefiwt a2€(i7i)wtia260
= a2
(Problem 1.19)
Problem 1.1
The equation of motion
N . s S
mx = —sx with w”=—
m

applies directly to the system in Figure 1.1(c).

If the pendulum bob of Figure 1.1(a) is displaced a small distance x show that the stiffness (restoring
force per unit distance) is mg/I and that w?> = g/I where g is the acceleration due to gravity. Now use
the small angular displacement € instead of x and show that w is the same.

In Figure 1.1(b) the angular oscillations are rotational so the mass is replaced by the moment of
inertia I of the disc and the stiffness by the restoring couple of the wire which is C rad ! of angular
displacement. Show that w? = C/I.

In Figure 1.1(d) show that the stiffness is 27/ and that w? = 2T /Im.

In Figure 1.1(e) show that the stiffness of the system in 2pAg, where A is the area of cross section
and that w? = 2g/I where g is the acceleration due to gravity.
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30 Simple Harmonic Motion

In Figure 1.1(f) only the gas in the flask neck oscillates, behaving as a piston of mass pAl. If the
pressure changes are calculated from the equation of state use the adiabatic relation pV7 = constant
and take logarithms to show that the pressure change in the flask is

dv Ax

dp = —p— = —p—"
p =Y Wy

where x is the gas displacement in the neck. Hence show that w? = ypA/IpV. Note that yp is the
stiffness of a gas (see Chapter 6).

In Figure 1.1(g), if the cross-sectional area of the neck is A and the hydrometer is a distance x above
its normal floating level, the restoring force depends on the volume of liquid displaced (Archimedes’
principle). Show that w? = gpA/m.

Check the dimensions of w? for each case.

Problem 1.2
Show by the choice of appropriate values for A and B in equation (1.2) that equally valid solutions
for x are

x =acos (wt + ¢)
x = asin (wt — @)

x =acos (wt — ¢)
and check that these solutions satisfy the equation
. 2.
X+wix=0

Problem 1.3
The pendulum in Figure 1.1(a) swings with a displacement amplitude a. If its starting point from rest
is

(b) x

= —a

find the different values of the phase constant ¢ for the solutions
x = asin (wt + ¢)
x =acos (wt + ¢)
x = asin (wr — ¢)
x =acos (wt — ¢)

For each of the different values of ¢, find the values of wt at which the pendulum swings through the
positions

x= —}—a/\/i
x=a/2
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and

for the first time after release from
x==a
Problem 1.4

When the electron in a hydrogen atom bound to the nucleus moves a small distance from its
equilibrium position, a restoring force per unit distance is given by

s =e? /4meor?

where r = 0.05 nm may be taken as the radius of the atom. Show that the electron can oscillate with
a simple harmonic motion with

wo ~ 4.5 x 10 " rads !

If the electron is forced to vibrate at this frequency, in which region of the electromagnetic spectrum
would its radiation be found?

e=1.6x107"C, electron mass m. = 9.1 x 10 ' kg

€0 =2885x 107 2N"Tm2C?

Problem 1.5
Show that the values of w? for the three simple harmonic oscillations (a), (b), (c) in the diagram are
in the ratio 1 : 2 : 4.

@ (b) (©

Problem 1.6
The displacement of a simple harmonic oscillator is given by

x = asin (wr + ¢)
If the oscillation started at time t = O from a position xy with a velocity x = v show that

tan ¢ = wxo/vo
and

a=(x3+uv3/w?)'?
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Problem 1.7

A particle oscillates with simple harmonic motion along the x axis with a displacement amplitude a
and spends a time df in moving from x to x + dx. Show that the probability of finding it between x
and x + dx is given by

dx

(a2 — x2) 1/2
(in wave mechanics such a probability is not zero for x > a).

Problem. 1.8

Many identical simple harmonic oscillators are equally spaced along the x axis of a medium and a
photograph shows that the locus of their displacements in the y direction is a sine curve. If the
distance )\ separates oscillators which differ in phase by 27 radians, what is the phase difference
between two oscillators a distance x apart?

Problem 1.9

A mass stands on a platform which vibrates simple harmonically in a vertical direction at a
frequency of 5 Hz. Show that the mass loses contact with the platform when the displacement
exceeds 10 ~2m.

Problem 1.10

A mass M is suspended at the end of a spring of length [ and stiffness s. If the mass of the spring is m
and the velocity of an element dy of its length is proportional to its distance y from the fixed end of
the spring, show that the kinetic energy of this element is

2 (79) ()

where v is the velocity of the suspended mass M. Hence, by integrating over the length of the spring,
show that its total kinetic energy is %mv2 and, from the total energy of the oscillating system, show
that the frequency of oscillation is given by

) N

v :M+m/3

Problem 1.11
The general form for the energy of a simple harmonic oscillator is

E = Lmass (velocity)* + Lstiffness (displacement)?

Set up the energy equations for the oscillators in Figure 1.1(a), (b), (c), (d), (e), (f) and (g), and use
the expression

dE
— =0
dr

to derive the equation of motion in each case.

STUDENTS-HUB.com Uploaded By: Jibreel Bornat


https://students-hub.com

Some Useful Mathematics 33

Problem 1.12

The displacement of a simple harmonic oscillator is given by x = a sin wr. If the values of the
displacement x and the velocity x are plotted on perpendicular axes, eliminate 7 to show that the locus
of the points (x,x) is an ellipse. Show that this ellipse represents a path of constant energy.

Problem 1.13

In Chapter 12 the intensity of the pattern when light from two slits interferes (Young’s experiment)
will be seen to depend on the superposition of two simple harmonic oscillations of equal amplitude a
and phase difference 6. Show that the intensity

I = R? o 4a’*cos* 6/2

Between what values does the intensity vary?

Problem 1.14

Carry out the process indicated in the text to derive equation (1.3) on p. 15.

Problem 1.15
The co-ordinates of the displacement of a particle of mass m are given by

X = asinwt

y = bcoswt

Eliminate ¢ to show that the particle follows an elliptical path and show by adding its kinetic and
potential energy at any position x, y that the ellipse is a path of constant energy equal to the sum of
the separate energies of the simple harmonic vibrations.

Prove that the quantity m(xy — yx) is also constant. What does this quantity represent?

Problem 1.16
Two simple harmonic motions of the same frequency vibrate in directions perpendicular to each
other along the x and y axes. A phase difference

0= ¢a2— P

exists between them such that the principal axes of the resulting elliptical trace are inclined at an
angle to the x and y axes. Show that the measurement of two separate values of x (or y) is sufficient to
determine the phase difference.

(Hint: use equation (1.3) and measure y(max), and y for (x = 0.)

Problem 1.17
Take a random group of n > 7 values of ¢ in the range 0 < ¢ <7 and form the product

n n
Z cos ¢; Z cos @;
o =1

i

Show that the average value obtained for several such groups is negligible with respect to n/2.
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Problem 1.18
Use the method of example (3) (p. 28) to show that

asinwt + asin (wt 4 6) + asin (wt + 26) 4+ -+ + asin [wt + (n — 1)§]

(n—1) ] sinné/2
2 siné/2

= asin {wt +

Problem 1.19

If we represent the sum of the series
acoswt + acos (wt + 6) + acos (wt +26) + -+ -+ acos [wt + (n — 1))
by the complex exponential form
z=ae(1+el e ... 4 eit=10)
show that

*

,sin%né/2
w=a"———

sin §/2

Summary of Important Results

Simple Harmonic Oscillator (mass m, stiffness s, amplitude a)
Equation of motion ¥ + w?x = 0 where w? = s/m
Displacement x = asin (wf + ¢)

Energy = 1mx? + sx? = Jmw? a® = 1sa® = constant

Superposition (Amplitude and Phase) of two SHMs
One-dimensional

Equal w, different amplitudes, phase difference ¢, resultant R where R? = a? + a3+
2a1a, cos 6
Different w, equal amplitude,

X =x1 +x2 = a(sinwt + sinwt)
wi + wo)t wy — wp)t
(Wi +w3) cos( 2 _ 1)

= 2asin

Two-dimensional: perpendicular axes
Equal w, different amplitude—giving general conic section

2 2
X y 2xy . 2
—+—=- cos - = sin —
2V aa; (P2 — &1) (62 — &1)

(basis of optical polarization)
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Superposition of n SHM Vectors (equal amplitude a , constant successive phase difference 6)

The resultant is R cos (wt + «), where

sinnd/2
=a
sin6/2

and
a=n-1)§5§/2

Important in optical diffraction and wave groups of many components.
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Damped Simple Harmonic Motion

Initially we discussed the case of ideal simple harmonic motion where the total energy
remained constant and the displacement followed a sine curve, apparently for an infinite
time. In practice some energy is always dissipated by a resistive or viscous process; for
example, the amplitude of a freely swinging pendulum will always decay with time as
energy is lost. The presence of resistance to motion means that another force is active,
which is taken as being proportional to the velocity. The frictional force acts in the
direction opposite to that of the velocity (see Figure 2.1) and so Newton’s Second law
becomes

mx = —sx —rx

where r is the constant of proportionality and has the dimensions of force per unit of
velocity. The presence of such a term will always result in energy loss.
The problem now is to find the behaviour of the displacement x from the equation

mi+ri+sx=0 (2.1)

where the coefficients m, r and s are constant.

When these coefficients are constant a solution of the form x = Ce® can always be
found. Obviously, since an exponential term is always nondimensional, C has the
dimensions of x (a length, say) and « has the dimensions of inverse time, 7~!'. We shall
see that there are three possible forms of this solution, each describing a different
behaviour of the displacement x with time. In two of these solutions C appears explicitly as
a constant length, but in the third case it takes the form

C=A+Bt"

* The number of constants allowed in the general solution of a differential equation is always equal
to the order (that is, the highest differential coefficient) of the equation. The two values A and B are
allowed because equation (2.1) is second order. The values of the constants are adjusted to satisfy the
initial conditions.

The Physics of Vibrations and Waves, 6th Edition H. J. Pain
© 2005 John Wiley & Sons, Ltd., ISBN: 0-470-01295-1(hardback); 0-470-01296-X(paperback)
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X
—

s
0000000000070 m
Frictional D

F=-rx

force

Figure 2.1 Simple harmonic motion system with a damping or frictional force rx acting against the
direction of motion. The equation of motion is mx +rx +sx =0

where A is a length, B is a velocity and ¢ is time, giving C the overall dimensions of a
length, as we expect. From our point of view this case is not the most important.

Taking C as a constant length gives x = aCe® and ¥ = a>Ce®, so that equation (2.1)
may be rewritten

Ce™(ma’ +ra+s)=0
so that either
x=Ce™ =0 (which is trivial)
or
mo? +ra+s=0

Solving the quadratic equation in « gives

_r 2

s
:—:I: _
@ 2m 4m? m

Note that r/2m and (s/m) 12 and therefore, o, all have the dimensions of inverse time,
T, which we expect from the form of e®.
The displacement can now be expressed as

x1=C, e7rt/2m+(r2/4mzfs/m)1/217 Xy = Czefrl/me(rz/4m27s/m)l/zt
or the sum of both these terms
X = x| +xy = Cy e /2t /am=s/m) e oo rtf2m(r A —s/m) 4
The bracket (r?/4m? — s/m) can be positive, zero or negative depending on the relative

magnitude of the two terms inside it. Each of these conditions gives one of the three
possible solutions referred to earlier and each solution describes a particular kind of
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behaviour. We shall discuss these solutions in order of increasing significance from our
point of view; the third solution is the one we shall concentrate upon throughout the rest of
this book.

The conditions are:

(1) Bracket positive (r?/4m? > s/m). Here the damping resistance term r2/4m?
dominates the stiffness term s/m, and heavy damping results in a dead beat system.

(2) Bracket zero (r*/4m? = s/m). The balance between the two terms results in a
critically damped system.

Neither (1) nor (2) gives oscillatory behaviour.

(3) Bracket negative (r?/4m* < s/m). The system is lightly damped and gives oscillatory
damped simple harmonic motion.

Case 1. Heavy Damping

Writing r/2m = p and (r2/4m? — s/m)'/* = g, we can replace

X = Cye 1m0 Ami=sim) e o —rtf2m—(r2 fAm? s m) 1
by

x=e P (Cie? +Cre™),
where the C| and C, are arbitrary in value but have the same dimensions as C (note that
two separate values of C are allowed because the differential equation (2.1) is second

order).
If now F =C; + C; and G = C; — C,, the displacement is given by

F G
x=e" E(e‘” +e7) +§(e‘” —e )

or
x = e P(F coshgr + Gsinh gr)
This represents non-oscillatory behaviour, but the actual displacement will depend upon

the initial (or boundary) conditions; that is, the value of x at time r = 0. If x=0att =0
then F = 0, and

4m? m

2 1/2
x = Ge "/ ginh <r_ — i) t

Figure 2.2 illustrates such behaviour when a heavily damped system is disturbed from
equilibrium by a sudden impulse (that is, given a velocity at t = 0). It will return to zero
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2
Heavy damping L~ > S

4m2 M

r increasing

Displacement

Time

Figure 2.2 Non-oscillatory behaviour of damped simple harmonic system with heavy damping
(where r2/4m? > s/m) after the system has been given an impulse from a rest position x =0

displacement quite slowly without oscillating about its equilibrium position. More
advanced mathematics shows that the value of the velocity dx/dt vanishes only once so that
there is only one value of maximum displacement.

(Problem 2.1)

Case 2. Critical Damping (r®/4m? =s/m)

Using the notation of Case 1, we see that ¢ = 0 and that x = e ”'(C; + C,). This is, in
fact, the limiting case of the behaviour of Case I as ¢ changes from positive to negative. In
this case the quadratic equation in « has equal roots, which, in a differential equation
solution, demands that C must be written C = A + Bt, where A is a constant length and B a
given velocity which depends on the boundary conditions. It is easily verified that the value

x=(A+Bt)e " = (A +Bt)e ™

satisfies mi + rx + sx = 0 when r2/4m? = s/m.

(Problem 2.2)

Application to a Damped Mechanical Oscillator

Critical damping is of practical importance in mechanical oscillators which experience
sudden impulses and are required to return to zero displacement in the minimum time.
Suppose such a system has zero displacement at ¢ = 0 and receives an impulse which gives
it an initial velocity V.
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Damped Simple Harmonic Motion 41
Then x = 0 (so that A = 0) and x = V at t = 0. However,
x=B[(-ptle™ +eP|=Batr=0
so that B = V and the complete solution is
x=Vie™

The maximum displacement x occurs when the system comes to rest before returning to
zero displacement. At maximum displacement

x=Ve (1l —pt)=0

thus giving (1 — pt) =0, i.e. t = 1/p.
At this time the displacement is therefore

\%
x=Vie P ==¢!

= 0.368K = 0.368M
p r

The curve of displacement versus time is shown in Figure 2.3; the return to zero in a
critically damped system is reached in minimum time.

Case 3. Damped Simple Harmonic Motion

When r2/4m? < s/m the damping is light, and this gives from the present point of view the
most important kind of behaviour, oscillatory damped simple harmonic motion.

Displacement

Critical
2 rﬂ vel | damping
rr_s

4m2 m

X

0 2m Time

Figure 2.3 Limiting case of non-oscillatory behaviour of damped simple harmonic system where
r2/4m? = s/m (critical damping)
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42 Damped Simple Harmonic Motion

The expression (r2/4m? —s/m)l/ * is an imaginary quantity, the square root of a
negative number, which can be rewritten

}"2 ) 1/2 ) }"2 1/2
i(mm) —iv‘1<;‘m>
) }"2 1/2
—:|:i<———2> (where i = v —1)

so the displacement

x=C efrz/Zm e+i(s/m7r2/4m2) 124 +C, efrl/Zm efi(s/m7r2/4m2)l/zt

The bracket has the dimensions of inverse time; that is, of frequency, and can be written
(s/m —r?/4m*)'/* = w', so that the second exponential becomes e’ = cosw't+
isinw’z. This shows that the behaviour of the displacement x is oscillatory with a new
frequency w’ < w = (s/m) /%, the frequency of ideal simple harmonic motion. To compare
the behaviour of the damped oscillator with the ideal case we should like to express the
solution in a form similar to x = A sin(w’t + ¢) as in the ideal case, where w has been
replaced by w’.

We can do this by writing

_ s Y
x=e rt/2m(Clelwt+Cze 1wt)

If we now choose

A
Cr=gi”
and
A
sz—ie ¢

where A and ¢ (and thus e'?) are constants which depend on the motion at # = 0, we find
after substitution
[ei(w’t+<zb) _ e—i(w’zﬂé)]
2i
=Ae " ?sin(w't + ¢)

Y=A e—rt/Zm

This procedure is equivalent to imposing the boundary condition x = Asin¢ at t =0
upon the solution for x. The displacement therefore varies sinusoidally with time as in the
case of simple harmonic motion, but now has a new frequency

(s "
\m  4m?
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Displacement
1
>
1
1
1
1
D
4
1
_~

Figure 2.4 Damped oscillatory motion where s/m > r?/4m?. The amplitude decays with e /27,
and the reduced angular frequency is given by w’? =s/m — r2/4m?

and its amplitude A is modified by the exponential term e ~""/"

time.

If x=0 at t=0 then ¢ =0; Figure 2.4 shows the behaviour of x with time, its
oscillations gradually decaying with the envelope of maximum amplitudes following the
dotted curve e />, The constant A is obviously the value to which the amplitude would
have risen at the first maximum if no damping were present.

The presence of the force term rx in the equation of motion therefore introduces a loss of
energy which causes the amplitude of oscillation to decay with time as e ~""/2",

, a term which decays with

(Problem 2.3)

Methods of Describing the Damping of an Oscillator

Earlier in this chapter we saw that the energy of an oscillator is given by

1,2 2 1.2
E—zmaw =3sa

that is, proportional to the square of its amplitude.
We have just seen that in the presence of a damping force rx the amplitude decays with
time as

efrt/Zm

so that the energy decay will be proportional to
( e —rt/ Zm) 2
that is, e /™. The larger the value of the damping force r the more rapid the decay of the

amplitude and energy. Thus we can use the exponential factor to express the rates at which
the amplitude and energy are reduced.
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44 Damped Simple Harmonic Motion

Logarithmic Decrement

This measures the rate at which the amplitude dies away. Suppose in the expression
x=Ae "M sin(w't + ¢)
we choose
o=m/2
and we write
x=Age " cosw't
with x = A at t = 0. Its behaviour will follow the curve in Figure 2.5.
If the period of oscillation is 7/ where w’ = 27/7’, then one period later the amplitude is
given by
A =Ager2m

so that

A() ! 9
SV erm /2m — eé

A S T —_— ——— T —_—>

Figure 2.5 The logarithmic ratio of any two amplitudes one period apart is the logarithmic
decrement, defined as § = log (A, /Api1) =r7'/2m

Uploaded By: Jibreel Bornat


https://students-hub.com

Methods of Describing the Damping of an Oscillator 45

where

r AQ
§=—1"=log.—

om T T %%en,
is called the logarithmic decrement. (Note that this use of ¢ differs from that in Figure 1.11).
The logarithmic decrement ¢ is the logarithm of the ratio of two amplitudes of oscillation
which are separated by one period, the larger amplitude being the numerator since e’ > 1.

Similarly
A , ~
a0 _ er(27’ )/2m 626
A
and
@ — ené
Ay,

Experimentally, the value of ¢ is best found by comparing amplitudes of oscillations
which are separated by n periods. The graph of

lo Ao
geAn
versus n for different values of n has a slope 6.

Relaxation Time or Modulus of Decay

Another way of expressing the damping effect is by means of the time taken for the
amplitude to decay to

e ! =0.368

of its original value A . This time is called the relaxation time or modulus of decay and the
amplitude

A =Age P =Age!

at a time 1 = 2m/r.

Measuring the natural decay in terms of the fraction e ~! of the original value is a very
common procedure in physics. The time for a natural decay process to reach zero is, of
course, theoretically infinite.

(Problem 2.4)

The Quality Factor or Q-value of a Damped Simple Harmonic Oscillator

This measures the rate at which the energy decays. Since the decay of the amplitude is
represented by

A= Aoe—rt/Zm
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46 Damped Simple Harmonic Motion
the decay of energy is proportional to
A2 = A2elrt/2m)?
and may be written
E=Egel/mt
where E is the energy value at t = 0.
The time for the energy E to decay to Eqe ! is given by t = m/r s during which time the

oscillator will have vibrated through w’m/r rad.
We define the quality factor

as the number of radians through which the damped system oscillates as its energy
decays to

E=Ege!

If r is small, then Q is very large and

so that

Thus, we write, to a very close approximation,

wom

Q__

r

which is a constant of the damped system.
Since r/m now equals wo/Q we can write

E—= Eoe(*r/m)t — Eoe*wot/Q
The fact that Q is a constant (= wom/r) implies that the ratio

energy stored in system

energy lost per cycle

STUDENTS-HUB.com Uploaded By: Jibreel Bornat


https://students-hub.com

Methods of Describing the Damping of an Oscillator 47

is also a constant, for

Q0 wom vom

2r 2mr 1
is the number of cycles (or complete oscillations) through which the system moves in
decaying to

E=Epe!
and if
E=Egel"/mr
the energy lost per cycle is
dE —r 1
AE=""Ar=""E"
dr m v

where At = 1/v’" = 7/, the period of oscillation.
Thus, the ratio

energy stored in system  E  v'm __vom
energy lost per cycle ~ —AE  r  r
_Q
27

In the next chapter we shall meet the same quality factor Q in two other roles, the first as
a measure of the power absorption bandwidth of a damped oscillator driven near its
resonant frequency and again as the factor by which the displacement of the oscillator
is amplified at resonance.

Example on the Q-value of a Damped Simple Harmonic Oscillator

An electron in an atom which is freely radiating power behaves as a damped simple
harmonic oscillator.

If the radiated power is given by P = q2w4x(2) /12me0c® W at a wavelength of 0.6 um
(6000 A), show that the Q-value of the atom is about 10® and that its free radiation lifetime
is about 1085 (the time for its energy to decay to e ~! of its original value).

g=16x10""C
1/4meg =9 x 10°mF~!
m, =9 x 103 kg
c=3x10ms™!
Xxo = maximum amplitude of oscillation

The radiated power P is —v AE, where —AE is the energy loss per cycle, and the energy of

the oscillator is given by E = §m.w?x.
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48 Damped Simple Harmonic Motion

Thus, Q = 27E/ — AE = vmmw?x}/P, and inserting the values above with w = 27v =
27c/ )\, where the wavelength ) is given, yields a Q value of ~ 5 x 107.
The relation Q = wr gives ¢, the radiation lifetime, a value of ~ 10785,

Energy Dissipation

We have seen that the presence of the resistive force reduces the amplitude of oscillation
with time as energy is dissipated.
The total energy remains the sum of the kinetic and potential energies

1,22 | 1.2
E—me +3sx

Now, however, dE/dr is not zero but negative because energy is lost, so that
ded
de  dr

=x(—rx) for mi+ri+sx=0

(Amx? + Lsx?) = x(mi + sx)

i.e. dE/dt = —rx?, which is the rate of doing work against the frictional force (dimensions
of force x velocity = force x distance/time).

(Problems 2.5, 2.6)

Damped SHM in an Electrical Circuit

The force equation in the mechanical oscillator is replaced by the voltage equation in the
electrical circuit of inductance, resistance and capacitance (Figure 2.6).

IR

+

1t q

- __C
el
dt

+

d/ q

L— + + —=0

a TRT ¢

Figure 2.6 Electrical circuit of inductance, capacitance and resistance capable of damped simple
harmonic oscillations. The sum of the voltages around the circuit is given from Kirchhoff’s law
q

dI
L—+RI+>=0
as dt+ +C
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We have, therefore,

a1
Cyri+L=0

L
dr C

or
Li+Rs+L=0
c

and by comparison with the solutions for x in the mechanical case we know immediately
that the charge

7= qo o ~Ri/2L+ (R?/4L?~1/LC) 12y

which, for 1/LC > R?/4L?, gives oscillatory behaviour at a frequency
2 1 _R
LC 4L?
From the exponential decay term we see that R/L has the dimensions of inverse time 7 ~!
or w, so that wL has the dimensions of R; that is, wL is measured in ohms.

Similarly, since w? = 1/LC,wL = 1/wC, so that 1/wC is also measured in ohms. We
shall use these results in the next chapter.

(Problems 2.7, 2.8, 2.9)

Problem 2.1

The heavily damped simple harmonic system of Figure 2.2 is displaced a distance F from its
equilibrium position and released from rest. Show that in the expression for the displacement

x = e P(F cosh gt + Gsinh gt)

where

r d r? s\ ?
=— an =—-—-=
P=om 9 4m? m

that the ratio

=lQ
<

(r2 — 4ms) 12

Problem 2.2
Verify that the solution

x=(A+Br)e "/

STUDENTS-HUB.com Uploaded By: Jibreel Bornat


https://students-hub.com
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satisfies the equation
mx+rx+sx=0
when
r?/4m?* = s/m

Problem 2.3

The solution for damped simple harmonic motion is given by
X = e—rr/2m(cl eiw/f +C, efiw’t)

If x = Acos ¢ at t = 0, find the values of C and C, to show that x ~ —w’A sin ¢ at r = 0 only if r/m
is very small or ¢ = 7/2.

Problem 2.4
A capacitance C with a charge go at t+ = 0 discharges through a resistance R. Use the voltage
equation ¢/C + IR = 0 to show that the relaxation time of this process is RC s; that is,

q=qoe "¢

(Note that ¢/RC is non-dimensional.)

Problem 2.5
The frequency of a damped simple harmonic oscillator is given by

2 2
" N r 2 r

= = Wi - —
m  4m? 0 4m2

(a) If w(z) —w'?= 10‘6w(2) show that Q = 500 and that the logarithmic decrement 6 = 7/500.

(b) If wg = 10° and m = 107'% Kg show that the stiffness of the system is 100 Nm ™!, and that the
resistive constant 7 is 2 x 10~7 N -sm~'.

(c) If the maximum displacement at # = 0 is 102 m, show that the energy of the system is 5 x 103
J and the decay to e ™! of this value takes 0.5 ms.

(d) Show that the energy loss in the first cycle is 2 x 107> J.

Problem 2.6
Show that the fractional change in the resonant frequency wo(w% = s/m) of a damped simple
harmonic mechanical oscillator is ~ (80Q?) ~! where Q is the quality factor.

Problem 2.7
Show that the quality factor of an electrical LCR series circuit is Q = woL/R where w} = 1/LC

Problem 2.8
A plasma consists of an ionized gas of ions and electrons of equal number densities (n; = n, = n)
having charges of opposite sign +e, and masses m; and m,, respectively, where m; > m,. Relative
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displacement between the two species sets up a restoring

<« X

+ o+ o+ o+ o+ o+ 4+

>
|
|
~
|
|
|
|
|
|
I

electric field which returns the electrons to equilibrium, the ions being considered stationary. In the
diagram, a plasma slab of thickness / has all its electrons displaced a distance x to give a restoring
electric field E = nex/e, where ¢ is constant. Show that the restoring force per unit area on the
electrons is xn’e?l/eo and that they oscillate simple harmonically with angular frequency wg =
ne’/m.ey. This frequency is called the electron plasma frequency, and only those radio waves of
frequency w > w, will propagate in such an ionized medium. Hence the reflection of such waves
from the ionosphere.

Problem 2.9

A simple pendulum consists of a mass m at the end of a string of length / and performs small
oscillations. The length is very slowly shortened whilst the pendulum oscillates many times at a
constant amplitude /6 where 6 is very small. Show that if the length is changed by —Al the work
done is —mg Al (owing to the elevation of the position of equilibrium) together with an increase in

the pendulum energy
-
AE = mg = — mlf? | Al

where 62 is the average value of #? during the shortening. If § = 6 cos wt, show that the energy of
the pendulum at any instant may be written

B ml*w*03 B mglo?3

2 2

E

and hence show that

AE 1Al Av

E 21 v

that is, E/v, the ratio of the energy of the pendulum to its frequency of oscillation remains constant
during the slowly changing process. (This constant ratio under slowly varying conditions is
important in quantum theory where the constant is written as a multiple of Planck’s constant, .)
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Summary of Important Results
Damped Simple Harmonic Motion

Equation of motion mX 4 rx + sx =0
Oscillations when

’,.2

> >
m~ 4m?
Displacement x = A e ~""/?" cos(w't + ¢) where

2
/Z_S r

m  4m?

Amplitude Decay

Logarithmic decrement 6—the logarithm of the ratio of two successive amplitudes one
period 7' apart

A, rr'!

6 = log, =—
8 n+1 2m

Relaxation Time

Time for amplitude to decay to A = Age ""/>" = Age™!; that is, t = 2m/r

Energy Decay

Quality factor Q is the number of radians during which energy decreases to E = Ege !

wom energy stored in system
O=—2=2r7

r energy lost per cycle
E=Epe " =Eye™" when Q = wot

In damped SHM

dE 5

& = (mX + sx)x = —rx~ (work rate of resistive force)

For equivalent expressions in electrical oscillators replace m by L, r by R and s by 1/C.
Force equations become voltage equations.
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The Forced Oscillator

The Operation of i upon a Vector

We have already seen that a harmonic oscillation can be conveniently represented by the
form e!“’. In addition to its mathematical convenience i can also be used as a vector
operator of physical significance. We say that when i precedes or operates on a vector the
direction of that vector is turned through a positive angle (anticlockwise) of 7/2, i.e. i
acting as an operator advances the phase of a vector by 90°. The operator — i rotates the
vector clockwise by 7/2 and retards its phase by 90°. The mathematics of i as an operator
differs in no way from its use as v/—1 and from now on it will play both roles.

The vector r = a + ib is shown in Figure 3.1, where the direction of b is perpendicular to
that of a because it is preceded by i. The magnitude or modulus or r is written

r=lr|=(a®+b)""?

and

r? = (a*+b*) = (a+ib)(a —ib) = rr*,

where (a — ib) = r* is defined as the complex conjugate of (a + ib); that is, the sign of i is
changed.

The vector r* = a — ib is also shown in Figure 3.1.

The vector r can be written as a product of its magnitude r (scalar quantity) and its phase
or direction in the form (Figure 3.1)

r=re'” = r(cos ¢ +isin ¢)
=a+ib

showing that a = rcos ¢ and b = rsin ¢.

The Physics of Vibrations and Waves, 6th Edition H. J. Pain
© 2005 John Wiley & Sons, Ltd., ISBN: 0-470-01295-1(hardback); 0-470-01296-X(paperback)

53
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i9
r=re
r ib ir cos ¢
9
a r cos ¢
a
4
r* -ib » —ir cos ¢
—I
=re

Figure 3.1 Vector representation using i operator and exponential index. Star superscript indicates
complex conjugate where —i replaces i

It follows that

== (a2+b2)l/2
and
b b
sing =— =

r (a2 +b2)"?

giving tan ¢ = b/a.
Similarly

r* =re'? = r(cos¢ —isin¢)

—b
cos ¢ = g, sing =— and tan¢ = — (Figure 3.1)
r r a

The reader should confirm that the operator i rotates a vector by 7/2 in the positive
direction (as stated in the first paragraph of p. 53) by taking ¢ = 7/2 in the expression

r=re'’ = r(cosw/2 +isin7/2)

Note that ¢ = —7/2 in r = re /2 rotates the vector in the negative direction.

Vector form of Ohm’s Law

Ohm’s Law is first met as the scalar relation V = IR, where V is the voltage across the
resistance R and / is the current through it. Its scalar form states that the voltage and current
are always in phase. Both will follow a sin (wf + ¢) or a cos (wt + ¢) curve, and the value
of ¢ will be the same for both voltage and current.

However, the presence of either or both of the other two electrical components,
inductance L and capacitance C, will introduce a phase difference between voltage and
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Figure 3.2a An electrical forced oscillator. The voltage V, is applied to the series LCR circuit giving
V, = Ld1/dt + IR+ q/C

current, and Ohm’s Law takes the vector form
vV=1I1Z,,

where Z,, called the impedance, replaces the resistance, and is the vector sum of the
effective resistances of R, L, and C in the circuit.

When an alternating voltage V, of frequency w is applied across a resistance, inductance
and condenser in series as in Figure 3.2a, the balance of voltages is given by

dl
Va:IR—i-La—i-q/C

and the current through the circuit is given by I = I e™“". The voltage across the inductance

V=1L % =L % Ipe" =iwLlye™ =iwLl
But wL, as we saw at the end of the last chapter, has the dimensions of ohms, being the
value of the effective resistance presented by an inductance L to a current of frequency w.
The product wLI with dimensions of ohms times current, i.e. volts, is preceded by i; this
tells us that the phase of the voltage across the inductance is 90° ahead of that of the current
through the circuit.
Similarly, the voltage across the condenser is

1 1 . 1 i/
1=—J1dt:—lojewdzz,—loem: _
c C C iwC wC

(since 1/i = —i).

Again 1/wC, measured in ohms, is the value of the effective resistance presented by the
condenser to the current of frequency w. Now, however, the voltage I/wC across the
condenser is preceded by —i and therefore lags the current by 90°. The voltage and current
across the resistance are in phase and Figure 3.2b shows that the vector form of Ohm’s
Law may be written V= IZ, =I[R+i(wL — 1/wC)], where the impedance Z, =
R +i(wL — 1/wC). The quantities wL and 1/wC are called reactances because they
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¥

oL =ifor- L Ze ix. = ifoL - L
e e R

L ] R
oC

| €« >

Figure 3.2b Vector addition of resistance and reactances to give the electrical impedance Z, =
R+i(wl — 1/wC)

introduce a phase relationship as well as an effective resistance, and the bracket
(wL — 1/wC) is often written X, the reactive component of Z,.
The magnitude, in ohms, i.e. the value of the impedance, is

R? + ol — L 2
wC

and the vector Z, may be represented by its magnitude and phase as

12
Z, =

Z,=2Z,e% =Z,(cos¢+isinp)
so that

R X
cosp =—, sing===
Z, Z,

and
tan¢p = X,/R,

where ¢ is the phase difference between the total voltage across the circuit and the current
through it.

The value of ¢ can be positive or negative depending on the relative value of wL and
1/wC: when wL > 1/wC, ¢ is positive, but the frequency dependence of the components
show that ¢ can change both sign and size.

The magnitude of Z, is also frequency dependent and has its minimum value Z, = R
when wL = 1/wC.

In the vector form of Ohm’s Law, V =1Z,. If V = Vye“ and Z, = Z, e!?, then we have

12 Vo Vo i)
Z,elv Z,

giving a current of amplitude V/Z, which lags the voltage by a phase angle ¢.

The Impedance of a Mechanical Circuit

Exactly similar arguments hold when we consider not an electrical oscillator but a
mechanical circuit having mass, stiffness and resistance.
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The mechanical impedance is defined as the force required to produce unit velocity in
the oscillator, i.e. Z,, = F/v or F =VZ,,.
Immediately, we can write the mechanical impedance as

Z,, :r+i(wm—£) =r—+iX,,
w

where

Ly =Zne'?
and

tanp = X,,/r
¢ being the phase difference between the force and the velocity. The magnitude of Z,, =
[r2 4 (wm — s/w) )2

Mass, like inductance, produces a positive reactance, and the stiffness behaves in exactly
the same way as the capacitance.

Behaviour of a Forced Oscillator

We are now in a position to discuss the physical behaviour of a mechanical oscillator of
mass m, stiffness s and resistance r being driven by an alternating force F cos wt, where F
is the amplitude of the force (Figure 3.3). The equivalent electrical oscillator would be an
alternating voltage Vycoswt applied to the circuit of inductance L, capacitance C and
resistance R in Figure 3.2a.

The mechanical equation of motion, i.e. the dynamic balance of forces, is given by

mx + rx + sx = Fycoswt
and the voltage equation in the electrical case is
LG+ Rg+ q/C = Viycoswt

We shall analyse the behaviour of the mechanical system but the analysis fits the electrical
oscillator equally well.

m <—Fycos of —>

T

Figure 3.3 Mechanical forced oscillator with force Fy coswt applied to damped mechanical circuit
of Figure 2.1

STUDENTS-HUB.com Uploaded By: Jibreel Bornat


https://students-hub.com

58 The Forced Oscillator

The complete solution for x in the equation of motion consists of two terms:

(1) a ‘transient’ term which dies away with time and is, in fact, the solution to the equation
mx + rx + sx = 0 discussed in Chapter 2. This contributes the term

_ S 2 2y1/2
x=Ce rt/2m e1(.s/m re/4m*) "/t

which decays with e />, The second term
(2) is called the ‘steady state’ term, and describes the behaviour of the oscillator after the
transient term has died away.

Both terms contribute to the solution initially, but for the moment we shall concentrate
on the ‘steady state’ term which describes the ultimate behaviour of the oscillator.

To do this we shall rewrite the force equation in vector form and represent cos wt by e'*
as follows:

mX + rx + sx = Fge'! (3.1)

Solving for the vector x will give both its magnitude and phase with respect to the driving
force Foe™". Initially, let us try the solution x = A e'“’, where A may be complex, so that it
may have components in and out of phase with the driving force.
The velocity
iwt __

X = iwAe™ =ijwx

so that

and equation (3.1) becomes
(—Aw’m + iwAr + As) e’ = Fyel

which is true for all + when
iwr + (s — w?m)
or, after multiplying numerator and denominator by —i

—iF, —iFy
Wlr +i(wm —s/w)]  WZy,

Hence
X — Aeiwt _ —iFO ei“” _ —iF() C'iw
wZ,, wZ,, ei¢
—iFeilwr—9)
B wZ
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where
Zm = [r? + (wm — s/w)*] '/

This vector form of the steady state behaviour of x gives three pieces of information and
completely defines the magnitude of the displacement x and its phase with respect to the
driving force after the transient term dies away. It tells us

1. That the phase difference ¢ exists between x and the force because of the reactive part
(wm — s/w) of the mechanical impedance.

2. That an extra difference is introduced by the factor —i and even if ¢ were zero the
displacement x would lag the force F(coswt by 90°.

3. That the maximum amplitude of the displacement x is Fo/wZ,,. We see that this is
dimensionally correct because the velocity x/¢ has dimensions Fo/Z,,.

Having used Fye!” to represent its real part Fcoswt, we now take the real part of the
solution

_iFO ei(Wt7¢))

Wl

to obtain the actual value of x. (If the force had been F sin wt, we would now take that part
of x preceded by i.)
Now

— ~ [Cos(wt—¢)+isin(wt—¢)]

Whim

iF F
= —:}7(; cos (wt — @) +w720m sin (wt — @)

The value of x resulting from F(coswt is therefore

F
x=—2sin (wf — ¢)
wZ,,

[the value of x resulting from F sinwt would be —F cos (wt — ¢)/wZ ).

Note that both of these solutions satisfy the requirement that the total phase difference
between displacement and force is ¢ plus the —7 /2 term introduced by the —i factor. When
¢ = 0 the displacement x = F sinwt/wZ,, lags the force Fcoswt by exactly 90°.
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To find the velocity of the forced oscillation in the steady state we write
(=iF0) i)
wZ
E ei(Wt7¢)
Zy

v=x=(iw)

We see immediately that

1. There is no preceding i factor so that the velocity v and the force differ in phase only
by ¢, and when ¢ = 0 the velocity and force are in phase.

2. The amplitude of the velocity is Fo/Z,,, which we expect from the definition of
mechanical impedance Z,, = F/v.

Again we take the real part of the vector expression for the velocity, which will
correspond to the real part of the force Foe™'. This is

F
U:Z—Zcos(wt—gé)

Thus, the velocity is always exactly 90° ahead of the displacement in phase and differs
from the force only by a phase angle ¢, where

wm—s/w X
tan ¢ = 7/ ="
r r
so that a force Fycoswt gives a displacement
Fo .
x=—2sin (wf — ¢)
wWZm
and a velocity

F
v:Z—Ocos(wt—¢)

m

(Problems 3.1, 3.2, 3.3, 3.4)

Behaviour of Velocity » in Magnitude and Phase versus Driving
Force Frequency w

The velocity amplitude is

Fo Fo

Zn [r? + (wm —s/w) 2]

172

so that the magnitude of the velocity will vary with the frequency w because Z,, is
frequency dependent.
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Fo

|

Velocity

: )
1
o, = (s/m)?

Figure 3.4 Velocity of forced oscillator versus driving frequency w. Maximum velocity vmax = Fo/r
at wj =s/m

At low frequencies, the term —s/w is the largest term in Z,, and the impedance is said to
be stiffness controlled. At high frequencies wm is the dominant term and the impedance is
mass controlled. At a frequency wo where wom = s/wy, the impedance has its minimum
value Z,, = r and is a real quantity with zero reactance.

The velocity Fo/Z,, then has its maximum value v = F/r, and wy is said to be the
frequency of velocity resonance. Note that tan ¢ = 0 at w, the velocity and force being in
phase.

The variation of the magnitude of the velocity with driving frequency, w, is shown in
Figure 3.4, the height and sharpness of the peak at resonance depending on r, which is the
only effective term of Z,, at wy.

The expression

F
vzz—icos(wt—qﬁ)

where

wnm — S/w
r

shows that for positive ¢; that is, wm > s/w, the velocity v will lag the force because —¢
appears in the argument of the cosine. When the driving force frequency w is very high and
w — 00, then ¢ — 90° and the velocity lags the force by that amount.

When wm < s/w, ¢ is negative, the velocity is ahead of the force in phase, and at low
driving frequencies as w — 0 the term s/w — oo and ¢ — —90°.

Thus, at low frequencies the velocity leads the force (¢ negative) and at high frequencies
the velocity lags the force (¢ positive).

At the frequency wg, however, wom = s/wq and ¢ = 0, so that velocity and force are in
phase. Figure 3.5 shows the variation of ¢ with w for the velocity, the actual shape of the
curves depending upon the value of r.
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T viags F
+ =
2
Phase angle rincreasing
¢ (radians)
between 0 o
vand F vand F
in phase
T
2 vleads F

Figure 3.5 Variation of phase angle ¢ versus driving frequency, where ¢ is the phase angle between
the velocity of the forced oscillator and the driving force. ¢ = 0 at velocity resonance. Each curve
represents a fixed resistance value

(Problem 3.5)

Behaviour of Displacement versus Driving Force Frequency o

The phase of the displacement

Fo .
x= oz sin (wt — ¢)

is at all times exactly 90° behind that of the velocity. Whilst the graph of ¢ versus w
remains the same, the total phase difference between the displacement and the force
involves the extra 90° retardation introduced by the —i operator. Thus, at very low
frequencies, where ¢ = —7/2 rad and the velocity leads the force, the displacement and
the force are in phase as we should expect. At high frequencies the displacement lags the
force by 7 rad and is exactly out of phase, so that the curve showing the phase angle
between the displacement and the force is equivalent to the ¢ versus w curve, displaced by
an amount equal to 7/2 rad. This is shown in Figure 3.6.

The amplitude of the displacement x = Fy/wZ,,, and at low frequencies Z, =
[r2 + (wm — s/w)*]"/? = s/w, so that x &~ F/(ws/w) = Fo/s.

- xlags F

I
2
Total phas_e rincreasing
angle (radians) Phase angle
between _n ® + 0 ¢ (red)
- | j&)\ xlags Fby % rad
o 3

xand Fin phase

Figure 3.6 Variation of total phase angle between displacement and driving force versus driving
frequency w. The total phase angle is —¢ — /2 rad
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At high frequencies Z,, — wm, so that x ~ F/(w?m), which tends to zero as w becomes
very large. At very high frequencies, therefore, the displacement amplitude is almost zero
because of the mass-controlled or inertial effect.

The velocity resonance occurs at w(z) = s/m, where the denominator Z,, of the velocity
amplitude is a minimum, but the displacement resonance will occur, since x = (Fo/wZ,,)
sin (wf — ¢), when the denominator wZ,, is a minimum. This takes place when

% (WZ) = % W 4 (wm — /)22 = 0
i.e. when
2wr? + dwm(w?m —s5) =0
or

2w[r? 4 2m(w?m — 5)] =0
so that either
w=20

or
, s 1 , r?
W=——-S=wi— 55
m 2m 2m

Thus the displacement resonance occurs at a frequency slightly less than wg, the
frequency of velocity resonance. For a small damping constant  or a large mass m these
two resonances, for all practical purposes, occur at the frequency wy.

Denoting the displacement resonance frequency by

s 2\
wy=|————
m 2m?

we can write the maximum displacement as
Fy
Wiy

Xmax =

The value of w,Z,, at w, is easily shown to be equal to w’r where

2 2
,275‘ r 2 r

= ——— = w —_——
m  4m? O 4m?
The value of x at displacement resonance is therefore given by
Fy
Xmax = —~
w'r

where
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rincreasing

Displacement x

<—(f’|o7'1 —>|

|
IoN — 0

Figure 3.7 Variation of the displacement of a forced oscillator versus driving force frequency w for
various values of r

Since xmax = Fo/w’r at resonance, the amplitude at resonance is kept low by increasing
r and the variation of x with w for different values of r is shown in Figure 3.7. A negligible
value of r produces a large amplification at resonance: this is the basis of high selectivity in
a tuned radio circuit (see the section in this chapter on Q as an amplification factor).
Keeping the resonance amplitude low is the principle of vibration insulation.

(Problems 3.6, 3.7)

Problem on Vibration Insulation

A typical vibration insulator is shown in Figure 3.8. A heavy base is supported on a
vibrating floor by a spring system of stiffness s and viscous damper r. The insulator will
generally operate at the mass controlled end of the frequency spectrum and the resonant
frequency is designed to be lower than the range of frequencies likely to be met. Suppose
the vertical vibration of the floor is given by x = A cos wt about its equilibrium position and
y is the corresponding vertical displacement of the base about its rest position. The function
of the insulator is to keep the ratio y/A to a minimum.
The equation of motion is given by

my = —r(y —x) = s(y — x)
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Heavy base
A
v Equilibrium
——————————— +--------- restposition
! of base
v
=1
Vibrating floor T

Fixed reference level

Figure 3.8 Vibration insulator. A heavy base supported by a spring and viscous damper system on a
vibrating floor

which, if y — x = X, becomes

mX + rX + sX = —mx = mAw? cos wt

= Focoswt,
where

Fo = mAw?

Use the steady state solution of X to show that

Fo .
= — t— A t
y = sin (wt — @) + Acosw

m

and (noting that y is the superposition of two harmonic components with a constant phase
difference) show that

Ymax (r2 + sz/wz) 12

A Zm
where
72 =12 + (wm —s/w)?
Note that
Ymax g 2 < 2
A m
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so that s/m should be as low as possible to give protection against a given frequency w.

(a) Show that

ymax:1

for w”=—
m

(b) Show that

2
¥ max <1 for w?> il
A m

(c) Show that if w? = s/m, then yna./A > 1 but that the damping term r is helpful in
keeping the motion of the base to a reasonably low level.
(d) Show that if w? > 2s/m, then yn./A < 1 but damping is detrimental.

Significance of the Two Components of the Displacement Curve

Any single curve of Figure 3.7 is the superposition of the two component curves (a) and (b)
in Figure 3.9, for the displacement x may be rewritten

F F
x=—2 sin (wf — ¢) = — (sinwf cos ¢ — cosw sin )
wZ wZ,,

Figure 3.9 A typical curve of Figure 3.7 resolved into its ‘anti-phase’ component (curve (a)) and its
‘90° out of phase’ component (curve (b)). Curve (b) represents the resistive fraction of the
impedance and curve (a) the reactive fraction. Curve (b) corresponds to absorption and curve (a) to
anomalous dispersion of an electromagnetic wave in a medium having an atomic or molecular resonant
frequency equal to the frequency of the wave
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or, since
r . X
cos¢p =— and sing = ="
Zm Zm
as
Fo r .
=——— sinwt — — coswrt
wZywZy, WZy 2

The coswt component (with a negative sign) is exactly anti-phase with respect to the
driving force Fcoswt. Its amplitude, plotted as curve (a) may be expressed as

FoX F 2 _w?
__0_;! — Om(wo 5 w ) (32)
wZy, m?(w)—w?)” +wir?

where w% = s/m and wy is the frequency of velocity resonance.
The sinwt component lags the driving force Fcoswt by 90°. Its amplitude plotted as
curve (b) becomes

Fy r Fowr

o - 2
wrr+ Xy mi(w}—w?)? +wir?

We see immediately that at w curve (a) is zero and curve (b) is near its maximum but they
combine to give a maximum at w where

2
2 2 r

w :LUO ——2m2

the resonant frequency for amplitude displacement.

These curves are particularly familiar in the study of optical dispersion where the forced
oscillator is an electron in an atom and the driving force is the oscillating field vector of an
electromagnetic wave of frequency w. When w is the resonant frequency of the electron in
the atom, the atom absorbs a large amount of energy from the electromagnetic wave and
curve (b) is the shape of the characteristic absorption curve. Note that curve (b) represents
the dissipating or absorbing fraction of the impedance

.
(r2+x2)'"?

and that part of the displacement which lags the driving force by 90°. The velocity
associated with this component will therefore be in phase with the driving force and it is
this part of the velocity which appears in the energy loss term rx? due to the resistance of
the oscillator and which gives rise to absorption.
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On the other hand, curve (a) represents the reactive or energy storing fraction of the
impedance

Xm
1/2
(r+x3)"

and the reactive components in a medium determine the velocity of the waves in
the medium which in turn governs the refractive index n. In fact, curve (a) is a graph of the
value of n? in a region of anomalous dispersion where the w axis represents the value
n = 1. These regions occur at every resonant frequency of the constituent atoms of
the medium. We shall return to this topic later in the book.

(Problems 3.8, 3.9, 3.10)

Power Supplied to Oscillator by the Driving Force

In order to maintain the steady state oscillations of the system the driving force must
replace the energy lost in each cycle because of the presence of the resistance. We shall
now derive the most important result that:

‘in the steady state the amplitude and phase of a driven oscillator adjust themselves so
that the average power supplied by the driving force just equals that being dissipated by the
frictional force’.

The instantaneous power P supplied is equal to the product of the instantaneous driving
force and the instantaneous velocity; that is,

F
P = Focoswt =2 cos (wt — ¢)
Z
F2
= -2 coswt cos (wt — P)

m

The average power

__total work per oscillation
av —

oscillation period

T

t

L Pay = J T where T = oscillation period
0

F2 T
=L J cos wt cos (wt — ¢) dt
Z.T Jo

F2 (T
= ﬁ J [coszwt €oS ¢ + cos wr sin wt sin ¢) dr
m 0

F2
= —ZZOm cos ¢
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because

T
J coswt X sinwtdt =0
0

and

IJT 2w dt !
—| cos ==
T), Y72

The power supplied by the driving force is not stored in the system, but dissipated as
work expended in moving the system against the frictional force rx.
The rate of working (instantaneous power) by the frictional force is

2

(ri)x = ri? = r— cos? (wt — ¢)
m

and the average value of this over one period of oscillation

17F?  1F} r
——20:——0 cos¢p for —— =cos¢
272z 27, Zn
This proves the initial statement that the power supplied equals the power dissipated.
In an electrical circuit the power is given by VI cos ¢, where Vand I are the instantaneous
r.m.s. values of voltage and current and cos ¢ is known as the power factor.

V2 6
VI cos ¢ == cos ¢ = 220 cos ¢
e e

since

SIS

(Problem 3.11)

Variation of P,, with w. Absorption Resonance Curve

Returning to the mechanical case, we see that the average power supplied
Py = (F%/2Z,)cos ¢

is a maximum when cos ¢ = 1; that is, when ¢ = 0 and wm — s/w = 0 or w3 = s/m. The
force and the velocity are then in phase and Z,, has its minimum value of r. Thus

P, (maximum) = F g /2r
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A graph of P,, versus w, the frequency of the driving force, is shown in Figure 3.10. Like
the curve of displacement versus w, this graph measures the response of the oscillator; the
sharpness of its peak at resonance is also determined by the value of the damping constant
r, which is the only term remaining in Z,, at the resonance frequency wg. The peak occurs
at the frequency of velocity resonance when the power absorbed by the system from the
driving force is a maximum; this curve is known as the absorption curve of the oscillator
(it is similar to curve (b) of Figure 3.9).

The Q-Value in Terms of the Resonance Absorption Bandwidth

In the last chapter we discussed the quality factor of an oscillator system in terms of energy
decay. We may derive the same parameter in terms of the curve of Figure 3.10, where the
sharpness of the resonance is precisely defined by the ratio

wo

S wr—wy
where w; and w; are those frequencies at which the power supplied
Py = % Py (maximum)

The frequency difference w, — w; is often called the bandwidth.

P, (max)

2
Fo®
4r

o , o, ®
Figure 3.10 Graph of average power versus w supplied to an oscillator by the driving force.

Bandwidth w, —w; of resonance curve defines response in terms of the quality factor, Q =
wo/ (w2 — wr), where w3 =s/m
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Now
P =rF§/2Z} =1P, (maximum) = 1F3/2r
when
Zi =2r?
that is, when
rr4+X2=2r or X,=wm—s/w==Er.
If wy, > wy, then
wom — s/wy = +r
and
wim—s/w; = —r
Eliminating s between these equations gives
wy—wi =r/m
so that

0 =wom/r

Note that w; = wo — r/2m and wy = wo + r/2m are the two significant frequencies in
Figure 3.9. The quality factor of an electrical circuit is given by

_ woL
0="3.
where
wy=(LC)™!

Note that for high values of Q, where the damping constant r is small, the frequency w’
used in the last chapter to define Q = w’m/r moves very close to the frequency wy, and the
two definitions of Q become equivalent to each other and to the third definition we meet in
the next section.

The Q-Value as an Amplification Factor
We have seen that the value of the displacement at resonance is given by

Fy s r?
Amax =——  Wwhere W=
w'r
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At low frequencies (w — 0) the displacement has a value Ay = Fy/s, so that

Hence:

for large Q.

Amax _

(

WP FE r?w

21— 1/407]'")

Fo
S

Displacement in units of

[1-1/407]

mzwg
—r?2/4m?]

Q2
~ - 1/407]

1
l/zzQ{l—f——] ~Q

80?

®o

Figure 3.11 Curves of Figure 3.7 now given in terms of the quality factor Q of the system, where Q
is amplification at resonance of low frequency response x = Fo/s
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Thus, the displacement at low frequencies is amplified by a factor of Q at displacement

resonance.

Figure 3.7 is now shown as Figure 3.11 where the Q-values have been attached to each
curve. In tuning radio circuits, the Q-value is used as a measure of selectivity, where
the sharpness of response allows a signal to be obtained free from interference from signals
at nearby frequencies. In conventional radio circuits at frequencies of one megacycle,

Figure 3.12

Ay

SCA
\\3

Al /
\
\A4 ’

’

i
I

N
/

@

(a) The steady state oscillation (heavy curve) is modulated by the transient which

decays exponentially with time. (b) In the vector diagram of (b) OB is the constant length steady
state vector and BA; is the transient vector. Each vector rotates anti-clockwise with its own angular
velocity. At t = 0 the vectors OB and BA, are equal and opposite on the horizontal axis and their
vector sum is zero. At subsequent times the total amplitude is the length of 0A; which changes as A
traces a contracting spiral around B. The points A;, A,, As and A, indicate how the amplitude is

modified in (a)
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Q-values are of the order of a few hundred; at higher radio frequencies resonant copper
cavities have Q-values of about 30 000 and piezo-electric crystals can produce Q-values of
500000. Optical absorption in crystals and nuclear magnetic resonances are often
described in terms of Q-values. The Mossbauer effect in nuclear physics involves Q-values
of 1010,

The Effect of the Transient Term

Throughout this chapter we have considered only the steady state behaviour without
accounting for the transient term mentioned on p. 58. This term makes an initial
contribution to the total displacement but decays with time as e /2. Its effect is best
displayed by considering the vector sum of the transient and steady state components.

The steady state term may be represented by a vector of constant length rotating
anticlockwise at the angular velocity w of the driving force. The vector tip traces a circle.
Upon this is superposed the transient term vector of diminishing length which rotates anti
clockwise with angular velocity w’ = (s/m — r?/4m?) 12 Tts tip traces a contracting spiral.

The locus of the magnitude of the vector sum of these terms is the envelope of the
varying amplitudes of the oscillator. This envelope modulates the steady state oscillations
of frequency w at a frequency which depends upon w’ and the relative phase between wr
and w't.

Thus, in Figure 3.12(a) where the total oscillator displacement is zero at time ¢ = 0 we
have the steady state and transient vectors equal and opposite in Figure 3.12(b) but because
w # w’ the relative phase between the vectors will change as the transient term decays.
The vector tip of the transient term is shown as the dotted spiral and the total amplitude
assumes the varying lengths OA |, OA,, OAj, OA4, etc.

(Problems 3.12, 3.13, 3.14, 3.15, 3.16, 3.17, 3.18)

Problem 3.1
Show, if Fye'” represents Fsinwt in the vector form of the equation of motion for the forced
oscillator that

Fo
= — ! —
x oz cos (wt — @)

and the velocity

Fo .
_Zo ‘—
v msm(w ®)

Problem 3.2

The displacement of a forced oscillator is zero at time ¢ = 0 and its rate of growth is governed by the
rate of decay of the transient term. If this term decays to e ™ of its original value in a time ¢ show
that, for small damping, the average rate of growth of the oscillations is given by xo/t = Fo/2kmwg
where x is the maximum steady state displacement, F is the force amplitude and w3 = s/m.
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Problem 3.3

The equation mX + sx = F sinwt describes the motion of an undamped simple harmonic oscillator
driven by a force of frequency w. Show, by solving the equation in vector form, that the steady state
solution is given by

_ Fosinwt h 2 S
x=——>——> where wj=—
m(w§ — w?) m

Sketch the behaviour of the amplitude of x versus w and note that the change of sign as w passes
through w( defines a phase change of 7 rad in the displacement. Now show that the general solution
for the displacement is given by

Fsinwt .
X = 272+Acoswot+Bs1nwot
m(wi — w?)

where A and B are constant.

Problem 3.4
In problem 3.3, if x = x = 0 at t = 0 show that

Fo 1 . w .
X = — | sinwt — — sinwot
m (w§ — w?) wo

and, by writing w = wo + Aw where Aw/wy < 1 and Awt < 1, show that near resonance,

Fo .
x= 5 (sinwot — wot cos wot)
2mwg

Sketch this behaviour, noting that the second term increases with time, allowing the oscillations to
grow (resonance between free and forced oscillations). Note that the condition Awr < 1 focuses
attention on the transient.

Problem 3.5

What is the general expression for the acceleration v of a simple damped mechanical oscillator
driven by a force Fcoswt? Derive an expression to give the frequency of maximum acceleration
and show that if r = /sm, then the acceleration amplitude at the frequency of velocity resonance
equals the limit of the acceleration amplitude at high frequencies.

Problem 3.6
Prove that the exact amplitude at the displacement resonance of a driven mechanical oscillator may
be written x = Fo/w'r where F is the driving force amplitude and

Problem 3.7

In a forced mechanical oscillator show that the following are frequency independent (a) the
displacement amplitude at low frequencies (b) the velocity amplitude at velocity resonance and (c)
the acceleration amplitude at high frequencies, (w — o).
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Problem 3.8
In Figure 3.9 show that for small r, the maximum value of curve (a) is =~ Fo/2wor at
w| =wg — r/2m and its minimum value is = —F(/2wor at wy = wo + r/2m.

Problem 3.9

The equation X + wix = (—eE/m)coswt describes the motion of a bound undamped electric
charge —e of mass m under the influence of an alternating electric field E = E(coswt. For an
electron number density n show that the induced polarizability per unit volume (the dynamic
susceptibility) of a medium

nex ne?

Xe = Ce0E eom(w} — w?)

(The permittivity of a medium is defined as e = e¢(1 + x) where ¢ is the permittivity of free space.
The relative permittivity €, = €/e is called the dielectric constant and is the square of the refractive
index when E is the electric field of an electromagnetic wave.)

Problem 3.10
Repeat Problem 3.9 for the case of a damped oscillatory electron, by taking the displacement x as the
component represented by curve (a) in Figure 3.9 to show that

ne’m(w} — w?)

golm?(wd — w2)2 + w?r?]

e,=14+x=1+

In fact, Figure 3.9(a) plots £, = €/&. Note that for

2

ne
wKwy, &e,~1+ 5
Eomwy
and for
ne?
w>»wy, &=I1- 5
€0mw

Problem 3.11
Show that the energy dissipated per cycle by the frictional force rx at an angular frequency w is given

2
by mrwx .

Problem 3.12
Show that the bandwidth of the resonance absorption curve defines the phase angle range
tanp = *1.

Problem 3.13
An alternating voltage, amplitude V| is applied across an LCR series circuit. Show that the voltage at
current resonance across either the inductance or the condenser is QV.
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Problem 3.14
Show that in a resonant LCR series circuit the maximum potential across the condenser occurs at a
frequency w = wo(1 — 1/203)"/? where w2 = (LC) "' and Q¢ = woL/R.

Problem 3.15
In Problem 3.14 show that the maximum potential across the inductance occurs at a frequency
w=uwo(1—1/203)7"2

Problem 3.16

Light of wavelength 0.6 pm (6000 A) is emitted by an electron in an atom behaving as a lightly
damped simple harmonic oscillator with a Q-value of 5 x 107. Show from the resonance bandwidth
that the width of the spectral line from such an atom is 1.2 x 1074 m.

Problem 3.17
If the Q-value of Problem 3.6 is high show that the width of the displacement resonance curve is
approximately v/3r/m where the width is measured between those frequencies where X = X pax /2.

Problem 3.18
Show that, in Problem 3.10, the mean rate of energy absorption per unit volume; that is, the power
supplied is

ne’E} w?r

2 m2(w} - w?)? + w?r?

P

Summary of Important Results

Mechanical Impedance Z,, = F/v (force per unit velocity)
Zy=2Zne =r+ilwm—s/w)
where Z2 = r? + (wm — s/w)?

wm — s/w wm—s/w

,
COSQP = — tan ¢ =
0= tang

sin ¢ =
¢ Znw m r

¢ is the phase angle between the force and velocity.

Forced Oscillator

Equation of motion mxX + rx 4 sx = Focoswt
(Vector form) mX + rx + sx = Fge™"
Use x = Ae' to give steady state displacement
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and velocity

When Fe' represents Fy cos wt

Fo .
= sin (wr —
X oz in (wt — ¢)

F
v:Z—’zcos(wt—@

F
Maximum velocity = —_ at velocity resonant frequency wo = (s/m) 12
r
F
Maximum displacement = —/0 where o’ = (s/m — r%/4m?)"* ar displacement
w

resonant frequency w = (s/m — r2/2m?)"/?

Power Absorbed by Oscillator from Driving Force

Oscillator adjusts amplitude and phase so that power supplied equals power dissipated.

Power absorbed = 1 (F3/Z,,) cos ¢ (cos ¢ is power factor)
F2

Maximum power absorbed = 2—0 at wg

r

Maxmium power F? r r
p absorbed = —2 at w; = wg — — and Wy = wo + —
2 4r 2m 2m
. wom w
Quality factor Q = Ikl N
r Wy — W1

maximum displacement at displacement resonance

displacement as w — 0
A(max)
F()/S

For equivalent expressions for electrical oscillators replace m by L, r by R, s by 1/C and F
by Vo (voltage).

KOAX03

7:02 pm, 7/5/05
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Coupled Oscillations

The preceding chapters have shown in some detail how a single vibrating system will
behave. Oscillators, however, rarely exist in complete isolation; wave motion owes its
existence to neighbouring vibrating systems which are able to transmit their energy to each
other.

Such energy transfer takes place, in general, because two oscillators share a common
component, capacitance or stiffness, inductance or mass, or resistance. Resistance coupling
inevitably brings energy loss and a rapid decay in the vibration, but coupling by either of
the other two parameters consumes no power, and continuous energy transfer over many
oscillators is possible. This is the basis of wave motion.

We shall investigate first a mechanical example of stiffness coupling between two
pendulums. Two atoms set in a crystal lattice experience a mutual coupling force and
would be amenable to a similar treatment. Then we investigate an example of mass, or
inductive, coupling, and finally we consider the coupled motion of an extended array of
oscillators which leads us naturally into a discussion on wave motion.

Stiffness (or Capacitance) Coupled Oscillators

Figure 4.1 shows two identical pendulums, each having a mass m suspended on a light rigid
rod of length /. The masses are connected by a light spring of stiffness s whose natural
length equals the distance between the masses when neither is displaced from equilibrium.
The small oscillations we discuss are restricted to the plane of the paper.

If x and y are the respective displacements of the masses, then the equations of
motion are

. X
mi = —mg~ — s(x—y)

and

y
my = —mg= +s(x )

The Physics of Vibrations and Waves, 6th Edition H. J. Pain
© 2005 John Wiley & Sons, Ltd., ISBN: 0-470-01295-1(hardback); 0-470-01296-X(paperback)
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80 Coupled Oscillations

— —
y X
Figure 4.1 Two identical pendulums, each a light rigid rod of length [ supporting a mass m and
coupled by a weightless spring of stiffness s and of natural length equal to the separation of the
masses at zero displacement

These represent the normal simple harmonic motion terms of each pendulum plus a coup-
ling term s(x — y) from the spring. We see that if x > y the spring is extended beyond its
normal length and will act against the acceleration of x but in favour of the acceleration of y.

Writing w% = g/I, where wy is the natural vibration frequency of each pendulum, gives

. N
Ftwix=—=(x—y) (4.1)
m
. s
y+wey=——(—x (4.2)
m
Instead of solving these equations directly for x and y we are going to choose two new
coordinates
X=x+y
Y=x-y

The importance of this approach will emerge as this chapter proceeds. Adding equations
(4.1) and (4.2) gives

¥+ +wix+y)=0
that is
X+wiX=0
and subtracting (4.2) from (4.1) gives

Y+ (wi+2s/m)Y =0

The motion of the coupled system is thus described in terms of the two coordinates X and Y,
each of which has an equation of motion which is simple harmonic.
If Y =0, x =y at all times, so that the motion is completely described by the equation

}"(—l—ng:O

then the frequency of oscillation is the same as that of either pendulum in isolation and the
stiffness of the coupling has no effect. This is because both pendulums are always swinging
in phase (Figure 4.2a) and the light spring is always at its natural length.
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I\ i 1 1 : : I
(@ (b)
Figure 4.2 (a) The ‘in phase’” mode of vibration given by X+w§X = 0, where X is the normal

coordinate X = x +y and w3 = g/L. (b) ‘Out of phase’ mode of vibration given by Y+ (w2 +2s/m)
where Y is the normal coordinate Y =x —y

If X =0, x = —y at all times, so that the motion is completely described by

Y+ (w§ +2s/m)Y =0

The frequency of oscillation is greater because the pendulums are always out of phase
(Figure 4.2b) so that the spring is either extended or compressed and the coupling is
effective.

Normal Coordinates, Degrees of Freedom and Normal Modes
of Vibration

The significance of choosing X and Y to describe the motion is that these parameters give a
very simple illustration of normal coordinates.

e Normal coordinates are coordinates in which the equations of motion take the form of a
set of linear differential equations with constant coefficients in which each equation
contains only one dependent variable (our simple harmonic equations in X and V).

e A vibration involving only one dependent variable X (or Y) is called a normal mode of
vibration and has its own normal frequency. In such a normal mode all components of
the system oscillate with the same normal frequency.

e The total energy of an undamped system may be expressed as a sum of the squares of
the normal coordinates multiplied by constant coefficients and a sum of the squares of
the first time derivatives of the coordinates multiplied by constant coefficients. The
energy of a coupled system when the X and Y modes are both vibrating would then be
expressed in terms of the squares of the velocities and displacements of X and Y.

e The importance of the normal modes of vibration is that they are entirely independent
of each other. The energy associated with a normal mode is never exchanged with
another mode; this is why we can add the energies of the separate modes to give the
total energy. If only one mode vibrates the second mode of our system will always be at
rest, acquiring no energy from the vibrating mode.

e Each independent way by which a system may acquire energy is called a degree of
freedom to which is assigned its own particular normal coordinate. The number of such
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82 Coupled Oscillations

different ways in which the system can take up energy defines its number of degrees of
freedom and its number of normal coordinates. Each harmonic oscillator has two
degrees of freedom, it may take up both potential energy (normal coordinate X) and
kinetic energy (normal coordinate X). In our two normal modes the energies may be
written

Ex = aX* + bX* (4.3a)
and
Ey =cY* +dy? (4.3b)

where a, b, ¢ and d are constant.

Our system of two coupled pendulums has, then, four degrees of freedom and four
normal coordinates.

Any configuration of our coupled system may be represented by the super-position of the
two normal modes

X:x+y:XOCOS(W1[+¢1)
and
Y =x—y="Yycos (waf + ¢2)

where X and Y are the normal mode amplitudes, whilst w? = g/l and w3} = (g/l + 2s/m)
are the normal mode frequencies. To simplify the discussion let us choose

Xo=Yy=2a
and put
¢1=¢2=0
The pendulum displacements are then given by
x=3(X+Y)=acoswit+acoswyt
and
y=2(X—Y)=acoswit —acoswyt
with velocities
X = —aw Sinwt — aw, Sin w»t
and

y = —aw; sinwt + aw; sinwyt
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X + Y

M
+

y=0 > 243 < > a < > a < >-a < > a <

Figure 4.3 The displacement of one pendulum by an amount 2a is shown as the combination of the
two normal coordinates X + Y

Now let us set the system in motion by displacing the right hand mass a distance x = 2a
and releasing both masses from rest so that x =y = 0 at time ¢t = 0.

Figure 4.3 shows that our initial displacement x = 2a, y = 0 at t = 0 may be seen as a
combination of the ‘in phase’ mode (x = y = a so that x + y = Xy = 2a) and of the ‘out of
phase” mode (x = —y = a so that Yy = 2a). After release, the motion of the right hand
pendulum is given by

X =dacosSwit+ acosw,t

—w)t t
(w2 —wy) cos (wlzwz)

= 2acos

and that of the left hand pendulum is given by

y:aCOSW1t—aCOSW2t

(W) —wy)t sin (wy +wy)t
2 2

(wz —wl)t sin (wl +w2)t
2 2

= —2asin

= 2asin

If we plot the behaviour of the individual masses by showing how x and y change with time
(Figure 4.4), we see that after drawing the first mass aside a distance 2a and releasing it x
follows a consinusoidal behaviour at a frequency which is the average of the two normal
mode frequencies, but its amplitude varies cosinusoidally with a low frequency which is
half the difference between the normal mode frequencies. On the other hand, y, which
started at zero, vibrates sinusoidally with the average frequency but its amplitude builds up
to 2a and then decays sinusoidally at the low frequency of half the difference between the
normal mode frequencies. In short, the y displacement mass acquires all the energy of the x
displacement mass which is stationary when y is vibrating with amplitude 2a, but the
energy is then returned to the mass originally displaced. This complete energy exchange is
only possible when the masses are identical and the ratio (w; + w;)/(w2 —w;) is an
integer, otherwise neither will ever be quite stationary. The slow variation of amplitude at
half the normal mode frequency difference is the phenomenon of ‘beats’ which occurs
between two oscillations of nearly equal frequencies. We shall discuss this further in the
section on wave groups in Chapter 5.
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x displacement

y displacement

Figure 4.4 Behaviour with time of individual pendulums, showing complete energy exchange
between the pendulums as x decreases from 2a to zero whilst y grows from zero to 2a

The important point to recognize, however, is that although the individual pendulums
may exchange energy, there is no energy exchange between the normal modes. Figure 4.3
showed the initial configuration x = 2a, y = 0, decomposed into the X and Y modes. The
higher frequency of the Y mode ensures that after a number of oscillations the ¥ mode will
have gained half a vibration (a phase of 7 rad) on the X mode; this is shown in Figure 4.5.
The combination of the X and Y modes then gives y the value of 2a and x = 0, and the
process is repeated. When Y gains another half vibration then x equals 2a again. The
pendulums may exchange energy; the normal modes do not.

To reinforce the importance of normal modes and their coordinates let us return to
equations (4.3a) and (4.3b). If we modify our normal coordinates to read

X, = (g) 1/z(x—i—y) and Y, = (g) 1/2()c—y)
X - 14
= +
> 2a < x=0 > a < >»a < > a < > -a<

Figure 4.5 The faster vibration of the ¥ mode results in a phase gain of 7 rad over the X mode of
vibration, to give y = 2a, which is shown here as a combination of the normal modes X — Y
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then we find that the kinetic energy in those equations becomes

1 1
Ex=T=aX*+c¥*= §X§+2Y5 (4.4a)
and the potential energy
1 1 2
V =bXx?+dy? :f(g)xgjb (g+s>yz

q
2 2\l m (4.4b)

1 2 2 1 2y 2
2 OX +§ SYq7

where w} = g/l and w? = g/l + 2s/m.
Note that the coefficients of X 5 and Y 5 depend only on the mode frequencies and that the
properties of individual parts of the system are no longer explicit.

The total energy of the system is the sum of the energies of each separate excited mode
for there are no cross products XY, in the energy expression of our example, i.e.,

E=T+V= 1X2 ! 2X + 11/2+1 2Y
- — 2% 2% 274 ')

Atoms in polyatomic molecules behave as the masses of our pendulums; the normal
modes of two triatomic molecules CO, and H,O are shown with their frequencies in
Figure 4.6. Normal modes and their vibrations will occur frequently throughout this book.

co,

<> <> <0 ®, =4.16 x 10%3 sec?

<0 © (o> ®,=7.05 x 10'% sec™

A A
@ @ my=2 x 10'% sec™?
v

@(%@/ f@’é‘@ &,

0,=11x108sec?  ,=11.27 x 108 sec™? ;=478 x 10'3 sec?

Figure 4.6 Normal modes of vibration for triatomic molecules CO, and H,O
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The General Method for Finding Normal Mode Frequencies,
Matrices, Eigenvectors and Eigenvalues

We have just seen that when a coupled system oscillates in a single normal mode each
component of the system will vibrate with frequency of that mode. This allows us to adopt
a method which will always yield the values of the normal mode frequencies and the
relative amplitudes of the individual oscillators at each frequency.
Suppose that our system of coupled pendulums in the last section oscillates in only one
of its normal modes of frequency w.
Then, in the equations of motion
mx +mg(x/l) +s(x—y) =0
and
my +mg(y/l) —s(x—y) =0
If the pendulums start from test, we may assume the solutions
x=A eiwt
y — B eiwt
where A and B are the displacement amplitudes of x and y at the frequency w. Using these
solutions, the equations of motion become

[—mw?A + (mg/D)A + s(A — B)]e“" =0

, (4.5)
[~mw?B + (mg/l)B — s(A — B)| e =0

The sum of these expressions gives
(A + B)(—mw? +mg/l) =0

which is satisfied when w? = g/I, the first normal mode frequency. The difference between
the expressions gives

(A — B)(—mw? + mg/l+2s) =0

which is satisfied when w? = g/l + 2s/m, the second normal mode frequency.

Inserting the value w? = g/l in the pair of equations gives A = B (the ‘in phase’
condition), whilst w? = g/l + 2s/m gives A = —B (the antiphase conditon).

These are the results we found in the previous section.

We may, however, by dividing through by m e, rewrite equation (4.5) in matrix form as

w(z) + wf, —wf A 2| A
2 2 2 =w (4.6)
—wyg wg+ws | B B
where
2 2_ S
wy==> and w;= P
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This is called an eigenvalue equation. The value of w? for which non-zero solutions exist
are called the eigenvalues of the matrix. The column vector with components A and B is an
eigenvector of the matrix.

Equation (4.6) may be written in the alternative form

(Wi +w? —w?) —w? } {A}
: =0 4.7
—w? (wi+w?—w?)||B (4.7)
and these equations have a non-zero solution if and only if the determinant of the matrix
vanishes; that is, if

(Witw?—w)?—wt=0

or
(Wi + w? —w?) = £w?

ie.
wl=wl or w)=wi+2w?
as we expect.
The solution w} = w3 in equation (4.6) yields A = B as previously and w3 = w3 + 2w?
yields A = —B.
Because the system started from rest we have been able to assume solutions of the

simple form
x=Ae"
iwt

y=Be

When the pendulums have an initial velocity at t = 0, the boundary conditions require
solutions of the form

x = Aei(wﬂrm)

y= Bei(wt-&-a’_v)

where each normal mode frequency w has its own particular value of the phase constant «.
The number of adjustable constants then allows the solutions to satisfy the arbitrary values
of the initial displacements and velocities of both pendulums.

(Problems 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 4.10, 4.11)

Mass or Inductance Coupling

In a later chapter we shall discuss the propagation of voltage and current waves along a
transmission line which may be considered as a series of coupled electrical oscillators
having identical values of inductance and of capacitance. For the moment we shall consider
the energy transfer between two electrical circuits which are inductively coupled.
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A mutual inductance (shared mass) exists between two electrical circuits when the
magnetic flux from the current flowing on one circuit threads the second circuit. Any
change of flux induces a voltage in both circuits.

A transformer depends upon mutual inductance for its operation. The power source is
connected to the transformer primary coil of n, turns, over which is wound in the same
sense a secondary coil of n; turns. If unit current flowing in a single turn of the primary coil
produces a magnetic flux ¢, then the flux threading each primary turn (assuming no flux
leakage outside the coil) is n,¢ and the total flux threading all n,, turns of the primary is

2
L,= np(ﬁ

where L, is the self inductance of the primary coil. If unit current in a single turn of the
secondary coil produces a flux ¢, then the flux threading each secondary turn is n,¢ and the
total flux threading the secondary coil is

Ls = nfgba

where L; is the self inductance of the secondary coil.
If all the flux lines from unit current in the primary thread all the turns of the secondary,
then the total flux lines threading the secondary defines the mutual inductance

M = ny(ny¢) = \/m

In practice, because of flux leakage outside the coils, M < /L,L, and the ratio

= k, the coefficient of coupling.
LpLs

If the primary current /, varies with e, a change of I » gives an induced voltage
—L,dI,/ dt = —iwLl), in the primary and an induced voltage —M dI,/dt = —iwMI, in the
secondary.

If we consider now the two resistance-free circuits of Figure 4.7, where L and L, are
coupled by flux linkage and allowed to oscillate at some frequency w (the voltage and
current frequency of both circuits), then the voltage equations are

1
ilell —i—11+in12=0 (48)
wCl

M = Mutual Inductance

Figure 4.7 Inductively (mass) coupled LC circuits with mutual inductance M
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and
1
iwLylp —1——1 iwMI, =0 4.9
wlyly le2 2 + 1wMlI, (4.9)

where M is the mutual inductance.
Multiplying (4.8) by w/iL gives

W - Mo, 2o
LC, Lt
and multiplying (4.9) by w/iL, gives
1 M
2 2 2
I, — —wl; =0
Wl 1.Cs +L2w 1 )

M
(Wi — Wil = I w2, (4.10)
1
and
M
(W3 — w2 =~ (4.11)

The product of equations (4.10) and (4.11) gives

M2

2 2V(,2 2y
(Wi —w)(w; —w") L\L,

w* = k2w, (4.12)

where k is the coefficient of coupling.

Solving for w gives the frequencies at which energy exchange between the circuits
allows the circuits to resonate. If the circuits have equal natural frequencies w; = wy = wy,
say, then equation (4.12) becomes

or
(W — w?) = L kw?
that is
w
w==£ 0
1+k
The positive sign gives two frequencies
w w
R — and W’ =——-2

v1+k 1—k

at which, if we plot the current amplitude versus frequency, two maxima appear (Figure 4.8).
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Coupling
(a) klarge
(b) kintermediate
(a) (b)/(c) (c) ksmall

Current amplitude

o o

Figure 4.8 Variation of the current amplitude in each circuit near the resonant frequency. A small
resistance prevents the amplitude at resonance from reaching infinite values but this has been
ignored in the simple analysis. Flattening of the response curve maximum gives ‘frequency band pass’
coupling

In loose coupling k and M are small, and w’ =~ w” ~ w(, so that both systems behave
almost independently. In tight coupling the frequency difference w” — w’ increases, the
peak values of current are displaced and the dip between the peaks is more pronounced. In
this simple analysis the effect of resistance has been ignored. In practice some resistance is
always present to limit the amplitude maximum.

(Problems 4.12, 4.13, 4.14, 4.15, 4.16)

Coupled Oscillations of a Loaded String

As a final example involving a large number of coupled oscillators we shall consider a light
string supporting n equal masses m spaced at equal distance a along its length. The string is
fixed at both ends; it has a length (n 4 1)a and a constant tension 7 exists at all points and
all times in the string.

Small simple harmonic oscillations of the masses are allowed in only one plane and the
problem is to find the frequencies of the normal modes and the displacement of each mass
in a particular normal mode.

This problem was first treated by Lagrange, its particular interest being the use it makes
of normal modes and the light it throws upon the wave motion and vibration of a
continuous string to which it approximates as the linear separation and the magnitude of the
masses are progressively reduced.

Figure 4.9 shows the displacement y, of the r th mass together with those of its two
neighbours. The equation of motion of this mass may be written by considering the
components of the tension directed towards the equilibrium position. The r th mass is
pulled downwards towards the equilibrium position by a force 7'sin 6, due to the tension
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Yi=Yraa m Yr=Yr+1

Figure 4.9 Displacements of three masses on a loaded string under tension T giving equation of
motion my, = T(y,41 — 2y,+ y,-1)/a

on its left and a force T sin 6, due to the tension on its right where

Sin91 :yr_yr—l
and
sin92 :yir — e
a

Hence the equation of motion is given by

d’y,
= —T (sin@ sin 6
m-s (sinf; +sin6;)
:_T(yr_yrfl +yr_yr+1)
a a
SO
d’y,

T
=y, =— -1 -2y, +y, 4.13
g2 V= e = 2 ye) (4.13)
If, in a normal mode of oscillation of frequency w, the time variation of y, is simple
harmonic about the equilibrium axis, we may write the displacement of the r th mass in this
mode as
V= Ar eiwt
where A, is the maximum displacement. Similarly y, .| =A,, ;e and y,_; =A,_; e,
Using these values of y in the equation of motion gives
. T .
—wA, e = — (A, —2A,+ A, )e
ma

or

maw 2

A, + (2— )A,—A,+1 =0 (4.14)

This is the fundamental equation.
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The procedure now is to start with the first mass » = 1 and move along the string, writing

out the set of similar equations as r assumes the values r = 1,2, 3, ..., n remembering that,
because the ends are fixed

Yo ZA():O and Yn+1 :A”Jr] =0

Thus, when r = 1 the equation becomes

2
(2—’"‘;‘*’ )AI—AZ:O (Ao = 0)

When r = 2 we have

maw 2

—A1+<2— >A2—A3:0

and when r = n we have

maw 2

Sy (2— )A,,:o (App1 =0)

Thus, we have a set of n equations which, when solved, will yield n different values of w2,
each value of w being the frequency of a normal mode, the number of normal modes being
equal to the number of masses.

The formal solution of this set of n equations involves the theory of matrices. However,
we may easily solve the simple cases for one or two masses on the string (n = 1 or 2) and,
in additon, it is possible to show what the complete solution for n masses must be without
using sophisticated mathematics.

First, when n = 1, one mass on a string of length 2a, we need only the equation for r = 1
where the fixed ends of the string give Ag = A, = 0.

Hence we have
2
<2 _ maw )Al _0
T

22T
ma

giving
w

a single allowed frequency of vibration (Figure 4.10a).
When n = 2, string length 3a (Figure 4.10b) we need the equations for both » = 1 and
r = 2; that is

2
(Z_maw >A1—A2:O
T
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m
a a
f/?\‘ n=
2_ 2T
® “ma
(@
m m
2__T_
A A, 1 " 'ma
A=A
n=2
m
,2=3T
AlI fAZ 2  ma
Al=-A,
m

(b)

Figure 4.10 (a) Normal vibration of a single mass m on a string of length 2a at a frequency
w? = 2T /ma. (b) Normal vibrations of two masses on a string of length 3a showing the loose coupled
‘in phase’ mode of frequency w2 = T/ma and the tighter coupled ‘out of phase’ mode of frequency
w3 = 3T /ma. The number of normal modes of vibration equals the number of masses

and

2
—A1+(2—m"T” )AZ—O (Ag=A3 =0)

Eliminating A; or A, shows that these two equations may be solved (are consistent)
when

that is

maw? maw?
2 — —-1)(2- 1]=0

Thus, there are two normal mode frequencies

T 3T
=— and wi="-
ma ma
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Using the values of w; in the equations for r = 1 and r = 2 gives A| = A, the slow ‘in
phase’ oscillation of Figure 4.10b, whereas w, gives A| = —A, the faster ‘anti-phase’
oscillation resulting from the increased coupling.

To find the general solution for any value of n let us rewrite the equation

maw 2

A+ (2_ )Ar_ArJrl =0

in the form

2 2
A1 +A 4 Zwo —w 2

= 5 where wj=—

A, wg ma

We see that for any particular fixed value of the normal mode frequency w(wj say) the
right hand side of this equation is constant, independent of r, so the equation holds for all
values of ». What values can we give to A, which will satisfy this equation, meeting the
boundary conditions Ag = A,4+1 = 0 at the end of the string?

Let us assume that we may express the amplitude of the rth mass at the frequency w; as

A, = Ceir@

where C is a constant and 6 is some constant angle for a given value of w;. The left hand
side of the equation then becomes

Ar 1 +Ar C(ellr=10 4 gilrt1)0)
A, o Ceir?
= 2cosf

= (71 1 eif)

which is constant and independent of r.
The value of ¢; (constant at wj) is easily found from the boundary conditions

Ag=A,1 =0
which, using sin 70 from e'"? gives
Ag=Csinrf =0 (automatically at r = 0)
and
Ap1 =Csin(n+1)0=0

when

(n+1)0; =jr for j=1,2,...,n
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Hence
jm
0; =
T n+1
and
A, = Csinrf); = Csin 2Ll
n+1

which is the amplitude of the rth mass at the fixed normal mode frequency w;.
To find the allowed values of w; we write
2

A A 2wk — ?
il B rel _ 770 J = 2cosf; = 2cos

A, w(z) n—+1
giving
2 2 T
w; = 2wy {1 —cosn_’_l} (4.15)
where j may take the values j = 1,2,...,n and w} = T/ma.

Note that there is a maximum frequency of oscillation w; = 2wy. This is called the ‘cut
off” frequency and such an upper frequency limit is characteristic of all oscillating systems
composed of similar elements (the masses) repeated periodically throughout the structure
of the system. We shall meet this in the next chapter as a feature of wave propagation in
crystals.

To summarize, we have found the normal modes of oscillation of n coupled masses on
the string to have frequencies given by

T .
—1,2.3...
+J (j=1,2,3...n)

w? :2—T {1 — cos
I ma

At each frequency w; the r th mass has an amplitude

rjm
n-—+

A, = Csin
where C is a constant.
(Problems 4.17, 4.18, 4.19, 4.20, 4.21, 4.22)
The Wave Equation

Finally, in this chapter, we show how the coupled vibrations in the periodic structure of our
loaded string become waves in a continuous medium.
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We found the equation of motion of the r th mass to be

d’y, T
dr? :%(YrJrl_zyr"'yrfl) (413)

We know also that in a given normal mode all masses oscillate with the same mode
frequency w, so all y,’s have the same time dependence. However, as we see in Fig-
ure 4.10(b) where A| and A, are anti-phase, the transverse displacement y, also depends
upon the value of r; that is, the position of the r th mass on the string. In other words, y, is a
function of two independent variables, the time ¢ and the location of r on the string.

If we use the separation a =~ 6x and let éx — 0, the masses become closer and we can
consider positions along the string in terms of a continuous variable x and any transverse
displacement as y(x, t), a function of both x and r.

The partial derivative notation dy(x,t)/0t expresses the variation with time of y(x,¢)
while x is kept constant.

The partial derivative dy(x, t) /Ox expresses the variation with x of y(x, t) while the time ¢
is kept constant. (Chapter 5 begins with an extended review of this process for students
unfamiliar with this notation.)

In the same way, the second derivative 92y(x,)/0t? continues to keep x constant and
0%y(x,t)/0x? keeps t constant.

For example, if

y= ei(wt+kx)
then
ay i(wi+-kx azy 2
5= iwel@ ) — iy and 2= WY
while
dy . i(wi+kx . 32y 2
a:ke“ ) —iky and w:—ky

If we now locate the transverse displacement y, at a position x = x, along the string,
then the left hand side of equation (4.13) becomes

%y, 0%

a2 o2

where y is evaluated at x = x, and now, as a = x — 0, we may write x, = X, X, =
x+6x and x,_; =x—b6x with y.(t) — y(x,1),y,41(f) = y(x + 6x,¢) and y, (1) —
y(x — béx,1).

Using a Taylor series expansion to express y(x + 6x,¢) in terms of partial derivates of y
with respect to x we have

_ dy 1 20%
y(x £ 6x, 1) = y(x) £ 6xa+§(:|:6x) 2
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and equation (4.13) becomes after substitution

Oy T (yr+1 —Yr Yr— .Vr—l)

W:m a a
oy 1. ,0% Oy 1, ,0%
m ox ox

SO

0%y T (6)()2 0%y T 0%y

2 m ox 0x2 m x(?xz

If we now write m = pdx where p is the linear density (mass per unit length) of the
string, the masses must —0 as dx—0 to avoid infinite mass density. Thus, we have

0%y TOo?%

o2 pox?

This is the Wave Equation.

T/p has the dimensions of the square of a velocity, the velocity with which the waves;
that is, the phase of oscillation, is propagated. The solution for y at any particular point
along the string is always that of a harmonic oscillation.

(Problem 4.23)

Problem 4.1
Show that the choice of new normal coordinates X, and Y, expresses equations (4.3a) and (4.3b) as
equations (4.4a) and (4.4b).

Problem 4.2
Express the total energy of Problem 4.1 in terms of the pendulum displacements x and y as
E= (Ekin + Epot)x + (Ekin + Epot)y + (Epot)xy,

where the brackets give the energy of each pendulum expressed in its own coordinates and (E pot)xy
is the coupling or interchange energy involving the product of these coordinates.

Problem 4.3

Figures 4.3 and 4.5 show how the pendulum configurations x = 2a,y = 0 and x = 0,y = 2a result
from the superposition of the normal modes X and Y. Using the same initial conditions
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98 Coupled Oscillations

(x=2a,y =0,x =y =0) draw similar sketches to show how X and Y superpose to produce
x=—-2a,y=0and x =0,y = —2a.

Problem 4.4
In the figure two masses m | and m, are coupled by a spring of stiffness s and natural length [. If x is
the extension of the spring show that equations of motion along the x axis are

mix, = sx
and
MmoXy) = —SX

and combine these to show that the system oscillates with a frequency

where

. mimy
# mi+mo
is called the reduced mass.

The figure now represents a diatomic molecule as a harmonic oscillator with an effective mass
equal to its reduced mass. If a sodium chloride molecule has a natural vibration frequency
= 1.14 x 103 Hz (in the infrared region of the electromagnetic spectrum) show that the interatomic
force constant s = 120N m ™! (this simple model gives a higher value for s than more refined
methods which account for other interactions within the salt crystal lattice)

Mass of Na atom =23 a.m.u.
Mass of Cl atom =35 a.m.u.
1 amu.=1.67x10"% kg

PSR

<« X, —>

-« X5 —>

Problem 4.5
The equal masses in the figure oscillate in the vertical direction. Show that the frequencies of the
normal modes of oscillation are given by

5 s
=0BxVS5)—
w?=(3+5) m
and that in the slower mode the ratio of the amplitude of the upper mass to that of the lower mass is
%(\/5 — 1) whilst in the faster mode this ratio is ,%(\/g +1).
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In the calculations it is not necessary to consider gravitational forces because they play no part in
the forces responsible for the oscillation.

Problem 4.6

In the coupled pendulums of Figure 4.3 let us write the modulated frequency w,, = (w2 —w1)/2 and
the average frequency w, = (w2 +w;)/2 and assume that the spring is so weak that it stores a
negligible amount of energy. Let the modulated amplitude

2acosw,,t or 2asinw,,t

be constant over one cycle at the average frequency w, to show that the energies of the masses may

be written
2.2 .2
E, =2ma“w;, cos” w,t
and

E, = 2ma2w3 sin? w,,t
Show that the total energy E remains constant and that the energy difference at any time is

E,—Ey=Ecos(wy —wi)t

Prove that

E,=—=[1+4+cos(wy —wi)i

| by

and
E
E, = E[l —cos (wy — w) )t

to show that the constant total energy is completely exchanged between the two pendulums at the
beat frequency (wy — wy).

Problem 4.7
When the masses of the coupled pendulums of Figure 4.1 are no longer equal the equations of
motion become

mix=—-m(g/Dx—s(x—y)
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and
may = —ma(g/l)y +s(x =)
Show that we may choose the normal coordinates

X_m1x+m2y

mi+mj

with a normal mode frequency w? =g/l and Y =x—y with a normal mode frequency

w3 =g/l+s(1/my + 1/my).
Note that X is the coordinate of the centre of mass of the system whilst the effective mass in the Y
mode is the reduced mass p of the system where 1/u = 1/m + 1/my.

Problem 4.8
Let the system of Problem 4.7 be set in motion with the initial conditionsx = A,y =0,x =y =0 at
t = 0. Show that the normal mode amplitudes are X = (m /M)A and Y, = A to yield

x= M(ml COsSw 1t + mo cos wat)
and

m
y :Aﬁl(coswlt — coswst),

where M = m| + m.
Express these displacements as

X =2ACOSw,tcosw,t+ W (my —my) sinw,,t sinw,t
and
my . .
y= 2Aﬁ Sinw,,t sin wt,

where w,, = (wy —w1)/2 and w, = (w; +w2)/2.

Problem 4.9
Apply the weak coupling conditions of Problem 4.6 to the system of Problem 4.8 to show that the
energies

E
E, :W[mf +m§ + 2mymy cos (wy — w1)]

and

2mm
E, :E( 1\/;2 2)[1 —cos (wy — w))1]

Note that E, varies between a maximum of E (at ¢ = 0) and a minimum of [(m, — m;)/M] 2E, whilst
E, oscillates between a minimum of zero at # =0 and a maximum of 4(m;m,/M?*)E at the beat
frequency of (wy —wy).
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Problem 4.10
In the figure below the right hand pendulum of the coupled system is driven by the horizontal force
F coswt as shown. If a small damping constant r is included the equations of motion may be written

mx = —#x—r}'c—s(x—y)—b—Focoswt
and
. mg .
my = ——7y =1y +s(x—y)

Show that the equations of motion for the normal coordinates X = x +y and ¥ = x — y are those
for damped oscillators driven by a force F cos wt.
Solve these equations for X and Y and, by neglecting the effect of r, show that

Fo t— 1 n 1]
~ — COS
S om w_w%—wz w3 — w?]
and
o t_ 1 1 ]
~ — COSw
Y3 wl—w? wi-w?
where
2s
w%zg and w§:§+—
l l
Show that
y w%—w%

and sketch the behaviour of the oscillator with frequency to show that outside the frequency range
wjy — w1 the motion of y is attenuated.

S
@ TTTTTTTTT T @) < Focos of —
y X

Problem 4.11

The diagram shows an oscillatory force F,coswt acting on a mass M which is part of a simple
harmonic system of stiffness k£ and is connected to a mass m by a spring of stiffness s. If all
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oscillations are along the x axis show that the condition for M to remain stationary is w? = s/m.

(This is a simple version of small mass loading in engineering to quench undesirable oscillations.)

F, cos ot

~— (mu{TOO00 L
Problem 4.12

The figure below shows two identical LC circuits coupled by a common capacitance C with the
directions of current flow indicated by arrows. The voltage equations are

di,
Vi—-V,=L
1 2 T
and
dl,
Vo—-V3=L—
AT’
whilst the currents are given by
dq dq,
. — _Ia ., = Ia -1
dr dt b
and
dq;
15 _ g
dr —°

Solve the voltage equations for the normal coordinates (I, + Ij) and (I, — I;) to show that the
normal modes of oscillation are given by

1
I,=1, at wi= Ic
and
I,=—I, at w%:i
LC
Note that when I, = I, the coupling capacitance may be removed and ¢; = —¢,. When [, = —I,

q> = —2q, = —2q3.
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Problem 4.13
A generator of e.m.f. E is coupled to a load Z by means of an ideal transformer. From the diagram,
Kirchhoff’s Law gives

E = —e] = iwL,,Il _iWMIZ
and
1222 — €y — in11 — istlz.

Show that E /I, the impedance of the whole system seen by the generator, is the sum of the primary
impedance and a ‘reflected impedance’ from the secondary circuit of w?M?/Z; where

Zs =2y +iwLj.
> ¥
h
© -
Ly
Problem 4.14
Show, for the perfect transformer of Problem 4.13, that the impedance seen by the generator consists

of the primary impedance in parallel with an impedance (n, /nS)ZZZ, where n, and n, are the
number of primary and secondary transformer coil turns respectively.

M

2

~
T l2
e
Ls

Problem 4.15

If the generator delivers maximum power when its load equals its own internal impedance show how
an ideal transformer may be used as a device to match a load to a generator, e.g. a loudspeaker of a
few ohms impedance to an amplifier output of 10* Q) impedance.

Problem 4.16

The two circuits in the diagram are coupled by a variable mutual inductance M and Kirchhoff’s Law

gives

Z\I1 +Zyl, =E
and

Zyuli + 271, =0,
where

M is varied at a resonant frequency where the reactance X; = X, = 0 to give a maximum value
of I,. Show that the condition for this maximum is wM = y/R{R, and that this defines a
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‘critical coefficient of coupling” k = (Q1Q2)71/ 2 where the Q’s are the quality factors of the
circuits.

C C

Problem 4.17
Consider the case when the number of masses on the loaded string of this chapter is n = 3. Use
equation (4.15) to show that the normal mode frequencies are given by

w? = (2 - V2)wi; w3 = 2w}
and

w3 = (2+V2)w;

Repeat the problem using equation (4.14) (with w3 = T'/ma) in the matrix method of equation (4.7),
where the eigenvector components are A,_;, A, and A, ;.

Problem 4.18

Show that the relative displacements of the masses in the modes of Problem 4.17 are 1 : V21,
1:0:—1, and 1: —/2: 1. Show by sketching these relative displacements that tighter coupling
increases the mode frequency.

Problem 4.19

m

I
Nni—> N2 —> Nz —>

The figure represents a triatomic molecule with a heavy atom mass M bound to equal atoms of
smaller mass m on either side. The binding is represented by springs of stiffness s and in equilibrium
the atom centres are equally spaced along a straight line. Simple harmonic vibrations are considered
only along this linear axis and are given by
ny=nje

where 7; is the displacement from equilibrium of the jth atom.

Set up the equation of motion for each atom and use the matrix method of equation (4.7) to show
that the normal modes have frequencies

M+ 2
wi =0,w; = 2 and w3 = S—( - 2m)
m ; mM

Describe the motion of the atoms in each normal mode.
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Problem 4.20

Taking the maximum value of

2T j
w%z—(lfcosi)
ma n+1

at j=mn as that produced by the strongest coupling, deduce the relative displacements of
neighbouring masses and confirm your deduction by inserting your values in consecutive difference
equations relating the displacements y,.1,y, and y,_;. Why is your solution unlikely to satisfy the
displacements of those masses near the ends of the string?

Problem 4.21
Expand the value of

2T j
w%z—(lfcosj—w)
ma n+1

when j < n in powers of (j/n+ 1) to show that in the limit of very large values of n, a low
frequency

g T

wy i p7

where p =m/a and | = (n+ 1)a.

Problem 4.22
An electrical transmission line consists of equal inductances L and capacitances C arranged as
shown. Using the equations

Ld[rfl qdr-1 —{qr

=V, -V, =
dt : C

and

dg,
Ir— _Ir: 5
! dt

show that an expression for /, may be derived which is equivalent to that for y, in the case of the
mass-loaded string. (This acts as a low pass electric filter and has a cut-off frequency as in the case of
the string. This cut-off frequency is a characteristic of wave propagation in periodic structures and
electromagnetic wave guides.)

Vi Vv Vi
Gra L ar L Gr+1

L L A _l_Ic

cr L » cr

Problem 4.23

Show that
y = eler gikr
satisfies the wave equation
%y _ L, 9% .
el = 2 if w=ck
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Summary of Important Results

In coupled systems each normal coordinate defines a degree of freedom, each degree of
freedom defines a way in which a system may take up energy. The total energy of the
system is the sum of the energies in its normal modes of oscillation because these remain
separate and distinct, and energy is never exchanged between them.

A simple harmonic oscillator has two normal coordinates [velocity (or momentum) and
displacement] and therefore two degrees of freedom, the first connected with kinetic
energy, the second with potential energy.

n Equal Masses, Separation a, Coupled on a String under Constant Tension T
Equation of motion of the rth mass is
my, = (T/a)(Yr—l =2y, +yr+1)

which for y, = A, e gives

2 — maw

2
7Ar+1 + ( T )Ar -A1=0

There are n normal modes with frequencies w; given by

2T j
w%z—(l—cosi>
ma n+1

In a normal mode of frequency w; the rth mass has an amplitude

A, = Csin il

n-+

where C is a constant.

Wave Equation

In the limit, as separation a = éx — 0 equation of motion of the rth mass on a loaded
string my, = (T/a)(y,—1 — 2y, + y,+1) becomes the wave equation

0% _To%_ 0%
orr  p Ox? Ox?

where p is mass per unit length and c is the wave velocity.
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Transverse Wave Motion

Partial Differentiation

From this chapter onwards we shall often need to use the notation of partial differentiation.
When we are dealing with a function of only one variable, y = f(x) say, we write the
differential coefficient
d —
dy _ o Fl+ 60 —f ()
dx ox—0 ox

but if we consider a function of two or more variables, the value of this function will vary
with a change in any or all of the variables. For instance, the value of the co-ordinate z on
the surface of a sphere whose equation is x2+y?+z2 = a2, where a is the radius of the
sphere, will depend on x and y so that z is a function of x and y written z = z(x,y). The
differential change of z which follows from a change of x and y may be written

0z 0z
dz=[|=—) dx — | d
= (), () o

where (Jz/ Bx)y means differentiating z with respect to x whilst y is kept constant, so that

(az> _ oy A 0xy) —zlxy)

ox—0 ox

ox

The total change dz is found by adding the separate increments due to the change of each
variable in turn whilst the others are kept constant. In Figure 5.1 we can see that keeping y
constant isolates a plane which cuts the spherical surface in a curved line, and the
incremental contribution to dz along this line is exactly as though z were a function of x
only. Now by keeping x constant we turn the plane through 90° and repeat the process with
y as a variable so that the total increment of dz is the sum of these two processes.

If only two independent variables are involved, the subscript showing which variable is
kept constant is omitted without ambiguity.

The Physics of Vibrations and Waves, 6th Edition H. J. Pain
© 2005 John Wiley & Sons, Ltd., ISBN: 0-470-01295-1(hardback); 0-470-01296-X(paperback)
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plane x = constant

z (y) only
gradient (a_f/x) i

f
|

d22

Z (x) only dz; y
gradient (—z)
axy/

Small element of
spherical surface, radius a

X2+y2+72 = 2

> X

Plane y = constant

Figure 5.1 Small element of a Spherical Surface showing dz=dzy +dz, = (9z/0x),dx+
(0z/0dy), dy where each gradient is calculated with one variable remaining constant

In wave motion our functions will be those of variables of distance and time, and we
shall write 9/0x and 9% /9x? for the first or second derivatives with respect to x, whilst the
time ¢ remains constant. Again, 9/0t and 92/t will denote first and second derivatives
with respect to time, implying that x is kept constant.

Waves

One of the simplest ways to demonstrate wave motion is to take the loose end of a long
rope which is fixed at the other end and to move the loose end quickly up and down. Crests
and troughs of the waves move down the rope, and if the rope were infinitely long such
waves would be called progressive waves—these are waves travelling in an unbounded
medium free from possible reflection (Figure 5.2).

crest

trough

Progressive waves on infinitely long string

Figure 5.2 Progressive transverse waves moving along a string
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If the medium is limited in extent; for example, if the rope were reduced to a violin
string, fixed at both ends, the progressive waves travelling on the string would be reflected
at both ends; the vibration of the string would then be the combination of such waves
moving to and fro along the string and standing waves would be formed.

Waves on strings are transverse waves where the displacements or oscillations in the
medium are transverse to the direction of wave propagation. When the oscillations are parallel
to the direction of wave propagation the waves are longitudinal. Sound waves are longitudinal
waves; a gas can sustain only longitudinal waves because transverse waves require a shear
force to maintain them. Both transverse and longitudinal waves can travel in a solid.

In this book we are going to discuss plane waves only. When we see wave motion as a
series of crests and troughs we are in fact observing the vibrational motion of the individual
oscillators in the medium, and in particular all of those oscillators in a plane of the medium
which, at the instant of observation, have the same phase in their vibrations.

If we take a plane perpendicular to the direction of wave propagation and all oscillators
lying within that plane have a common phase, we shall observe with time how that plane of
common phase progresses through the medium. Over such a plane, all parameters
describing the wave motion remain constant. The crests and troughs are planes of
maximum amplitude of oscillation which are 7 rad out of phase; a crest is a plane of
maximum positive amplitude, while a trough is a plane of maximum negative amplitude. In
formulating such wave motion in mathematical terms we shall have to relate the phase
difference between any two planes to their physical separation in space. We have, in
principle, already done this in our discussion on oscillators.

Spherical waves are waves in which the surfaces of common phase are spheres and the
source of waves is a central point, e.g. an explosion; each spherical surface defines a set of
oscillators over which the radiating disturbance has imposed a common phase in vibration.
In practice, spherical waves become plane waves after travelling a very short distance. A
small section of a spherical surface is a very close approximation to a plane.

Velocities in Wave Motion

At the outset we must be very clear about one point. The individual oscillators which make
up the medium do not progress through the medium with the waves. Their motion is simple
harmonic, limited to oscillations, transverse or longitudinal, about their equilibrium
positions. It is their phase relationships we observe as waves, not their progressive motion
through the medium.

There are three velocities in wave motion which are quite distinct although they are
connected mathematically. They are

1. The particle velocity, which is the simple harmonic velocity of the oscillator about its
equilibrium position.

2. The wave or phase velocity, the velocity with which planes of equal phase, crests or
troughs, progress through the medium.

3. The group velocity. A number of waves of different frequencies, wavelengths and
velocities may be superposed to form a group. Waves rarely occur as single

STUDENTS-HUB.com Uploaded By: Jibreel Bornat


https://students-hub.com

STUDENTS-HUB.com

110 Transverse Wave Motion

monochromatic components; a white light pulse consists of an infinitely fine spectrum
of frequencies and the motion of such a pulse would be described by its group velocity.
Such a group would, of course, ‘disperse’ with time because the wave velocity of each
component would be different in all media except free space. Only in free space would
it remain as white light. We shall discuss group velocity as a separate topic in a later
section of this chapter. Its importance is that it is the velocity with which the energy in
the wave group is transmitted. For a monochromatic wave the group velocity and the
wave velocity are identical. Here we shall concentrate on particle and wave velocities.

The Wave Equation

This equation will dominate the rest of this text and we shall derive it, first of all, by
considering the motion of transverse waves on a string.

We shall consider the vertical displacement y of a very short section of a uniform string.
This section will perform vertical simple harmonic motions; it is our simple oscillator. The
displacement y will, of course, vary with the time and also with x, the position along the
string at which we choose to observe the oscillation.

The wave equation therefore will relate the displacement y of a single oscillator to
distance x and time ¢. We shall consider oscillations only in the plane of the paper, so that
our transverse waves on the string are plane polarized.

The mass of the uniform string per unit length or its linear density is p, and a constant
tension T exists throughout the string although it is slightly extensible.

This requires us to consider such a short length and such small oscillations that we may
linearize our equations. The effect of gravity is neglected.

Thus in Figure 5.3 the forces acting on the curved element of length ds are T at an angle 0
to the axis at one end of the element, and T at an angle 6 + d6 at the other end. The length
of the curved element is
1/2

@]

ds =

displacement
y

0+do

String
element

T T >

X dx X+ dx X

Figure 5.3 Displaced element of string of length ds = dx with tension T acting at an angle 6 at x
and at § + df at x + dx
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but within the limitations imposed dy/dx is so small that we ignore its square and take
ds = dx. The mass of the element of string is therefore pds = pdx. Its equation of motion is
found from Newton’s Law, force equals mass times acceleration.

The perpendicular force on the element dx is 7 sin (6 + df) — T'sin @ in the positive y
direction, which equals the product of pdx (mass) and 9%y/0t? (acceleration).

Since @ is very small sin 6 = tan § = Jy/0x, so that the force is given by

@), )

where the subscripts refer to the point at which the partial derivative is evaluated. The
difference between the two terms in the bracket defines the differential coefficient of the
partial derivative dy/0x times the space interval dx, so that the force is

0%y

T 7
Ox?

dx

The equation of motion of the small element dx then becomes

0%y 0%y
792 dx = pdx 22
Ox? P 52
or
% _pd%
Ox2 T or?
giving
9%y _10%
Ox2 ¢2 012

where T /p has the dimensions of a velocity squared, so ¢ in the preceding equation is a
velocity. THIS IS THE WAVE EQUATION.

It relates the acceleration of a simple harmonic oscillator in a medium to the second
derivative of its displacement with respect to its position, x, in the medium. The position of
the term c? in the equation is always shown by a rapid dimensional analysis.

So far we have not explicitly stated which velocity c represents. We shall see that it is the
wave or phase velocity, the velocity with which planes of common phase are propagated. In
the string the velocity arises as the ratio of the tension to the inertial density of the string.
We shall see, whatever the waves, that the wave velocity can always be expressed as a
function of the elasticity or potential energy storing mechanism in the medium and the
inertia of the medium through which its kinetic or inductive energy is stored. For
longitudinal waves in a solid the elasticity is measured by Young’s modulus, in a gas by P,
where v is the specific heat ratio and P is the gas pressure.
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Solution of the Wave Equation

The solution of the wave equation

0%y 1 0%y

ox2 2 0r?

will, of course, be a function of the variables x and . We are going to show that any
function of the form y = f(ct — x) is a solution. Moreover, any function y = f>(ct + x)
will be a solution so that, generally, their superposition y = f;(ct — x) + f2(ct + x) is the
complete solution.

If f| represents the differentiation of the function with respect to the bracket (cr — x),
then using the chain rule which also applies to partial differentiation

Jy )
F —fi(ct —x)
and
%y .,
@ =71 (Ct — x)
also
0
= =dfi(ct—x)
and
2
0 = et —)
so that
0%y _19%
ox2 2082

for y = fi(ct — x). When y = f(ct + x) a similar result holds.

(Problems 5.1, 5.2)

If y is the simple harmonic displacement of an oscillator at position x and time ¢ we
would expect, from Chapter 1, to be able to express it in the form y = a sin (wr — ¢), and in
fact all of the waves we discuss in this book will be described by sine or cosine functions.

The bracket (cf — x) in the expression y = f(ct — x) has the dimensions of a length and,
for the function to be a sine or cosine, its argument must have the dimensions of radians so
that (cf — x) must be multiplied by a factor 27/, where A is a length to be defined.
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A A

TT TT TT N,

0 y

a

displacement y

A

Figure 5.4 Locus of oscillator displacements in a continuous medium as a wave passes over them
travelling in the positive x-direction. The wavelength X is defined as the distance between any two
oscillators having a phase difference of 27 rad

We can now write
. L2
y = asin (wt — ¢) = asin Tﬂ (ct —x)

as a solution to the wave equation if 2mc/A = w = 27w, where v is the oscillation
frequency and ¢ = 27mx/\.

This means that if a wave, moving to the right, passes over the oscillators in a medium
and a photograph is taken at time ¢ = 0, the locus of the oscillator displacements (Fig-
ure 5.4) will be given by the expression y = asin (wt — ¢) = asin2n(ct — x) /. If we now
observe the motion of the oscillator at the position x = 0 it will be given by y = asinwt.

Any oscillator to its right at some position x will be set in motion at some later time by
the wave moving to the right; this motion will be given by

2
y = asin (wt — ¢) = asin Tﬂ(ct—x)

having a phase lag of ¢ with respect to the oscillator at x = 0. This phase lag ¢ = 2mx/\,
so that if x = A the phase lag is 27 rad that is, equivalent to exactly one complete vibration
of an oscillator.

This defines A as the wavelength, the separation in space between any two oscillators
with a phase difference of 27 rad. The expression 2wc/A = w = 27w gives ¢ = v\, where
¢, the wave or phase velocity, is the product of the frequency and the wavelength. Thus,
A/c = 1/v = 7, the period of oscillation, showing that the wave travels one wavelength in
this time. An observer at any point would be passed by v wavelengths per second, a
distance per unit time equal to the velocity ¢ of the wave.

If the wave is moving to the left the sign of ¢ is changed because the oscillation at x
begins before that at x = 0. Thus, the bracket

(ct — x) denotes a wave moving to the right
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and

(ct + x) gives a wave moving in the direction of negative x.

There are several equivalent expressions for y = f(cf — x) which we list here as sine
functions, although cosine functions are equally valid.
They are:

2
y:asin—ﬂ (et —x)

A
x
y=asin2r(vt -~
. x
y:asmw(t——)
c
y = asin (wt — kx)

(wr—kv) " the exponential

where k = 27/\ = w/c is called the wave number; also y = ae'
representation of both sine and cosine.

Each of the expressions above is a solution to the wave equation giving the displacement
of an oscillator and its phase with respect to some reference oscillator. The changes of the
displacements of the oscillators and the propagation of their phases are what we observe as
wave motion.

The wave or phase velocity is, of course, Ox/0t, the rate at which the disturbance moves
across the oscillators; the oscillator or particle velocity is the simple harmonic velocity
ady/on.

Choosing any one of the expressions above for a right-going wave, e.g.

y = asin (wt — kx)

we have

0

5); = wa cos (wt — kx)
and

0

8_1 = —kacos (wt — kx)
so that

o~ kox  ox

dy  wdy Oy Ox Oy
- Otox

The particle velocity dy/0t is therefore given as the product of the wave velocity

_ox
T o

and the gradient of the wave profile preceded by a negative sign for a right-going wave

y = flct —x)
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oy _ oy
TR m /(ﬁ
X

Figure 5.5 The magnitude and direction of the particle velocity dy/dt = —c(dy/0x) at any point x
is shown by an arrow in the right-going sine wave above

In Figure 5.5 the arrows show the direction of the particle velocity at various points of
the right-going wave. It is evident that the particle velocity increases in the same direction
as the transverse force in the wave and we shall see in the next section that this force is
given by

—T3dy/0ox

where T is the tension in the string.

(Problem 5.3)

Characteristic Impedance of a String (the string as a forced
oscillator)

Any medium through which waves propagate will present an impedance to those waves. If
the medium is lossless, and possesses no resistive or dissipation mechanism, this
impedance will be determined by the two energy storing parameters, inertia and elasticity,
and it will be real. The presence of a loss mechanism will introduce a complex term into
the impedance.

A string presents such an impedance to progressive waves and this is defined, because of
the nature of the waves, as the transverse impedance

transverse force F

transverse velocity v
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Foe®=—Tsino

Figure 5.6 The string as a forced oscillator with a vertical force Fo et driving it at one end

The following analysis will emphasize the dual role of the string as a medium and as a
forced oscillator.

In Figure 5.6 we consider progressive waves on the string which are generated at one end
by an oscillating force, Fy el which is restricted to the direction transverse to the string
and operates only in the plane of the paper. The tension in the string has a constant value, 7,
and at the end of the string the balance of forces shows that the applied force is equal and
opposite to T sinf at all time, so that

» 0
Foe' = —Tsinf@ ~ —Ttanf = —-T <_y>
Ox

where 6 is small.
The displacement of the progressive waves may be represented exponentially by

y = A ei(wt—k_x)

where the amplitude A may be complex because of its phase relation with F. At the end of
the string, where x = 0,

. 9 A
Foe“' =T (—y> = ikTA ¢!+
Ox x=0
giving
A=Fo_Fo (E)
ikT  iw \T
and

_Foyc i(wi—kx)
y= iw (T) ©

(since ¢ = w/k).
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The transverse velocity
. N\ ifwi—
V*y*FO< )el(\ut kx)

where the velocity amplitude v = F(/Z, gives a transverse impedance

Z= % = pc (since T = pc?)
or Characteristic Impedance of the string.
Since the velocity c is determined by the inertia and the elasticity, the impedance is also
governed by these properties.
(We can see that the amplitude of displacement y = F/wZ, with the phase relationship
—1 with respect to the force, is in complete accord with our discussion in Chapter 3.)

Reflection and Transmission of Waves on a String at a Boundary

We have seen that a string presents a characteristic impedance pc to waves travelling along
it, and we ask how the waves will respond to a sudden change of impedance; that is, of the
value pc. We shall ask this question of all the waves we discuss, acoustic waves, voltage
and current waves and electromagnetic waves, and we shall find a remarkably consistent
pattern in their behaviour.

We suppose that a string consists of two sections smoothly joined at a point x = 0 with a
constant tension 7 along the whole string. The two sections have different linear densities
p1 and pj, and therefore different wave velocities T/p; = ¢? and T/p, = c3. The specific
impedances are pjc; and p,c,, respectively.

An incident wave travelling along the string meets the discontinuity in impedance at the
position x = 0 in Figure 5.7. At this position, x = 0, a part of the incident wave will be
reflected and part of it will be transmitted into the region of impedance p;c».

We shall denote the impedance p;c by Z; and the impedance p,c; by Z,. We write the
displacement of the incident wave as y; = A, e/ %) a wave of real (not complex)

Transmitted wave
/—> T
%

Reflected wave P,C,

Incident wave
B

T PGy

x=0

Figure 5.7 Waves on a string of impedance p;c reflected and transmitted at the boundary x =0
where the string changes to impedance p,c»
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amplitude A, travelling in the positive x-direction with velocity c¢;. The displacement of
the reflected wave is y, = B, el %1% of amplitude B, and travelling in the negative
x-direction with velocity c;.

The transmitted wave displacement is given by y, = A, e!“%2%) of amplitude A, and
travelling in the positive x-direction with velocity c».

We wish to find the reflection and transmission amplitude coefficients; that is, the relative
values of B and A, with respect to A ;. We find these via two boundary conditions which
must be satisfied at the impedance discontinuity at x = 0.

The boundary conditions which apply at x = 0 are:

1. A geometrical condition that the displacement is the same immediately to the left and
right of x = 0 for all time, so that there is no discontinuity of displacement.

2. A dynamical condition that there is a continuity of the transverse force T'(dy/0x) at
x = 0, and therefore a continuous slope. This must hold, otherwise a finite difference in
the force acts on an infinitesimally small mass of the string giving an infinite
acceleration; this is not permitted.

Condition (1) at x = 0 gives

Yi+tyr=w
or

Ail(wlfklx) 1 B, ei(wH»k]x) _ Azei(wszzx)

At x = 0 we may cancel the exponential terms giving
A +B=4A, (5.1)
Condition (2) gives
T% ity)=T %yt
at x = 0 for all ¢, so that
—k\TA| + k\TB| = —k,TA,»

or

after cancelling exponentials at x = 0. But T/c; = picy =Z; and T/cy = prcy = Z,
so that

Zi(A1 —By) =Z,A, (5.2)
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Equations (5.1) and (5.2) give the

. . . . B, Z,-2,
Reflection coefficient of amplitude, — = ———~
fl ff f amp A 752,
and the
A, 27,
Transmission coefficient of amplitude, — = ——
o f amp Ay Zi+7Z,

We see immediately that these coefficients are independent of w and hold for waves of all
frequencies; they are real and therefore free from phase changes other than that of 7 rad
which will change the sign of a term. Moreover, these ratios depend entirely upon the ratios
of the impedances. (See summary on p. 546). If Z, = oo, this is equivalent to x = 0 being a
fixed end to the string because no transmitted wave exists. This gives B1/A| = —1, so that
the incident wave is completely reflected (as we expect) with a phase change of 7 (phase
reversal)—conditions we shall find to be necessary for standing waves to exist. A group of
waves having many component frequencies will retain its shape upon reflection at Z, = oo,
but will suffer reversal (Figure 5.8). If Z, = 0, so that x = 0 is a free end of the string, then
Bi/A; =1 and A,/A, = 2. This explains the ‘flick’ at the end of a whip or free ended
string when a wave reaches it.

Infinite
Impedance
Reflection of pulse having many pC=oo
frequency components
—> B E
Incident bo--
Pulse —» A Cc
<— ’
Reflected I_C
Pulse -—

Figure 5.8 A pulse of arbitrary shape is reflected at an infinite impedance with a phase change of
mrad, so that the reflected pulse is the inverted and reversed shape of the initial waveform. The pulse
at reflection is divided in the figure into three sections A, B, and C. At the moment of observation
section C has already been reflected and suffered inversion and reversal to become C’. The actual
shape of the pulse observed at this instant is A being A+ B — C’ where B=C'. The displacement at
the point of reflection must be zero.
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(Problems 5.4, 5.5, 5.6)

Reflection and Transmission of Energy

Our interest in waves, however, is chiefly concerned with their function of transferring
energy throughout a medium, and we shall now consider what happens to the energy in a
wave when it meets a boundary between two media of different impedance values.

If we consider each unit length, mass p, of the string as a simple harmonic oscillator of
maximum amplitude A, we know that its total energy will be E = % pw?A?, where w is the
wave frequency.

The wave is travelling at a velocity c¢ so that as each unit length of string takes up its
oscillation with the passage of the wave the rate at which energy is being carried along the
string is

(energy x velocity) = 1 pw?A?c

Thus, the rate of energy arriving at the boundary x = 0 is the energy arriving with the
incident wave; that is

Ipicw?At =1Zw?A?
The rate at which energy leaves the boundary, via the reflected and transmitted waves, is

1 2p2 | 1 242 1 2p2 | 1 242
FP1C1IW BT +5p202w A5 =3 Z 1w BT + 32w A3

which, from the ratio B; /A, and A,/A 1,

2 2
:%(,UZA% Zl<Zl —Zg) +4ZIZQ _1

—Z1w2A2
(ZI+ZZ)2 2 1

Thus, energy is conserved, and all energy arriving at the boundary in the incident
wave leaves the boundary in the reflected and transmitted waves.

The Reflected and Transmitted Intensity Coefficients

These are given by

Reflected Energy_ZIB% _ (B 2_ Z1— 2, 2
Incident Energy ~ Z;A?  \A1) \Zi+ 2,

Transmitted Energy ~ Z,A3  4Z,Z,
Incident Energy — Z1A? (2, +2,)°

We see that if Z; = Z; no energy is reflected and the impedances are said to be matched.
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(Problems 5.7, 5.8)

The Matching of Impedances

Impedance matching represents a very important practical problem in the transfer of
energy. Long distance cables carrying energy must be accurately matched at all joints to
avoid wastage from energy reflection. The power transfer from any generator is a
maximum when the load matches the generator impedance. A loudspeaker is matched to
the impedance of the power output of an amplifier by choosing the correct turns ratio on the
coupling transformer. This last example, the insertion of a coupling element between two
mismatched impedances, is of fundamental importance with applications in many branches
of engineering physics and optics. We shall illustrate it using waves on a string, but the
results will be valid for all wave systems.

We have seen that when a smooth joint exists between two strings of different
impedances, energy will be reflected at the boundary. We are now going to see that the
insertion of a particular length of another string between these two mismatched strings will
allow us to eliminate energy reflection and match the impedances.

In Figure 5.9 we require to match the impedances Z; = pic; and Z3 = p3c3 by the
smooth insertion of a string of length / and impedance Z, = p;c,. Our problem is to find
the values of [/ and Z,.

Z1=PC Z7= PG Z3=P3C3

R
y;= Al ei(mt — kix) y;= A2 ei(m[ — kox)
y;= A3 ei(oot — ka(x—L))

-« -«
y,=B; gi(ot + kix) ¥,=B, gi(ot + kax)

Figure 5.9 The impedances Z; and Z3 of two strings are matched by the insertion of a length [ of a
string of impedance Z,. The incident and reflected waves are shown for the boundaries x = 0 and
x = [. The impedances are matched when 222 =27Z1Z5 and [ = \/4 in Z,, results which are true for
waves in all media
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The incident, reflected and transmitted displacements at the junctions x = 0 and x = / are
shown in Figure 5.9 and we seek to make the ratio

Transmitted energy Z 3A§

Incident energy ~ Z;A}

equal to unity.
The boundary conditions are that y and T(dy/0x) are continuous across the junctions
x=0and x =1
Between Z| and Z; the continuity of y gives
A ei(wtfklx) + B, ei(wt+k1x) — Azei(wtszx) + B, ei(wt+k2x)

or
Ai+Bi=A,+ B> (atx:O) (53)

Similarly the continuity of T(dy/0x) at x = 0 gives
T(—iklAl + ilel) = T(—ik2A2 + iszz)

Dividing this equation by w and remembering that T'(k/w) = T/c = pc = Z we have
Z\(Ay — By) =Zy(A;, — By) (5.4)

Similarly at x = [, the continuity of y gives
Aje kol 4 Byelkel — A4 (5.5)
and the continuity of 7(dy/0x) gives
Zy(Aye *! — Byefel) = 7345 (5.6)
From the four boundary equations (5.3), (5.4), (5.5) and (5.6) we require the ratio A3 /A;.
We use equations (5.3) and (5.4) to eliminate B and obtain A in terms of A, and B,. We

then use equations (5.5) and (5.6) to obtain both A, and B, in terms of A ;. Equations (5.3)
and (5.4) give

Z1(Ay—Ay—By+ A1) =Z(A; — By)

or
A 1)+ B —1
Al = 2(ria+ 1)+ Ba(rip— 1) (5.7)
27’]2
where
Z
rpp=—
12 Z,
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Equations (5.5) and (5.6) give

1 .
A, = ”23; Ay e (5.8)
and
32 = 23 — 1A3 e_ikzl
2?‘23
where
Z
ro3 = —
23 7
Equations (5.7) and (5.8) give
As ikl —ikyl
A= [(ria+1D)(ros+1)e™ 4+ (rip — 1)(roz — 1) e %]
4riara3
A . . . .
= 4—3 [(ri3 + 1)(e‘k21 + eﬂkzl) + (rip+ r23)(elk21 — eflkzl)]
r13
A
= 23 [(r13 + 1) COSle + i(}"]g + r23) Sinkzl]
27‘13
where
Z1Zy Z;
rppFy =——=—=r
12723 Z,7: 7 13
Hence
<A3) 2_ 47’%3
Ay (r13+1)2coszkzl—|—(r12+r23)2sin2k21
or

transmitted energy  Z3A3 1 A3

incident energy ~ Z, A2 ri3A2
47’13

a (riz + l)zcoszkzl + (rip+ r23)2 sin? k»l

If we choose | = A\, /4,cosk,l =0 and sink,l = 1 we have

Z3A% 41"13

——:7:1

Z, A% (rio+ 723)2

when

ria=1r3
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that is, when
Zy 7
— == or Zy=+Z7Z\Z
Z, 7 2 143
We see, therefore, that if the impedance of the coupling medium is the harmonic mean of
the two impedances to be matched and the thickness of the coupling medium is

A
72 where A\p = —

all the energy at frequency w will be transmitted with zero reflection.

The thickness of the dielectric coating of optical lenses which eliminates reflections
as light passes from air into glass is one quarter of a wavelength. The ‘bloomed’ appearance
arises because exact matching occurs at only one frequency. Transmission lines are matched
to loads by inserting quarter wavelength stubs of lines with the appropriate impedance.

(Problems 5.9, 5.10)

Standing Waves on a String of Fixed Length

We have already seen that a progressive wave is completely reflected at an infinite
impedance with a 7w phase change in amplitude. A string of fixed length / with both ends
rigidly clamped presents an infinite impedance at each end; we now investigate the
behaviour of waves on such a string. Let us consider the simplest case of a monochromatic
wave of one frequency w with an amplitude a travelling in the positive x-direction and an
amplitude b travelling in the negative x-direction. The displacement on the string at any
point would then be given by

y = aeilr k) 4 pgilerth)

with the boundary condition that y = 0 at x = 0 and x = [ at all times.

The condition y =0 at x =0 gives 0 = (a + b) e’ for all ¢, so that a = —b. This
expresses physically the fact that a wave in either direction meeting the infinite impedance
at either end is completely reflected with a 7 phase change in amplitude. This is a general
result for all wave shapes and frequencies.

Thus

y=ae“ (e ™ — ) = (—2i)ae™ sinkx (5.9)
an expression for y which satisfies the standing wave time independent form of the wave
equation

0%y /0x* + k*y =0
because (1/c2)(0%y/0t?) = (—w?/c?)y = —k?y. The condition that y = 0 at x = [ for all ¢
requires
wl

. . wl
sinkl=sin—=0 or —=nr
C C
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limiting the values of allowed frequencies to

nme
Wi ==
or
nc ¢
Un =5 = X
that is
I ni,
2
giving
. Wy nTX
sin — = sin —

These frequencies are the normal frequencies or modes of vibration we first met in
Chapter 4. They are often called eigenfrequencies, particularly in wave mechanics.

Such allowed frequencies define the length of the string as an exact number of half
wavelengths, and Figure 5.10 shows the string displacement for the first four harmonics
(n=1,2,3,4). The value for n = 1 is called the fundamental.

As with the loaded string of Chapter 4, all normal modes may be present at the same
time and the general displacement is the superposition of the displacements at each
frequency. This is a more complicated problem which we discuss in Chapter 10 (Fourier
Methods).

For the moment we see that for each single harmonic n > 1 there will be a number of
positions along the string which are always at rest. These points occur where

. WpX .
sin /= =sin — =0
c

or

Figure 5.10 The first four harmonics, n = 1, 2, 3, 4 of the standing waves allowed between the two
fixed ends of a string
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The values r =0 and r = n give x = 0 and x = [, the ends of the string, but between the ends
there are n — 1 positions equally spaced along the string in the nth harmonic where the
displacement is always zero. These positions are called nodes or nodal points, being the
positions of zero motion in a system of standing waves. Standing waves arise when a
single mode is excited and the incident and reflected waves are superposed. If the amplitudes
of these progressive waves are equal and opposite (resulting from complete reflection),
nodal points will exist. Often however, the reflection is not quite complete and the waves in
the opposite direction do not cancel each other to give complete nodal points. In this case
we speak of a standing wave ratio which we shall discuss in the next section but one.

Whenever nodal points exist, however, we know that the waves travelling in opposite
directions are exactly equal in all respects so that the energy carried in one direction is
exactly equal to that carried in the other. This means that the total energy flux; that is, the
energy carried across unit area per second in a standing wave system, is zero.

Returning to equation (5.9), we see that the complete expression for the displacement of
the nth harmonic is given by

yn = 2a(—1)(cosw,t + isinw,t) sin i

c
We can express this in the form
. . WpX
Vu = (A, cosw,t + B, sinw,t) sin — (5.10)
c

where the amplitude of the nth mode is given by (A2 + B2) 12 = 24.

(Problem 5.11)

Energy of a Vibrating String

A vibrating string possesses both kinetic and potential energy. The kinetic energy of an
element of length dx and linear density p is given by %p dx y?; the total kinetic energy is the
integral of this along the length of the string.

Thus

1
Exin =% J py* dx
0

The potential energy is the work done by the tension 7 in extending an element dx to a new
length ds when the string is vibrating.

Thus
1/2

(9y2
1+<£)] —1%dx

Epot—JT(ds—dx)—JT

1 ady 2
ﬂ(a) &

if we neglect higher powers of dy/0x.
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Now the change in the length of the element dx is § (Oy/ dx)* dx, and if the string is
elastic the change in tension is proportional to the change in length so that, provided
(Qy/0x) in the wave is of the first order of small quantities, the change in tension is of the
second order and 7 may be considered constant.

Energy in Each Normal Mode of a Vibrating String

The total displacement y in the string is the superposition of the displacements y,, of the
individual harmonics and we can find the energy in each harmonic by replacing y,, for y in
the results of the last section. Thus, the kinetic energy in the nth harmonic is

l
E,(kinetic) =1 | py2dx
0

and the potential energy is

1 8_)/ 2
E,(potential) = 1T =) dx
(potential) = 5 0<8x>

Since we have already shown for standing waves that

. . WX
Vo = (A, cosw,t + B, sinw,t) sin —
c
then
. ) L WpX
V= (—A,w,sinw,t + B,w, cosw,t) sin ——
c
and
Oyn W . WyX
= o (A, coswpt + B, sinw,t) cos
Thus
!
.. . L, WeX
E,(kinetic) = %pwi[—An sinw,t + B, cos ou,,t]2 J sin? == dx
0 C
and

. | w? . 5 (! 5 WyX
E,(potential) = 3 T— [A, cosw,t + B, sinw,t] cos dx
C 0 C

Remembering that T = pc? we have

E ,(kinetic + potential) = 1 plw?(A2 + B2)

1
4
imw, (AL + BY)

where m is the mass of the string and (A2 + B2) is the square of the maximum
displacement (amplitude) of the mode. To find the exact value of the total energy E,, of the
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mode we would need to know the precise value of A,, and B, and we shall evaluate these in
Chapter 10 on Fourier Methods. The total energy of the vibrating string is, of course, the
sum of all the E,,’s of the normal modes.

(Problem 5.12)

Standing Wave Ratio

When a wave is completely reflected the superposition of the incident and reflected
amplitudes will give nodal points (zero amplitude) where the incident and reflected
amplitudes cancel each other, and points of maximum displacement equal to twice the
incident amplitude where they reinforce.

If a progressive wave system is partially reflected from a boundary let the amplitude
reflection coefficient B /A of the earlier section be written as r, where r < 1.

The maximum amplitude at reinforcement is then A; + B; the minimum amplitude is
given by A| — B;. In this case the ratio of maximum to minimum amplitudes in the
standing wave system is called the

Ar+By 1+r
Al—Bl_l—r

Standing Wave Ratio =

where r = B /A;.
Measuring the values of the maximum and minimum amplitudes gives the value of the
reflection coefficient for
SWR — 1
SWR + 1

where SWR refers to the Standing Wave Ratio.

r:Bl/Al =

(Problem 5.13)

Wave Groups and Group Velocity

Our discussion so far has been limited to monochromatic waves—waves of a single
frequency and wavelength. It is much more common for waves to occur as a mixture of
a number or group of component frequencies; white light, for instance, is composed of
a continuous visible wavelength spectrum extending from about 3000 A in the blue to
7000 A in the red. Examining the behaviour of such a group leads to the third kind of
velocity mentioned at the beginning of this chapter; that is, the group velocity.

Superposition of Two Waves of Almost Equal Frequencies

We begin by considering a group which consists of two components of equal amplitude a
but frequencies w; and w, which differ by a small amount.
Their separate displacements are given by

y1 =acos (wit —kjx)

STUDENTS-HUB.com Uploaded By: Jibreel Bornat


https://students-hub.com

Wave Groups and Group Velocity 129

and

y2 = acos (wat — kyx)

Superposition of amplitude and phase gives

y=yi1+y2 = 2acos (@i —2wz)t _ (k1 _2k2)x} cos {(wl ‘ng)t B (k1 -;kz)x

a wave system with a frequency (w; + w»,)/2 which is very close to the frequency of either
component but with a maximum amplitude of 2a, modulated in space and time by a very
slowly varying envelope of frequency (w; — w;)/2 and wave number (k1 — k;)/2.

This system is shown in Figure 5.11 and shows, of course a behaviour similar to that of
the equivalent coupled oscillators in Chapter 4. The velocity of the new wave is
(w1 —w3)/(k1—k,) which, if the phase velocities w; /k; = wy/k, = ¢, gives

w1 —wZ:C(k] —kz)
ki —k» ki —ka

=C

so that the component frequencies and their superposition, or group will travel with the
same velocity, the profile of their combination in Figure 5.11 remaining constant.

If the waves are sound waves the intensity is a maximum whenever the amplitude is a
maximum of 2a; this occurs twice for every period of the modulating frequency; that is, at
a frequency v| — v».

Envelope of
frequency ®;—®;
2

Oscillation of
frequency ©+ o
2

Figure 5.11 The superposition of two waves of slightly different frequency w; and w, forms a
group. The faster oscillation occurs at the average frequency of the two components (wq + w;)/2
and the slowly varying group envelope has a frequency (w; — w2)/2, half the frequency difference
between the components
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The beats of maximum intensity fluctuations thus have a frequency equal to the
difference v; — v, of the components. In the example here where the components have
equal amplitudes a, superposition will produce an amplitude which varies between 2a and
0; this is called complete or 100% modulation.

More generally an amplitude modulated wave may be represented by

y = Acos (wt — kx)

where the modulated amplitude
A=a-+bcosw't

This gives
b
y = acos (wt — kx) + 5{[005 (w+ w')t — kx] + [cos (w — W)t — kx]}

so that here amplitude modulation has introduced two new frequencies w + w’, known as
combination tones or sidebands. Amplitude modulation of a carrier frequency is a common
form of radio transmission, but its generation of sidebands has led to the crowding of radio
frequencies and interference between stations.

Wave Groups and Group Velocity

Suppose now that the two frequency components of the last section have different phase
velocities so that wy/k| # w,/k,. The velocity of the maximum amplitude of the group;
that is, the group velocity

wi—ws Aw
ki —k, Ak

is now different from each of these velocities; the superposition of the two waves will no
longer remain constant and the group profile will change with time.

A medium in which the phase velocity is frequency dependent (w/k not constant) is
known as a dispersive medium and a dispersion relation expresses the variation of w as a
function of k. If a group contains a number of components of frequencies which are nearly
equal the original expression for the group velocity is written

Aw _ dw
Ak dk

The group velocity is that of the maximum amplitude of the group so that it is the velocity
with which the energy in the group is transmitted. Since w = kv, where v is the phase
velocity, the group velocity

dw d dov
S ) =0+ kY
s =gk gk K =tk
dov
— _)\7
YT
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Vg >V anomalous

© dispersion
[, - do (8 Vv, =V  no dispersion
9 dk
o (K
gradient (b) Vg <V normal
v=2 dispersion
k VvV :d_())
® 9 dk
V= 7
gradient
k

Figure 5.12 Curves illustrating dispersion relations: (a) a straight line representing a non-
dispersive medium, v = v4; (b) a normal dispersion relation where the gradient v=w/k >
vg = dw/dk; (c) an anomalous dispersion relation where v < vgq

where k =27/X. Usually dv/d\ is positive, so that v, < v. This is called normal
dispersion, but anomalous dispersion can arise when dv/d\ is negative, so that v, > v.

We shall see when we discuss electromagnetic waves that an electrical conductor is
anomalously dispersive to these waves whilst a dielectric is normally dispersive except at the
natural resonant frequencies of its atoms. In the chapter on forced oscillations we saw that
the wave then acted as a driving force upon the atomic oscillators and that strong
absorption of the wave energy was represented by the dissipation fraction of the oscillator
impedance, whilst the anomalous dispersion curve followed the value of the reactive part of
the impedance.

The three curves of Figure 5.12 represent

e A non-dispersive medium where w/k is constant, so that v ¢ = v, for instance free space
behaviour towards light waves.

e A normal dispersion relation v, < v.

e An anomalous dispersion relation v, > v.

Example. The electric vector of an electromagnetic wave propagates in a dielectric with a
. - —1/2 . - . e
velocity v = (ue) where y is the permeability and ¢ is the permittivity. In free space
the velocity is that of light, ¢ = (uoeo) “U2. The refractive index
n=c/v=/pe/mwoeo = \/1,€, where p, = p1/110 and €, = €/e(. For many substances
1, is constant and ~ 1, but ¢, is frequency dependent, so that v depends on .
The group velocity

A O=,
Dg = U — )\d’l}/d/\ = ’U<1 +2—€ra>
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Refractive 27N
index 4 \
n=2-+ / \

\ .
! \ Absorption
' curve

n =€

n=1

Figure 5.13 Anomalous dispersion showing the behaviour of the refractive index n = |/, versus w
and A, where wy is a resonant frequency of the atoms of the medium. The absorption in such a region
is also shown by the dotted line

so that v, > v (anomalous dispersion) when Oe¢,/OX is +ve. Figure 5.13 shows the
behaviour of the refractive index n = /e, versus w, the frequency, and ), the wavelength,
in the region of anomalous dispersion associated with a resonant frequency. The dotted
curve shows the energy absorption (compare this with Figure 3.9).

(Problems 5.14, 5.15, 5.16, 5.17, 5.18, 5.19)

Wave Group of Many Components. The Bandwidth Theorem

We have so far considered wave groups having only two frequency components. We may
easily extend this to the case of a group of many frequency components, each of amplitude
a, lying within the narrow frequency range Aw.

We have already covered the essential physics of this problem on p. 20, where we found
the sum of the series

n—1

R= Z acos (wt + nd)
0

where 6 was the constant phase difference between successive components. Here we are
concerned with the constant phase difference (éw)t which results from a constant frequency
difference 6w between successive components. The spectrum or range of frequencies of this
group is shown in Figure 5.14a and we wish to follow its behaviour with time.

We seek the amplitude which results from the superposition of the frequency
components and write it

R=acosw;t+acos (w; + éw)t + acos (wy + 26w)t + - - -
+acoswy + (n—1)(6w)]t
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(@ T
a
®
1041
<
(b)
R(t)=28 oo > AL >
T I
half width --~

of maximum _

Figure 5.14 A rectangular wave band of width Aw having n frequency components of amplitude a
with a common frequency difference éw. (b) Representation of the frequency band on a time axis is a
cosine curve at the average frequency @, amplitude modulated by a sina/a curve where
a = Aw-t/2. After a time t = 27/ Aw the superposition of the components gives a zero amplitude

The result is given on p. 21 by

sin [n(dw)t/2
— sin[[(<6w))t//2]] coset
where the average frequency in the group or band is
w=wi+1(n—1)(bw)
Now n(éw) = Aw, the bandwidth, so the behaviour of the resultant R with time may be
written

sin (Aw - 1/2) cos ot = ng S (Aw-1/2)

R(t) = o,
() =4 G A 1/n2) Aw-12 %Y

when n is large,
or

R(t) = AT cosar
e
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where A =na and o = Aw-t/2 is half the phase difference between the first and last
components at time .

This expression gives us the time behaviour of the band and is displayed on a time axis in
Figure 5.14b. We see that the amplitude R(¢) is given by the cosine curve of the average
frequency @ modified by the A sin v/« term.

At =0, sina/a — 1 and all the components superpose with zero phase difference to
give the maximum amplitude R(¢) = A = na. After some time interval As when

 AwAtr

“T

™

the phases between the frequency components are such that the resulting amplitude R(z) is
Zero.

The time At which is a measure of the width of the central pulse of Figure 5.14b is
therefore given by

AwAt
=T

or Av At =1 where Aw = 27Av.

The true width of the base of the central pulse is 2A¢ but the interval At is taken as an
arbitrary measure of time, centred about r = 0, during which the amplitude R(#) remains
significantly large (> A/2). With this arbitrary definition the exact expression

AvAr=1
becomes the approximation

AvAtr=1 or (AwAt=2T)

and this approximation is known as the Bandwidth Theorem.

It states that the components of a band of width Aw in the frequency range will
superpose to produce a significant amplitude R(f) only for a time At before the band
decays from random phase differences. The greater the range Aw the shorter the period At.

Alternatively, the theorem states that a single pulse of time duration At is the result of
the superposition of frequency components over the range Aw; the shorter the period Ar of
the pulse the wider the range Aw of the frequencies required to represent it.

When Aw is zero we have a single frequency, the monochromatic wave which is
therefore required (in theory) to have an infinitely long time span.

We have chosen to express our wave group in the two parameters of frequency and time
(having a product of zero dimensions), but we may just as easily work in the other pair of
parameters wave number k and distance x.

Replacing w by k and ¢ by x would define the length of the wave group as Ax in terms of
the range of component wavelengths A(1/X).

The Bandwidth Theorem then becomes

Ax Ak ~ 27
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or

AxA(1/XN) =1 ie. Ax~x \*/AX

Note again that a monochromatic wave with Ak =0 requires Ax — oo; that is, an
infinitely long wavetrain.

In the wave group we have just considered the problem has been simplified by assuming
all frequency components to have the same amplitude a. When this is not the case, the
different values a(w) are treated by Fourier methods as we shall see in Chapter 10.

We shall meet the ideas of this section several times in the course of this text, noting
particularly that in modern physics the Bandwidth Theorem becomes Heisenberg’s
Uncertainty Principle.

(Problem 5.20)

Transverse Waves in a Periodic Structure

At the end of the chapter on coupled oscillations we discussed the normal transverse
vibrations of n equal masses of separation a along a light string of length (n + 1)a under a
tension 7 with both ends fixed. The equation of motion of the rth particle was found to be

. T
my, = —(Vre1 +yr-1 = 2y7)

and for n masses the frequencies of the normal modes of vibration were given by

2T Jm
2
"= —|(1—-cos —— 4.15
“I " ma ( n+ 1) (415)
where j = 1,2,3,...,n. When the separation a becomes infinitesimally small (= éx, say)

the term in the equation of motion

1 1
E(yr+l + ¥y _Zyr) - &(err] +yVr—1 — 2yr)

:(errl_yr)_(yr_yr*l): @ B @ _ a—zy dx
ox ox Ox),i1pp \Ox), 1 \Ox?/,

so that the equation of motion becomes

0%y B T 0%
o2 pox?’
the wave equation, where p = m/éx, the linear density and

yxe i(wr—kx)

We are now going to consider the propagation of transverse waves along a linear array of
atoms, mass m, in a crystal lattice where the tension 7 now represents the elastic force
between the atoms (so that T'/a is the stiffness) and a, the separation between the atoms, is
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about 1 A or 10 m. When the clamped ends of the string are replaced by the ends of
the crystal we can express the displacement of the rth particle due to the transverse
waves as

V, :Arei(wtka) — Arei(u.ztfkm)7

since x = ra. The equation of motion then becomes

T . .
_wzm — _(elka + e*lka o 2)
a

— Z (eika/Z _ e—ika/2)2 _ _4_T sinz k_a
a a 2
giving the permitted frequencies
4T ki
w? = = sin’ ?“ (5.11)

This expression for w? is equivalent to our earlier value at the end of Chapter 4:

2T Jm 4T jm
2 2
c=""11- =— — 4.15
“i ma< Cosn+1) ma " 2(n+1) (415)
if
ka  jm
2 2m+1)

where j = 1,2,3,... n.

But (n + 1)a = [, the length of the string or crystal, and we have seen that wavelengths
A are allowed where pA/2 =1 = (n+ 1)a.

Thus

™a

ka 27

Ta jam

a J
2 A2 XA 2n+la p A
if j = p. When j = p, a unit change in j corresponds to a change from one allowed number
of half wavelengths to the next so that the minimum wavelength is A = 2a, giving a
maximum frequency w? = 4T /ma. Thus, both expressions may be considered equivalent.
When A\ = 24, sinka/2 = 1 because ka = 7, and neighbouring atoms are exactly 7 rad
out of phase because

y . .
r O(elka:elﬂzil

Yr+1

The highest frequency is thus associated with maximum coupling, as we expect.
If in equation (5.11) we plot |sinka/2| against k (Figure 5.15) we find that when ka
is increased beyond 7 the phase relationship is the same as for a negative value of
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|sin ka/2|

e

I

Y
=

—2n/a —-m/a 0 n/a 2n/a

Figure 5.15 |sink—2"| versus k from equation (5.11) shows the repetition of values beyond the region
T < k < = this region defines a Brillouin zone

ka beyond —m. It is, therefore, sufficient to restrict the values of k to the region

—T ™
—<k<Z
a a

which is known as the first Brillouin zone. We shall use this concept in the section on
electron waves in solids in Chapter 13.
For long wavelengths or low values of the wave number k, sinka/2 — ka/2 so that

, 4Tk%a?
wo=—
ma 4

and the velocity of the wave is given by

y W Ta T
C = =
k2 m p
as before, where p = m/a.
In general the phase velocity is given by
w sinka/2
== 5.12
"k c{ ka2 ] (5:12)

a dispersion relation which is shown in Figure 5.16. Only at very short wavelengths does
the atomic spacing of the crystal structure affect the wave propagation, and here the limiting
or maximum value of the wave number k,, = 7/a ~ 10'°m~".

The elastic force constant T /a for a crystal is about 15 Nm ~'; a typical ‘reduced’ atomic
mass is about 60 x 102" kg. These values give a maximum frequency

, AT 60

-~ — 1027 d -1
YT e T 60 x 1027 rads

that is, a frequency v ~ 5 x 10'2 Hz.
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k

- T
kp=T

Figure 5.16 The dispersion relation w(k) versus k for waves travelling along a linear one-
dimensional array of atoms in a periodic structure

(Note that the value of T'//a used here for the crystal is a factor of 8 lower than that found
in Problem 4.4 for a single molecule. This is due to the interaction between neighbouring
ions and the change in their equilibrium separation.)

This frequency is in the infrared region of the electromagnetic spectrum. We shall see in
a later chapter that electromagnetic waves of frequency w have a transverse electric field
vector E = Ege’, where Ej is the maximum amplitude, so that charged atoms or ions in a
crystal lattice could respond as forced oscillators to radiation falling upon the crystal,
which would absorb any radiation at the resonant frequency of its oscillating atoms.

Linear Array of Two Kinds of Atoms in an Ionic Crystal

We continue the discussion of this problem using a one dimensional line which contains
two kinds of atoms with separation a as before, those atoms of mass M occupying the odd
numbered positions, 2r — 1,2r 4 1, etc. and those of mass m occupying the even numbered
positions, 2r,2r + 2, etc. The equations of motion for each type are

. T
myo, = ;(erJrl +y2r71 - 2y2r)

and

.. T
My g = ;(J’2r+2 +yor — 2y2r41)

with solutions

Vo = A ei(wt72rka)

Voril :AMei(wt—(2r+1)ka)

where A,, and A, are the amplitudes of the respective masses.
The equations of motion thus become
TA - - 2TA
M (e—lka + elka) _ m
a a

—wmA,, =
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and

TA,,

. : 2TA
—szAM _ (e—lkll + elkd) o M
a

a

equations which are consistent when

T/1 1 /1 1\? 4sinkal”’
2

S [ I (R 1
“ a<m+M) al(erM) li (5.13)

Plotting the dispersion relation w versus k for the positive sign and m > M gives the upper
curve of Figure 5.17 with

2T (1 1
w2:<+) for k=0

a \m M
and

w-=— for k,= ua (minimum A = 4a)
M 2a

The negative sign in equation (5.13) gives the lower curve of Figure 5.17 with

2Tk?a?
w? = e for very small k
a(M + m)
and
2T
W= for k=_
am
()

a
m>M | 1
2T \2
[\am
I
Acoustical :
branch .
k
L
2a

Figure 5.17 Dispersion relations for the two modes of transverse oscillation in a crystal structure
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Optical mode

Acoustical mode

Figure 5.18 The displacements of the different atomic species in the two modes of transverse
oscillations in a crystal structure (a) the optical mode, and (b) the acoustic mode

The upper curve is called the ‘optical’ branch and the lower curve is known as the
‘acoustical’ branch. The motions of the two types of atom for each branch are shown in
Figure 5.18.

In the optical branch for long wavelengths and small k, A ,,/A yy = —M /m, and the atoms
vibrate against each other, so that the centre of mass of the unit cell in the crystal remains
fixed. This motion can be generated by the action of an electromagnetic wave when
alternate atoms are ions of opposite charge; hence the name ‘optical branch’. In the
acoustic branch, long wavelengths and small k give A,, = Ay, and the atoms and their
centre of mass move together (as in longitudinal sound waves). We shall see in the next
chapter that the atoms may also vibrate in a longitudinal wave.

The transverse waves we have just discussed are polarized in one plane; they may also
vibrate in a plane perpendicular to the plane considered here. The vibrational energy of
these two transverse waves, together with that of the longitudinal wave to be discussed in
the next chapter, form the basis of the theory of the specific heats of solids, a topic to which
we shall return in Chapter 9.

Absorption of Infrared Radiation by Ionic Crystals

Radiation of frequency 3 x 10'2 Hz. gives an infrared wavelength of 100 pm (10~* m) and
a wave number k = 27/\ ~ 6.10*m~!. We found the cut-off frequency in the crystal
lattice to give a wave number k,, ~ 10'°m~!, so that the k value of infrared radiation is a
negligible quantity relative to k,, and may be taken as zero. When the ions of opposite
charge +e move under the influence of the electric field vector E = Egel“’ of
electromagnetic radiation, the equations of motion (with k = 0) become

2T

—wmA,, ==— (Ay —An) —eEy
a
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and

—2T
—szAM = —(AM —Am) + €E()
a

which may be solved to give

Ay = and A, =—

M(wj — w?) m (w} — w?)

where

, 2T 1+1
wh=—|—4+—
0 a \m M

the low k limit of the optical branch.

Thus, when w = wy infrared radiation is strongly absorbed by ionic crystals and the ion
amplitudes Ay, and A,, increase. Experimentally, sodium chloride is found to absorb
strongly at A = 61 pm; potassium chloride has an absorption maximum at A = 71 um.

(Problem 5.21)

Doppler Effect

In the absence of dispersion the velocity of waves sent out by a moving source is constant
but the wavelength and frequency noted by a stationary observer are altered.

In Figure 5.19 a stationary source S emits a signal of frequency v and wavelength X for a
period 7 so the distance to a stationary observer O is vAz. If the source S’ moves towards O
at a velocity u during the period f then O registers a new frequency v'.

We see that

UM = ut + v\t

VEA

Figure 5.19 If waves from a stationary source S are received by a stationary observer 0 at frequency
v and wavelength )\ the frequency is observed as v’ and the wavelength as A’ at O if the source S’
moves during transmission. This is the Doppler effect
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which, for
c=vx=v')\
gives
c—u_ V£
v v’
Hence
, vc
UV =
c—1u

This observed change of frequency is called the Doppler Effect.

Suppose that the source S is now stationary but that an observer O’ moves with a velocity
v away from S. If we superimpose a velocity —v on observer, source and waves, we bring
the observer to rest; the source now has a velocity —v and waves a velocity of ¢ — v.
Using these values in the expression for v’ gives a new observed frequency

V//:V(C_U)
C

(Problems 5.22, 5.23, 5.24, 5.25, 5.26, 5.27, 5.28, 5.29, 5.30, 5.31)

Problem 5.1

Show that y = f»(ct + x) is a solution of the wave equation

9%y _10%
ox2 2012
Problem 5.2
Show that the wave profile; that is,
y =filct —x)

remains unchanged with time when c is the wave velocity. To do this consider the expression for y at
a time 7 + Ar where At = Ax/c.
Repeat the problem for y = f(ct + x).

Problem 5.3
Show that
Jdy Jy
o~ o
for a left-going wave drawing a diagram to show the particle velocities as in Figure 5.5 (note that c is
a magnitude and does not change sign).

Problem 5.4

A triangular shaped pulse of length [ is reflected at the fixed end of the string on which it travels
(Z, = o0). Sketch the shape of the pulse (see Figure 5.8) after a length (a) I/4 (b) 1/2 (c) 31/4 and
(d) [ of the pulse has been reflected.
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Problem 5.5

A point mass M is concentrated at a point on a string of characteristic impedance pc. A transverse
wave of frequency w moves in the positive x direction and is partially reflected and transmitted at the
mass. The boundary conditions are that the string displacements just to the left and right of the mass
are equal (y; +y, =y,) and that the difference between the transverse forces just to the left and
right of the mass equal the mass times its acceleration. If A |, B and A, are respectively the incident,
reflected and transmitted wave amplitudes show that

Bl _ —iq

1
A 1+ig N

22
A] 1+1q

and
where ¢ = wM/2pc and i* = —1.

Problem 5.6
In problem 5.5, writing ¢ = tan 6, show that A, lags A by 6 and that B, lags A by (7/2 + 6) for
0<f<m/2

Show also that the reflected and transmitted energy coefficients are represented by sin’ @ and
cos? @, respectively.

Problem 5.7
If the wave on the string in Figure 5.6 propagates with a displacement

y = asin (wr — kx)

Show that the average rate of working by the force (average value of transverse force times
transverse velocity) equals the rate of energy transfer along the string.

Problem 5.8
A transverse harmonic force of peak value 0.3 N and frequency 5 Hz initiates waves of amplitude
0.1 m at one end of a very long string of linear density 0.01 kg/m. Show that the rate of energy

transfer along the string is 37/20 W and that the wave velocity is 30/7ms !

Problem 5.9 z, z, s
In the figure, media of impedances Z; and Z; are separated by a
medium of intermediate impedance Z, and thickness \/4 mea-

sured in this medium. A normally incident wave in the first ;,

medium has unit amplitude and the reflection and transmission R T

coefficients for multiple reflections are shown. Show that the total TR’

reflected amplitude in medium 1 which is TR’ TR'r
TR2r

R+TR'(1+rR' +r?R?..)

TtR'2r | TR2r2

is zero at R = R’ and show that this defines the condition TR’3r2

TtR’3r2

VASYAVA

(Note that for zero total reflection in medium 1, the first reflection
R is cancelled by the sum of all subsequent reflections.)
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Problem 5.10

The relation between the impedance Z and the refractive index n of a dielectric is given by Z = 1/n.
Light travelling in free space enters a glass lens which has a refractive index of 1.5 for a free space
wavelength of 5.5 x 10~7 m. Show that reflections at this wavelength are avoided by a coating of
refractive index 1.22 and thickness 1.12 x 10~/ m.

Problem 5.11
Prove that the displacement y,, of the standing wave expression in equation (5.10) satisfies the time

independent form of the wave equation
1y .,
-5 tky=0.

Problem 5.12

The total energy E,, of a normal mode may be found by an alternative method. Each section dx of the
string is a simple harmonic oscillator with total energy equal to the maximum kinetic energy of
oscillation

k'e'max = %pdx(yﬁ)max = %pdxwﬁ(yﬁ)max

Now the value of (y2) . ata point x on the string is given by

max

O3 max = (A7 + B}) sin” =2

Show that the sum of the energies of the oscillators along the string; that is, the integral

l
Lpw JO (V) max 4%

gives the expected result.

Problem 5.13
The displacement of a wave on a string which is fixed at both ends is given by

y(x,1) = Acos (wr — kx) + rA cos (wt + kx)

where r is the coefficient of amplitude reflection. Show that this may be expressed as the
superposition of standing waves

y(x,t) = A(1 + r) coswrcoskx + A(1 — r) sin wt sin kx.

Problem 5.14
A wave group consists of two wavelengths A and A + A\ where A)\/) is very small.

Show that the number of wavelengths A contained between two successive zeros of the modulating
envelope is &= A/AM.

Problem 5.15
The phase velocity v of transverse waves in a crystal of atomic separation a is given by

()
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where k is the wave number and c is constant. Show that the value of the group velocity is
ka
ccos —
What is the limiting value of the group velocity for long wavelengths?
Problem 5.16
The dielectric constant of a gas at a wavelength A is given by
c? B 2
Ep = ﬁ =A + p — DA

where A, B and D are constants, c is the velocity of light in free space and v is its phase velocity. If
the group velocity is V, show that

Vee, = v(A — 2DA?)

Problem 5.17
Problem 3.10 shows that the relative permittivity of an ionized gas is given by

c? We\ 2
e,=—=1—(—

2

v w

where v is the phase velocity, c is the velocity of light and w, is the constant value of the
electron plasma frequency. Show that this yields the dispersion relation w? = w? + ¢?k?,
and that as w — w, the phase velocity exceeds that of light, ¢, but that the group velocity
(the velocity of energy transmission) is always less than c.

Problem 5.18
The electron plasma frequency of Problem 5.17 is given by

2

) Nee
we = .
me€g

Show that for an electron number density 7, ~ 102°(10 > of an atmosphere), electromagnetic waves
must have wavelengths A < 3 x 103 m (in the microwave region) to propagate. These are typical
wavelengths for probing thermonuclear plasmas at high temperatures.

€0 =88x10"2Fm™!
m,=9.1x103"kg
e=16x10""°C

Problem 5.19

In relativistic wave mechanics the dispersion relation for an electron of velocity v = hik/m is given
by w?/c? =k* +m?c? /hz, where ¢ is the velocity of light, m is the electron mass (considered
constant at a given velocity) i = h/2 and h is Planck’s constant. Show that the product of the group

and particle velocities is ¢?.
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Problem 5.20

The figure shows a pulse of length At given by y = A coswyt.
Show that the frequency representation

y(w) =acoswt+acos (wy + dw)t---+acos jwy + (n — 1)(éw)]t

is centred on the average frequency wo and that the range of frequencies making significant
contributions to the pulse satisfy the criterion

Aw At =27

Repeat this process for a pulse of length Ax with y = A cos kox to show that in k space the pulse is
centred at k( with the significant range of wave numbers Ak satisfying the criterion Ax Ak ~ 2.

¢

A y=Acos ot
v —
t

At

Problem 5.21

The elastic force constant for an ionic crystal is ~ 15N m~!. Show that the experimental values for
the frequencies of infrared absorption quoted at the end of this chapter for NaCl and KCl are in
reasonable agreement with calculated values.

lamu. = 1.66 x 10 2" kg
Na mass = 23 a.m.u.

K mass = 39a.m.u.

Cl mass = 35a.m.u.

Problem 5.22
Show that, in the Doppler effect, the change of frequency noted by a stationary observer O as a
moving source S’ passes him is given by

2ucu

Ay ———""
e —w)

where ¢ = v, the signal velocity and u is the velocity of S’.

Problem 5.23

Suppose, in the Doppler effect, that a source S’ and an observer O’ move in the same direction with
velocities u# and v, respectively. Bring the observer to rest by superimposing a velocity —v on the
system to show that O’ now registers a frequency

" _V(C_ 1))

~ (c—u)
Problem 5.24

Light from a star of wavelength 6 x 10~7 m is found to be shifted 10~!' m towards the red when
compared with the same wavelength from a laboratory source. If the velocity of light is

3 x 108 ms~! show that the earth and the star are separating at a velocity of 5 Km s~!.
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Problem 5.25

An aircraft flying on a level course transmits a signal of 3 x 10° Hz which is reflected from a distant
point ahead on the flight path and received by the aircraft with a frequency difference of 15 kHz.
What is the aircraft speed?

Problem 5.26

Light from hot sodium atoms is centred about a wavelength of 6 x 10~7 m but spreads 2 x 107> m
on either side of this wavelength due to the Doppler effect as radiating atoms move towards and
away from the observer. Calculate the thermal velocity of the atoms to show that the gas temperature
is ~ 900 K.

Problem 5.27
Show that in the Doppler effect when the source and observer are not moving in the same direction
that the frequencies

, ve ., vic—)
Ve VT T e

cC—v
V,” — l/( )
c—u
are valid if # and v are not the actual velocities but the components of these velocities along the
direction in which the waves reach the observer.

and

Problem 5.28

In extending the Doppler principle consider the accompanying figure where O is a stationary
observer at the origin of the coordinate system O(x,¢) and O’ is an observer situated at the origin of
the system O’(x’, ") which moves with a constant velocity v in the x direction relative to the system
O. When O and O’ are coincident at t = ' = 0 a light source sends waves in the x direction with
constant velocity c. These waves obey the relation

0 =x% — c?t*(seen by 0) = x'* — ¢?t'*(seen by 0'). (1)
Since there is only one relative velocity v, the transformation
x' = k(x — vt) (2)
and
x=k'(x'+ vt') (3)

must also hold. Use (2) and (3) to eliminate x’ and ¢’ from (1) and show that this identity is satisfied
only by k=k"=1/(1— ﬁz)l/ * where (3= v/c. (Hint—in the identity of equation (1) equate
coefficients of the variables to zero.).

0 (xt) 0" (x't")
-« vt —>
0 —> v 0’
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This is the Lorentz transformation in the theory of relativity giving

;o (x—wr) X+

(= -
(=) ()

(1-p2)12" (1-p2)"?

Problem 5.29
Show that the interval At = ¢, — ¢ seen by O in Problem 5.28 is seen as At’ = kAr by O’ and that
the length / = x, — x; seen by O is seen by O’ as I’ = I /k.

Problem 5.30
Show that two simultaneous events at x, and x; (¢ = ;) seen by O in the previous problems are not
simultaneous when seen by O’ (that is, ¢} # t5).

Problem 5.31

Show that the order of events seen by O(7, > 1) of the previous problems will not be reversed
when seen by O’ (that is, 15 > t}) as long as the velocity of light ¢ is the greatest velocity
attainable.

Summary of Important Rules

2%y 107
Wave Equation 6—x}2] = ?372)
Wave (phase) velocit w_ Ox
Vi Vi =C=—=—
P Y k Ot
2
k = wave number = Tﬂ

where the wavelength A defines separation between two oscillations with phase difference
of 2 rad.

Jy

0
Particle velocity 6_); = —ca—
X

Displacement y = g e!(“/ %)

where a is wave amplitude.

Characteristic Impedance of a String

_ transverse force dy 10y
~ transverse velocity ox/ o "
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Reflection and Transmission Coefficients

Reflected Amplitude  Z, — Z;
Incident Amplitude Zi+2Z,

Transmitted Amplitude 27,
Incident Amplitude Zi+ 7

Reflected Energy (Z — Zz) 2

Incident Energy  \Z, + Z»

Transmitted Energy 472,72,
Incident Energy  (Z, + Z,)?

Impedance Matching

Impedances Z, and Z3 are matched by insertion of impedance Z, where Z% =717,
Thickness of Z, is A/4 measured in Z,.

Standing Waves. Normal Modes. Harmonics

Solution of wave equation separates time and space dependence to satisfy time independent
wave equation

0? -
8—)2] +k* =0 (cancel e™)
x

Standing waves on string of length [ have wavelength A, where

An
n—=1
2
Displacement of nth harmonic is
WX
yn = (A, coswyt + B, sinw,t) sin —
C

Energy of nth harmonic (string mass m)

1
E,=KE, + PE, = meﬁ(Aﬁ + B?)
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Group Velocity

In a dispersive medium the wave velocity v varies with frequency w (wave number k). The
energy of a group of such waves travels with the group velocity

7d_w7v+kdv dov
dk dk d\

Vg

Rectangular Wave Group of n Frequency Components Amplitude a, Width Aw, represented
in time by
sin (Aw - 1/2)

RO)=a ——2"T7 cosi
() =4 G e jn-2) O

where @ is average frequency. R(¢) is zero when

Aw -t
> =T
i.e. Bandwidth Theorem gives
Aw- At =27
or
AxAk =27

A pulse of duration At requires a frequency band width Aw to define it in frequency space
and vice versa.

Doppler Effect

Signal of frequency v and velocity ¢ transmitted by a stationary source S and received by a
stationary observer O becomes

, ve
vV =
cC—Uu

when source is no longer stationary but moves towards O with a velocity u.
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Longitudinal Waves

In deriving the wave equation

0%y 1 0%y

ox2 2 Or?
in Chapter 5, we used the example of a transverse wave and continued to discuss waves of
this type on a vibrating string. In this chapter we consider longitudinal waves, waves in
which the particle or oscillator motion is in the same direction as the wave propagation.
Longitudinal waves propagate as sound waves in all phases of matter, plasmas, gases,
liquids and solids, but we shall concentrate on gases and solids. In the case of gases,
limitations of thermodynamic interest are imposed; in solids the propagation will depend
on the dimensions of the medium. Neither a gas nor a liquid can sustain the transverse
shear necessary for transverse waves, but a solid can maintain both longitudinal and
transverse oscillations.

Sound Waves in Gases

Let us consider a fixed mass of gas, which at a pressure P occupies a volume V with a
density pg. These values define the equilibrium state of the gas which is disturbed, or
deformed, by the compressions and rarefactions of the sound waves. Under the influence of
the sound waves

the pressure Py becomes P = Py +p
the volume V becomes V = Vy+ v

and

the density py becomes p = py + py.

The excess pressure p,, is the maximum pressure amplitude of the sound wave and p is an
alternating component superimposed on the equilibrium gas pressure Py.

The Physics of Vibrations and Waves, 6th Edition H. J. Pain
© 2005 John Wiley & Sons, Ltd., ISBN: 0-470-01295-1(hardback); 0-470-01296-X(paperback)
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152 Longitudinal Waves

The fractional change in volume is called the dilatation, written v/Vy =6, and the
fractional change of density is called the condensation, written p,/po = s. The values of §
and s are ~ 10> for ordinary sound waves, and a value of p,, =2 x 1073 Nm 2 (about
10719 of an atmosphere) gives a sound wave which is still audible at 1000 Hz. Thus, the
changes in the medium due to sound waves are of an extremely small order and define
limitations within which the wave equation is appropriate.

The fixed mass of gas is equal to

poVo = pV = poVo(l +6)(1 +35)

so that (1+6)(1+s) =1, giving s =—6 to a very close approximation. The elastic
property of the gas, a measure of its compressibility, is defined in terms of its bulk modulus

dpP dpP

dav/v.— dv
the difference in pressure for a fractional change in volume, a volume increase with fall in
pressure giving the negative sign. The value of B depends on whether the changes in the gas
arising from the wave motion are adiabatic or isothermal. They must be thermodynamically
reversible in order to avoid the energy loss mechanisms of diffusion, viscosity and thermal
conductivity. The complete absence of these random, entropy generating processes defines
an adiabatic process, a thermodynamic cycle with a 100% efficiency in the sense that none
of the energy in the wave, potential or kinetic, is lost. In a sound wave such thermodynamic
concepts restrict the excess pressure amplitude; too great an amplitude raises the local
temperature in the gas at the amplitude peaks and thermal conductivity removes energy
from the wave system. Local particle velocity gradients will also develop, leading to
diffusion and viscosity.

Using a constant value of the adiabatic bulk modulus limits sound waves to small
oscillations since the total pressure P = P + p is taken as constant; larger amplitudes lead
to non-linear effects and shock waves, which we shall discuss separately in Chapter 15.

All adiabatic changes in the gas obey the relation PV? = constant, where + is the ratio of
the specific heats at constant pressure and volume, respectively.

Differentiation gives

VIdP 4+ ~PV 1 dV =0
or

dpP
_VW = ~vP = B, (where the subscript a denotes adiabatic)

so that the elastic property of the gas is P, considered to be constant. Since P = Py + p,
then dP = p, the excess pressure, giving

14
B,=— or p=-—B,6=B,s
a ’U/ VO p a a
In a sound wave the particle displacements and velocities are along the x-axis and we
choose the co-ordinate 7 to define the displacement where 7(x, t).
In obtaining the wave equation we consider the motion of an element of the gas of
thickness Ax and unit cross section. Under the influence of the sound wave the behaviour
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Figure 6.1 Thin element of gas of unit cross-section and thickness Ax displaced an amount 7 and
expanded by an amount (67/0x)Ax under the influence of a pressure differene —(0P,/0x)Ax

of this element is shown in Figure 6.1. The particles in the layer x are displaced a distance 7
and those at x + Ax are displaced a distance 7 + A, so that the increase in the thick-
ness Ax of the element of unit cross section (which therefore measures the increase in
volume) is

_ o
An = axAx

and

5:‘/10: (%)M/Ax:%:—s

where dn/6x is called the strain.
The medium is deformed because the pressures along the x-axis on either side of the thin
element are not in balance (Figure 6.1). The net force acting on the element is given by

Pe Prons = {px _ (px + %Axﬂ
ox

op, 0 _op
= T o AX——&(Poqu)AX——aAX

The mass of the element is poAx and its acceleration is given, to a close approxmation, by
0%n/de?.
From Newton’s Law we have
op

——Ax = poA
Ox pocy

9%
or?
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where
on
= -B,5=—B,~
p Ox
so that
Op 0%n .. 0%n 0%n
—a. —DPazg 5> Ba a0 a0
Ox Ox? gtving Ox? po ot?

But B,/po = P/ po is the ratio of the elasticity to the inertia or density of the gas, and this
ratio has the dimensions

force volume ) P
= (velocity)?, so e
area  mass 00
where c is the sound wave velocity.
Thus
0%n 1 0°n
ox2  c? Or?

is the wave equation. Writing 7,, as the maximum amplitude of displacement we have the
following expressions for a wave in the positive x-direction:

n=nne ™ = % = iwn)

_on .
6_5)x_ ikn = —s (sos = ikn)

p = B,s =1Bjkn

The phase relationships between these parameters (Figure 6.2a) show that when the wave is
in the positive x-direction, the excess pressure p, the fractional density increase s and the
particle velocity 7 are all 77/2 rad in phase ahead of the displacement 7, whilst the volume
change (7 rad out of phase with the density change) is 7/2 rad behind the displacement.
These relationships no longer hold when the wave direction is reversed (Figure 6.2b); for a
wave in the negative x-direction

i(wrkx)

n="Nme ﬁ:%:iwn

6 :% = —ikn = —s (sos = ikn)

p =B, = —iB kn

In both waves the particle displacement 7 is measured in the positive x-direction and the
thin element Ax of the gas oscillates about the value 7 = 0, which defines its central
position. For a wave in the positive x-direction the value 17 = 0, with 1 a maximum in the
positive x-direction, gives a maximum positive excess pressure (compression) with a
maximum condensation s,, (maximum density) and a minimum volume. For a wave in the
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Wave in +ve x Wave in —ve x
direction direction

@ (b)

Figure 6.2 Phase relationships between the particle displacement 7, particle velocity 7, excess
pressure p and condensation s = —§ (the dilatation) for waves travelling in the positive and
negative x directions. The displacement 7 is taken in the positive x direction for both waves

negative x-direction, the same value n = 0, with 1 a maximum in the positive x-direction,
gives a maximum negative excess pressure (rarefaction), a maximum volume and a
minimum density. To produce a compression in a wave moving in the negative x-direction
the particle velocity n must be a maximum in the negative x-direction at 1 = 0. This
distinction is significant when we are defining the impedance of the medium to the waves.
A change of sign is involved with a change of direction—a convention we shall also have
to follow when discussing the waves of Chapters 7 and 8.

Energy Distribution in Sound Waves

The kinetic energy in the sound wave is found by considering the motion of the individual
gas elements of thickness Aux.
Each element will have a kinetic energy per unit cross section

AEuin = 5po Ax7)?

where 7 will depend upon the position x of the element. The average value of the kinetic
energy density is found by taking the value of 77 averaged over a region of n wavelengths.
Now

.. .2
7 = N sin — (¢t — x)
A
so that

— fg’\ sin® 2m(ct — x) /A Ax
77 - I’l)\ —2'm

so that the average kinetic energy density in the medium is

AEyin = 4 poily, = 4 pow’n;,
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(a simple harmonic oscillator of maximum amplitude a has an average kinetic energy over
one cycle of }mw?a?).

The potential energy density is found by considering the work P dV done on the fixed
mass of gas of volume V| during the adiabatic changes in the sound wave. This work is
expressed for the complete cycle as

-1 m mVm —v .
AEpo = —J PdV = — EJO pud (wr) :p2 : 17%, :a = sin(wr — kx)

The negative sign shows that the potential energy change is positive in both
a compression (p positive, dV negative) and a rarefaction (p negative, dV positive)
Figure 6.3.

The condensation

—(d _
S = ‘[ v = —U = —6
Vo Vo
we write
s — .
— = — =sin(wr — kx) and —v = Vys
Sm Om
which, with
p = Bygs
gives
—1 27 B.V. 2
AE o = J pud(wt) = =2 OJ szd(wt)
27'(' 0 27T 0
Work done
in compression
+p
Py Work done

in rarefaction

i’ VO v

Figure 6.3 Shaded triangles show that potential energy & = £z/» gained by gas in compression
equals that gained in rarefaction when both p and v change sign
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Total
energy
in sound
wave

X
Distance

Figure 6.4 Energy distribution in space for a sound wave in a gas. Both potential and kinetic
energies are at a maximum when the particle velocity 7 is a maximum and zero at n =0

where s = —¢ and the thickness Ax of the element of unit cross section represents its
volume V.
Now
1= 1 el
so that
on _ 1oy
0=—=+—— here ¢ =—
Ox cor " ¢
Thus
1Be 1
AEpotZE?n XZEPOU Ax

and its average value over n\ gives the potential energy density
ANF 1, 2
AEPOt =4PoM,

We see that the average values of the kinetic and potential energy density in the sound
wave are equal, but more important, since the value of each for the element Ax is
%poﬁzAx, we observe that the element possesses maximum (or minimum) potential and
kinetic energy at the same time. A compression or rarefaction produces a maximum in the
energy of the element since the value 1 governs the energy content. Thus, the energy in the
wave is distributed in the wave system with distance as shown in Figure 6.4. Note that this
distribution is non-uniform with distance unlike that for a transverse wave.

Intensity of Sound Waves

This is a measure of the energy flux, the rate at which energy crosses unit area, so that it is
the product of the energy density (kinetic plus potential) and the wave velocity c¢. Normal
sound waves range in intensity between 1012 and 1 W m 2, extremely low levels which
testify to the sensitivity of the ear. The roar of a large football crowd greeting a goal will
just about heat a cup of coffee.
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The intensity may be written
1= pocnp, =1 pocw™ 2 = pociit, = Ping/P0C = PrmsTims
A commonly used standard of sound intensity is given by
Ip=102Wm™

which is about the level of the average conversational tone between two people standing
next to each other. Shouting at this range raises the intensity by a factor of 100 and in the
range 100 I to 1000 7o (10 W m~2) the sound is painful.

Whenever the sound intensity increases by a factor of 10 it is said to have increased by
1 B so the dynamic range of the ear is about 12 B. An intensity increase by a factor of

10%" =1-26

increases the intensity by 1 dB, a change of loudness which is just detected by a person
with good hearing. dB is a decibel.

We see that the product poc appears in most of the expressions for the intensity; its
significance becomes apparent when we define the impedance of the medium to the waves
as the

excess pressure  p

Specific Acoustic Impedance = ——— ==
particle velocity 7

(the ratio of a force per unit area to a velocity).
Now, for a wave in the positive x-direction.

p=B,s=1B,kn and 7 =iwn

so that,

B,k B,
— = PoC
c
Thus, the acoustic impedance presented by the medium to these waves, as in the case of the
transverse waves on the string, is given by the product of the density and the wave velocity
and is governed by the elasticity and inertia of the medium. For a wave in the negative
x-direction, the specific acoustic impedance
p iB.kn

- = : = —poC
n wn

with a change of sign because of the changed phase relationship.

The units of pgc are normally stated as kg m 2 s~! in books on practical acoustics; in
these units air has a specific acoustic impedance value of 400, water a value of 1.45x10°
and steel a value of 3.9x107. These values will become more significant when we use them
later in examples on the reflection and transmission of sound waves.
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Although the specific acoustic impedance pgc is a real quantity for plane sound waves, it
has an added reactive component ik/r for spherical waves, where r is the distance travelled
by the wavefront. This component tends to zero with increasing r as the spherical wave
becomes effectively plane.

(Problems 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8)

Longitudinal Waves in a Solid

The velocity of longitudinal waves in a solid depends upon the dimensions of the specimen
in which the waves are travelling. If the solid is a thin bar of finite cross section the analysis
for longitudinal waves in a gas is equally valid, except that the bulk modulus B, is replaced
by Young’s modulus ¥, the ratio of the longitudinal stress in the bar to its longitudinal
strain.

The wave equation is then

A longitudinal wave in a medium compresses the medium and distorts it laterally.
Because a solid can develop a shear force in any direction, such a lateral distortion is
accompanied by a transverse shear. The effect of this upon the wave motion in solids of
finite cross section is quite complicated and has been ignored in the very thin specimen
above. In bulk solids, however, the longitudinal and transverse modes may be considered
separately.

We have seen that the longitudinal compression produces a strain 9dn/dx; the
accompanying lateral distortion produces a strain 93/dy (of opposite sign to dn/dx and
perpendicular to the x-direction).

Here [ is the displacement in the y-direction and is a function of both x and y. The ratio
of these strains

_oB o _
Oy /! 0Ox

is known as Poisson’s ratio and is expressed in terms of Lamé’s elastic constants A and p
for a solid as

A where A o¥
o= —— R —
2(A 4+ w) (1+0)(1-20)

These constants are always positive, so that o < % and is commonly ~ % In terms of these
constants Young’s modulus becomes

Y =(A+2u—2)\o)

The constant p is the transverse coefficient of rigidity; that is, the ratio of the transverse
stress to the transverse strain. It plays the role of the elasticity in the propagation of pure
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\y d
t
,B(X)T f (x + dx)
v Y x
X ‘ ‘ X+ dx

B=pxy)

oF = transverse strain

dX

Figure 6.5 Shear in a bulk solid producing a transverse wave. The transverse shear strain is 93/0x
and the transverse shear stress is 1 93/0x, where p is the shear modulus of rigidity

transverse waves in a bulk solid which Young’s modulus plays for longitudinal waves in
a thin specimen. Figure 6.5 illustrates the shear in a transverse plane wave, where the
transverse strain is defined by 93/0x. The transverse stress at x is therefore T, = 93/ 0x.
The equation of transverse motion of the thin element dx is then given by

Tyrax — Tax = pdxy

o0\ _
ox uﬁx EEd

where p is the density, or

but § = 9%3/0t2, hence

the wave equation with a velocity given by ¢? = u/p.

The effect of the transverse rigidity p is to stiffen the solid and increase the elastic
constant governing the propagation of longitudinal waves. In a bulk solid the velocity of
these waves is no longer given by ¢ = Y/p, but becomes

s A+2p
ct =
p

Since Young’s modulus ¥ = A + 2u — 2A0, the elasticity is increased by the amount
2)o = A, so that longitudinal waves in a bulk solid have a higher velocity than the same
waves along a thin specimen.

In an isotropic solid, where the velocity of propagation is the same in all directions,
the concept of a bulk modulus, used in the discussion on waves in gases, holds equally
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well. Expressed in terms of Lamé’s elastic constants the bulk modulus for a solid is
written

B=X+2u=Y[3(1-20)]""
the longitudinal wave velocity for a bulk solid becomes

o) = (B + (;‘/3)u> 2

whilst the transverse velocity remains as

Application to Earthquakes

The values of these velocities are well known for seismic waves generated by earthquakes.
Near the surface of the earth the longitudinal waves have a velocity of 8 km s~! and the
transverse waves travel at 4.45 km s~'. The velocity of the longitudinal waves increases
with depth until, at a depth of about 1800 miles, no waves are transmitted because of a
discontinuity and severe mismatch of impedances associated with the fluid core.

At the surface of the earth the transverse wave velocity is affected by the fact that stress
components directed through the surface are zero there and these waves, known as
Rayleigh Waves, travel with a velocity given by

where
f(0)=09194 when o=0-25

and

f(0) =0.9553 when 0=0-5

The energy of the Rayleigh Waves is confined to two dimensions; their amplitude is
often much higher than that of the three dimensional longitudinal waves and therefore they
are potentially more damaging.

In an earthquake the arrival of the fast longitudinal waves is followed by the Rayleigh
Waves and then by a complicated pattern of reflected waves including those affected by the
stratification of the earth’s structure, known as Love Waves.
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(Problem 6.9)

Longitudinal Waves in a Periodic Structure

Lamé’s elastic constants, A and u, which are used to define such macroscopic quantities as
Young’s modulus and the bulk modulus, are themselves determined by forces which
operate over interatomic distances. The discussion on transverse waves in a periodic
structure has already shown that in a one-dimensional array representing a crystal lattice a
stiffness s = T /a dyn cm~! can exist between two atoms separated by a distance a.

When the waves along such a lattice are longitudinal the atomic displacements from
equilibrium are represented by 7 (Figure 6.6). An increase in the separation between two
atoms from a to a + 7 gives a strain ¢ = 7/a, and a stress normal to the face area a” of a
unit cell in a crystal equal to sn/a® = s¢/a, a force per unit area.

Now Young’s modulus is the ratio of this longitudinal stress to the longitudinal strain, so
that Y = se/ea or s = Ya. The longitudinal vibration frequency of the atoms of mass m
connected by stiffness constants s is given, very approximately by

w 1 K 1 Y Co
V=—=— —_ — —_
2 2w \\m 2ma \| p 2ma

where m = pa® and ¢y is the velocity of sound in a solid. The value of
cor~5x10°ms !, and a~2x 10719 m, so that v ~ 3 x 10'2 Hz, which is almost
the same value as the frequency of the transverse wave in the infrared region of the
electromagnetic spectrum. The highest ultrasonic frequency generated so far is about a
factor of 10 lower than v = c(/2ma. At frequencies ~ 5 x 10'2 to 10'* Hz many
interesting experimental results must be expected. A more precise mathematical treatment
yields the same equation of motion for the r th particle as in the transverse wave;
namely

mn, = S(nm N1 — 277r)
where s = T'/a and

Nr = Nmax ei(wt—km)

nr—l 77, 77,+1

Figure 6.6 Displacement of atoms in a linear array due to a longitudinal wave in a crysal structure

STUDENTS-HUB.com Uploaded By: Jibreel Bornat


https://students-hub.com

Reflection and Transmission of Sound Waves at Boundaries 163

The results are precisely the same as in the case of transverse waves and the shape of the
dispersion curve is also similar. The maximum value of the cut-off frequency w,, is,
however, higher for the longitudinal than for the transverse waves. This is because the
longitudinal elastic constant Y is greater than the transverse constant y; that is, the force
required for a given displacement in the longitudinal direction is greater than that for
the same displacement in the transverse direction.

Reflection and Transmission of Sound Waves at Boundaries

When a sound wave meets a boundary separating two media of different acoustic
impedances two boundary conditions must be met in considering the reflection and
transmission of the wave. They are that

(i) the particle velocity 7
and
(i1) the acoustic excess pressure p

are both continuous across the boundary. Physically this ensures that the two media are in
complete contact everywhere across the boundary.

Figure 6.7 shows that we are considering a plane sound wave travelling in a medium of
specific acoustic impedance Z; = pic; and meeting, at normal incidence, an infinite plane
boundary separating the first medium from another of specific acoustic impedance
Z, = ppcy. If the subscripts i, r and t denote incident, reflected and transmitted
respectively, then the boundary conditions give

ni + e = Nt (6.1)
and

Di+Pr =Dt (6.2)
For the incident wave p; = pic7; and for the reflected wave p. = —pc7;, SO equation

(6.2) becomes
PICIN; — PIC1T) = P2C2);

incident
—_— transmitted
—
B
reflected
p1 G p2 G

Figure 6.7 Incident, reflected and transmitted sound waves at a plane boundary between media of
specific acoustic impedances p1c1 and p,c»
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or

217 — Z1ny = Zony (6.3)
Eliminating 7, from (6.1) and (6.3) gives
N _wne e 21— 2y

noowni oM Zi+2Zs

Eliminatiing 7). from (6.1) and (6.3) gives

Me_m_ 27
no omi ZitZ
Now
12:_217'%:22—21 :_E
Pi VAL VAR VA i
and

&:Zz’f]t: 222
ri Zini Zi1+ 2,

We see that if Z; > Z; the incident and reflected particle velocities are in phase, whilst the
incident and reflected acoustic pressures are out of phase. The superposition of incident and
reflected velocities which are in phase leads to a cancellation of pressure (a pressure node
in a standing wave system). If Z| < Z, the pressures are in phase and the velocities are out
of phase.

The transmitted particle velocity and acoustic pressure are always in phase with their
incident counterparts.

At a rigid wall, where Z, is infinite, the velocity 1 = 0 = 9; + 7, which leads to a
doubling of pressure at the boundary. (See Summary on p. 546.)

Reflection and Transmission of Sound Intensity

The intensity coefficients of reflection and transmission are given by

ﬁ_zl(ﬁf)rms — <Zl _ZZ>2
Zy+ 2,

I Zl(ﬁiz)rms

and

Il_zz(ﬁf)m:zz< 27, >2: 47,7,
(

E_Zl(ﬁiz)rms Z\\Z\ + 2, Z1+Zz)2

The conservation of energy gives

1r+1‘—1 or Ii=1+1
Il [1_ 1 — £t T
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The great disparity between the specific acoustic impedance of air on the one hand and
water or steel on the other leads to an extreme mismatch of impedances when the
transmission of acoustic energy between these media is attempted.

There is an almost total reflection of sound wave energy at an air-water interface,
independent of the side from which the wave approaches the boundary. Only 14% of
acoustic energy can be transmitted at a steel-water interface, a limitation which has severe
implications for underwater transmission and detection devices which rely on acoustics.

(Problems 6.10, 6.11, 6.12, 6.13, 6.14, 6.15, 6.16, 6.17)

Problem 6.1
Show that in a gas at temperature 7 the average thermal velocity of a molecule is approximatley
equal to the velocity of sound.

Problem 6.2
The velocity of sound in air of density 1.29 kg m > may be taken as 330 m s~!. Show that the
acoustic pressure for the painful sound of 10 W m~2 ~ 6.5 x 10~ of an atmosphere.

Problem 6.3
Show that the displacement amplitude of an air molecule at a painful sound level of 10 W m~? at
500 Hz =~ 6.9 x 1075 m.

Problem 6.4

Barely audible sound in air has an intensity of 1079 7. Show that the displacement amplitude of an
air molecule for sound at this level at 500 Hz is ~ 10 !9 m; that is, about the size of the molecular
diameter.

Problem 6.5
Hi-fi equipment is played very loudly at an intensity of 100/, in a small room of cross section
3 m x 3 m. Show that this audio output is about 10 W.

Problem 6.6

Two sound waves, one in water and one in air, have the same intensity. Show that the ratio of their
pressure amplitudes (p water/p air) is about 60. When the pressure amplitudes are equal show that
the intensity ratio is ~ 3 x 1072,

Problem 6.7
A spring of mass m, stiffness s and length L is stretched to a length L + /. When longitudinal waves
propagate along the spring the equation of motion of a length dx may be written

o'y _OoF
o2 Ox

where p is the mass per unit length of the spring, 7 is the longitudinal displacement and F is the
restoring force. Derive the wave equation to show that the wave velocity v is given by

v?=s(L+1)/p
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Problem 6.8
In Problem 1.10 we showed that a mass M suspended by a spring of stiffness s and mass m oscillated
simple harmonically at a frequency given by

2 N

v :M+m/3

We may consider the same problem in terms of standing waves along the vertical spring with
displacement

1 = (A cos kx + B sin kx) sin wt

where k = w/v is the wave number. The boundary conditions are that n = 0 at x = 0 (the top of the
spring) and

2
YR/ B——l

T atx=1L
o ox

(the bottom of the spring). Show that these lead to the expression

kL tan kL = m
M

and expand tan kL in powers of kL to show that, in the second order approximation

Wri=—"_
M +m/3

The value of v is given in Problem 6.7.

Problem 6.9

A solid has a Poissons ratio 0 = 0.25. Show that the ratio of the longitudinal wave velocity to the
transverse wave velocity is v/3. Use the values of these velocities given in the text to derive an
appropriate value of o for the earth.

Problem 6.10

Show that when sound waves are normally incident on a plane steel water interface 86% of the
energy is reflected. If the waves are travelling in water and are normally incident on a plane water-ice
interface show that 82.3% of the energy is transmitted.

(pc values in kg m2s™!)

water = 1.43 x 10°
ice = 3.49 x 10°
steel = 3.9 x 107
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Problem 6.11

Use the boundary conditions for standing acoustic waves in a tube to confirm the following:

Particle displacement Pressure
closed end open end closed end open end
Phase change on reflection 180° 0 0 180°
node antinode antinode node

Problem 6.12
Standing acoustic waves are formed in a tube of length / with (a) both ends open and (b) one end
open and the other closed. If the particle displacement

1n = (A cos kx + Bsin kx) sinwt
and the boundary conditions are as shown in the diagrams, show that for
(a) n=Acoskxsinwt with \=2I/n
and for
(b) n=Acoskxsinwt with A=4l/(2n+1)
Sketch the first three harmonics for each case.
() (b)

on g o
ox ox ox

0 0 n=0

/ > - | —

Problem 6.13
On p. 121 we discussed the problem of matching two strings of impedances Z; and Z3 by the
insertion of a quarter wave element of impedance

Z,=(2,Z3)"?

Repeat this problem for the acoustic case where the expressions for the string displacements

Vi Yrs YVt

now represent the appropriate acoustic pressures pi, pr and p;.
Show that the boundary condition for pressure continuity at x = 0 is

A1+B1=A,+B;
and that for continuity of particle velocity is
Zy(Ay —By) =Z(A2 — B))
Similarly, at x = /, show that the boundary conditions are

A2e—1k21 +Bzelk2[ :A3
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and

Z3(Azeiik21 — Bz eikzl) = ZzA3

Hence prove that the coefficient of sound transmission

Z1 A3,
Zy AY
when
A
Z}=7,Z; and 1:72

(Note that the expressions for both boundary conditions and transmission coefficient differ from
those in the case of the string.)

Problem 6.14
For sound waves of high amplitude the adiabatic bulk modulus may no longer be considered as a
constant. Use the adiabatic condition that

n= sl

in deriving the wave equation to show that each part of the high amplitude wave has its

own sound velocity co(1 + s) (7“)/2, where c(z) = ~Py/po, 6 is the dilatation, s the condensation and

v the ratio of the specific heats at constant pressure and volume.

Problem 6.15

Some longitudinal waves in a plasma exhibit a combination of electrical and acoustical phenomena.
They obey a dispersion relation at temperature T of w? = w? + 3aTk?, where w, is the constant
electron plasma frequency (see Problem 5.18) and the Boltzmann constant is written as a to avoid
confusion with the wave number k. Show that the product of the phase and group velocities is related
to the average thermal energy of an electron (found from pV = RT).

Problem 6.16

It is possible to obtain the wave equation for tidal waves (long waves in shallow water) by the
method used in deriving the acoustic wave equation. In the figure a constant mass of fluid in an
element of unit width, height 4 and length Ax moves a distance 7 and assumes

—
1
O
R a
&%
N
\‘/\0\
1,
h h
—> AX <« —> <«
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a new height 7+ « and length (1 + 9ndx)Ax, but retains unit width. Show that, to a first
approximation,

o

oa=—h—

ox

Neglecting surface tension, the force on the element face of height 4 + « arises from the product of
the height and the mean hydrostatic pressure. Show, if pgh < Py (i.e. h < 10 m) and o < h, that
the net force on the liquid element is given by

OF Oa

——Ax = —pgh— Ax

Ox P& ox

Continue the derivation using the acoustic case as a model to show that these waves are non-
dispersive with a phase velocity given by v2 = gh.

Problem 6.17
Waves near the surface of a non-viscous incompressible liquid of density p have a phase velocity
given by

Tk
V2 (k) = E + ;} tanh kh

where g is the acceleration due to gravity, T is the surface tension, k is the wave number and # is the
liquid depth. When /& < A the liquid is shallow; when & >> X the liquid is deep.

(a) Show that, when gravi?f nd surface tension are equally important and /2 >> A, the wave velocity
is a minimum_at v* =4gT/p, and show that this occurs for a ‘critical’ wavelength
Ao =2n(T/pg) .

(b) The condition A > A\, defines a gravity wave, and surface tension is negligible. Show that
gravity waves in a shallow liquid are non-dispersive with a velocity v = \/gh (see Problem
6.16).

(c) Show that gravity waves in a deep liquid have a phase velocity v = y/g/k and a group velocity
of half this value.

(d) The condition A < A, defines a ripple (dominated by surface tension). Show that short ripples in

a deep liquid have a phase velocity v = \/Tk/p and a group velocity of % v. (Note the anomalous
dispersion).

Summary of Important Results

Wave Velocity
» _ Bulk Modulus  ~P

p p

c
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Specific Acoustic Impedance

acoustic pressure

~ particle velocity

Z = pc (for right-going wave)

Longitudinal Waves

= —pc (for left-going wave because pressure

and particle velocity become anti-phase)

p>
Intensity = %pcﬁ; =

ms __ .
c - prmsnrms

Reflection and Transmission Coefficients

Reflected Amplitude {displacement} _Zy—Z,  Reflected pressure

Incident Amplitude | and velocity | Z; +Z,

27, Z,

Transmitted Amplitude {displacement}

Incident Amplitude and velocity

Reflected Intensity (energy) (Z | — Zz> 2
y =

Incident Intensity Z1+ 27,
Transmitted Intensity LYAVA)
. Y (energy) = — 2
Incident Intensity (Z1 + Z»)
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== — X
Z\+ 72y Z,

Incident pressure

Transmitted pressure
Incident pressure
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Waves on Transmission Lines

In the wave motion discussed so far four major points have emerged. They are

1. Individual particles in the medium oscillate about their equilibrium positions with
simple harmonic motion but do not propagate through the medium.

2. Crests and troughs and all planes of equal phase are transmitted through the medium to
give the wave motion.

3. The wave or phase velocity is governed by the product of the inertia of the medium and
its capacity to store potential energy; that is, its elasticity.

4. The impedance of the medium to this wave motion is governed by the ratio of the
inertia to the elasticity (see table on p. 546).

In this chapter we wish to investigate the wave propagation of voltages and currents and
we shall see that the same physical features are predominant. Voltage and current waves are
usually sent along a geometrical configuration of wires and cables known as transmission
lines. The physical scale or order of magnitude of these lines can vary from that of an
oscilloscope cable on a laboratory bench to the electric power distribution lines supported
on pylons over hundreds of miles or the submarine telecommunication cables lying on an
ocean bed.

Any transmission line can be simply represented by a pair of parallel wires into one end
of which power is fed by an a.c. generator. Figure 7.1a shows such a line at the instant
when the generator terminal A is positive with respect to terminal B, with current flowing
out of the terminal A and into terminal B as the generator is doing work. A half cycle later
the position is reversed and B is the positive terminal, the net result being that along each of
the two wires there will be a distribution of charge as shown, reversing in sign at each half
cycle due to the oscillatory simple harmonic motion of the charge carriers (Figure 7.1b).
These carriers move a distance equal to a fraction of a wavelength on either side of their
equilibrium positions. As the charge moves current flows, having a maximum value where
the product of charge density and velocity is greatest.

The Physics of Vibrations and Waves, 6th Edition H. J. Pain
© 2005 John Wiley & Sons, Ltd., ISBN: 0-470-01295-1(hardback); 0-470-01296-X(paperback)
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1 / +++++ + ++ + o L L — + + ++ +++++

A Voltage £
a) Generator nergy
@ Viax Wave |V, Vinax — flow

B

i& -—- - — + +++ +++++ +++ + - -- -

Z + Z
>

Oscillatory motion
of charge carriers

1 .
5 period later

i( - - - + +++ +++++ +++ + = - S
A
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(b)  Generator | || Vimax Vinax Vinax ~ > flow
B
I\ +++++ +++ + - - - - - + +++ +++++
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Inductive
coupling
. \/oltage ;
(©) Oscillator Wave Lecher wires
O
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glows brightly
at voltage maxima

Figure 7.1 Power fed continuously by a generator into an infinitely long transmission line. Charge
distribution and voltage waves for (a) generator terminal positive at A and (b) a half period later,
generator terminal positive at B. Laboratory demonstration (c) of voltage maxima along a Lecher wire
system. The neon lamp glows when held near a position of Vpax

The existence along the cable of maximum and minimum current values varying simple
harmonically in space and time describes a current wave along the cable. Associated with
these currents there are voltage waves (Figure 7.1a), and if the voltage and current at the
generator are always in phase then power is continuously fed into the transmission line and
the waves will always be carrying energy away from the generator. In a laboratory the
voltage and current waves may be shown on a Lecher Wire sysem (Figure 7.1c).

In deriving the wave equation for both voltage and current to obtain the velocity of wave
propagation we shall concentrate our attention on a short element of the line having a
length very much less than that of the waves. Over this element we may consider the
variables to change linearly to the first order and we can use differentials.

The currents which flow will generate magnetic flux lines which thread the region
between the cables, giving rise to a self inductance L per unit length measured in henries
per metre. Between the lines, which form a condenser, there is an electrical capacitance Cy
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per unit length measured in farads per metre. In the absence of any resistance in the line
these two parameters completely describe the line, which is known as ideal or lossless.

Ideal or Lossless Transmission Line

Figure 7.2 represents a short element of zero resistance of an ideal transmission line length
dx < A (the voltage or current wavelength). The self inductance of the element is Lq dx
and its capacitance if Cy dx F.

If the rate of change of voltage per unit length at constant time is OV/0x, then the
voltage difference between the ends of the element dx is 9V /dxdx, which equals the
voltage drop from the self inductance — (L dx)9I/0k.

Thus
ov ol
ax &= ~Lod) g
or
ov ol
o~ Loy (7.1)

If the rate of change of current per unit length at constant time is 91/0x there is a loss of
current along the length dx of —91/0x dx because some current has charged the capacitance
C dx of the line to a voltage V.

If the amount of charge is ¢ = (Codx)V,

_dg 0

dl =—=—(Coydx)V
dr az( 0dx)
so that
-0l 0
—dx=—(Codx)V
Ox g (Co)
Lydx

d

/ ol
s T W I+ X dx
Codx - V+ %dx

! )

Figure 7.2 Representation of element of an ideal transmission line of inductance Ly H per unit
length and capacitance Co F per unit length. The element length <« A, the voltage and current
wavelength
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or

-0l ov
Since 92/0x0t = 0%/0tdx it follows, by taking 9/0x of equation (7.1) and 9/0t of
equation (7.2) that

(7.3)

a pure wave equation for the voltage with a velocity of propagation given by v? = 1/LyC,.

Similarly 9/0¢t of (7.1) and 9/0x of (7.2) gives

0?1 0%l

~ —LoCo— 7.4
Ox? 0002 (7.4)
showing that the current waves propagate with the same velocity v> = 1/LyC,. We must
remember here, in checking dimensions, that Ly and Cy are defined per unit length.

So far then, the oscillatory motion of the charge carriers (our particles in a medium) has
led to the propagation of voltage and current waves with a velocity governed by the product
of the magnetic inertia or inductance of the medium and its capactiy to store potential
energy.

Coaxial Cables

Many transmission lines are made in the form of coaxial cables, e.g. a cylinder of dielectric
material such as polythene having one conductor along its axis and the other surrounding
its outer surface. This configuration has an inductance per unit length of

H
2T

where r| and r; are the radii of the inner and outer conductors respectively and p is the
magnetic permeability of the dielectric (henries per metre). Its capacitance per unit length

Ly = loge;—? H

Co= 2me
log el2 / ri

where ¢ is the permittivity of the dielectric (farads per metre) so that v> = 1/LoCo = 1/ pe.
The velocity of the voltage and current waves along such a cable is wholly determined

by the properties of the dielectric medium. We shall see in the next chapter on

electromagnetic waves that p and e represent the inertial and elastic properties of any

medium in which such waves are propagating; the velocity of these waves will be given by

v? = 1/ue. In free space these parameters have the values

po=4rx 10" "Hm™!
g0 = (36m x 10°) 'Fm™!

and v2 becomes ¢ = (jupeo) ' where ¢ is the velocity of light, equal to 3 x 108 m s~ !.
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As we shall see in the next section the ratio of the voltage to the current in the waves
travelling along the cable is

=70 = —_—
0 CO

Vv Ly
I
where Z; defines the impedance seen by the waves moving down an infinitely long cable. It
is called the Characteristic Impedance.
We write € = €, €9 where ¢, is the relative permittivity (dielectric constant) of a material
and p = prpo, where i, is the relative permeability. Polythene, which commonly fills the
space between r; and 7, has €, = 10 and p, =~ 1.

Hence
Ly 1 7 1) 1 1 o
Zo=1/—=—4/"log. = =— — log.—=,/—
0 VCy 27\ e Ogerl 21 /e, Ogerl €0
R = 376.6 ©
€o

Typically, the ratio r,/r; varies between 2 and 10? and for a laboratory cable using
polythene Zy ~ 50—75 Q with a signal speed = ¢/3 where c is the speed of light.
Coaxial cables can be made to a very high degree of precision and the time for an
electrical signal to travel a given length can be accurately calculated because the velocity is
known.
Such a cable can be used as a ‘delay line’ in order to separate the arrival of signals at a
given point by very small intervals of time.

where

Characteristic Impedance of a Transmission Line
The solutions to equations (7.3) and (7.4) are, of course,
. 2w
Vi = Vg, sin 5% (vt — x)
and
. 27
I = I, sin Y (vt — x)

where Vi and I are the maximum values and where the subscript + refers to a wave
moving in the positive x-direction. Equation (7.1), 9V /dx = —L, 01 /Ot, therefore gives
—V! = —uwLol'_, where the superscript refers to differentiation with respect to the bracket
(vt — x).

Integration of this equation gives

V+ = ’UL()I+
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where the constant of integration has no significance because we are considering only
oscillatory values of voltage and current whilst the constant will change merely the d.c.
level.
The ratio
V+ LO

oLy =422
I+ vro C()

and the value of /Ly/Cy, written as Zy, is a constant for a transmission line of given
properties and is called the characteristic impedance. Note that it is a pure resistance
(no dimensions of length are involved) and it is the impedance seen by the wave
system propagating along an infinitely long line, just as an acoustic wave experiences a
specific acoustic impedance pc. The physical correspondence between pc and
Lov = +/Lo/Cy = Zy is immediately evident.

The value of Z for the coaxial cable considered earlier can be shown to be

1
Zo :_\/Eloge =2
2w\ e ri

Electromagnetic waves in free space experience an impedance Zy = +/o/e9 = 376.6 €.
So far we have considered waves travelling only in the x-direction. Waves which travel
in the negative x-direction will be represented (from solving the wave equation) by

2
V_=Vy_sin TW (vt + x)
and

. 2w
I_ =1y sin T(vt—l—x)

where the negative subscript denotes the negative x-direction of propagation.
Equation (7.1) then yields the results that

so that, in common with the specific acoustic impedance, a negative sign is introduced into
the ratio when the waves are travelling in the negative x-direction.

When waves are travelling in both directions along the transmission line the total voltage
and current at any point will be given by

V - V+ + V_
and
[=1,+1_
When a transmission line has waves only in the positive direction the voltage and current

waves are always in phase, energy is propagated and power is being fed into the line by the
generator at all times. This situation is destroyed when waves travel in both directions;
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waves in the negative x-direction are produced by reflection at a boundary when a line is
terminated or mismatched; we shall now consider such reflections.

(Problems 7.1, 7.2)

Reflections from the End of a Transmission Line

Suppose that a transmission line of characteristic impedance Z has a finite length and that
the end opposite that of the generator is terminated by a load of impedance Z; as shown in
Figure 7.3.
A wave travelling to the right (V, I, ) may be reflected to produce a wave (V_, I_)
The boundary conditions at Z;, must be V +V_ =V, where V| is the voltage across the
load and I +7_=1y.Inaddition V. /I, =Z,, V_/I_ = —Zyand V| /I, = Z. It is easily
shown that these equations yield

V_ _ZL—Z()
V+7ZL+Z()

(the voltage amplitude reflection coefficient),
1. Zy-7Z
I. Z.+2Z

(the current amplitude reflection coefficient),

Vo 27y

V. N Zy,+Zy
and

I 27

I. Zi+Z

in complete correspondence with the reflection and transmission coefficients we have met
so far. (See Summary on p. 546.)

—_—> (V+r l+)

2

«— (V_, 1) vV, -V

Figure 7.3 Transmission line terminated by impedance Z, to produce reflected waves unless
Z| = Zy, the characteristic impedance
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We see that if the line is terminated by a load Z1 = Z,, its characteristic impedance, the
line is matched, all the energy propagating down the line is absorbed and there is no
reflected wave. When Z| = Z, therefore, the wave in the positive direction continues to
behave as though the transmission line were infinitely long.

Short Circuited Transmission Line (Z, = 0)
If the ends of the transmission line are short circuited (Figure 7.4), Z; = 0, and we have
Ve=V,+V_=0

so that V, = —V_, and there is total reflection with a phase change of m, But this is the
condition, as we saw in an earlier chapter, for the existence of standing waves; we shall see
that such waves exist on the transmission line.

At any position x on the line we may express the two voltage waves by

V. =Zol, = Vg, e+

and

V_=—Zo_ =V, et
where, with total reflection and 7 phase change, Vo, = —V_. The total voltage at x is
Ve=(Vy+V_)= Vo (e —el)el = (—i)2V,, sinkxe™
and the total current at x is

1% A R ) 7/ A
Liy=(1I++1.)= Zig(e’lk" +e* ) el = Z—z+ cos kxe™

We see then that at any point x along the line the voltage V, varies as sin kx and the
current /, varies as cos kx, so that voltage and current are 90° out of phase in space. In
addition the — i factor in the voltage expression shows that the voltage lags the current 90°
in time, so that if we take the voltage to vary with cos wt from the e!“’ term, then the current

Voltage

Current

Figure 7.4 Short circuited transmission line of length (2n + 1)A/4 produces a standing wave with
a current maximum and zero voltage at end of line
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will vary with — sin wt. If we take the time variation of voltage to be as sin wt the current
will change with cos wt.

Voltage and current at all points are 90° out of phase in space and time, and the power
factor cos ¢ = cos 90° = 0, so that no power is consumed. A standing wave system exists
with equal energy propagated in each direction and the total energy propagation equal to
zero. Nodes of voltage and current are spaced along the transmission line as shown in
Figure 7.4, with [ always a maximum where V = 0 and vice versa.

If the current / varies with cos wt it will be at a maximum when V = 0; when Vis a
maximum the current is zero. The energy of the system is therefore completely exchanged
each quarter cycle between the magnetic inertial energy %LOI 2 and the electric potential
energy 3 CoV2.

(Problems 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9, 7.10, 7.11)

The Transmission Line as a Filter

The transmission line is a continuous network of impedances in series and parallel
combination. The unit section is shown in Figure 7.5(a) and the continuous network in
Figure 7.5(b).

Zy
—
| I—|
(a)
Zl Zl Zl
| — | — | I
L L L

(b)

Figure 7.5 (a) The elementary unit of a transmission line. (b) A transmission line formed by a
series of such units
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4

— -

) 2= ]

S UE———— S —

Figure 7.6 A infinite series of elemenetary units presents a characteristic impedance Z, to a
wave travelling down the transmission line. Adding an extra unit at the input terminal leaves Z,
unchanged

If we add an infinite series of such sections a wave travelling down the line will meet its
characteristic impedance Z,. Figure 7.6 shows that, adding an extra section to the beginning
of the line does not change Zy. The impedance in Figure 7.6 is

1 1\!
Z=Z1+(=—+—

L 2
or
27,
Z=27Z+ 20 _ Zy
Zr + 7y
so the characteristic impedance is
=2 \[A 2z
0= 4 142

Note that Z; /2 is half the value of the first impedance in the line so if we measure the
impedance from a point half way along this impedance we have

le 1/2
Zy = 7 +71Z,

We shall, however, use the larger value of Z in what follows.

In Figure 7.7 we now consider the currents and voltages at the far end of the transmission
line. Any V,, since it is across Z is given by V, = [,7,

Moreover

VA
v 2l

Vn - VnJrl :InZl = Vn Z()
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]

0 D oal] v D [l

Figure 7.7 The propagation constant oo = V,41/V,, = Zo — 1/2, for all sections of the transmission
line

So

Vst :l_é:ZO_Zl
V., Zy Zy

a result which is the same for all sections of the line.
We define a propagation factor

Vo Zo— 27,
o = =
v, Zo
which, with
z-24 (427 "
0= 1 122
gives

In all practical cases Z;/Z, is real since

1. there is either negligible resistance so that Z; and Z, are imaginary
or

2. the impedances are purely resistive.
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So, given (1) or (2) we see that if

Zi\* z z
(a) (1+2—le) = [1—!—7;(14—4—212)} >1 then « is real, and

2
Z

b |1+ ) <1 then « is complex.
27,

For « real we have Z,/4Z, > 0 or < —1.

If Z,/4Z, >0, then 0 <« <1, the currents in successive sections decrease
progressively and since o is real and positive there is no phase change from one section
to another.

If Z,/4Z, < —1, then a <0, and there is again a progressive decrease in current
amplitudes along the network but here o is negative and there is a 7 phase change for each
successive section.

When o is complex we have

Z
-1<—<0
47,

and

,11/2
1+ A il (14 2
p— _—l — -
@ A 27,

Note that || = 1 so we can write

a=cosf—isin B=e ¥

where

Z]
_1 -
cos 3 = +22

The current amplitude remains constant along the transmission line but the phase is
retarded by ( with each section. If Z, and Z, are purely resistive « is fixed and the
attenuation is constant for all voltage inputs.

If Z, is an inductance with Z, a capacitance (or vice versa) the division between « real
and o complex occurs at certain frequencies governed by their relative magnitudes.

If Z =iwL and Z, = 1/iwC for an input voltage V = Ve then |a| =1 when
0 <W’LC < 4.

So the line behaves as a low pass filter with a cut-off frequency w, = 2/v/LC Above this
frequency there is a progressive decrease in amplitude with a phase change of 7 in each
section, Figure 7.8a.

If the positions of Z; and Z, are now interchanged so that Z; = 1/iwC is now a
capacitance and Z; is now an inductance with Z, = iwL the transmisson line becomes a
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(@)
lad
|
_ 2
¢ _JL_C
(b) 1
lod

1
W~ =
¢ 2JLc

Figure 7.8 (a) When Z; = iwl and Z, = (iwL) " the transmission line acts as a low-pass filter. (b)
Reversing the positions of Z; and Z, changes the transmission line into a high-pass filter

high pass filter with zero attenuation for 0 < 1/w?LC < 4 that is for all frequencies above
we = (1/2/LC) Figure 7.8b.

(Problem 7.12)
Effect of Resistance in a Transmission Line

The discussion so far has concentrated on a transmission line having only inductance and
capacitance, i.e. wattless components which consume no power. In practice, of course, no
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o
N Lodx Rqdx lf} X dx
v Coix T QGHx v+ 2L gy

ox

}

Figure 7.9 Real transmission line element includes a series resistance Ry 2 per unit length and a
shunt conductance G, S per unit length

such line exists: there is always some resistance in the wires which will be responsible for
energy losses. We shall take this resistance into account by supposing that the transmission
line has a series resistance R ) per unit length and a short circuiting or shunting resistance
between the wires, which we express as a shunt conductance (inverse of resistance) written
as G, where G has the dimensions of siemens per metre. Our model of the short element
of length dx of the transmission line now appears in Figure 7.9, with a resistance Ry dx in
series with L dx and the conductance G dx shunting the capacitance C(dx. Current will
now leak across the transmission line because the dielectric is not perfect. We have seen
that the time-dependence of the voltage and current variations along a transmission line
may be written

V=Vye and I=1Iye"

so that

ol ov
LOE:iWLOI and COEZiWCQV

The voltage and current changes across the line element length dx are now given by

ov ol i
a——LOE—ROI——(Ro—f—IwLo)I (713)
ol ov i

a— —COE—GQV— —(Go—i-le())V (7.23)

since (Godx)V is the current shunted across the condenser. Inserting 9/9x of equation
(7.1a) into equation (7.2a) gives

0V _ (Ro + iwL )81—(1{ +iwLg)(Go + iwCo)V = vV
Frv 0 0)5; — o 0){Go o)V =7
where 72 = (Rg +iwLg)(Go +iwCy), so that v is a complex quantity which may be
written

¥y=a+ik
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Inserting 0/0x of equation (7.2a) into equation (7.1a) gives

021 _ oV ) .
= —(Gy +iwCy) e (Ro +iwLo)(Go +iwCo)l = 21

ox? x
an equation similar to that for V.
The equation
2
oV _ s
Ox?

has solutions for the x-dependence of V of the form

V=0 (7.5)

V=Ae™ or V=Be™

where A and B are constants.
We know already that the time-dependence of Vis of the form ', so that the complete
solution for V may be written

V=(Ae ™4 Be™)e"
or, since v = « + ik,
V= (Aefozxefikx +Be(yxe+ikx) eio./t

—Ae ei(wt—kx) +Be™ ei(wt+kx)

The behaviour of V is shown in Figure 7.10—a wave travelling to the right with an
amplitude decaying exponentially with distance because of the term e~** and a wave
travelling to the left with an amplitude decaying exponentially with distance because of the
term e .

In the expression v = a + ik, v is called the propagation constant, « is called the
attenuation or absorption coefficient and k is the wave number.

e*(XX eOLX

(ot kx) (ot + kx)
Ae Be

—

-—
X —>
incident reflected
wave wave

Figure 7.10 Voltage and current waves in both directions along a transmission line with resistance.
The effect of the dissipation term is shown by the exponentially decaying wave in each direction
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The behaviour of the current wave [ is exactly similar and since power is the product VI,
the power loss with distance varies as (e ””‘)2; that is, as e ~2%,

We would expect this behaviour from our discussion of damped simple harmonic
oscillations. When the transmission line properties are purely inductive (inertial) and
capacitative (elastic), a pure wave equation with a sine or cosine solution will follow. The
introduction of a resistive or loss element produces an exponential decay with distance
along the transmission line in exactly the same way as an oscillator is damped with time.

Such a loss mechanism, resistive, viscous, frictional or diffusive, will always result in
energy loss from the propagating wave. These are all examples of random collision
processes which operate in only one direction in the sense that they are thermodynamically
irreversible. At the end of this chapter we shall discuss their effects in more detail.

Characteristic Impedance of a Transmission Line with
Resistance

In a lossless line we saw that the ratio V. /I, = Zy = \/Lo/Co = Z (2, a purely resistive
term. In what way does the introduction of the resistance into the line affect the

characteristic impedance?
The solution to the equation 921 /9x* = ~2I may be written (for the x-dependence of 1) as

I=(A"e ™ +B'e™)

so that equation (7.2a)

ol .
a = —(G() + lu)Co)V
gives
—’y(A/eivx — B/CA’X) = —(Gg + iwCo)V
or

V/(Ro +iwLo)(Go + iwCo)
G() + iwC()

(Ale™ —B'e™)=V=V,+V_

But, except for the e’ term,
/ —
A c ™ == I +

the current wave in the positive x-direction, so that
Ry +iwL
/M} L=V,
G() + le()
Ve _ , [Ro +iwLo =7
I, Gy +iwCy °
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for a transmission line with resistance. Similarly B’ e = I_ and

Vo __ [Rotiwlo _
I_ Gy +iwCy N 0
The presence of the resistance term in the complex characteristic impedance means that
power will be lost through Joule dissipation and that energy will be absorbed from the wave
system.
We shall discuss this aspect in some detail in the next chapter on electromagnetic waves,

but for the moment we shall examine absorption from a different (although equivalent)
viewpoint.

(Problems 7.13, 7.14)

The Diffusion Equation and Energy Absorption in Waves

On p. 23 of Chapter 1 we discussed quite briefly the effect of random processes. We shall
now look at this in more detail. The wave equation

¢ 1.9%

o2 2 ot

is only one of a family of equations which have a double differential with respect to space
on the left hand side.
In three dimensions the left hand side would be of the form

20, % 0%

Ox? + Oy? + 072

which, in vector language, is called the divergence of the gradient or div grad and is written
V2.

Five members of this family of equations may be written (in one dimension) as

1. Laplace’s Equation

g—jﬁ =0 (for ¢(x)only)
2. Poisson’s Equation
% = constant  (for ¢(x) only)
3. Helmholtz Equation
g—jc(f = constant X ¢
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4. Diffusion Equation

0? O

an = —+ve constant X g
5. Wave Equation

0? 0?

OT;Z) = —+ve constant X 873)

Laplace’s and Poisson’s equations occur very often in electrostatic field theory and are
used to find the values of the electric field and potential at any point. We have already met
the Helmholtz equation in this chapter as equation (7.5), where the constant was positive
(written %) and we have seen its behaviour when the constant is negative, for it is then
equivalent to the equation for standing waves (p. 124). The constant in the wave equation is
of course 1/c? where c is the wave velocity. Where the wave equation has an ‘acceleration’
or 9%¢/0t? term on the right hand side, the diffusion equation has a ‘velocity’ or 9¢ /0t term.

All equations, however, have the same term 9%¢/9x? on the left hand side, and we must
ask: ‘“What is its physical significance?’

We know that the values of the scalar ¢ will depend upon the point in space at which it is
measured. Suppose we choose some point at which ¢ has the value ¢ and surround this
point by a small cube of side I, over the volume of which ¢ may take other values. If the
average value of ¢ over the small cube is written ¢, then the difference between the average
# and the value at the centre of the cube ¢ is given by

- 0%¢  0°¢ 0%
— ¢o = constant X | =— +— +—
¢ — ¢y = constan <8x2 By2 5Z2> .
This statement is proved in the appendix at the end of this chapter and is readily understood
by those familiar with triple integration. The left hand side of any of these equations
therefore measures the value

¢ —¢o

In Laplace’s equation the difference is zero, so that ¢ has a constant value over the
volume considered. Poisson’s equation tells us that the difference is constant and
Helmholtz equation states that the value of ¢ at any point in the volume is proportional to
this difference. The first two equations are ‘steady state’, i.e. they do not vary with time.

The Helmholtz equation states that if the constant is positive the behaviour of ¢ with
space grows or decays exponentially, e.g. v2 is positive in equation (7.5), but if the constant
is negative, ¢ will vary sinusoidally or cosinusoidally with space as the displacement varies
with time in simple harmonic motion and the equation becomes the time independent wave
equation for standing waves. This equation says nothing about the time behaviour of ¢,
which will depend only upon the function ¢ itself.

Both the diffusion and wave equations are time-derivative dependent. The diffusion
equation states that the ‘velocity’ or change of ¢ with time at a point in the volume is
proportional to the difference ¢ — ¢y, whereas the wave equation states that the
‘acceleration’ 9%¢ /0t depends on this difference.
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The wave equation recalls the simple harmonic oscillator, where the difference from the
centre (X = 0) was a measure of the force or acceleration term; both the oscillator and the
wave equation have time varying sine and cosine solutions with maximum velocity d¢ /0t
at the zero displacement from equilibrium; that is, where the difference ¢ — ¢¢ = 0.

The diffusion equation, however, describes a different kind of behaviour. It describes a
non-equilibrium situation which is moving towards equilibrium at a rate governed by its
distance from equilibrium, so that it reaches equilibrium in a time which is theoretically
infinite. Readers will have already met this situation in Newton’s Law of Cooling, where a
hot body at temperatue Ty stands in a room of lower temperature 7. The rate at which the
body cools, i.e. the value of 9T /dt, depends on T — T; a cooling graph of this experiment
is given in Figure 7.11. The greatest rate of cooling occurs when the temperature difference
is greatest and the process slows down as the system approaches equilibrium. Here, of
course, T — T and OT /Ot are both negative.

All non-equilibrium processes of this kind are unidirectional in the sense that they are
thermodynamically irreversible. They involve the transport of mass in diffusion, the
transport of momentum in friction or viscosity and the transport of energy in conductivity.
All such processes involve the loss of useful energy and the generation of entropy.

They are all processes which are governed by random collisions, and we found in the
first chapter, where we added vectors of constant length and random phase, that the average
distance travelled by particles involved in these processes was proportional, not to the time,
but to the square root of the time.

Rewriting the diffusion equation as

Q
[38)
©-

S

]

=
)

28

Newton’s Cooling Curve
|\o
03
23
g2
=]
@
:
\ _
i (To - T)2
Room T—> _ >
Temperature time ¢t

Figure 7.11 Newton’s cooling curve shows that the rate of cooling of a hot body 0T /0t depends on
the temperature difference between the body and its surrounding, this difference being directly
measured by 02T /0x?
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we see that the dimensions of the constant d, called the diffusivity, are given by

¢ 1 ¢

length? ~ d time

so that d has the dimensions of length?/time. The interpretation of this as the square of
a characteristic length varying with the square root of time has already been made in
Chapter 1.

In a viscous process d is given by 7/ p, where 7 is the coefficient of viscosity and p is the
density. In thermal conductivity d = K/pC,, where K is the coefficient of thermal
conductivity, p is the density and C, is the specific heat at constant pressure.

A magnetic field which is non-uniformly distributed in a conductor has a diffusivity
d = (uo) ™', where y is the permeability and o is the conductivity.

Brownian motion is one of the best known examples of random collision processes. The
distance x travelled in time ¢ by a particle suffering multiple random collisions is given by
Einstein’s diffusivity relation

d_?ﬂ_ 2RT
t  6mN

The gas law, pV = RT, gives RT as the energy of a mole of such particles at temperature
T; a mole contains N particles, where N is Avogadro’s number and RT /N = kT, the average
energy of the individual particles, where k is Boltzmann’s constant.

The process is governed, therefore, by the ratio of the energy of the particles to the
coefficient of viscosity, which measures the frictional force. The higher the temperature,
the greater is the energy, the less the effect of the frictional force and the greater the
average distance travelled.

Wave Equation with Diffusion Effects

In natural systems we can rarely find pure waves which propagate free from the energy-loss
mechanisms we have been discussing, but if these losses are not too serious we can
describe the total propagation in space and time by a combination of the wave and diffusion
equations.

If we try to solve the combined equation

0%¢ 1 0% 10¢
Ox2 2012 d ot
we shall not obtain a pure sine or cosine solution.
Let us try the solution

¢ — d)m ei(wt—vx)
where ¢,, is the maximum amplitude. This gives

2

.2 2 W LW
1"y =1"—+1—
¢z d
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or

giving a complex value for . But w?/c? = k?, where k is the wave number, and if we put
v = k — i we obtain

v =k* = 2ika—a’ ~k®—i2ka if a <k
The solution for ¢ then becomes
¢ — ¢m ei(wt—'yx) _ Qbm e ei(wt—kx)

i.e. a sine or cosine oscillation of maximum amplitude ¢,, which decays exponentially with
distance. The physical significance of the condition o < k=2m/X\ is that many
wavelengths \ are contained in the distance 1/ before the amplitude decays to ¢, e !
at x = 1/«. Diffusion mechanisms will cause attenuation or energy loss from the wave; the

energy in a wave is proportional to the square of its amplitude and therefore decays as
—2ax
e .

(Problems 7.15, 7.16, 7.17)

Appendix

Physical interpretation of

9’9 9% 0% _ _,
ot =V

At a certain point O of the scalar field, ¢ = ¢(. Constructing a cube around the point O
having sides of length [ gives for the average value over the cube volume

o1 = J”H/z ¢dxdydz

-2
Expanding ¢ about the point O by a Taylor series gives

B 0o 0o 0p
¢—¢°+<E>0x+<a—y>oy+<a—z>5
1[[(0%\ , %P\ , 0?9\
*ﬂ(@)ﬁ *(W)J *(a?)f]
%9 9%¢ 0%¢
" (axay) S (@) R (&—8> e

Integrating from —I/2 to +1/2 removes all the functions of the form

)\ g (2
Ox Ox an Ox0y Oxy
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whose integrals are zero, leaving, since

+1/2 , /5
x“dxdydz = —
1. 2

5 2 2 2
513 :¢Ol3 +I_<@+@+@)
0

24 \Ox%2 9y 972
i.e.
_ 12 )
¢ — do = o (V=9),

where [ is a constant.

Problem 7.1

The figure shows the mesh representation of a transmission line of inductance L per unit length and
capacitance Cy per unit length. Use equations of the form

- 000 OO0 — —
Lydx Lydx
|
91 D % ’D | s
Codx Codx Codx

d d

I, —1,=—¢qg,=Cydx—V,
! alr = 0%y

and
L dxdl =V \%

0 dr r— Vr r+1

together with the method of the final section of Chapter 4 to show that the voltage and current wave
equations are

0%V 0%V
oz~ LoCogn

and
921 0%

=L, Co—
ox2 002
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Problem 7.2
Show that the characteristic impedance for a pair of Lecher wires of radius r and separation d in a
medium of permeability p and permittivity € is given by

Zo = 1 \/Elogeﬁ
™ g r
Problem 7.3

In a short-circuited lossless transmission line integrate the magnetic (inductive) energy %LOI 2 and
the electric (potential) energy % CoV? over the last quarter wavelength (0 to —\/4) to show that they
are equal.

Problem 7.4
Show, in Problem 7.3, that the sum of the instantaneous values of the two energies over the last
quarter wavelength is equal to the maximum value of either.

Problem 7.5
Show that the impedance of a real transmission line seen from a position x on the line is given by

Ae ™ —Bet™

Zy=Zy————
"Ae "+ Betn

where 7y is the propagation constant and A and B are the current amplitudes at x = 0 of the waves
travelling in the positive and negative x-directions respectively. If the line has a length / and is
terminated by a load Z;, show that

Ae " — Be!

Zp=Zg— 2%
L YAe+Bel

Problem 7.6
Show that the input impedance of the line of Problem 7.5; that is, the impedance of the line at x = 0,
is given by

7 - Z sinhyl + Z; cosh vl
im0 Zycosh~l + Zy sinh vl

Note : 2coshyl = e +e™
( 8
2sinhyl =e" —e ™)

Problem 7.7

If the transmission line of Problem 7.6 is short-circuited, show that its input impedance is given by
Zs = Zptanh~l

and when it is open-circuited the input impedance is
Zo. = Zcoth~l

By taking the product of these quantities, suggest a method for measuring the characteristic
impedance of the line.
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Problem 7.8

Show that the input impedance of a short-circuited loss-free line of lenght / is given by

L 2
Zi=1 =0 tan ll
Co A

and by sketching the variation of the ratio Z;/+/L¢y/Co with I, show that for / just greater than
(2n+ 1)A/4, Z; is capacitative, and for [ just greater than n\/2 it is inductive. (This provides a
positive or negative reactance to match another line.)

Problem 7.9
Show that a line of characteristic impedance Z, may be matched to a load Z by a loss-free quarter
wavelength line of characteristic impedance Z,, if Z,i =7ZoZ;.

(Hint—calculate the input impedance at the ZyZ,, junction.)

Problem 7.10

Show that a short-circuited quarter wavelength loss-free line has an infinite impedance and that if it
is bridged across another transmission line it will not affect the fundamental wavelength but will
short-circuit any undesirable second harmonic.

Problem 7.11
Show that a loss-free line of characteristic impedance Z¢ and length n\/2 may be used to couple two
high frequency circuits without affecting other impedances.

Problem 7.12

A transmission line has Z; = iwL and Z, = (iwC)~". If, for a range of frequencies w, the phase shift
per section [ is very small show that 3 = k the wave number and that the phase velocity is
independent of the frequency.

Problem 7.13

In a transmission line with losses where Ro/wL¢ and Go/wC are both small quantities expand the
expression for the propagation constant

¥ = [(R() + iwL())(G() + leo)] 1/2
to show that the attenuation constant
Ro C() Go L()
a=—|/—+— /=
2 VL 2 Coy
and the wave number

w
k=w L()Co:—
v

Show that for Gy = 0 the Q value of such a line is given by k/2a.
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Problem 7.14
Expand the expression for the characteristic impedance of the transmission line of Problem 7.13 in
terms of the characteristic impedance of a lossless line to show that if

Ry Gy
Ly Cy

the impedance remains real because the phase effects introduced by the series and shunt losses are
equal but opposite.

Problem 7.15
The wave description of an electron of total energy E in a potential well of depth Vover the region
0 < x < lis given by Schrdodinger’s time independent wave equation

0%y  8mim

oz Ty ET V=0

where m is the electron mass and 4 is Planck’s constant. (Note that V = 0 within the well.)

e X e*}/X
v /EV\/\ v
l -« / —

Show that for E > V (inside the potential well) the solution for ¢ is a standing wave solution but for
E < V (outside the region 0 < x < [) the x dependence of 1 is e =", where

2
fy:% 2m(V —E)

Problem 7.16
A localized magnetic field H in an electrically conducting medium of permeability ; and
conductivity o will diffuse through the medium in the x-direction at a rate given by

OH 1 9’H
ot po Ox2
Show that the time of decay of the field is given approximately by L2, where L is the extent of
the medium, and show that for a copper sphere of radius 1 m this time is less than 100s.

1 (copper) = 1-26 x 107 Hm ™!
o (copper) =5-8 x 107 Sm™!

(If the earth’s core were molten iron its field would freely decay in approximately 15x 103 years. In
the sun the local field would take 10'° years to decay. When o is very high the local field will change
only by being carried away by the movement of the medium—such a field is said to be ‘frozen’ into
the medium—the field lines are stretched and exert a restoring force against the motion.)

STUDENTS-HUB.com Uploaded By: Jibreel Bornat


https://students-hub.com

STUDENTS-HUB.com

196 Waves on Transmission Lines

Problem 7.17
A point x( at the centre of a large slab of material of thermal coductivity k, specific heat C and
density p has an infinitely high temperature T at a time #. If the heat diffuses through the medium at
a rate given by

or_ ko o
ot pC 0x2 ~ Ox2

show that the heat flow along the x-aixs is given by

r —(ra)?
f(aJ‘):ﬁe ( ) ,

where
a=(x—x9) and r=—+

by inserting this solution in the differential equation. The solution is a Guassian function; its
behaviour with x and ¢ in this problem is shown in Fig. 10.12. At (x, #¢) the function is the Dirac
delta function. The Guassian curves decay in height and widen with time as the heat spreads through
the medium, the total heat, i.e. the area under the Gaussian curve, remaining constant.

Summary of Important Results
Lossless Transmission Line
Inductance per unit length=Ly, or pu
Capacitance per unit length=Cy or ¢
Wave Equation

o’V 1 09%V
o (voltage)
9’1 1 9%
o (current)
Phase Velocity
'02 ! or i
LoCy HE

Characteristic Impedance

=\ / \/7 (for right-going wave)

(— Zo for left-going wave)
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Transmission Line with Losses

Resistane R per unit length
Shunt conductance G per unit length
Wave equation takes form

i (O2V
it (W — 72v) =0 (same for I)
x

where 7 = a + ik is the propagation constant

« = attenuation coefficient

k = wave number
giving
V=Ae ™ ei(wtfk.x) +Be™ ei(wl+kx)
Characteristic Impedance

\% R iwL
Zh = 7= /ﬁ (right-going wave)

(=2 for left-going wave)

Wave Attenuation

Energy absorption in a medium described by diffusion equation

0% 104

x> dor
Add to wave equation to account for attenuation giving

0% _10% 109
ox2  c2 02 dort

with exponentially decaying solution

¢ = bm e X ei(wt—kx)
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Electromagnetic Waves

Earlier chapters have shown that the velocity of waves through a medium is determined by
the inertia and the elasticity of the medium. These two properties are capable of storing
wave energy in the medium, and in the absence of energy dissipation they also determine
the impedance presented by the medium to the waves. In addition, when there is no loss
mechanism a pure wave equation with a sine or cosine solution will always be obtained, but
this equation will be modified by any resistive or loss term to give an oscillatory solution
which decays with time or distance.

These physical processes describe exactly the propagation of electromagnetic waves
through a medium. The magnetic inertia of the medium, as in the case of the transmission
line, is provided by the inductive property of the medium, i.e. the permeability ., which has
the units of henries per metre. The elasticity or capacitive property of the medium is
provided by the permittivity €, with units of farads per metre. The storage of magnetic
energy arises through the permeability p; the potential or electric field energy is stored
through the permittivity e.

If the material is defined as a dielectric, only i and € are effective and a pure wave
equation for both the magnetic field vector H and the electric field vector E will result. If
the medium is a conductor, having conductivity o (the inverse of resistivity) with
dimensions of siemens per metre or (chms m)~!, in addition to x and &, then some of the
wave energy will be dissipated and absorption will take place.

In this chapter we will consider first the propagation of electromagnetic waves in a
medium characterized by i and ¢ only, and then treat the general case of a medium having
W, € and o properties.

Maxwell’s Equations

Electromagnetic waves arise whenever an electric charge changes its velocity. Electrons
moving from a higher to a lower energy level in an atom will radiate a wave of a particular
frequency and wavelength. A very hot ionized gas consisting of charged particles will
radiate waves over a continuous spectrum as the paths of individual particles are curved in

The Physics of Vibrations and Waves, 6th Edition H. J. Pain
© 2005 John Wiley & Sons, Ltd., ISBN: 0-470-01295-1(hardback); 0-470-01296-X(paperback)
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Energy
Frequency E—
hertz —_—> Frequency hertz
108 1010 1012 1014 1016 1018 10%° 10?2 1023
E . < Infrared _». «—— yorays —>
= <Microwaves» L < x-rays >
= 2| <Ultraviolet>
Radig ffequencies >
Ay—> 1 1071 1073 1076 10° 1070 10713

metres

Figure 8.1 Wavelengths and frequencies in the electromagnetic spectrum

mutual collisions. This radiation is called ‘Bremsstrahlung’. The radiation of electro-
magnetic waves from an aerial is due to the oscillatory motion of charges in an alternating
current flowing in the aerial.

Figure 8.1 shows the frequency spectrum of electromagnetic waves. All of these waves
exhibit the same physical characteristics.

It is quite remarkable that the whole of electromagnetic theory can be described by the
four vector relations in Maxwell’s equations. In examining these relations in detail we shall
see that two are steady state; that is, independent of time, and that two are time-varying.

The two time-varying equations are mathematically sufficient to produce separate wave
equations for the electric and magnetic field vectors, E and H, but the steady state equations
help to identify the wave nature as transverse.

The first time-varying equation relates the time variation of the magnetic induction,
wH = B, with the space variation of E; that is

OE
5% (uH) is connected With(?_z (say)

This is nothing but a form of Lenz’s or Faraday’s Law, as we shall see.
The second time-varying equation states that the fime variation of ¢E defines the space
variation of H, that is

0 OH
— (eE) is connected with —
6t< ) 0z
Again we shall see that this is really a statement of Ampere’s Law.
These equations show that the variations of E in time and space affect those of H and
vice versa. E and H cannot be considered as isolated quantities but are interdependent.
The product eE has dimensions

(say)

farads _ volts  charge

X =
metre metre area

This charge per unit area is called the displacement charge D = ¢E.
Physically it appears in a dielectric when an applied electric field polarizes the
constituent atoms or molecules and charge moves across any plane in the dielectric which
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/

Battery

Switch c

closed K
Magnetic
field?

Figure 8.2 In this circuit, when the switch is closed the conduction current charges the condenser.
Throughout charging the quantity ¢E in the volume of the condenser is changing and the
displacement current per unit area 9/0t (¢E) is associated with the magnetic field present between
the condenser plates

is normal to the applied field direction. If the applied field is varying or alternating with
time we see that the dimensions of

B_D_g(6 )= charge
ot Ot  time X area

current per unit area. This current is called the displacement current. It is comparatively
simple to visualize this current in a dielectric where physical charges may move—it is not
easy to associate a displacement current with free space in the absence of a material but it may
always be expressed as I; = £(0¢g/0t), where ¢ is the electric field flux through a surface.

Consider what happens in the electric circuit of Figure 8.2 when the switch is closed and
the battery begins to charge the condenser C to a potential V. A current / obeying Ohm’s
Law (V = IR) will flow through the connecting leads as long as the condenser is charging
and a compass needle or other magnetic field detector placed near the leads will show the
presence of the magnetic field associated with that current. But suppose a magnetic field
detector (shielded from all outside effects) is placed in the region between the condenser
plates where no ohmic or conduction current is flowing. Would it detect a magnetic field?
The answer is yes; all the magnetic field effects from a current exist in this region as long
as the condenser is charging, that is, as long as the potential difference and the electric field
between the condenser plates are changing.

It was Maxwell’s major contribution to electromagnetic theory to assert that the
existence of a time-changing electric field in free space gave rise to a displacement current.
The same result follows from considering the conservation of charge. The flow of charge
into any small volume in space must equal that flowing out. If the volume includes the top
plate of the condenser the ohmic current through the leads produces the flow into the
volume, while the displacement current represents the flow out.

In future, therefore, two different kinds of current will have to be considered:

1. The familar conduction current obeying Ohm’s Law (V = IR) and

2. The displacement current of density dD/0r.
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In a medium of permeability 1« and permittivity e, but where the conductivity o = 0, the
displacement current will be the only current flowing. In this case a pure wave equation for
E and H will follow and there will be no energy loss or attenuation.

When o # 0 a resistive element allows the conduction current to flow, energy loss will
follow, a diffusion term is added to the wave equation and the wave amplitude will
attenuate exponentially with distance. We shall see that the relative magnitude of these two
currents is frequency-dependent and that their ratio governs whether the medium behaves
as a conductor or as a dielectric.

Electromagnetic Waves in a Medium having Finite Permeability
u and Permittivity ¢ but with Conductivity 6 =0

We shall consider a system of plane waves and choose the plane xy as that region over
which the wave properties are constant. These properties will not vary with respect to x and
y and all derivatives 0/0x and 0/dJy will be zero.

The first time-varying equation of Maxwell is written in vector notation as

0B OH
curl E = VXE__E _E

This represents three component equations:

0

— H—
“az

—FE,.——FE,

0

9
“az

Hi

0
Ay
0
aE
0
~ ox

0
oz
0
—FE;
Ox
0

= E,
Oy

(8.1)

STUDENTS-HUB.com

where the subscripts represent the component directions. E,, Ey and E, are, respectively, the
magnitudes of EE, and E,. Similarly, H,, H, and H are the magnitudes of H,H, and H;.
The dimensions of these equations may be written

pH E
length

time
and multiplying each side by (length)? gives
H
B area = E X length
time
ie.

total magnetic flux
= volts

time

This is dimensionally of the form of Lenz’s or Faraday’s Law.
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The second time-varying equation of Maxwell is written in vector notation as

oD OE
curlH—VxH—E—EE

This represents three component equations:

0 0 0
EaEx—ainZ—afz y
0 0 0
é\EEy—a—Z x—aHZ (82)
0 0 0
CE.=—H,——H,
Eat CTox Y oy

The dimensions of these equations may be written

current /  H
area  length

and multiplying both sides by a length gives

current 1

= = H
length  length

which is dimensionally of the form of Ampere’s Law (i.e. the circular magnetic field at
radius r due to the current / flowing in a straight wire is given by H = I/27r). Maxwell’s
first steady state equation may be written

8x+6y+8z

(8.3)

diVD:V~D:5<8EX OF, 8EZ> =p

where € is constant and p is the charge density. This states that over a small volume element
dx dy dz of charge density p the change of displacement depends upon the value of p.
When p = 0 the equation becomes

OE. OE, OE)\ _
6((9)( +8—y+ az)—O (833)

so that if the displacement D = ¢FE is graphically represented by flux lines which must
begin and end on electric charges, the number of flux lines entering the volume element dx
dy dz must equal the number leaving it.

The second steady state equation is written

diVBzV-Bzu(%—l—aa—I;y 5‘;2> =0
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Again this states that an equal number of magnetic induction lines enter and leave the
volume dx dy dz. This is a physical consequence of the non-existence of isolated magnetic
poles, i.e. a single north pole or south pole.

Whereas the charge density p in equation (8.3) can be positive, i.e. a source of flux lines
(or displacement), or negative, i.e. a sink of flux lines (or displacement), no separate source
or sink of magnetic induction can exist in isolation, every source being matched by a sink
of equal strength.

The Wave Equation for Electromagnetic Waves

Since, with these plane waves, all derivatives with respect to x and y are zero. equations
(8.1) and (8.4) give

OH, OH,
ot =0 and oz

0

therefore, H, is constant in space and time and because we are considering only the
oscillatory nature of H a constant H, can have no effect on the wave motion. We can
therefore put H, = 0. A similar consideration of equations (8.2) and (8.3a) leads to the
result that £, = 0.

The absence of variation in H, and E, means that the oscillations or variations in H and
E occur in directions perpendicular to the z-direction. We shall see that this leads to the
conclusion that electromagnetic waves are transverse waves.

In addition to having plane waves we shall simplify our picture by considering only
plane-polarized waves.

We can choose the electric field vibration to be in either the x or y direction. Let us
consider E, only, with E;, = 0. In this case equations (8.1) give

—M%:%EZX (8.1a)
and equations (8.2) give
g% _ aai; (8.22)
Using the fact that
0? 0?
920 Doz

it follows by taking d/0¢ of equation (8.1a) and 9/0z of equation (8.2a) that

0? 0?
3_12H y = usWH y (the wave equation for H)
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Similarly, by taking 9/0¢ of (8.2a) and 9/0z of (8.1a), we obtain

0? 0?2
@EX = M€wEx (the wave equation for E,)

Thus, the vectors E, and H, both obey the same wave equation, propagating in the
z-direction with the same velocity v> = 1/pe. In free space the velocity is that of light, that
is, ¢2 = 1/poe0, where p is the permeability of free space and ¢ is the permittivity of
free space.

The solutions to these wave equations may be written, for plane waves, as

. 27
E. = Egysin T(UI—Z)

2T

H, = Hgsin 3

(vt —2)

where E( and H( are the maximum amplitude values of E and H. Note that the sine (or
cosine) solutions means that no attenuation occurs: only displacement currents are involved
and there are no conductive or ohmic currents.

We can represent the electromagnetic wave (E,, H,) travelling in the z-direction in
Figure 8.3, and recall that because E, and H, are constant (or zero) the electromagnetic
wave is a transverse wave.

The direction of propagation of the waves will always be in the ExH direction; in this
case, ExH has magnitude, E,H, and is in the z-direction.

This product has the dimensions

voltage x current  electrical power
length x length area

measured in units of watts per square metre.

E,= Eq Sin 27“ (Vi-2)

Hy = Ho SinzTn(Vt—Z)

Figure 8.3 In a plane-polarized electromagnetic wave the electric field vector £, and magnetic
field vector H, are perpendicular to each other and vary sinusoidally. In a non-conducting medium
they are in phase. The vector product, ExH, gives the direction of energy flow
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The vector product, E xH gives the direction of energy flow. The energy flow per second
across unit area is given by the Poynting vector:

1
—ExH*
2

(Problem 8.1)

Illustration of Poynting Vector

We can illustrate the flow of electromagnetic energy in terms of the Poynting vector by
considering the simple circuit of Figure 8.4, where the parallel plate condenser of area A
and separation d, containing a dielectric of permittivity ¢, is being charged to a voltage V.

Throughout the charging process current flows, and the electric and magnetic field
vectors show that the Poynting vector is always directed into the volume Ad occupied by
the dielectric.

The capacitance C of the condenser is €A/d and the total energy of the condenser at
potential Vis %CV2 joules, which is stored as electrostatic energy. But V = Ed, where E is
the final value of the electric field, so that the total energy

1 1 /<A 1
—CV? === |E*?* == (cE?*)Ad
7€ 2<d> 3 E)

where Ad is the volume of the condenser.
The electrostatic energy per unit volume stored in the condenser is therefore %EE 2 and
results from the flow of electromagnetic energy during charging.

% Area A

= Plate

/ separation d
ExH

H E

4% Dielectric

%% permittivity &

E x H directed to
condenser axis

Figure 8.4 During charging the vector ExH is directed into the condenser volume. At the end of
the charging the energy is totally electrostatic and equals the product of the condenser volume, Ad,
and the electrostatic energy per unit volume, %EEZ
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Impedance of a Dielectric to Electromagnetic Waves

If we put the solutions
2
E, = Ejsin Tﬂ-(vt —-2)
and
. 27
H, = Hsin 7(1)1‘ —2)

in equation (8.1a) where

OH, OE,
Hor ~ oz
then
. , 1
—pvH, = —E,, and since v° =—
HE
\/ﬁH}' = \/gEx
that is

Ex _ Jp_Eo
H y S5 H 0
which has the dimensions of ohms.

The value +/p/e therefore represents the characteristic impedance of the medium to
electromagnetic waves (compare this with the equivalent result V/I = \/Lo/Co = Z, for
the transmission line of the previous chapter).

In free space
E
Zx_ PO 37670
Hy €0

so that free space presents an impedance of 376.7 (2 to electromagnetic waves travelling
through it.
It follows from

E, I
H, €

E2
that —)‘2:&
H), €

and therefore

eE? = ,uH)Z,

Both of these quantities have the dimensions of energy per unit volume, for instance eE2
has dimensions

farads  volts? _ joules

X 2 3
metre metres metres
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as we saw in the illustration of the Poynting vector. Thus, for a dielectric the electrostatic
energy %aEi per unit volume in an electromagnetic wave equals the magnetic energy per
unit Yolume suH 3 and the total energy is the sum 1cE?2 + SUH. .

This gives the instantaneous value of the energy per unit volume and we know that, in
the wave,

E, = Egsin (27/\) (vt — z)
and

Hy, = Hgsin 27/ ) (vt — 2)
so that the time average value of the energy per unit volume is
eE2 +3puH? =teE] + juH}

_1 2 -3
—EE':EOJIH

1
2

N|—

Now the amount of energy in an electromagnetic wave which crosses unit area in unit
time is called the intensity, /, of the wave and is evidently (% eE (2))’0 where v is the velocity
of the wave.

This gives the time averaged value of the Poynting vector and, for an electromagnetic
wave in free space we have

I = %CE()E% = %C,LL()Hng_Z

(Problems 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, 8.8, 8.9, 8.10, 8.11)

Electromagnetic Waves in a Medium of Properties u, ¢ and o
(where ¢ # 0)

From a physical point of view the electric vector in electromagnetic waves plays a much more

significant role than the magnetic vector, e.g. most optical effects are associated with the

electric vector. We shall therefore concentrate our discussion on the electric field behaviour.
In a medium of conductivity ¢ = 0 we have obtained the wave equation

O’E,  O’E,
a2~ "or
where the right hand term, rewritten
0[d
— | = (cE,
Hor {& (¢ )}

shows that we are considering a term

Hor

0 [displacement current
area
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When o # 0 we must also consider the conduction currents which flow. These currents are
given by Ohm’s Law as I = V/R, and we define the current density; that is, the current per
unit area, as

I 1 1%
J = = X =oF
Area R x Length Length

where o is the conductivity 1/(R x Length) and E is the electric field. J = oF is another
form of Ohm’s Law.

With both displacement and conduction currents flowing, Maxwell’s second time-
varying equation reads, in vector form,

0
VxH=—=D 8.5
ot +d (85)
each term on the right hand side having dimensions of current per unit area. The presence
of the conduction current modifies the wave equation by adding a second term of the same
form to its righthand side, namely

.0 0
) which is ME(J) = M&(UE)

0 (current

K E area

The final equation is therefore given by

92 92 P
9 E. =2 E, 2E, 8.6
92 x T Hegata T HO G, (8.6)

and this equation may be derived formally by writing the component equation of (8.5) as

OFE OH
St oE, = ——2 8.5
S +o % (8.5a)
together with
OH, OE,
_ Y — 8.1
Ko 0z (8.1a)

and taking 9/0t of (8.5a) and 9/0z of (8.1a). We see immediately that the presence of the
resistive or dissipation term, which allows conduction currents to flow, will add a diffusion
term of the type discussed in the last chapter to the pure wave equation. The product
(uo) ~!is called the magnetic diffusivity, and has the dimensions L>T !, as we expect of
all diffusion coefficients.

We are now going to look for the behaviour of E, in this new equation, with the
assumption that its time-variation is simple harmonic, so that E, = Ege™’. Using this
value in equation (8.6) gives

0%E,

52 (iwpo — w?pe)E, =0
Z
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210
which is in the form of equation (7.5), written

0E, ,
azz _’y X

where 72 = iwpo — w? pue.

Electromagnetic Waves

We saw in Chapter 7 that this produced a solution with the term e =7 or e t7%, but we
concentrate on the E, oscillation in the positive z-direction by writing

E,=Ege“e ™

In order to assign a suitable value to v we must go back to equation (8.6) and consider the
relative magnitudes of the two right hand side terms. If the medium is a dielectric, only
displacement currents will flow. When the medium is a conductor, the ohmic currents of
the second term on the right hand side will be dominant. The ratio of the magnitudes of the
conduction current density to the displacement current density is the ratio of the two right

hand side terms. This ratio is

J oE, oE,

oD/0t  9JO1(eEy)  0/0t(eEge™)  iweE, iwe

(2

We see immediately from the presence of i that the phase of the displacement current is
90° ahead of that of the ohmic or conduction current. It is also 90° ahead of the electric

field E, so the displacement current dissipates no power.

For a conductor, where J > 0D/0t, we have o> we, and 7% = io(wp) — we(wp)

becomes
2 v iow
v R 1owl

to a high order of accuracy.

Now
1
Vie -
V2
so that
N
2
and

E,=Eje“e ™"

=E, ef(w;m/2) 12, ei[wtf(up,a/Z)
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E, Free space Conductor
\ Ac=2md
z v 1
o= (L) 2
wuc
7
> A<

Figure 8.5 Electromagnetic waves in a dielectric strike the plane surface of a conductor, and the
electric field vector £ is damped to a value £q e ! in a distance of (2/wuo) Y2 the ‘skin depth’. This
explains the electrical shielding properties of a conductor. A is the wavelength in the conductor

a progre§/szive wave in the positive z-direction with an amplitude decaying with the factor
e—(w;w/Z) z

Note that the product wyo has dimensions L2,

(Problem 8.12)

Skin Depth

After travelling a distance

1/2
- (2)
wpo

in the conductor the electric field vector has decayed to a value E, = Ege~!; this distance
is called the skin depth (Figure 8.5).

For copper, with p &~ p19 and o = 5.8 x 107 S m~! at a frequency of 60 Hz, § ~ 9 mm;
at 1 MHz, 6~6.6x10° m and at 30 000 MHz (radar wavelength of 1 cm),
§~3.8x 107" m.

Thus, high frequency electromagnetic waves propagate only a very small distance in a
conductor. The electric field is confined to a very small region at the surface; significant
currents will flow only at the surface and the resistance of the conductor therefore increases
with frequency. We see also why a conductor can act to ‘shield’ a region from electro-
magnetic waves.

Electromagnetic Wave Velocity in a Conductor and Anomalous
Dispersion

The phase velocity of the wave v is given by

w w 2w 1/2
’[}:—:412:@6:(—) :V)\C
ko (wpo/2)" po
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When § is small, v is small, and the refractive index c¢/v of a conductor can be very large.
We shall see later that this can explain the high optical reflectivities of good conductors.
The velocity v = wd = 27w, so that A, in the conductor is 27wd and can be very small.
Since v is a function of the frequency an electrical conductor is a dispersive medium to
electromagnetic waves. Moreover, as the table below shows us, dv/0\ is negative, so that
the conductor is anomalously dispersive and the group velocity is greater than the wave
velocity. Since ¢?/v? = pe/poco = p,€,, where the subscript r defines non-dimensional
relative values; that is, /o = pr, €/€0 = €., then for p, = 1

e,v? =c?
and
o 2 v
AT T

which confirms our statement in the chapter on group velocity that for d=,/0\ positive a
medium is anomalously dispersive. We see too that c?/v?> = ¢, = n?, where n is the
refractive index, so that the curve in Figure 3.9 showing the reactive behaviour of the
oscillator impedance at displacement resonance is also showing the behaviour of n. This
relative value of the permittivity is, of course, familiarly known as the dielectric constant
when the frequency is low. This identity is lost at higher frequencies because the
permittivity is frequency-dependent.

Note that A, = 276 is very small, and that when an electromagnetic wave strikes a
conducting surface the electric field vector will drop to about 1% of its surface value in a
distance equal to %/\C = 4.6 6. Effectively, therefore, the electromagnetic wave travels less
than one wavelength into the conductor.

Refractive
6 Uconductor = WO index
Frequency Afre:e space (l’l’l) (m/s) (C/ 7jconductor)
60 5000 km 9%x1073 3.2 9.5x107
10° 300 m 6.6x1072 4.1x107? 7.3%10°
3x1010 1072 m 3.9x1077 7.1x10% 42x103

(Problems 8.13, 8.14, 8.15)

When is a Medium a Conductor or a Dielectric?

We have already seen that in any medium having pe and o properties the magnitude of the
ratio of the conduction current density to the displacement current density

J o

oD/Ot  we

a non-dimensional quantity.
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J
total
displacement conduction
currentwe E \ current o E
Reactance _ | Conductivity
1 1

- gee L
Figure 8.6 A simple circuit showing the response of a conducting medium to an electromagnetic
wave. The total current density J is divided by the parallel circuit in the ratio o/we (the ratio of the
conduction current density to the displacement current density). A large conductance o (small
resistance) gives a large conduction current while a small capacitative reactance 1/we allows a large

displacement current to flow. For a conductor o/we >100; for a dielectric we/o > 100. Note the
frequency dependence of this ratio. At w = 102° rad /s copper is a dielectric to X-rays

We may therefore represent the medium by the simple circuit in Figure 8.6 where the
total current is divided between the two branches, a capacitative branch of reactance 1/we
(ohms-metres) and a resistive branch of conductance o (siemens/metre). If o is large the
resistivity is small, and most of the current flows through the o branch and is conductive. If
the capacitative reactance 1/we is so small that it takes most of the current, this current is
the displacement current and the medium behaves as a dielectric.

Quite arbitrarily we say that if

J o
——=—>100
oD/ot  we

then conduction currents dominate and the medium is a conductor. If

/O _wE
J o

then displacement currents dominate and the material behaves as a dielectric. Between
these values exist a range of quasi-conductors; some of the semi-conductors fall into this
category.

The ratio o/we is, however, frequency dependent, and a conductor at one frequency may
be a dielectric at another.

For copper, which has 0 = 5.8 x 10’ S m !

and e~ eg=9x 1072 Fm™!,

o 10'8

we  frequency
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so up to a frequency of 10'® Hz (the frequency of ultraviolet light) o/we > 100, and
copper is a conductor. At a frequency of 10%° Hz, however (the frequency of X-rays),
we/o > 100, and copper behaves as a dielectric. This explains why X-rays travel distances
equivalent to many wavelengths in copper.
Typically, an insulator has o ~ 107" S m~! and ¢ ~ 10~"'"F m~!, which gives
we

=~ 10%
o

so the conduction current is negligible at all frequencies.

Why will an Electromagnetic Wave not Propagate into a
Conductor?

To answer this question we need only consider the simple circuit where a condenser C
discharges through a resistance R. The voltage equation gives

q
—+IR=0
C +
and since I = dg/dt, we have
dg _ q _ —1/RC
&t rc O 4740¢

where ¢ is the initial charge.

We see that an electric field will exist between the plates of the condenser only for a time
t ~ RC and will disappear when the charge has had time to distribute itself uniformly
throughout the circuit. An electric field can only exist in the presence of a non-uniform
charge distribution.

If we take a slab of any medium and place a charge of density ¢ at a point within the slab,
the medium will behave as an RC circuit and the equation
q=qoe "%
becomes

— —o/we —ot/e e=C
— e (22N

The charge will distribute itself uniformly in a time ¢ ~ ¢/o, and the electric field will be
maintained for that time only. The time ¢/o is called the relaxation time of the medium
(RC time of the electrical circuit) and it is a measure of the maximum time for which an
electric field can be maintained before the charge distribution becomes uniform.

Any electric field of a frequency v, where 1/v = ¢ > €/, will not be maintained; only a
high frequency field where 1/v =t < €/0 will establish itself.
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Impedance of a Conducting Medium to Electromagnetic Waves

The impedance of a lossless medium is a real quantity. For the transmission line of Chapter
7 the characteristic impedance

1% L
Zo=-"=/22Q;
I; Co
for an electromagnetic wave in a dielectric
E,
z="oo E
H, €

with E, and H, in phase.
We saw in the case of the transmission line that when the loss mechanisms of a series
resistance Ry and a shunt conductance Gy were introduced the impedance became the

complex quantity
7 — Ry +iwLg
~VGo+iwC

We now ask what will be the impedance of a conducting medium of properties u, € and o to
electromagnetic waves? If the ratio of E, to H, is a complex quantity, it implies that a
phase difference exists between the two field vectors.

We have already seen that in a conductor

E,=Eoe"“e™ ™

where v = (1 4+ 1) (wpo/2) 172 and we shall now write H, = Hpe!“~%) e ™7, suggesting
that H, lags E, by a phase angle ¢. This gives the impedance of the conductor as

Z. = é = @ el?
‘" H, H,
Equation (8.1a) gives
OE,  0OH,
o: Mo
so that
—vE, = —iwuH,
and
. 1/2
7 E. iwp i(wp) i(1—1) <2w,u>
“THy%€ v (14+i)(wpo/2)'? A+ -0\ o
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a vector of magnitude (wpu/o) 12 and phase angle ¢ = 45°. Thus the magnitude

_Ey (w,u) 1/2

“Hy \o

Z.

and H, lags E, by 45°.
We can also express Z. by

1/2 1/2
ZC:R+iX:(%) +i<%)
20 20

and also write it

7.

i oy 12
- ()
Ho g0 H “€ g
g0 € Ho O

1Z.| = 376.60, B0 [<5
e\ o

At a wavelength A = 107! m, i.e. at a frequency v = 3000 MHz, the value of we/o for
copper is 2.9x107° and u,~¢e,~ 1. This gives a magnitude Z. = 0.02Q at this
frequency; for 0 = oo, Z. = 0, and the electric field vector E, vanishes, so we can say that
when Z. is small or zero the conductor behaves as a short circuit to the electric field. This
sets up large conduction currents and the magnetic energy is increased.

In a dielectric, the impedance

of magnitude

led to the equivalence of the electric and magnetic field energy densities; that is,
%,uH }2 = %5E§ In a conductor, the magnitude of the impedance

-
) a g

so that the ratio of the magnetic to the electric field energy density in the wave is

SHHY o o

1.2 = ¢ -
S€EZ  swp we

We already know that this ratio is very large for a conductor for it is the ratio of
conduction to displacement currents, so that in a conductor the magnetic field energy
dominates the electric field energy and increases as the electric field energy decreases.
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Reflection and Transmission of Electromagnetic Waves at a
Boundary

Normal Incidence

An infinite plane boundary separates two media of impedances Z; and Z, (real or complex)
in Figure 8.7.

The electromagnetic wave normal to the boundary has the components shown where
subscripts i, r and t denote incident, reflected and transmitted, respectively. Note that the
vector direction (E;xH;) must be opposite to that of (E;xH;) to satisfy the energy flow
condition of the Poynting vector.

The boundary conditions, from electromagnetic theory, are that the components of the
field vectors E and H tangential or parallel to the boundary are continuous across the

boundary.
Thus
E,+E . =E;
and
H,+H,=H,
where
E; E E
=7, t=-7 and =2,
Hi Hr Ht
Z1|Z2
External reflection Z,<2Z,4
E Ei
i
HT
X vE: _
/ Incident E, /
H /,Z,r H,
- )
Internal reflection Z;<Z, Transmitted

Figure 8.7 Reflection and transmission of an electromagnetic wave incident normally on a plane
between media of impedances Z; and Z,. The Poynting vector of the reflected wave (E x H), shows
that either E or H may be reversed in phase, depending on the relative magnitudes of Z; and Z,
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From these relations it is easy to show that the amplitude reflection coefficient

E.  Z,—Z

Ei Z,+Z

and the amplitude transmission coefficient

E 2Z
Tt 2

Ei Z,+2Z

in agreement with the reflection and transmission coefficients we have found for the
acoustic pressure p (Chapter 6) and voltage V (Chapter 7). If the wave is travelling in air
and strikes a perfect conductor of Z, = 0 at normal incidence then

E. Z,-7Z, 1
E; - Z)+ 7 N
giving complete reflection and
Et _ 222 o
Ei Zy+Z;

Thus, good conductors are very good reflectors of electromagnetic waves, e.g. lightwaves
are well reflected from metal surfaces. (See Summary on p. 550.)

Oblique Incidence and Fresnel’s Equations for Dielectrics

When the incident wave is oblique and not normal to the infinite boundary of Figure 8.7 we
may still use the boundary conditions of the preceding section for these apply to the
tangential components of E and H at the boundary and remain valid.

In Figure 8.8(a) H is perpendicular to the plane of the paper with tangential components
Hi, H, and H, but the tangential components of E become

Eicos 0, E. cos 8 and E cos ¢, respectively.

In Figure 8.8(b) E is perpendicular to the plane of the paper with tangential components
E;, E. and E| but the tangential components of H become H; cos 6, H, cos 6 and H; cos ¢.

Using these components in the expressions for the reflextion and transmission
coefficients we have, for Figure 8.8(a)

E.cos 0 E cos ¢p/H,—E;jcos 0/H;
E;cos § E,cos ¢/H +E; cos 0/H,;

SO

R _E. Zycos ¢ —Z; cos 0
”_Ei_Zz cos ¢+ Zy cos 0

where R is the reflection coefficient amplitude when E lies in the plane of incidence.
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Z; Z; Z; Z;

H,

H'[
0 0 0
0

@ (b)

Figure 8.8 Incident, reflected and transmitted components of a plane polarized electromagnetic
wave at oblique incidence to the plane boundary separating media of impedances Z; and Z,. The
electric vector lies in the plane of incidence in (a) and is perpendicular to the plane of incidence in (b)

For the transmission coefficient in Figure 8.8(a)

E(cos ¢ 2E, cos ¢/H,
Eicos § E;cos§/H;+E, cos ¢/H,

SO

E. 27, cos 6
Ei Z, cos 0+ Z, cos ¢

Iy =

A similar procedure for Figure 8.8(b) where E is perpendicular to the plane of incidence
yields

_Zycos 0 —Z; cos ¢

R, =
+ Z, cos 0+ Zy cos ¢

and

275 cos 0

T =
+ Z> cos 0+ Z; cos ¢

Now the relation between the refractive index n of the dielectric and its impedance Z is
given by
c LE Z(free space)
= =Vé&r =S o
v H0E0 Z (dielectric)
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where

ﬂ:,urzl.

Ko
Hence we have
Z ny sin 6

Zz_nl_sind)

Electromagnetic Waves

from Snell’s Law and we may write the reflection and transmission amplitude coef-

ficients as
R _ tan (¢ —0) 4 sin ¢ cos 0
'~ tan (¢ +0) I~ sin 2¢ + sin 260
R _sin (¢ —0) _ 2sin ¢ cos 0
" sin (¢ +6)° 7 sin (¢ +6)

In this form the expressions for the coefficients are known as Fresnel’s Equations.
They are plotted in Figure 8.9 for n,/n; = 1.5 and they contain several significant

features.
When 6 is very small and incidence approaches the normal we have # — 0 and ¢ — 0
so that
sin (¢ —0) ~ tan (¢ —0) ~ (¢ —0)
and
1 1
(¢ —0) n_z_n_l np—nz
R ~ R ~ ~ =
N O R R R TR
ny nj

Thus, the reflected intensity
=7

2
nyp—np
(n1—|-n2>

~ 0.4 at an air-glass interface.

We note also that when tan (6 + ¢) = oo and 6 + ¢ =

90° then RH =0.

In this case only R | is finite and the reflected light is completely plane polarized with the
electric vector perpendicular to the plane of incidence. This condition defines the value of
the Brewster or polarizing angle 6 for, when 6 and ¢ are complementary cos fg = sin ¢ so

ny sin g = n, sin ¢ = n, cos Oy

and

tan O = ny/n,

which, for air to glass defines g = 56°.

STUDENTS-HUB.com

Uploaded By: Jibreel Bornat


https://students-hub.com

Reflection and Transmission of Electromagnetic Waves at a Boundary 221

1.0 |

0.8

0.6

0.4

0.2
Brewster

angle \

20° 40° 65 60° 90°

Figure 8.9 Amplitude coefficient R and T of reflection and transmission for n,/n, = 1.5. R and T
refer to the case when the electric field vector £ lies in the plane of incidence. R, and T, apply when
E is perpendicular to the plane of incidence. The Brewster angle 0 defines 6 + ¢ = 90° when R = 0
and the reflected light is polarized with the £ vector perpendicular to the plane of incidence. R
changes sign (phase) at 6g. When 6 < 0, tan (¢ —60) is negative for n,/n; = 1.5. When
0+ ¢>90°, tan (¢ + ) is also negative

A typical modern laboratory use of the Brewster angle is the production of linearly
polarized light from a He-Ne laser. If the window at the end of the laser tube is tilted so that
the angle of incidence for the emerging light is fp and R = 0, then the light with its
electric vector parallel to the plane of incidence is totally transmitted while some of the
light with transverse polarization (R ) is reflected back into the laser off-axis. If the light
makes multiple transits along the length of the tube before it emerges the transmitted beam
is strongly polarized in one plane.

More general but less precise uses involve the partial polarization of light reflected from
wet road and other shiny surfaces where refractive indices are in the range n = 1.3 — 1.6.
Polarized windscreens and spectacles are effective in reducing the glare from such
reflections.
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Reflection from a Conductor (Normal Incidence)

For Z, a conductor and Z; free space, the refractive index

Zy, oa+ia
is complex, where
Ko
=2
€0
and
-G
= 20

A complex refractive index must always be interpreted in terms of absorption because a
complex impedance is determined by a complex propagation constant, e.g. here Z, =

iwp/7, so that
Z, o 1 .\ (who 1/2 [ o \"?
" Z> €0 m),u< +1) 2 ( i) 2we

where

(o) ' ~1

I

The ratio E./E; is therefore complex (there is a phase difference between the incident and
reflected vectors) with a value

E, Z,-Z _a+ia—ﬁ_l—ﬁ/a+i

Ei Z,+Z, a+ia+p 1+8/a+i

where 3/a > 1.

Since E,/E; is complex, the value of the reflected intensity I, = (Er/Ei)2 is found
by taking the ratio the squares of the moduli of the numerator and the denominator, so
that

_ |E.|? _ 12 -z _ @ —BJa)® +1
El* |Zo+ 2z (1+6/a)’ +1
43/ 4o
— 2_>1__
2+28/a+ (B/a) B

r

(for B/a>>1)
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1/2 1/2
=1-4(2) (6_0) 12y 20
20 o o

1/2

so that

For copper o = 6 x 10’ (chmm™!) and (2wey/0) '~ ~ 0.01 at infra-red frequencies. The
emission from an electric heater at 10°K has a peak at A ~ 2.5 x 10~°m. A metal reflector
behind the heater filament reflects ~ 97% of these infra-red rays with 3% entering the
metal to be lost as Joule heating between the metal surface and the skin depth. (see
Problem 8.20)

(Problems 8.16, 8.17, 8.18, 8.19, 8.20, 8.21, 8.22, 8.23, 8.24)

Electromagnetic Waves in a Plasma

We saw in Problem 1.4 that when an electron in an atom or, quantum mechanically the
charge centre of an electron cloud, moves a small distance from its equilibrium position,
the charge separation creates an electric field which acts as a linear restoring force and the
resulting motion is simple harmonic with an angular frequency wg. For a hydrogen atom

wo~4.5%x10"%rads™!

When a steady electric field is applied to a dielectric, the resulting charge separation
between an electron and the rest of its atom induces a polarization field of magnitude
neex

€0
where P defines the dipole moment per unit volume. Here, n. is the electron number
density, x is the displacement from equilibrium and ¢ is the permittivity of free space.
The value of P per unit electric field is called the susceptibility

neéx
X =
€0E

and the permittivity of the dielectric is given by
e=¢eo(l+x)

The relative permittivity or dielectric constant

€ neex
R 8.7
f=S—t0 = (1429) (5.7)

A steady electric field E defines a static susceptibility. An alternating electric field E defines
a dynamic susceptibility in which case the relative permittivity.
e, =n?

where n is the refractive index of the medium.
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There may be resistive or damping effects to the electric field within the medium and it is
here that our discussion of the forced damped oscillator on p. 66 becomes significant (see
Figure 3.9).

If the electric field is that of an electromagnetic wave of angular frequency w we have
E = Ege™" and the value of x in equatin (8.7) is that given by equation (3.2) on p. 67
representing curve (a) in Figure 3.9 where F is now the force Ee acting on each electron.

Equation (8.7) now becomes

nee’me(wl — w?)

olm2(wf — w?)” + wir?]

e,r=1+x=1+

where m. is the electron mass, wy is its harmonic frequency within the atom, w is the
electromagnetic wave frequency and r is the damping constant.

This is the solution given to problem 3.10.

Note that for

w <K wo
2 8.8
nee
IS | —I—ei2 ( )
EoMeWy
and for
w > wo
neez (89)
e, ~1— —
EoMeW

The factor nee? /eome in the second term of ¢, has a particular significance if the material
is not a solid but an ionized gas called a plasma. Such a gas consists of ions and electrons of
equal number densities n; = n. with charges of opposite signs e and masses m; and m.
where m; > m.. Relative displacements between ions and electrons set up a restoring
electric field which returns the electrons to equilibrium. The relatively heavy ions are
considered as stationary. The result in Figure 8.10 shows a sheet of negative charge —n.ex

Plasma
nij=n,

—nex ——>» <«— +nex

Figure 8.10 In an ionized gas with equal number densities of ions and electrons (n; = n.) and
m; > m,, relative displacements between ions and electrons form thin sheaths of charge =+ nex,
which generate an electric field £ = nex /e, acting on each electron. The motion of each electron is
simple harmonic with an electron plasma frequency w, where wg =nee?/ eome rad s~
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per unit area on one side of the plasma slab with the stationary ions producing a sheet of
positive charge +n.ex on the other side (where n; = n.).
This charge separation generates an electric field E in the plasma of magnitude

E_ neex
€0

which produces an electric force —n.e?x/e( acting on each electron in the direction of its
equilibrium position.
The equation of motion of each electron is therefore

nee’x

=0

MmeX +
€0

and the electron motion is simple harmonic with an angular frequency w, where

,  nee?

ws =
P Eome

The angular frequency wy, is called the electron plasma frequency and plays a significant
role in the propagation of electromagnetic waves in the plasma.
In the expression for the refractive index

w2
er=n"~ 1+ (8.8)
Wo

2 P
=n‘=~1- 8.9
8!” n (/.)2 ( )
waves will propagate only when w > w,,
When wg/wz > 1
2_cz_czkz_l wg
T T T e

is negative and the wave number k is considered to be complex with
k=K —ia.

In this case, electromagnetic waves incident on the plasma will be attenuated within the
plasma, or if « is large enough, will be reflected at the plasma surface.

The electric field of the wave E = Eyel“ %) becomes E = Ege el %2 and is
reduced to Ege ! when z = 1/ = § the penetration depth. When « >> k/, the penetration
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is extremely small and

2
2 2 _ Wp\ W
= ar=(1-20)
so that
2 2
w
=2 (1 - w_2>
c wy
and
~1/2
6= l _ < (1 — w_i)
o wp wp
When

P—Compressed plasma
B—Azumuthal including lines
|- Axial current

Electromagnetic Waves

Figure 8.11 The pinch effect. A plasma is formed when a large electrical current I is discharged
along the axis of a cylindrical tube of gas. The azimuthal magnetic field lines compress the plasma
and when the conductivity of the plasma is very high the penetration of the field lines into the

plasma is very small

STUDENTS-HUB.com

Uploaded By: Jibreel Bornat


https://students-hub.com

Electromagnetic Waves in the lonosphere 227

On a laboratory scale number densities of the order n. ~ 107°—~10~1 m 2 are produced
with electron plasma frequencies in the range w, ~ 6 X 10°-6 x 10'? rad s~!, several
orders below that of visible light.

For these values of w), electromagnetic waves have a penetration depth

¢ -3 -5
b —x=5x1077-5x 10" m
Wp

The analysis above provides an experimental method of measuring the electron number
density of a plasma using electromagnetic waves as a probe. The angular frequency of the
transmitted wave is varied until propagation no longer occurs and a reflected wave is
detected.

The rejection of magnetic fields by a plasma is exploited in laboratory experiments on
controlled thermonuclear fusion. In these a strong magnetic induction B is used as the
confining mechanism to keep the plasma from the walls of its containing vessel. The
magnetic energy per unit volume is given by B?/2y and this has the dimensions of a
pressure which opposes and often exceeds that of the hot ionized gas.

The well-known ‘pinch effect’, Figure 8.11, results when a large current is discharged
along the axis of gas contained in a cylindrical tube. The current ionizes the gas and its
azimuthal field compresses the plasma in the radial direction towards the axis, increasing
its temperature even further. Typical magnitudes in such an experiment are 7 ~ 10 K and
ne ~ 102! m =3, This corresponds to a pressure of ~ 14 atmospheres which requires a
discharge current ~ 10°R A where R m is the radius of the cylinder.

Electromagnetic Waves in the Ionosphere

The simple expression
2
n?=1- % (8.9)
for the index of refraction of a plasma is modified by the presence of an external static
magnetic field. This situation exists in the ionosphere which consists of bands of low
density ionized gas approximately 300 km above the earth and located within the earth’s
dipole field of magnetic induction By.

A charged particle of velocity v in such a field experiences an electric field E = v x By
and when v is in the plane perpendicular to By it rotates around the field line with an
angular frequency w = eB/m, where e is the particle charge and m is its mass. This is most
easily seen by considering the force mv?/r in a circular orbit balancing the electric force
eE=¢e-vXx B(]-

From mv?/r = evBg
we have

—=0_ g

v eBy (v
r m

):27Tf:w1;

27r

where f is the frequency of precession or the number of orbits per second made by the
particle.
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® B (upwards)

Figure 8.12 Charged particles of velocity v perpendicular to a magnetic field line B are bound to
the field line and orbit around it due to the Lorentz force e(v x B). The radius L of the orbit, the
Larmor radius, is given by L = mv/eB and the orbital Larmor frequency is wg = eB/m rad s*

Figure 8.12 shows the direction of motion for positive and negative charges around a
magnetic field line which points upwards out of the paper.

We consider the simplest case of electromagnetic wave propagation along the direction
B, and assume that

e The amplitude of electron motion is small.
e The value of n. is low enough to neglect collisional damping.

e The magnetic induction By > the magnetic induction of the electromagnetic wave.

If we consider the electric field to be that of a circularly polarized transverse
electromagnetic wave, then we may write E = E(ry +ir;), where r; and r, are
orthogonal (mutually perpendicular) unit vectors and B is along the rj direction.

The equation of motion for an electron of velocity v is given by

dv :
*:E 1wt XB
mdt e +ev 0

If we take the steady state electron velocity to be of the form

v=o(r +iry)e"’

we find that
—ie E
V=—
m(w £+ wp)
satisfies the equation of motion
This means that the electron precessing around B, with an angular frequency wg is
driven by a rotating electric field of effective frequency w 4+ wp depending on the sign of
the circular polarization.
Due to the electronic motion there is a current density in the plasma given by
—inee?

= ey = T on)
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In Maxwell’s equation

B
VxH=2D+] (8.5)

we may write, in the absence of J, D = ¢(E but the presence of J will modify this and the
right hand side of equation (8.5) becomes

0 0 ; in.e?

-D = _goEelvt - "

ot +J 9r°0 ¢ m(w + wg)
inee?

= jweoE — E

_ ¢
meo(w £+ wp) 0

P
i ] ——— % |F iweF
1We o ( ) 1we

giving

We see that the ionosphere is birefringent with two different values of the refractive
index, n ; for the right handed circularly polarized wave and n _ for the left handed incident
polarization. These waves propagate at different velocities and their reception by the
ionosphere will depend on their polarization. In its lower D layer the ionosphere has an
electron number density n. <10°m > with w, ~ 10°rads~! and for the upper F; layer,
ne<10"”m™3 with w, ~ 10" rads~'. Taking the value of the earth’s magnetic field as
3 x 107> T; that is (0.3 G) gives an electron precession frequency wg ~ 6 x 10%rads~.

Figure 8.13 shows the behaviour of n%r and n? versus w/wy give for the fixed value of
wp/wp = 2. Other values of w,/wp give curves of a similar shape. In the wide frequency
intervals where ni and n? have opposite signs (positive or negative), one state of the
circular polarization cannot propagate in the plasma and will be reflected when it strikes
the ionosphere. The other wave will be partially transmitted. So, when a linearly polarized
wave with w <wpg in Figure 8.14 is incident on the ionosphere, the reflected wave will be
elliptically polarized. The electron number densities in the ionosphere are measured by
varying the frequency w of the transmitted electromagnetic waves until reflection occurs.
This method is similar to that used on the laboratory plasmas of the previous section.
However, the value of n. varies in an ionospheric layer. It is found to increase with height
until it reaches a maximum, only to fall off rapidly with a further increase in height. The
height for a particular value of n. is measured by timing the interval between the trans-
mitted and reflected wave.

The analysis above explains the main features of radio reception which are:

e Very high frequencies (VHF) are received over relatively short distances only.
e Medium wave (MW) reception is possible over longer distances and improves at night.

e Short wave (SW) reception is possible over very long distances.
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Figure 8.13 The ionospheric plasma is birefringent to electromagnetic waves with different values
of the refractive index n, for right handed circularly polarized waves and n_ for left handed
circularly polarized waves. These values depend upon the ratio of the plasma frequency w, to the
Larmor frequency wg. Graphs of n2 and n? are shown for a fixed value w,/wg = 2 with a horizontal
axis w/wg, where w is the frequency of the propagating e.m. wave

Very high frequencies are greater than w, for both the D and F, layers; the waves
propagate through both layers without reflection (Figure 8.15). The D layer has a plasma
frequency ~300 kHz; that is, a wavelength of ~ 1 km and medium waves with 200 <
A < 600 km are attenuated within it. However, the electron number density in the D
layer, sustained by ionizing radiation during the day, drops very sharply after sunset and
the medium waves are transmitted to the higher F, layer where they are reflected
and received over longer distances. The D layer is transparent to short waves, 10 <
A < 80 m, but these are reflected by the layer F, allowing long-distance radio reception
around the earth.
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ne and wy(one)

Ne=0- hy----------
o
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Figure 8.14 (a) The number density n. of a plasma (in this case the ionosphere) may be measured
by a probing electromagnetic wave, the frequency of which is varied until reflection occurs. The time
of the wave from transmission to reception is a measure of the height at which reflection occurs. The
variation of number density n. with height h in an ionospheric layer is shown in (b)

VHF = Very high frequency T — Transmitter
HW = Medium waves R — Receiver

SW = Short waves

Figure 8.15 Electron number densities in the ionosphere layers D and F, govern the pattern of
radio reception. Very high frequencies (VHF) penetrate both layers and are received only over short
distances Medium waves (MW) are reflected at the D layer during the daytime but are received over
longer distances at night when n. of the D layer drops and medium waves proceed to the F; layer
before reflection. Short waves (SW) penetrate the D layer to be reflected at the F, layer and are
received over very long distances
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Problem 8.1
The solutions to the e.m. wave equations are given in Figure 8.3 as

.27
Ex =Egsin — (vt — z)
A
and
.27
H, = Hysin T(UI—Z)

Use equations (8.1a) and (8.2a) to prove that they have the same wavelength and phase as shown in
figure.

Problem 8.2

Show that the concept of B2/2 (magnetic energy per unit volume) as a magnetic pressure accounts
for the fact that two parallel wires carrying currents in the same direction are forced together and that
reversing one current will force them apart. (Consider a point midway between the two wires.) Show
that it also explains the motion of a conductor carrying a current which is situated in a steady
externally applied magnetic field.

Problem 8.3

At a distance r from a charge e on a particle of mass m the electric field value is E = e/4neqr?.
Show by integrating the electrostatic energy density over the spherical volume of radius a to infinity
and equating it to the value mc? that the ‘classical’ radius of the electron is given by

a=141x10""m

Problem 8.4

The rate of generation of heat in a long cylindrical wire carrying a current [ is I2R, where R is the
resistance of the wire. Show that this joule heating can be described in terms of the flow of energy
into the wire from surrounding space and is equal to the product of the Poynting vector and the
surface area of the wire.

Problem 8.5

Show that when a current is increasing in a long uniformly wound solenoid of coil radius r the total
inward energy flow rate over a length / (the Poynting vector times the surface area 27rl) gives the
time rate of change of the magnetic energy stored in that length of the solenoid.

Problem 8.6
The plane polarized electromagnetic wave (E,, H,) of this chapter travels in free space. Show that its
Poynting vector (energy flow in watts per squaremetre) is given by

S=EH,=c(5e0E; +5uoH}) = ceoE;
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where c is the velocity of light. The intensity in such a wave is given by

I =S4 =ceoE? =1ceoE}

max
Show that
S=1327x10°E2
Epno = 27.455"
Hypw =73 %1025 Am~!

2 _
Vm™!

Problem 8.7

A light pulse from a ruby laser consists of a linearly polarized wave train of constant amplitude
lasting for 10~* s and carrying energy of 0.3 J. The diameter of the circular cross section of the
beam is 5x 103 m. Use the results of Problem 8.6 to calculate the energy density in the beam to
show that the root mean square value of the electric field in the wave is

24%x10°Vm™!

Problem 8.8

One square metre of the earth’s surface is illuminated by the sun at normal incidence by an energy
flux of 1.35 kW. Show that the amplitude of the electric field at the earth’s surface is 1010 V. m !
and that the associated magnetic field in the wave has an amplitude of 2.7 A m~' (See Problem 8.6).
The electric field energy density %EE 2 has the dimensions of a pressure. Calculate the radiation
pressure of sunlight upon the earth.

Problem 8.9
If the total power lost by the sun is equal to the power received per unit area of the earth’s surface
multiplied by the surface area of a sphere of radius equal to the earth sun distance (15x107 km),
show that the mass per second converted to radiant energy and lost by the sun is 4.2 x 10° kg. (See
Problem 8.6.)

Problem 8.10

A radio station radiates an average power of 10° W uniformly over a hemisphere concentric with the
station. Find the magnitude of the Poynting vector and the amplitude of the electric and magnetic
fields of the plane electromagnetic wave at a point 10 km from the station. (See Problem 8.6)

Problem 8.11

A plane polarized electromagnetic wave propagates along a transmission line consisting of two
parallel strips of a perfect conductor containing a medium of permeability x4 and permittivity €. A
section of one cubic metre in the figure shows the appropriate field vectors. The electric field E
generates equal but opposite surface charges on the conductors of magnitude eE, C m?. The motion
of these surface charges in the direction of wave propagation gives rise to a surface current (as in the
discussion associated with Figure 7.1). Show that the magnitude of this current is H, and that the
characteristic impedance of the transmission line is
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Problem 8.12

Show that equation (8.6) is dimensionally of the form (per unit area)
Vel drl
- Tdr

where Vis a voltage, L is an inductance and [ is a current.

Problem 8.13
Show that when a group of electromagnetic waves of nearly equal frequencies propagates in a
conducting medium the group velocity is twice the wave velocity.

Problem 8.14

A medium has a conductivity o = 10~! S m~! and a relative permittivity €, = 50, which is constant
with frequency. If the relative permeability p, = 1, is the medium a conductor or a dielectric at a
frequency of (a) 50 kHz, and (b) 10* MHz?

[eo = (36mx 10°) "Fm™"; po=4rx 107"Hm™ !

Answer: (a) o/we = 720 (conductor)
(b) o/we = 3.6 x 107 (dielectric).

Problem 8.15

The electrical properties of the Atlantic Ocean are given by
e, =81, p,=1, 0=43Sm™!

Show that it is a conductor up to a frequency of about 10 MHz. What is the longest electromagnetic
wavelength you would expect to propagate under water?
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Problem 8.16

Show that when a plane electromagnetic wave travelling in air is reflected normally from a plane
conducting surface the transmitted magnetic field value H, ~ 2H;, and that a magnetic standing
wave exists in air with a very large standing wave ratio. If the wave is travelling in a conductor and is
reflected normally from a plane conductor—air interface, show that E, ~ 2E;. Show that these two
cases are respectively analogous to a short-circuited and an open-circuited transmission line.

Problem 8.17
Show that in a conductor the average value of the Poynting vector is given by

Sav =3EoH(cos45°
=1H3 x (real part of Z.) Wm?

where Eg and H are the peak field values. A plane 1000 MHz wave travelling in air with Eg =
1 V. m~!is incident normally on a large copper sheet. Show firstly that the real part of the conductor
impedance is 8.2x 1073Q and then (remembering from Problem 8.16 that H( doubles in the
conductor) show that the average power absorbed by the copper per square metre is 1.6x10~7 W.

Problem 8.18

For a good conductor €, = 1, = 1. Show that when an electromagnetic wave is reflected normally
from such a conducting surface its fractional loss of energy (l-reflection coefficient I,) is
~ \/8we/o. Note that the ratio of the displacement current density to the conduction current density
is therefore a direct measure of the reflectivity of the surface.

Problem 8.19

Using the value of the Poynting vector in the conductor from Problem 8.17, show that the ratio of
this value to the value of the Poynting vector in air is & /8we/c, as expected from Problem 8.18.

Problem 8.20

The electromagnetic wave of Problems 8.18 and 8.19 has electric and magnetic field magnitudes in
the conductor given by

E.=A e—kz ei(wt—kz)

and

1/2
H.o—A e o ke gilwt—ka) o —im/4
y i
where k = (wpo/2) 12,

Show that the average value of the Poynting vector in the conductor is given by

o\ 12
Sav :%Az(m) e 2 (Wm?)

This is the power absorbed per unit area by the conductor. We know, however, that the wave
propagates only a distance of the order of the skin depth, so that this power is rapidly transformed.
The rate at which it changes with distance is given by 0S,,/0z which gives the energy transformed
per unit volume in unit time. Show that this quantity is equal to the conductivity o times the square
of the mean value of the electric field vector E, that is, the joule heating from currents flowing in the
surface of the conductor down to a depth of the order of the skin depth.
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Problem 8.21
Show that when light travelling in free space is normally incident on the surface of a dielectric of
refractive index n the reflected intensity

= (E) -7
E; 1+n

Z.E? 4n

t

ZE, (1+n)

and the transmitted intensity

I, =
(Note I, +1;=1.)

Problem 8.22

Show that if the medium of Problem 8.21 is glass (n = 1.5) then I, = 4% and I, = 96%. If an
electromagnetic wave of 100 MHz is normally incident on water (¢, = 81) show that I, = 65% and
I, = 35%.

Problem 8.23
Light passes normally through a glass plate suffering only one air to glass and one glass to air
reflection. What is the loss of intensity?

Problem 8.24
A radiating antenna in simplified form is just a length xo of wire in which an oscillating current is
maintained. The expression for the radiating power is that used on p. 47 for an oscillating electron

_dE q*w'x}
dt 127egc3

where g is the electron charge and w is the oscillation frequency. The current / in the antenna may be
written g = wgq. If P = %RI g show that the radiation resistance of the antenna is given by

o= B )

where A is the radiated wavelength (an expression valid for A > x).

If the antenna is 30 m long and transmits at a frequency of 5x10° H with a root mean square
current of 20 A, show that its radiation resistance is 1.97 (2 and that the power radiated is 400 W.
(Verify that A > x.)

Summary of Important Results
Dielectric; p and (o = 0)

Wave equation

O’E, EGZEX (Uzi)

822~ o LUE
0’H, O’H,
2 — M55
0z ot
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Impedance

E,
ox \/E (376.79) for free space)
H, €

Energy density 3eE; + 5 uH

Mean energy flow = Intensity = S = v(mean energy density)
= ’U(% E:E)% + %:U‘H)Z) average

- 2 _1,.F?
= veE; =5 veE 0y

Conductor; i € and o

Add diffusion equation to wave equation for loss effects from o

O’Er  O’E? OE,

o2 M Ty
giving
E, = Ege Reilw k)
where
k* = wpo /2
Skin Depth

1
6= % givingE, = Ege ™!

Criterion for conductor/dielectric behaviour is ratio

conduction current

ag
: = — (note frequency dependence
displacement current ~ we ( d yaep )

Impedance Z, (conductor)

7.

:1\/+§i<w_u)l/2

o
with magnitude Z, = 376.6+/1,/¢, \/we /o ohms
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Reflection and Transmission Coefficients (normal incidence),

E;

R:—:

E;

Z, — 7,4
Zr+7,
2Z,
Zr + 2,

Fresnel’s Equations (dielectrics)

Refractive Index

_tan(¢ —0)
" tan (¢ +6)’
_sin(¢—0)
" sin(¢+0)

C
n—-——
v

(E’s and Z’s may be complex)

_ 4singcosf
~ sin2¢ + sin26
_ 2sin¢cos 6
~ sin(¢ +0)

Z (free space)
Z (dielectric)

Electromagnetic Waves in a Plasma
Low frequency waves propagate, but a high frequency wave Ege™’ is attenuated or

reflected when w < w,, the plasma frequency, where w?

number density.)

5= nee’/eome. (n. is the electron

The plasma has a refractive index n, where

n?=1 —wg/wz

when w;, > wy, the wave amplitude Ey — Eoe ! in a skin depth distance

STUDENTS-HUB.com

Uploaded By: Jibreel Bornat


https://students-hub.com

9

Waves in More than
One Dimension

Plane Wave Representation in Two and Three Dimensions

Figure 9.1 shows that in two dimensions waves of velocity ¢ may be represented by lines of
constant phase propagating in a direction k which is normal to each line, where the
magnitude of k is the wave number k = 27/ \.

The direction cosines of k are given by

k k
:?1, m:f where kzzkf—l—k%

and any point r(x,y) on the line of constant phase satisfies the equation

l

Ix+my=p=ct

where p is the perpendicular distance from the line to the origin. The displacements at all
points r(x, y) on a given line are in phase and the phase difference ¢ between the origin and
a given line is

2 2
¢ = Tﬂ(path difference) = Tﬂ-p =k.-r=kix+kyy

Hence, the bracket (wt — ¢) = (wt — kx) used in a one dimensional wave is replaced by
(wt —Kk-r) in waves of more than one dimension, e.g. we shall use the exponential
expression
ei(mt—kr)
In three dimensions all points r(x, y, z) in a given wavefront will lie on planes of constant
phase satisfying the equation

Ix+my+nz=p=ct

The Physics of Vibrations and Waves, 6th Edition H. J. Pain
© 2005 John Wiley & Sons, Ltd., ISBN: 0-470-01295-1(hardback); 0-470-01296-X(paperback)
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ky
1= Kk Crest
ky, ~77° Trough
M=

X

Figure 9.1 Crests and troughs of a two-dimensional plane wave propagating in a general direction
k (direction cosines [ and m). The wave is specified by x + my = p = ct, where p is its perpendicular
distance from the origin, travelled in a time ¢t at a velocity ¢

where the vector k which is normal to the plane and in the direction of propagation has
direction cosines

(so that k> = k7 + k3 + k3) and the perpendicular distance p is given by

kp=k-r=kix+ kyy+kjsz

Wave Equation in Two Dimensions

We shall consider waves propagating on a stretched plane membrane of negligible
thickness having a mass p per unit area and stretched under a uniform tension 7. This
means that if a line of unit length is drawn in the surface of the membrane, then the
material on one side of this line exerts a force T (per unit length) on the material on the
other side in a direction perpendicular to that of the line.

If the equilibrium position of the membrane is the xy plane the vibration displacements
perpendicular to this plane will be given by z where z depends on the position x, y. In
Figure 9.2a where the small rectangular element ABCD of sides 6x and dy is vibrating,
forces Téx and Téy are shown acting on the sides in directions which tend to restore the
element to its equilibrium position.

In deriving the equation for waves on a string we saw that the tension 7 along a curved
element of string of length dx produced a force perpendicular to x of

9%y

4
Ox?

dx
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Tdx
Tox
z
Tay Tdy
oy dX
T8
Tdx / Y
Tox Td
y y
X

(@) (b)

Figure 9.2 Rectangular element of a uniform membrane vibrating in the z-direction subject to one
restoring force, Téx, along its sides of length dy and another, Tdy, along its sides of length éx

where y was the perpendicular displacement. Here in Figure 9.2b by exactly similar
arguments we see that a force 7'y acting on a membrane element of length dx produces a
force
0%z
T6y @ 6X y
where z is the perpendicular displacement, whilst another force Tdx acting on a membrane
element of length ¢y produces a force

0%z
Téx 9.2
dy

The sum of these restoring forces which act in the z-direction is equal to the mass of the
element p Ox dy times its perpendicular acceleration in the z-direction, so that

by

0%z 0%z 0%y
Tﬁéxéy + Twéxéy = p6x6ym
giving the wave equation in two dimensions as

o oo 10k
Ox2  Oy: TOt2 2012

where

The displacement of waves propagating on this membrane will be given by
7= A ei(wtfk-r) — Aei[UJt*(kl)H“kz}')]
where

k* =ki+k;
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The reader should verify that this expression for z is indeed a solution to the two-
dimensional wave equation when w = ck.

(Problem 9.1)

Wave Guides
Reflection of a 2D Wave at Rigid Boundaries

Let us first consider a 2D wave propagating in a vector direction k(k, k) in the xy plane
along a membrane of width b stretched under a tension 7 between two long rigid rods
which present an infinite impedance to the wave.

We see from Figure 9.3 that upon reflection from the line y = b the component k;
remains unaffected whilst k, is reversed to —k,. Reflection at y = 0 leaves k; unaffected
whilst —k, is reversed to its original value k,. The wave system on the membrane will
therefore be given by the superposition of the incident and reflected waves; that is, by

7 — Al ei[wtf(kl)H»kzy)] +A2 ei[wtf(k]xszy)]
subject to the boundary conditions that
z=0 at y=0 and y=0»>b

the positions of the frame of infinite impedance.
The condition z = 0 at y = 0 requires

Ay =—-A;
and z =0 at y = b gives
sink,b =0
infinite
impedance
y=b
k.
1 k2 k
T —>x
—k, k > k,
y=0
infinite
impedance

Figure 9.3 Propagation of a two-dimensional wave along a stretched membrane with infinite
impedances at y = 0 and y = b giving reversal of k, at each reflection
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or

(Problem 9.2)

With these values of A, and k; the displacement of the wave system is given by the real
part of z, i.e.

7=+ 2A;sink,ysin (wt — k1x)

which represents a wave travelling along the x direction with a phase velocity

where v, the velocity on an infinitely wide membrane, is given by

w .
U:E whichis < v,

because
2 2 2
Now
2,2
2_ 2 n-m
k —kl—f—T
SO

) g J ) 1/2 w2 nlr? 1/2
=) =

and the group velocity for the wave in the x direction
B0k T w ! T\ )"

.2
VpVg =V

giving the product

Since k| must be real for the wave to propagate we have, from

2.2
K2 — k2 n-mw
1 — b2
the condition that
. w? - P J)
- v2 = b2
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that is
S nmov
w —_—
~— b
or
S nuv
>
- Zb,

where n defines the mode number in the y direction. Thus, only waves of certain
frequencies v are allowed to propagate along the membrane which acts as a wave guide.

There is a cut-off frequency nmv /b for each mode of number n and the wave guide acts as
a frequency filter (recall the discussion on similar behaviour in wave propagation on the
loaded string in Chapter 4). The presence of the sink,y term in the expression for the
displacement z shows that the amplitude varies across the transverse y direction as shown in
Figure 9.4 for the mode values n = 1,2, 3. Thus, along any direction in which the waves
meet rigid boundaries a standing wave system will be set up analogous to that on a string of
fixed length and we shall discuss the implication of this in the section on normal modes and
the method of separation of variables.

Wave guides are used for all wave systems, particularly in those with acoustical and
electromagnetic applications. Fibre optics is based on wave guide principles, but the major
use of wave guides has been with electromagnetic waves in telecommunications. Here the
reflecting surfaces are the sides of a copper tube of circular or rectangular cross section.
Note that in this case the free space velocity becomes the velocity of light

w
C:E<’Up

the phase velocity, but the relation vyv, = c? ensures that energy in the wave always
travels with a group velocity v, < c.

y=b

>
1
=
S
1
N
>
1l
w
x

y=0

Figure 9.4 Variation of amplitude with y-direction for two-dimensional wave propagating along the
membrane of Figure 9.3. Normal modes (n = 1,2 and 3 shown) are set up along any axis bounded by
infinite impedances

STUDENTS-HUB.com Uploaded By: Jibreel Bornat


https://students-hub.com

Normal Modes and the Method of Separation of Variables 245

(Problems 9.3, 9.4, 9.5, 9.6, 9.7, 9.8, 9.9, 9.10, 9.11)

Normal Modes and the Method of Separation of Variables

We have just seen that when waves propagate in more than one dimension a standing wave
system will be set up along any axis which is bounded by infinite impedances.

In Chapter 5 we found that standing waves could exist on a string of fixed length / where
the displacement was of the form

sin sin
=A kx wpyt
Y cos } cos [ "7

. sin . .
where A is constant and where cos} means that either solution may be used to

fit the boundary conditions in space and time. When the string is fixed at both ends, the
condition y = 0 at x = 0 removes the cos kx solution, and y = 0 at x = [ requires k,l = n7
or k, = nw/l = 2w/ \,, giving [ = n\,/2. Since the wave velocity ¢ = v,\,, this permits
frequencies w, = 27w, = 7nc/l, defined as normal modes of vibration or eigenfrequen-
cies.

We can obtain this solution in a way which allows us to extend the method to waves in
more than one dimension. We have seen that the wave equation

0% 1 9%

Ox2  c2or?
has a solution which is the product of two terms, one a function of x only and the other a
function of ¢ only.

Let us write ¢ = X(x)T(¢) and apply the method known as separation of variables.
The wave equation then becomes

o’X 1 _0°T

oxz 2" or2

or
1
XuT = ?XTII

where the double subscript refers to double differentiation with respect to the variables.
Dividing by ¢ = X(x)T(r) we have

Xu 1T,

X 2T

where the left-hand side depends on x only and the right-hand side depends on ¢ only.
However, both x and ¢ are independent variables and the equality between both sides can
only be true when both sides are independent of x and ¢ and are equal to a constant, which
we shall take, for convenience, as —k2. Thus

XX)C

e —k?, giving X +k’X =0
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and

T
57 = —k*, giving T, +c**T=0

X(x) is therefore of the form e *** and T/(¢) is of the form e ¥’ 5o that ¢ = A e F1k* g Fick!,
where A is constant, and we choose a particular solution in a form already familiar to us by
writing

¢ —A ei(ckt—kx)
:Aei(wtka) ’

where w = ck, or we can write

6= A sin }kxsm }ckt

COS COS

as above.

Two-Dimensional Case

In extending this method to waves in two dimensions we consider the wave equation in
the form
0%  0%¢ 1 9%¢

ox2 T 9yr 2 or?

and we write ¢ = X(x)Y(y)7T(t), where Y(y) is a function of y only.
Differentiating twice and dividing by ¢ = XYT gives

Xoo Yy 1Ty
X Y 2T

where the left-hand side depends on x and y only and the right-hand side depends on ¢ only.
Since x, y and ¢ are independent variables each side must be equal to a constant, —k? say.
This means that the left-hand side terms in x and y differ by only a constant for all x and y,
so that each term is itself equal to a constant. Thus we can write

Xer — _ki Yy — —k%
X Y

and
1T, _

S = (ki +ky) = =k
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giving
Xu+kiX=0
Yy +k3Y =0
Ty+c*k*T=0
or

¢ —A eilklx eilkzy eilckl

where k2 = k2 + k2 Typically we may write
sin sin sin
= Acos }klxcos }kzy cos }th'

Three-Dimensional Case

The three-dimensional treatment is merely a further extension. The wave equation is
82 ¢ 82 ¢ 62 ¢) 10 2 ¢
ax2 9y 072 2o

with a solution

¢ =X(x)Y(y)Z(2)T (1)

p=A" }klx }kgy }k3z Or;}ckt,

where k7 + k3 + k% = k2.
Using vector notation we may write

yielding

¢ =Ae“ KD where k-r=kx+kayy+ksz

Normal Modes in Two Dimensions on a Rectangular Membrane

Suppose waves proceed in a general direction k on the rectangular membrane of sides a
and b shown in Figure 9.5. Each dotted wave line is separated by a distance A/2 and a
standing wave system will exist whenever a = n1AA’ and b = n,BB’, where n| and n, are
integers.

But

A Ak A2w 1 s
AA/: = - = —
2cosae 2ky 2 XNky Kk
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<«—— a=n,AA'=nAl2cosa —>

Figure 9.5 Normal modes on a rectangular membrane in a direction k satisfying boundary
conditions of zero displacement at the edges of length a =n;\/2cosa and b =n,\/ 2cos 3

so that
a:M and klzm.
k] a
Similarly
nom
e
Hence
472 n?  n2
2_ g2 2 _ _ 2" 2
or
2_ miom
A Va2 b2

defining the frequency of the n;th mode on the x-axis and the n,th mode on the y-axis, that
is, the (nyn;) normal mode, as

2 2
c /n n T

1 2 2
V=—4/—+-—= where c¢-=—
2 Va2 p? o

If k is not normal to the direction of either a or b we can write the general solution for
the waves as
sin sin sin
z=A }klx }kzy }ckt.
cos cos cos

with the boundary conditions z=0atx=0and a; z=0at y =0 and b.

Uploaded By: Jibreel Bornat


https://students-hub.com

Normal Modes in Two Dimensions on a Rectangular Membrane 249

The condition z = 0 at x = y = 0 requires a sin k ;x sin k,y term, and the condition z = 0
at x = a defines k; = nym/a. The condition z = 0 at y = b gives k, = n,7/b, so that

nimx . Nnym
1

z = Asin Y sin ckt

The fundamental vibration is given by n; = 1,n, = 1, so that

_ (L T
v a’? b%)4p

In the general mode (n;n;) zero displacement or nodal lines occur at

2
x =0, i, —a,...a
ni ni
and
b 2b
y=0, —, —,...b
ny ny

Some of these normal modes are shown in Figure 9.6, where the shaded and plain areas
have opposite displacements as shown.

(1,1) (2,1) (3,1)
3,2) 3,3) (2,4)
— T~
/
@ "
(1,1) (3,1)
/
(1)

Figure 9.6 Some normal modes on a rectangular membrane with shaded and clear sections having
opposite sinusoidal displacements as indicated
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The complete solution for a general displacement would be the sum of individual normal
modes, as with the simpler case of waves on a string (see the chapter on Fourier Series)
where boundary conditions of space and time would have to be met. Several modes of
different values (n1n,) may have the same frequency, e.g. in a square membrane the modes
4,7 (7.4) (1,8) and (8,1) all have equal frequencies. If the membrane is rectangular and
a = 3b, modes (3,3) and (9,1) have equal frequencies.

These modes are then said to be degenerate, a term used in describing equal energy
levels for electrons in an atom which are described by different quantum numbers.

Normal Modes in Three Dimensions

In three dimensions a normal mode is described by the numbers n;,n,,n3, with a
frequency

1,72, 73 (9.1)

where [, [, and /3 are the lengths of the sides of the rectangular enclosure. If we now form a
rectangular lattice with the x-, y- and z-axes marked off in units of
& C C
—, — and —
20,7 21, 215
respectively (Figure 9.7), we can consider a vector of components n; units in the
x-direction, n, units in the y-direction and n3 units in the z-direction to have a length

2 2 2

N LA L L
- 2 2 2
2\ B

v (e me nge
2, 2L, 2l

PR

Vector length gives
allowed frequency

112

oo, n
VEol T T
i l ls

21, 2

Figure 9.7 Lattice of rectangular cells in frequency space. The length of the vector joining the
origin to any cell corner is the value of the frequency of an allowed normal mode. The vector
direction gives the propagation direction of that particular mode
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Each frequency may thus be represented by a line joining the origin to a point
cny/2ly,cny /215, cn3 /215 in the rectangular lattice.

The length of the line gives the magnitude of the frequency, and the vector direction
gives the direction of the standing waves.

Each point will be at the corner of a rectangular unit cell of sides ¢/211,¢/2l, and ¢/213
with a volume ¢?/81,1,15. There are as many cells as points (i.e. as frequencies) since each
cell has eight points at its corners and each point serves as a corner to eight cells.

A very important question now arises: how many normal modes (stationary states in
quantum mechanics) can exist in the frequency range v to v + dv?

The answer to this question is the total number of all those positive integers n,n,, n3 for
which, from equation (9.1),

2 /02 20 2
< S %+£§+i§ < (v4dv)?
4 \ly Iz I3

This total is the number of possible points (n1,n,,n3) lying in the positive octant
between two concentric spheres of radii v and v + dv. The other octants will merely repeat
the positive octant values because the n’s appear as squared quantities.

Hence the total number of possible points or cells will be

l(volume of spherical shell)

8 volume of cell
. 47TU2 dv 8[1[213
T8 a3

vidv

c3

= 47‘&'1112[3 .

so that the number of possible normal modes in the frequency range v to v + dv per unit
volume of the enclosure

B 4% dv

c3

Note that this result, per unit volume of the enclosure, is independent of any particular
system; we shall consider two very important applications.

Frequency Distribution of Energy Radiated from a Hot Body.
Planck’s Law

The electromagnetic energy radiated from a hot body at temperature 7 in the small
frequency interval v to v+ dv may be written E,dv. If this quantity is measured
experimentally over a wide range of v a curve T in Figure 9.8 will result. The general
shape of the curve is independent of the temperature, but as 7 is increased the maximum of
the curve increases and shifts towards a higher frequency.

The early attempts to describe the shape of this curve were based on two results we have
already used.
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Rayleigh-
& Jeans

Black body radiation curves
following Planck's Law (T, > T;)

T, /I \\
RN \
ros \ S
/7 \
/o \
// / \\
/
/7 T~
// ’
’ ~.
/ V2 S~

Figure 9.8 Planck’s black body radiation curve plotted for two different temperatures 7, > T,
together with the curve of the classical Rayleigh-0.6-Jeans explanation leading to the ‘ultra-violet
catastrophe’

In the chapter on coupled oscillations we associated normal modes with ‘degrees of
freedom’, the number of ways in which a system could take up energy. In kinetic theory,
assigning an energy %kT to each degree of freedom of a monatomic gas at temperature T
leads to the gas law pV = RT = NkT where N is Avogadro’s number, k is Boltzmann’s
constant and R is the gas constant.

If we assume that each frequency radiated from a hot body is associated with the normal
mode of an oscillator with two degrees of freedom and two transverse planes of
polarization, the energy radiated per frequency interval dv may be considered as the
product of the number of normal modes or oscillators in the interval dv and an energy
contribution of kT from each oscillator for each plane of polarization. This gives

_ Arv? dv 2kT _ 87 2kT dv

E, dv
v c3 c3

a result known as the Rayleigh—Jeans Law.

This, however, gives the energy density proportional to ©? which, as the solid curve in
Figure 9.8 shows, becomes infinite at very high frequencies, a physically absurd result
known as the ultraviolet catastrophe.

The correct solution to the problem was a major advance in physics. Planck had
introduced the quantum theory, which predicted that the average energy value k7 should be
replaced by the factor hv/(e"/*T — 1), where h is Planck’s constant (the unit of action) as
shown in Problem 9.12. The experimental curve is thus accurately described by Planck’s
Radiation Law

8rv? hv

E dv=—3 i

dv
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(Problem 9.12)

Debye Theory of Specific Heats

The success of the modern theory of the specific heats of solids owes much to the work of
Debye, who considered the thermal vibrations of atoms in a solid lattice in terms of a vast
complex of standing waves over a great range of frequencies. This picture corresponds in
three dimensions to the problem of atoms spaced along a one dimensional line (Chapter 5).
In the specific heat theory each atom was allowed two transverse vibrations (perpendicular
planes of polarization) and one longitudinal vibration.

The number of possible modes or oscillations per unit volume in the frequency interval v
to v + dv is then given by

dn = 47r1/2d1/<%+i3) (9.2)
¢r L
where cr and ¢, are respectively the transverse and longitudinal wave velocities.
Problem 9.12 shows that each mode has an average energy (from Planck’s Law) of
& =hv/(e"™/*T — 1) and the total energy in the frequency range v to v + dv for a gram
atom of the solid of volume V4 is then

) 2 1 hv3
Vagdn = 4nV, <3 + ;) e — 1

The total energy per gram atom over all permitted frequencies is then

B 2 1 Um hyv 3
EA-—J‘VA€dn——4WVA<E§_%E§) Jo EEVET:j_dV

where v, is the maximum frequency of the oscillations.

There are N atoms per gram atom of the solid (N is Avogadro’s number) and each atom
has three allowed oscillation modes, so an approximation to v, is found by writing the
integral of equation (9.2) for a gram atom as

201\ (" 4nVy (2 1
Jdn:3N:47TVA<—3+—3> J 2y =L A(_3+_3>V3n
cr cr 0 3 Ccr cr

The values of ¢y and ¢, can be calculated from the elastic constants of the solid (see
Chapter 6 on longitudinal waves) and v,, can then be found.
The values of E4 thus becomes

vdv

ON [“»  h
EL J v

V% ehv/kT _
and the variation of E4 with the temperature T is the molar specific heat of the substance at
constant volume. The specific heat of aluminium calculated by this method is compared
with experimental results in Figure 9.9.
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Solid curve-

Debye Theory

0 - Experimental points

C, (cals mole~* deg)
w
T

Specific heat of aluminium

100 200 300 400

Temperature (K)

Figure 9.9 Debye theory of specific heat of solids. Experimental values versus theoretical curve for
aluminium

(Problems 9.13, 9.14, 9.15, 9.16, 9.17, 9.18, 9.19)

Reflection and Transmission of a Three-Dimensional Wave at a
Plane Boundary

To illustrate such an event we choose a physical system of great significance, the passage of
a light wave from air to glass. More generally, Figure 9.10 shows a plane polarized
electromagnetic wave E; incident at an angle 6 to the normal of the plane boundary z = 0
separating two dielectrics of impedance Z; and Z,, giving reflected and transmitted rays E,
and E, respectively. The boundary condition requires that the tangential electric field E is
continuous at z = 0. The propagation direction k; of E; lies wholly in the plane of the
paper (y =0) but no assumptions are made about the directions of the reflected and
transmitted waves (nor about the planes of oscillation of their electric field vectors).
We write

E: _A,ei(wf*ki'l') —A. ei[wtfki(xsinOJrzcosO)]
i—Ai = Aj
Er _ Arei(wtfkr-r) _ Arei[wtf(k,lirk,zerk,}z)]

and

E[ — Atei(wt—kpl‘) — A[ei[wt—(k“x-&-k/zy-k—kgz)]

where K. (k.1 ki, k) and K(ky, ko, k) are respectively the reflected and transmitted
propagation vectors.
Since E, is continuous at z = 0 for all x,y, ¢ we have

A, ei[utfki(xsinﬁ)] +Arei[w17(k,1x+k,2y)]

— At ei[wzf(k,1x+k,zy)]
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Z X Z,

2E,=0atz=0

Figure 9.10 Plane-polarized electromagnetic wave propagating in the plane of the paper is
represented by vector E; and is reflected as vector E, and transmitted as vector E. at a plane interface
between media of impedances Z; and Z,. No assumptions are made about the planes of propagation
of E, and E;. From the boundary condition that the electric field component £, is continuous at the
plane z = 0 it follows that (1) vectors E;E, and E; propagate in the same plane; (2) § = 6’ (angle of
incidence =angle of reflection); (3) Snell’s law (sin6/sin¢) = n,/n4, where n is the refractive
index

an identity which is only possible if the indices of all three terms are identical; that is

wt — kixsinf = wt — kyx + kpy
= wt — kyx + kpy

Equating the coefficients of x in this identity gives
kisin0 =k, = kg
whilst equal coefficients of y give
0=kpn =kn
The relation
ki =kp=0

shows that the reflected and transmitted rays have no component in the y direction and lie
wholly in the xz plane of incidence; that is, incident reflected and transmitted (refracted)
rays are coplanar.
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Now the magnitude

since both incident and reflected waves are travelling in medium Z;. Hence

kisinf =k
gives
kisind = k,sin 6§’
that is
0=10

so the angle of incidence equals the angle of reflection.
The magnitude

27
“TN
so that
kisind = ky = k¢sin¢
gives
i—T sinf = i—: sin ¢
or

sinf Ay np |Refractive Index (medium 2)
sing A, n; |Refractive Index (medium 1)

a relationship between the angles of incidence and refraction which is well known as
Snell’s Law.

Total Internal Reflection and Evanescent Waves

On p. 254 we discussed the propagation of an electromagnetic wave across the boundary
between air and a dielectric (glass, say). We now consider the reverse process where a wave
in the dielectric crosses the interface into air.

Snell’s Law still holds so we have, in Figure 9.11,

nysinf = n,sin g
where
ny>n, and ny/n;=n,<1
Thus

sinf = (ny/ny)sing = n,sin¢

STUDENTS-HUB.com Uploaded By: Jibreel Bornat


https://students-hub.com

Total Internal Reflection and Evanescent Waves 257

\Z \ Z
¢
n, [ n,
X X
n n
1 0 |6 1
6, |6
(a) (b)
n,>n,
A
z z
n, ¢ =90° n,
_______ > x X
ny ny
gizec erzec 0i>90 9i:9r
() (d)

Figure 9.11 When light propagates from a dense to a rare medium (ny > n;) Snell’s Law defines
0 = 0. as that angle of incidence for which ¢ = 90° and the refracted ray is tangential to the plane
boundary. Total internal reflection can take place but the boundary conditions still require a
transmitted wave known as the evanescent or surface wave. It propagates in the x direction but its
amplitude decays exponentially with z

with ¢ > . Eventually a critical angle of incidence 6. is reached where ¢ = 90° and
sinf = n,; for 6 > 6., sin@ > n,. For glass to air n, = % and 0. = 42°.

It is evident that for 6> 6. no electromagnetic energy is transmitted into the rarer
medium and the incident wave is said to suffer total internal reflection.

In the reflection coefficients R and R, on p. 218 we may replace cos ¢ by

(1 —sin?¢)"/? =[1 — (sinf/n,)?*|"/?
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and rewrite

R (n? —sin?6)"/? — n2cosd
! (n2 —sin?6)"? + n2 cos
and
R cos ) — (n? — sin*0) 1/2
J_ =
cos @ + (n2 — sin* ) '/

Now for § > 6, sinf) > n; and the bracketed quantities in R|| and R are negative so
that R|| and R | are complex quantities; that is (E) | and (E:) | have a phase relation which
depends on 6.

It is easily checked that the product of R and R* is unity so we have R HR|*\ =R, R} =1
This means, for both the examples of Figure 8.8, that the incident and reflected intensities
I; and I, = 1. The transmitted intensity /; = 0 so that no energy is carried across the
boundary.

However, if there is no transmitted wave we cannot satisfy the boundary condition
E;+ E, = E; on p. 254, using only incident and reflected waves. We must therefore assert
that a transmitted wave does exist but that it cannot on the average carry energy across the
boundary.

We now examine the implications of this assertion, using Figure 9.10 above, and we
keep the notation of p. 254. This gives a transmitted electric field vector

Et — Atei[wlf(k(]X‘Fk‘zy‘FkBZ)]

=A.e ilwr—k (x sin p+zcos ¢)]

because y = 0 in the xz plane, ky = kysin¢ and ki3 = k¢ cos ¢. Now

cos ¢ =1 —sin* ¢ = 1 —sin? 0/n?

Jokicosp = £k(1 — sinzﬁ/nrz)l/2

which for 6 > . gives sinf > n, so that

) 1/2
9
ki cos ¢ = Fik, <sz _ 1> — Tig
n

T

We also have

kesing = kysin6/n,
SO

E, = A, e Tz el(wt—k,xsm 0/n;)
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The alternative factor e ™’ defines an exponential growth of A, which is physically
untenable and we are left with a wave whose amplitude decays exponentially as it
penetrates the less dense medium. The disturbance travels in the x direction along the
interface and is known as a surface or evanescent wave.

It is possible to show from the expressions for R and R, on p. 258 that except at
6 = 90° the incident and the reflected electric field components for (E) | in one case and
(E) | in the other, do not differ in phase by 7 rad and cannot therefore cancel each other
out. The continuity of the tangential component of E at the boundary therefore leaves a
component parallel to the interface which propagates as the surface wave. This effect has
been observed at optical frequencies.

Moreover, if only a very thin air gap exists between two glass blocks it is possible for
energy to flow across the gap allowing the wave to propagate in the second glass block.
This process is called frustrated total internal reflection and has its quantum mechanical
analogue in the tunnelling effect discussed on p. 431.

Problem 9.1
Show that

7 = A eilor—(kivrkay)}

where k2 = w?/c? = k? + k3 is a solution of the two-dimensional wave equation
9% 9%z 10%z
Ox2 ' Oy2  c20r?

Problem 9.2
Show that if the displacement of the waves on the membrane of width b of Figure 9.3 is given by the
superposition

z=A, el kivthay)] 4 g gilwr—(kix—kay)]
with the boundary conditions
z=0 at y=0 and y=25>
then the real part of z is

7= +42A,sink;yysin (wr — kx)
where
nm

k 2 = 7
Problem 9.3
An electromagnetic wave loses negligible energy when reflected from a highly conducting surface.
With repeated reflections it may travel along a transmission line or wave guide consisting of two
parallel, infinitely conducting planes (separation a). If the wave
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SA

X X=a
, Plane conductor

2 k (k k)
l E,only

7 4
x=0
plane conductor

is plane polarized, so that only E, exists, then the propagating direction k lies wholly in the xy plane.
The boundary conditions require that the total tangential electric field E, is zero at the conducting
surfaces x = 0 and x = a. Show that the first boundary condition allows E, to be written E, =
Eg(e — e7k) eilky=et) where k, = kcos and k, = ksin# and the second boundary condition
requires k, = nr/a.
If Ao =2mc/w, A\; =2m/k, and A\, =27/k, are the wavelengths propagating in the x and y
directions respectively show that
1 n 1
AL A2 A3
We see that for n = 1, k, = 7/a and A, = 2a, and that as w decreases and \( increases, k, = k sin 6
becomes imaginary and the wave is damped. Thus, n = 2(k, = 27/a) gives A, = a, the ‘critical
wavelength’, i.e. the longest wavelength propagated by a waveguide of separation a. Such cut-off
wavelengths and frequencies are a feature of wave propagation in periodic structures, transmission
lines and wave-guides.

Problem 9.4

Show, from equations (8.1) and (8.2), that the magnetic field in the plane-polarized electromagnetic
wave of Problem 9.3 has components in both x- and y-directions. [When an electromagnetic wave
propagating in a waveguide has only transverse electric field vectors and no electric field in the
direction of propagation it is called a transverse electric (TE) wave. Similarly a transverse magnetic
(TM) wave may exist. The plane-polarized wave of Problem 9.3 is a transverse electric wave; the
corresponding transverse magnetic wave would have H, E, and E, components. The values of n in
Problem 9.3 satisfying the boundary conditions are written as subscripts to define the exact mode of
propagation, e.g. TE jo.]

Problem 9.5

Use the value of the inductance and capacitance of a pair of plane parallel conductors of separation a
and width b to show that the characteristic impedance of such a waveguide is given by

a |p
Zo=—4/—9Q
"7 €

where ;1 and ¢ are respectively the permeability and permittivity of the medium between the
conductors.
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Problem 9.6
Consider either the Poynting vector or the energy per unit volume of an electromagnetic wave to
show that the power transmitted by a single positive travelling wave in the waveguide of Problem 9.5

is $abE}\/</p.

Problem 9.7
An electromagnetic wave (E, H) propagates in the x-direction down a perfectly conducting hollow
tube of arbitrary cross section. The tangential component of E at the conducting walls must be zero
at all times.

Show that the solution E = E(y, z) ncos (wf — k,x) substituted in the wave equation yields

9%E(y,2) +32E(y7 2)

ayz azz = _sz(y>Z)a

where k% = w?/c? — k2 and k, is the wave number appropriate to the x-direction, n is the unit vector
in any direction in the (y,z) plane.

Problem 9.8

If the waveguide of Problem 9.7 is of rectangular cross-section of width a in the y-direction and
height b in the z-direction, show that the boundary conditions E, = O at y = 0 and ¢ and at z = 0 and
b in the wave equation of Problem 9.7 gives

. mmy . nmz
E,=Asin MY sin 5, €8 (wt — kyx),
a

where
2 2
2 2 m n
kc=m (ﬁ‘i‘ﬁ)
Problem 9.9

Show, from Problems 9.7 and 9.8, that the lowest possible value of w (the cut-off frequency) for &, to
be real is given by m =n = 1.

Problem 9.10
Prove that the product of the phase and group velocity w/k,, dw/0k, of the wave of Problems 9.7—
9.9 is 2, where c is the velocity of light.

Problem 9.11
Consider now the extension of Problem 9.2 where the waves are reflected at the rigid edges of the
rectangular membrane of sides length @ and b as shown in the diagram. The final displacement is the
result of the superposition

z2=A, ei[wtf(klirkgy)]
+ A, eiler—(ki—kay)]
+A; eilwri—(=kix—kzy)]

+ A s€ i[wf*(*k 1x+k2y)]

with the boundary conditions

z=0 at x=0 and x=a
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and

z=0 at y=0 and y=0»b

“«—-—————=

Show that this leads to a displacement
7= —4Asinkxsink,ycoswt
(the real part of z), where

k=T and k=227
a b

Problem 9.12
In deriving the result that the average energy of an oscillator at frequency v and temperature 7 is
given by

hv

€= e (w/kT) _ |

Planck assumed that a large number N of oscillators had energies O, hv,2hv ... nhy distributed
according to Boltzmann’s Law

Nn — Noe—nhl//kT

where the number of oscillators N,, with energy nhr decreases exponentially with increasing n.
Use the geometric progression series

N = Z Nn :N()(l +e—hl//kT+e—2hV/kT...)
n

to show that

No

N = | — o —hw/kT

If the total energy of the oscillators in the nth energy state is given by

E, = N,nhv
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prove that the total energy over all the n energy states is given by

hVe—hi//kT
E = Zn: E, :Nom

Hence show that the average energy per oscillator

__E hv
ETN T e

and expand the denominator to show that for iv < kT, that is low frequencies and long wavelengths.
Planck’s Law becomes the classical expression of Rayleigh—Jeans.

Problem 9.13
The wave representation of a particle, e.g. an electron, in a rectangular potential well throughout
which V = 0 is given by Schrodinger’s time-independent equation

*v N *v N 9*W  8x’m
ox2  Oy2  0z2 k2

EV,

where E is the particle energy, m is the mass and 4 is Planck’s constant. The boundary conditions to
be satisfied are y =0atx =y=z=0and atx=L,,y =L,z = L,, where Ly, L, and L, are the
dimensions of the well.

Show that

[
\VJ :Asinlxsin@sinrE
L, L, L.

is a solution of Schrddinger’s equation, giving

hZ 12 ’.2 n2
E=— |-+ 40
sm\L2 12712

When the potential well is cubical of side L,
2

8mlL?
and the lowest value of the quantized energy is given by
E=Ey for I=1, r=n=0

Show that the next energy levels are 3E,6E (three-fold degenerate), 9E (three-fold
degenerate), 11E (three-fold degenerate), 12E, and 14E, (six-fold degenerate).

E =

(1> +r* 4+ n?)

Problem 9.14
Show that at low energy levels (long wavelengths) hv < kT, Planck’s radiation law is equivalent to
the Rayleigh—Jeans expression.

Problem 9.15
Planck’s radiation law, expressed in terms of energy per unit range of wavelength instead of
frequency, becomes

8mch

Ex= A3 (eh/WT 1)
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Use the variable x = ch/AkT to show that the total energy per unit volume at temperature 7 °
absolute is given by

o0
J Eyd\=aT*Im™3
0
where
B 8mok?
4= 1503

(The constant ca/4 = o, Stefan’s Constant in the Stefan-Boltzmann Law.) Note that

JOO x3dx 7714
o ex—1 15

Problem 9.16
Show that the wavelength A, at which E in Problem 9.15 is a maximum is given by the solution of
ch

(1—;—6)6’(:1, where x:Ak_T

The solution is ch/A,kT = 4.965.

Problem 9.17

Given that ch/\,, = 5kT in Problem 9.16, show that if the sun’s temperature is about 6000 K, then
Am ~ 4.7 x 1077 m, the green region of the visible spectrum where the human eye is most sensitive
(evolution ?).

Problem 9.18

The tungsten filament of an electric light bulb has a temperature of ~ 2000 K. Show that in this case
Am 2 14 x 107" m, well into the infrared. Such a lamp is therefore a good heat source but an
inefficient light source.

Problem 9.19
A free electron (travelling in a region of zero potential) has an energy

2 2
_PT_(hTN 2
E_2m_ (2m>k = E(k)

where the wavelength
A=h/p=2r/k

In a weak periodic potential; for example, in a solid which is a good electrical conductor,
E = (h?/2m*) k?, where m* is called the effective mass. (For valence electrons m* ~ m.)
Represented as waves, the electrons in a cubic potential well (V = 0) of side L have allowed wave
numbers k, where
n;m

L

k> =k;+ky+kZ and k; =

(see Problem 9.13). For each value of & there are two allowed states (each defining the spin state of
the single occupying electron—Pauli’s principle). Use the arguments in Chapter 9 to show that the
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total number of states in k space between the values k and k + dk is given by

P(k) = 2(£> Y4mk?® dk

T 8

Use the expression E = (h%/2m*) k? to convert this into the number of states S(E) d E in the energy
interval dE to give

S(E) = 4 @—";) 3/2\/1§

where A = L3,
If there are N electrons in the N lowest energy states consistent with Pauli’s principle, show that
the integral

.Ef
J S(E)dE =N
0

gives the Fermi energy level

72 27\ 2/3
E; = 37N
2m* A

where E; is the kinetic energy of the most energetic electron when the solid is in its ground state.

Summary of Important Results

Wave Equation in Two Dimensions
0%z 0%z 109%
Ox2 " Oy?  c20r?
Lines of constant phase Ix+ my = ct propagate in direction k(ki,k;) where [ =
ki/k,m = ky/k,k* = k? + k3 and ¢? = w?/k>. Solution is
z=Ae'@ k) for r(x,y)
where k - r = kix + koy.

Wave Equation in Three Dimensions

0 %0 9% 19%

ox2 " ayr " 9z2 2 or?
Planes of constant phase [x 4+ my + nz = ct propagate in a direction

k(k],kz,k3), where l:kl/k, m:kz/k, n:k3/k
k*=ki+k3+k3 and c? =w?/k*
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Solution is

¢ =Ae @k for r(x,y,z).

Wave Guides

Reflection from walls y =0,y =5 in a two-dimensional wave guide for a wave of
frequency w and vector direction k(k,k,) gives normal modes in the y direction with
ko, = nm/b and propagation in the x direction with phase velocity

Up:k—l E:’U

and group velocity
2

Ow
vy = =— such that v,v,=v

Ok
Cut-off frequency

Only frequencies w > nmv/b will propagate where n is mode number.

Normal Modes in Three Dimensions

Wave equation separates into three equations (one for each variable x, y, z) to give solution

sin sin sin sin
=A kix  koy ksz  wt
cos cos cos cos

(Boundary conditions determine final form of solution.)

For waves of velocity c, the number of normal modes per unit volume of an enclosure in
the frequency range v to v + dv

_ 4% dv

c3
Directly applicable to

e Planck’s Radiation Law

e Debye’s theory of specific heats of solids

e Fermi energy level (Problem 9.19)
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Fourier Methods

Fourier Series

In this chapter we are going to look in more detail at the implications of the principles of
superposition which we met at the beginning of the book when we added the two separate
solutions of the simple harmonic motion equation. Our discussion of monochromatic
waves has led to the idea of repetitive behaviour in a simple form. Now we consider more
complicated forms of repetition which arise from superposition.

Any function which repeats itself regularly over a given interval of space or time is
called a periodic function. This may be expressed by writing it as f(x) = f(x & «) where «
is the interval or period.

The simplest examples of a periodic function are sines and cosines of fixed frequency
and wavelength, where « represents the period 7, the wavelength A or the phase angle
27 rad, according to the form of x. Most periodic functions for example the square wave
system of Figure 10.1, although quite simple to visualize are more complicated to represent
mathematically. Fortunately this can be done for almost all periodic functions of interest in
physics using the method of Fourier Series, which states that any periodic function may be
represented by the series

f(x) :%ao—l-alcosx—l—agcosbc...—l—ancosnx

10.1
+ bysinx+ bysin2x. ..+ b, sinnx, ( )

that is, a constant %ao plus sine and cosine terms of different amplitudes, having
frequencies which increase in discrete steps. Such a series must of course, satisfy certain
conditions, chiefly those of convergence. These convergence criteria are met for a function
with discontinuities which are not too severe and with first and second differential
coefficients which are well behaved. At such discontinuities, for instance in the square
wave where f(x) = +h at x = 0, &2, etc. the series represents the mean of the values of

the function just to the left and just to the right of the discontinuity.

The Physics of Vibrations and Waves, 6th Edition H. J. Pain
© 2005 John Wiley & Sons, Ltd., ISBN: 0-470-01295-1(hardback); 0-470-01296-X(paperback)
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f(X)=4—,£7(Sinx+%sin3x+%sin 5x+%sin 7x...)
=
¢
- 0 T 2r A X

Figure 10.1 Square wave of height h and its Fourier sine series representation (odd function)

We may write the series in several equivalent forms:

1 s )
flx) = an + Z (a,cosnx+ b, sinnx)

1 o0
=540 + ; cpcos(nx—6,)

n=1

where
c,zl = a,zl + b,zl
and
tanf, =b,/a,
or
f)y= > d,e™
where
2d, =a, —ib,(n>0)
and

2d, = a_, +ib_n(n < 0)

To find the values of the coefficients a, and b, let us multiply both sides of equation
(10.1) by cosnx and integrate with respect to x over the period 0 to 27 (say).
Every term

Oif m#n

2w
cosmxcosnxdx = )
mifm=n

0

whilst every term

2T
J sinmxcosnxdx = 0 for all m and n.
0
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Thus for m = n,

27
a, J cos’nxdx = wa,
so that

1 27
ap=— J f(x)cosnxdx
m™Jo

Similarly, by multiplying both sides of equation (10.1) by sinnx and integrating from 0
to 27 we have, since

Oif m#n

mifm=n

2T
J sinmx sinnxdx = {
0

that

1 2
b,=— J f(x)sinnxdx
0

Immediately we see that the constant (n = 0), given by fag = 1/2m foz " f(x) dx, is just
the average of the function over the interval 2. It is, therefore, the steady or ‘d.c.’ level on
which the alternating sine and cosine components of the series are superimposed, and the
constant can be varied by moving the function with respect to the x-axis. When a periodic
function is symmetric about the x-axis its average value, that is, its steady or d.c. base level,
%ao, is zero, as in the square wave system of Figure 10.1. If we raise the square waves so
that they stand as pulses of height 2/ on the x-axis, the value of %ao is hm (average value
over 2m). The values of a, represent twice the average value of the product f(x) cos nx over
the interval 27; b, can be interpreted in a similar way.

We see also that the series representation of the function is the sum of cosine terms
which are even functions [cosx = cos (—x)] and of sine terms which are odd functions
[sinx = —sin (—x)]. Now every function f(x) =1[f(x) +/f(—x)] +1[f(x) —f(=x)], in
which the first bracket is even and the second bracket is odd. Thus, the cosine part of a
Fourier series represents the even part of the function and the sine terms represent the odd
part of the function. Taking the argument one stage further, a function f(x) which is an even
function is represented by a Fourier series having only cosine terms; if f(x) is odd it will
have only sine terms in its Fourier representation. Whether a function is completely even or
completely odd can often be determined by the position of the y-axis. Our square wave of
Figure 10.1 is an odd function [f(x) = —f(—x)]; it has no constant and is represented by
f(x) =4h/m(sinx + 1/3sin3x +1/5sin5x, etc. but if we now move the y-axis a half
period to the right as in Figure 10.2, then f(x) = f(—x), an even function, and the square
wave is represented by

— 1 1 1
fx) = (cosx — 3 cos3x + 5 cos 5x — 2 cos Tx + - )
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_4h 1 1 1
f(x) = - (cos X— -5 cos 3x+gcos 5x—7 cos7x...)
X
4
X
=3z = z 3z
2 2 2 2

Figure 10.2 The wave of Figure 10.1 is now symmetric about the y axis and becomes a cosine series
(even function)

If we take the first three or four terms of the series representing the square wave of
Figure 10.1 and add them together, the result is Figure 10.3. The fundamental, or first
harmonic, has the frequency of the square wave and the higher frequencies build up the
squareness of the wave. The highest frequencies are responsible for the sharpness of the
vertical sides of the waves; this type of square wave is commonly used to test the frequency
response of amplifiers. An amplifier with a square wave input effectively ‘Fourier analyses’
the input and responds to the individual frequency components. It then puts them together
again at its output, and if a perfect square wave emerges from the amplifier it proves that
the amplifier can handle the whole range of the frequency components equally well. Loss
of sharpness at the edges of the waves shows that the amplifier response is limited at the
higher frequency range.

4h sin x

addition of first
three terms

Figure 10.3 Addition of the first three terms of the Fourier series for the square wave of Figure 10.1
shows that the higher frequencies are responsible for sharpening the edges of the pulse
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Example of Fourier Series

Consider the square wave of height % in Figure 10.1. The value of the function is given by
fx)=h for O0<x<m
and
f(x)=—h for mw<x<2rm

The coefficients of the series representation are given by

1 T 27
a, = — [h J cosnxdx —h J cosnxdx] =0

™ 0 m

because

s 2T
J cosnxdx = J cosnxdx =0
0

™

and

1 T 27
b,=-— [h J sin nxdx — h J sin nxdx]
™ 0 T
_ 0 27
o [[cosnx], + [cosnx]."]

= %[(1 —cosnm) + (1 — cosnm)]

giving b, = 0 for n even and b,, = 4h/nr for n odd. Thus, the Fourier series representation
of the square wave is given by

f()—ﬁ in +sin3x+sin5x+sin7x+
*) = T . 3 5 7

Fourier Series for any Interval

Although we have discussed the Fourier representation in terms of a periodic function its
application is much more fundamental, for any section or interval of a well behaved
function may be chosen and expressed in terms of a Fourier series. This series will
accurately represent the function only within the chosen interval. If applied outside that
interval it will not follow the function but will periodically repeat the value of the function
within the chosen interval. If we represent this interval by a Fourier cosine series the
repetition will be that of an even function, if the representation is a Fourier sine series an
odd function repetition will follow.
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~ N\
[

(b)

Figure 10.4 A Fourier series may represent a function over a selected half-interval. The general
function in (a) is represented in the half-interval 0 < x < [/2 by f., an even function cosine series in
(b), and by f,, an odd function sine series in (c). These representations are valid only in the specified
half-interval. Their behaviour outside that half-interval is purely repetitive and departs from the
original function

Suppose now that we are interested in the behaviour of a function over only one-half of
its full interval and have no interest in its representation outside this restricted region. In
Figure 10.4a the function f(x) is shown over its full space interval —I/2 to +1/2, but f(x)
can be represented completely in the interval O to +1/2 by either a cosine function (which
will repeat itself each half-interval as an even function) or it can be represented completely
by a sine function, in which case it will repeat itself each half-interval as an odd function.
Neither representation will match f(x) outside the region 0 to +//2, but in the half-interval
0 to +1/2 we can write

F(x) =fe(x) = fo(x)

where the subscripts e and o are the even (cosine) or odd (sine) Fourier representations,
respectively.

The arguments of sines and cosines must, of course, be phase angles, and so far the
variables x has been measured in radians. Now, however, the interval is specified as a
distance and the variable becomes 27x/I, so that each time x changes by / the phase angle
changes by 2.

Thus

2wnx

ago -
felx) = 5+ Z a, cos

n=1
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where
1 /2 2
ayp=q——— J f(x)cos Y d4x
sinterval J
2| (° 2 72 2
== J fe(x) cos Y dx + J fe(x) cos Y dx
Ly [ 0 l
4 (12 2
=- J f(x)cos Y dx
L'Jo
because
fx)=fe(x) fromx=0to /2
and

fx) =f(=x) =fe(x) fromx=0to —1/2
Similarly we can represent f(x) by the sine series

e 27nx

F) =folx) =) _ bysin =

in the range x = 0 to //2 with

2
™mE

12
by, = L J f(x)sin

Yinterval J _;

20 (° 2 172 2
== {J fo(x) sin 7rlnx dx + J fo(x) sin 7rlnx dx

l —1/2 0

In the second integral f,,(x) = f(x) in the interval O to //2 whilst

0 0 0
2 2 2
J fol(x) sin Y dx = J So(—x)sin 7rlnx dx=— J So(x) sin 7Tll’l)C dx

12 l 12 12

1/2 2 1/2 2

= J So(x)sin Y dx = J f(x)sin Y dx
0 0

Hence
4 (" 2
b, = 7 J f(x)sin Y dx
0
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If we follow the behaviour of f.(x) and f,(x) outside the half-interval O to {/2 (Fig-
ure 10.4a, b) we see that they no longer represent f(x).

Application of Fourier Sine Series to a Triangular Function

Figure 10.5 shows a function which we are going to describe by a sine series in the half-
interval O to 7. The function is

flx)=x (0<x<g)
and
fx)=m—x <g<x<ﬂ')

Writing f(x) = > b, sinnx gives

2 /2 2 (7
bn:—J xsinnxdx—i——J (m —x)sinnxdx
0 ™ Jr/2

When 7 is even sinnm/2 = 0, so that only terms with odd values of n are present and

4 (sinx sin3x sinSx sin7x
=213 5 o

Note that at x = 7/2, f(x) = /2, giving

We shall use this result a little later.

f(x):x(o<x<g)

l f(x)=7r—x(% <X< 1)
- f(x)

TS

Figure 10.5 Function representing a plucked string and defined over a limited interval. When the
string vibrates all the permitted harmonics contribute to the initial configuration
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Note that the solid line in the interval O to —7 in Figure 10.5 is the Fourier sine
representation for f(x) repeated outside the interval 0 to 7 whilst the dotted line would
result if we had represented f(x) in the interval O to 7 by an even cosine series.

(Problems 10.1, 10.2, 10.3, 10.4, 10.5, 10.6, 10.7, 10.8, 10.9)

Application to the Energy in the Normal Modes of a Vibrating
String

If we take a string of length / with fixed ends and pluck its centre a distance d we have the
configuration of the half interval 0 to 7 of Figure 10.5 which we represented as a Fourier
sine series. Releasing the string will set up its normal mode or standing wave vibrations,
each of which we have shown on p. 126 to have the displacement

WX

yn = (A cosw,t + B, sinwyt) sin (5.10)

c

where w, = nrc/l is the normal mode frequency.
The total displacement, which represents the shape of the plucked string at t = 0 is given
by summing the normal modes

y= Z VY, = Z (A, coswpt + B, sinw,f) sin %

Note that this sum resembles a Fourier series where the fixed ends of the string, y = 0 at
x = 0 and x = [ allow only the sine terms in x in the series expansion. If the string remains
plucked at rest only the terms in x with appropriate coefficients are required to describe it,
but its vibrational motion after release has a time dependence which is expressed in each
harmonic coefficient as

A, coswyt + By sinw,t

The significance of these coefficients emerges when we consider the initial or boundary
conditions in time.
Let us write the total displacement of the string at time # = 0 as

WpX

yolx) = Z yalx) = Z (A, coswpt + B, sinw,t) sin
:ZAnsin% at r=0
c

c

Similarly we write the velocity of the string at time ¢ = 0 as
0 .
vo(x) = . vo(x) = 3 3u(¥)
= Z (—wrA,sinw,t + w,B, cosw,t) sin “nX
&

. WpX
:ananln ; at r=20

Both yo(x) and vo(x) are thus expressed as Fourier sine series, but if the string is at rest at
t =0, then vo(x) =0 and all the B, coefficients are zero, leaving only the A,’s. If the
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displacement of the string y(x) = 0 at time # = 0 whilst the string is moving, then all the
A,’s are zero and the Fourier coefficients are the w,B,’s.
We can solve for both A, and w,B,, in the usual way for if

. WnX
x) = E A, sin
c

and
Z wnB; sm —

for a string of length / then

and
!
J vo(x) sin Yt dx
c

If the plucked string of mass m (linear density p) is released from rest at
t =0 (vo(x) = 0) the energy in each of its normal modes of vibration, given on p. 134 as

E, =imwl(AZ+ B?)
is simply

E, =1mw?A2

4

because all B,,’s are zero.

The total vibrational energy of the released string will be the sum . E, over all the
modes present in the vibration.

Let us now solve the problem of the plucked string released from rest. The configuration
of Figure 10.5 (string length /, centre plucked a distance d) is given by

2
yo(x) =$ 0<x<
C2d(l—x) I

l

N~

<x<

|
~

SO

12 I _
A, = 2 J 2dx sin 2% dx 4 J 240 =x) sin 2% dx
l l C /2 l C
n7rC)

8d . nw
= 3y sin g (forw, =

We see at once that A,, = 0 for n even (when the sine term is zero) so that all even
harmonic modes are missing. The physical explanation for this is that the even harmonics
would require a node at the centre of the string which is always moving after release.
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The displacement of our plucked string is therefore given by the addition of all the
permitted (odd) modes as

yo(x) = Z yalx) = Z A, sin ng

nodd nodd

where

8d . nm
A, = P sin >
The energy of the nth mode of oscillation is

I 5.5 _ 64d°mw?

E,=-mw:A
4 4(n2r2)?

and the total vibrational energy of the string is given by

16d°m w2 16d*c*m 1
E=) En= o ZF: 202 Zﬁ

nodd nodd nodd

for

But we saw in the last section that

SO

2mc2d*  2Td?
E=) Ey="—fF—==

where T = pc? is the constant tension in the string.

This vibrational energy, in the absence of dissipation, must be equal to the potential
energy of the plucked string before release and the reader should prove this by calculating
the work done in plucking the centre of the string a small distance d, where d < .

To summarize, our plucked string can be represented as a sine series of Fourier
components, each giving an allowed normal mode of vibration when it is released. The
concept of normal modes allows the energies of each mode to be added to give the total
energy of vibration which must equal the potential energy of the plucked string before
release. The energy of the nth mode is proportional to n =2 and therefore decreases with
increasing frequency. Even modes are forbidden by the initial boundary conditions.
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The boundary conditions determine which modes are allowed. If the string were struck
by a hammer those harmonics having a node at the point of impact would be absent, as in
the case of the plucked string. Pianos are commonly designed with the hammer striking a
point one seventh of the way along the string, thus eliminating the seventh harmonic which
combines to produce discordant effects.

Fourier Series Analysis of a Rectangular Velocity Pulse on a
String

Let us now consider a problem similar to that of the last section except that now the
displacement y((x) of the string is zero at time ¢ = 0 whilst the velocity v (x) is non-zero.
A string of length [, fixed at both ends, is struck by a mallet of width a about its centre
point. At the moment of impact the displacement

yo(x) =0
but the velocity
0 l
vo(x) = y(;t(x) =0 for |x— 5' > %
l a
= f — | < =
v for |x 2' 5

This situation is shown in Figure 10.6.
The Fourier series is given by

. WX
vo(x) = Z Vn = Z wy,B, sin z
n n

where
5 (l/2+a)2 wx
wnB,,——J vsin — dx
! +1/2—a/2 ¢
4u nm nma

= — sin — sin —-
P Y

/ >

Figure 10.6 Velocity distribution at time t = 0 of a string length [, fixed at both ends and struck
about its centre point by a mallet of width a. Displacement yo(x) = 0; velocity vo(x) = v for
|x — /2| < a/2 and zero outside this region
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Again we see that w,B, = 0 for n even (sinnm/2 = 0) because the centre point of the
string is never stationary, as is required in an even harmonic.
Thus

dv . nma . wypx
vo(x) = E — sin —- sin —
nodd

The energy per mode of oscillation
E,= %me(Ai + Bi)
=1imwlB} (AllA,’s =0)
160 ., nma

n’m? 21
B dmv* . , nma
~ nln2 21
Now
Wy wyl
n—=—w=—
wp  mC
for the fundamental frequency
mc
W) =—
T
So
B — dmvic? |, wa
" 1Pw? 2c

Again we see, since w, o n that the energy of the nth mode oc n =2 and decreases with
increasing harmonic frequency. We may show this by rewriting

_ mv2a®sin*(w,a/2c)
2 (wa/2c)?

mv2a?sin’a

2 a?

E,(w)

where
a = wya/2c

and plotting this expression as an energy-frequency spectrum in Figure 10.7.
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Figure 10.7 (a) Distribution of the energy in the harmonics w, of the string of Figure 10.6. The
spectrum £, (w) o sina/a? where o = w,a/2c. Most of the energy in the string is contained in the
frequency range Aw = 27nc/a, and for a = Ax (the spatial width of the pulse), Ax/c = At and
AwAt = 27 (Bandwidth Theorem). Note that the values of £ ,(w) for w3, ws,ws, etc. are magnified
for clarity. (b) The true shape of the pulse

The familiar curve of sin’a /a? again appears as the envelope of the energy values for
each w,,.

If the energy at w; is E; then E3 = E1/9 and Es = E/25 so the major portion of the
energy in the velocity pulse is to be found in the low frequencies. The first zero of the
envelope sin’a/a? occurs when

wa
a=—=m
2c

so the width of the central frequency pulse containing most of the energy is given by

2me
W —

a

This range of energy-bearing harmonics is known as the ‘spectral width’ of the pulse
written

2me
Aw~ —
a

The ‘spatial width’ a of the pulse may be written as Ax so we have

AxAw ~ 2mc
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Reducing the width Ax of the mallet will increase the range of frequencies Aw required
to take up the energy in the rectangular velocity pulse. Now c is the velocity of waves on
the string so a wave travels a distance Ax along the string in a time

At = Ax/c
which defines the duration of the pulse giving
AwAt =~ 27

or

AvAr =1

the Bandwidth Theorem we first met on p. 134.
Note that the harmonics have frequencies

so mc/l is the harmonic interval. When the length [ of the string becomes very long and
[ — oo so that the pulse is isolated and non-periodic, the harmonic interval becomes so
small that it becomes differential and the Fourier series summation becomes the Fourier
Integral discussed on p. 283.

The Spectrum of a Fourier Series

The Fourier series can always be represented as a frequency spectrum. In Figure 10.8 a the
relative amplitudes of the frequency components of the square wave of Figure 10.1 are
plotted, each sine term giving a single spectral line. In a similar manner, the distribution of
energy with frequency may be displayed for the plucked string of the earlier section. The
frequency of the r th mode of vibration is given by w, = rmc/l, and the energy in each
mode varies inversely with 72, where r is odd. The spectrum of energy distribution is
therefore given by Figure 10.8 b.

Suppose now that the length of this string is halved but that the total energy remains
constant. The frequency of the fundamental is now increased to w! = 2rmc/l and
the frequency interval between consecutive spectral lines is doubled (Figure 10.8 c). Again,
the smaller the region in which a given amount of energy is concentrated the wider the
frequency spectrum required to represent it.

Frequently, as in the next section, a Fourier series is expressed in its complex or
exponential form

f(t) — Z dneinwl

n=—0oQ
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f(x) = 4—7?(sin x+%sin 3x+ %sin 5x+%sin 7x)

_ Frequency
A _ 4—7? spectrum
C’ 0 3 2n
X 3 5x 7x
@
E
! w,=rZE
I}
=Zc
o=
El
s L& g
I > 0 1
W 3w, 50 on
(b)
- c
w/=2r ”—/
E{=2E; o = ZLIC
E/ , ,
o & E
/\ 55 29
I L 1 1 1 1 | 1 1 1 1 1 1 1 1 I
2 0 ] 3w/ S50 Tof
(©
Im(dy,) Im(d),)
A
Re(dy) Re(d,)
—Nnw
L)
no +nw
frequency frequency
oS not = %(ei"wf + e—i"a") sin not = %(ei”"’t— e—‘"w’)
(d) (e)

Figure 10.8 (a) Fourier sine series of a square wave represented as a frequency spectrum; (b)
energy spectrum of a plucked string of length [; and (c) the energy spectrum of a plucked string of
length /2 with the same total energy as (b), demonstrating the Bandwidth Theorem that the greater
the concentration of the energy in space or time the wider its frequency spectrum. Complex
exponential frequency spectrum of (d) coswt and (e) sinwt
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where 2d, = a, —ib,(n>0) and 2d,, = a_, +ib_,(n < 0).

Because
Ccos nwt = %(emwt 4 efmwr)
and
. 1 inwt —inwt
sinnwt = = (e —e™)

a frequency spectrum in the complex plane produces two spectral lines for each frequency
component nw, one at +nw and the other at —nw. Figure 10.8d shows the cosine
representation, which lies wholly in the real plane, and Figure 10.8e shows the sine
representation, which is wholly imaginary. The amplitudes of the lines in the positive and
negative frequency ranges are, of course, complex conjugates, and the modulus of their
product gives the square of the true amplitude. The concept of a negative frequency is seen
to arise because the e ' term increases its phase in the opposite sense to that of the
positive term e, The negative amplitude of the negative frequency in the sine repre-
sentation indicates that it is in antiphase with respect to that of the positive term.

Fourier Integral

At the beginning of this chapter we saw that one Fourier representation of the function
could be written

f(x): Z dneinx

where 2d, = a, —ib,(n>0) and 2d, =a_, +ib_,(n <0).
If we use the time as a variable we may rewrite this as

f(t): Z dneinwt

where, if T is the period,

1 (T2 .
d, =— J f(Hye "™ de
T ) 1)

(forn=-2,—-1,0,1,2, etc.).
If we write w = 271/, where v is the fundamental frequency, we can write

o.¢] T/Z 0 , i 1
f(l) _ Z J_T/z f(t/)e—l Tyt dt/ el TR |t ?
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If we now let the period T approach infinity we are isolating a single pulse by saying that
it will not be repeated for an infinite period; the frequency vy =1/T — 0, and 1/T
becomes infinitesimal and may be written dv.

Furthermore, n times v, when n becomes as large as we please and 1/7 = v; — 0, may
be written as nv; = v, and the sum over n now becomes an integral, since unit change in n
produces an infinitesimal change in n/T = nv;.

Hence, for an infinite period, that is for a single non-periodic pulse, we may write

f(z):JOO Hm f(t’)eizm/dt’} e ™ dy

—00 —00

which is called the Fourier Integral.
We may express this as

where
F(V) _ J f(f/) efiZm/l’ ds’

is called the Fourier Transform of f(t). We shall discuss the transform in more detail in a
later section of this chapter.
We see that when the period is finite and f(7) is periodic, the expression

tells us that the representation is in terms of an infinite number of different frequencies,
each frequency separated by a finite amount from its nearest neighbour, but when f () is not
periodic and has an infinite period then

o0

f()= J F(v)e*™ dv

—00

and this expression is the integral (not the sum) of an infinite number of frequency
components of amplitude F(v)dv infinitely close together, since v varies continuously
instead of in discrete steps.

For a periodic function the amplitude of the Fourier series coefficient

/2

dy =~ J f(t)ye ™" dt

-1)2
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whereas the corresponding amplitude in the Fourier integral is

F(v)dv = <%> rc f(&ye " dy!

—00

This corroborates the statement we made when discussing the frequency spectrum that
the narrower or less extended the pulse the wider the range of frequency components
required to represent it. A truly monochromatic wave of one frequency and wavelength (or
wave number) requires a wave train of infinite length before it is properly defined.

No wave train of finite length can be defined in terms of one unique wavelength.

Since a monochromatic wave, infinitely long, of single frequency and constant amplitude
transmits no information, its amplitude must be modified by adding other frequencies (as
we have seen in Chapter 5) before the variation in amplitude can convey information.
These ideas are expressed in terms of the Bandwidth Theorem.

Fourier Transforms

We have just seen that the Fourier integral representing a non-periodic wave group can be
written

f() = J F(v)e?™ dv

—0o0

where its Fourier transform

o

F(l/) — J f(t/) efiZﬂ'Vl/ ds’
—00

so that integration with respect to one variable produces a function of the other. Both

variables appear as a product in the index of an exponential, and this product must be non-

dimensional. Any pair of variables which satisfy this criterion forms a Fourier pair of

transforms, since from the symmetry of the expressions we see immediately that if

F(v) is the Fourier transform of f(z)
then

f(—v) is the Fourier transform of F(z)

If we are given the distribution in time of a function we can immediately express it as a
spectrum of frequency, and vice versa. In the same way, a given distribution in space can be
expressed as a function of wave numbers (this merely involves a factor, 1/2, in front of
the transform because k = 27/ \).

A similar factor appears if w is used instead of v. If the function of f(¢) is even only the
cosine of the exponential is operative, and we have a Fourier cosine transform

fl) = J:o F(v)cos2mvtdv
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and

F(v) = Jo f(t) cos2mvrdt

If f(¢) is odd only the sine terms operate, and sine terms replace the cosines above. Note
that only positive frequencies appear. The Fourier transform of an even function is real and
even, whilst that of an odd function is imaginary and odd.

Examples of Fourier Transforms

The two examples of Fourier transforms chosen to illustrate the method are of great
physical significance. They are

1. The ‘slit’ function of Figure 10.9a,
2. The Gaussian function of Figure 10.11.

As shown, they are both even functions and their transforms are therefore real; the physical
significance of this is that all the frequency components have the same phase at zero time.

The Slit Function

This is a function having height & over the time range +d/2. Thus, f(¢) = h for |t| < d/2
and zero for [¢t| > d/2, so that

00 ) d/2 )
F(I/) _ J f(t) eﬂ2m}t dt = J hefﬁﬂ'utdt
—00 —d/2
_ —h [e—i2md/2 _ g +i2nvd/2) — pg sin «
127y «
(b)
A
(@)
)
hd
h _2
Vo = E
ti 0 time 2 h v
<« 4> ol
17

Figure 10.9 (a) Narrow slit function of extent d in time and of height h, and (b) its Fourier
transform
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where

27vd
o =
2

Again we see the Fourier transformation of a rectangular pulse in time to a sin o/« pattern
in frequency. The Fourier transform of the same pulse in space will give the same
distribution as a function of wavelength. Figure 10.9b shows that as the pulse width
decreases in time the separation between the zeros of the transform is increased. The
negative values in the spectrum of the transform indicate a phase reversal for the amplitude
of the corresponding frequency component.

The Fourier Transform Applied to Optical Diffraction from a
Single Slit

This topic belongs more properly to the next chapter where it will be treated by another
method, but here we derive the fundamental result as an example of the Fourier Transform.
The elegance of this method is seen in problems more complicated than the one-
dimensional example considered here. We shall see its extension to two dimensions in
Chapter 12 when we consider the diffraction patterns produced by rectangular and circular
apertures.

The amplitude of light passing through a single slit may be represented in space by the
rectangular pulse of Figure 10.9a where d is now the width of the slit. A plane wave of
monochromatic light, wavelength )\, falling normally on a screen which contains the
narrow slit of width d ~ A, forms a secondary system of plane waves diffracted in all
directions with respect to the screen. When these diffracted waves are focused on to a
second screen the intensity distribution (square of the amplitude) may be determined in
terms of the aperture dimension d, the wavelength A and the angle of diffraction 6.

In Figure 10.10 the light diffracted through an angle 6 is brought to focus at a point P on
the screen PP. Finding the amplitude of the light at P is the simple problem of adding all
the small contributions in the diffracted wavefront taking account of all the phase
differences which arise with variation of path length from P to the points in the slit aperture
from which the contributions originate. The diffraction amplitude in k or wave number
space is the Fourier transform of the pulse, width d, in x space in Figure 10.9b. The
conjugate parameters v and ¢ are exactly reciprocal but the product of x and & involves the term
27 which requires either a constant factor 1/2 in front of one of the transform integrals or
a common factor 1/ \/ﬂ in front of each. This factor is however absorbed into the constant
value of the maximum intensity and all other intensities are measured relative to it.

The constant pulse height now measures the amplitude 4 of the small wave sources
across the slit width d and the Fourier transform method is the addition by integration of
their contributions.

In Figure 10.10 we see that the path difference between the contribution at the centre of
the slit and that at a point x in the slit is given by xsin 6, so that the phase difference is

2
10) :Tﬁxsinﬁ = kxsinf
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Source of
monochromatic
light

Condenser Slit of

lens width d Focusing Plane of
lens diffraction
pattern

Figure 10.10 A monochromatic plane wave normally incident on a narrow slit of width d is
diffracted an angle 6, and the light in this direction is focused at a point P. The amplitude at P is the
superposition of all contributions with their appropriate phases with respect to the central point in
the slit. The contribution from a point x in the slit has phase ¢ = 2mxsin /X with respect to the
central contribution. The phase difference from contributing points on opposite edges of the slit is
¢ =2mdsinf/\ =2«

The product kx sin 6 can, however be expressed in a form more suitable for extension to
two- and three-dimensional examples by writing it as k - x = klx, the scalar product of the
vector k, giving the wave propagation direction, and the vector X, / being the direction
cosine

I=cos(n/2—0)

=sin6

of k with respect to the x-axis.
Adding all the small contributions across the slit to obtain the amplitude at P by the
Fourier transform method gives

F(k) = % Jf(x)ei¢dx

1 +d/2
=— J he ¥ dx
2m ) ap

_ h U g vikiag2
= ki © ¢ )
—2ih . kid
= Sin ——
ke " 2
B @sin «

21«
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where

kld
« :7:§d5in9

The intensity 7 at P is given by the square of the amplitude; that is, by the product of F(k)
and its complex conjugate F*(k), so that

_ d’h?sin*a
472 a2
where [, the principal maximum intensity at a = 0, (P¢ in Figure 10.10) is now

d*h?
="
O~ 4n2

The Gaussian Curve

This curve often appears as the wave group description of a particle in wave mechanics.
The Fourier transform of a Guassian distribution is another Gaussian distribution.

In Figure 10.11a the Gaussian function of height /& is symmetrically centred at
time =0, and is given by f(¢) =h e /7", where the width parameter or standard
deviation o is that value of ¢ at which the height of the curve has a value equal to e ! of its
maximum.

Its transform is

oo
2 .
F(U)—J heft/a' e*lZ‘n’l/ldt
o0
= J h e(—f/tfz—i27rw+7r2,,2g2) e_wzyzgz dr

— he<7” vio?) JOO ef(t/(7+i7ryo)2dt

hl & 1
<> hor?2
«—>
h 1
e on
0 t 0 \Y

Figure 10.11 (a) A Gaussian function Fourier transforms (b) into another Gaussian function
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The integral o
J e dx =7
and substituting, with x = (t/0 + invo) and dt = o dx, gives
F(v) = hor'/2e ™7

another Gaussian distribution in frequency space (Figure 10.11b) with a new height hor'/?
and a new width parameter (om) ™ .

As in the case of the slit and the diffraction pattern, we see again that a narrow pulse in
time (width o) leads to a wide frequency distribution [width (o) -

When the curve is normalized so that the area under it is unity, & takes the value (o)
because

1/2

: )J"C e 7 dr =1

(oml/?

Thus, the height of a normalized curve transforms into a pulse of unit height whereas a
pulse of unit height transforms to a pulse of width (o) .

If we consider a family of functions with progressively increasing 4 values and decreasing o
values, each satisfying the condition of unit area under their curves, we are led in the limit as the
height 4 — oo and the width 0 — 0O to an infinitely narrow pulse of finite area unity which
defines the Dirac delta (¢) function. The transform of such a function is the constant unity, and
Figures. 10.12a and b show the family of normalized Gaussian distributions and their transforms.
Figure 10.13 shows a number of common Fourier transform pairs.

1
d function

2

4 function (1)

(b)

Figure 10.12 (a) A family of normalized Gaussian functions narrowed in the limit to Dirac’s delta
function; (b) the family of their Fourier transforms
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Figure 10.13 Some common Fourier transform pairs

In wave mechanics the position x of a particle and its momentum p, are conjugate
parameters and its Gaussian wave group representation may be Fourier transformed from x
to p, space and vice versa. The Fourier Transform gives the amplitude of the wave function
but the probability of finding the particle at x or its having a given momentum p, is
proportional to the square of the amplitude.
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The Dirac Delta Function, its Sifting Property and its Fourier
Transform

The Dirac ¢ function is defined by
O(x)=0atx#0
=occatx=0

and

JOC §(x)dx = 1

—00

i.e., an infinitely narrow pulse centred on x = 0. It is also known as the unit impulse
function.
A valuable characteristic is its sifting property, that is

| o= soyriax = st
The Fourier Transform of §(x — xo) = e % because by definition
F(8(x — x0)) = J §(x — xo)e~Md

—0o0

so writing f(x) = e~* and applying the sifting property gives f(xy) = e "%, Note that
ek = el — 1 for xy = 0.

From the form of the transform we see that if a function f(x) is a sum of individual
functions then the Fourier Transform F(f(x)) is the sum of their individual transforms.
Thus, if

F) =Y stc—x)

then
Ff(x) =) ™
J

Figure 10.14 shows two Dirac é functions situated at x = +§ so that f(x) =
o(x —5) + 6(x +9) giving F(f(x)) = e e ™ = 2 coska/2.

Convolution
Given two functions f(x) and h(x), their convolution, written

£(x) @ h(x) =j FOh(x)dx

—00

STUDENTS-HUB.com Uploaded By: Jibreel Bornat


https://students-hub.com

Convolution 293

L > X

-a 0 +a
% %

Figure 10.14 The Fourier transform of two Dirac é functions located at x = +a/2 is 2 cos ka/2

is the overlap area under the product of the two functions as one function scans across the
other. It the functions are two dimensional, f(x,y) and A(x,y), their convolution is the
volume overlap under their product.

To illustrate a one-dimensional convolution consider the rectangular pulse of length D in
Figure 10.15 convolved with an identical pulse. This is known as self-convolution. The
convolution will be the sum of the shaded areas such as that of Figure 10.15a as one pulse
slides over the other. We can see that the base length of the resulting convolved pulse will
be 2D and that it will be symmetric about its peak, that is, when the two pulses completely
overlap. If we consider the left-hand pulse as an infinite series of § functions, of which we
show a few, then Figure 10.15b shows that the integrated sum is an isosceles triangle of
base length 2D.

Another example is the convolution of a small triangular pulse with a rectangular pulse
length D, Figure 10.16. Again, we use the series of 6 functions to show the sum of the
components of the resulting convolution and its integrated form for an infinite series of 6
functions. The length of the final pulse is again the sum of the lengths of the two pulses.

Such a pulse would result in the convolution of a rectangular pulse with an exponential
time function, for example, when a rectangular pulse is passed into an integrating network
formed by a series resistance and parallel condenser, Figure 10.17. Here, the exponential
time function of the network may be considered as fixed in time while the pulse performs
the scanning operation. Note in Figures 10.15, 10.16 and 10.17 that the component
contributions of the left hand pulses are summed in reverse order. This is explained in the
discussion following eq. 10.2.

A convolution f(x) ® h(x) is generally written in the form

00

e) = | sty —xax (10.2)

—00

This a particularly relevant form when we consider the Optical Transfer Function on page
391. There, x is an object space coordinate and x’ is an image space coordinate so the
convolution relates image to object. If the function h(x’ —x) is a localized pulse in
the object space and x’ lies within it on the object axis x then the pulse h(x’ — x) is reversed
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| N
| | < D >
|
|
| |
< D > b < D >< D >
(@
> Components
< 2D >
JConvqution
< 2D >
(b)

Figure 10.15 (a) A convolution is the integral of all overlapping areas as one function scans
another. A rectangular pulse length D scans an identical pulse and the overlap area is shaded at one
point of the scanning. (b) The scanning pulse is represented by several Dirac & (impulse) functions
and the component overlap areas are summed. When the number of impulse functions is large the
sum of the components is integrated to become the triangular pulse

in image space (axis x’) so that its trailing edge becomes its leading edge. Figure 10.18(a)
shows the pulse on the object axis and Figure 10.18(b) shows the reversed pulse on the
image axis.

The product f(x) h(x’ —x) exists only where the functions overlap and in Fig-
ure 10.18(b) g(x}) is the superposition of all the individual overlapping contributions that
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> Components

JConvqution

Figure 10.16 The convolution of a triangular with a rectangular pulse using the method of Figure

10.15
— - "I . A
t=0 t=t t=0 t=ty

Figure 10.17 The convolution of Figure 10.16 is the same as that of a rectangular electrical pulse
passing through an integrating circuit formed by a series resistance and a parallel condenser

exist at x|. The contribution to g(x}) at x| by x; and dx at x; is f(x;)h(x] — x;)dx where
f(x1) is a number which magnifies the pulse of Figure 10.18(b) to become the pulse of
Figure 10.18(c). Each value of x in the overlap region makes a contribution to g(x}); x
values beyond the overlap make no contribution. The contributions begin when the leading
edge of h(x’ — x) reaches x| and they cease when its trailing edge passes x}.

Note that by changing the variable x” = x' — x in Equation (10.2).

fOh=haf

This result is also evident when we consider the Convolution Theorem in the next section.
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h(x’—x)
f(x) 1
> X

XI
(@)

h(x"—x1)

> X'
X1 X{
(b)
f(xq) h (xX'—x1)
’ > X,
X1 X1

(©

Figure 10.18 The function h(x’ —x) in the object space is reversed in the image space in Figure
10.18(b). (b) The convolution g(x;) is the superposition of all individual overlapping contributions to
f(x)h(x" — x) that exist at x{. (c) The contribution made by f(x;)d x to g(x]) where f(x1) is a number
which magnifies h(x; — x)
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Returning to the convolution of the rectangular pulses in Figure 10.15 and taking the
left-hand pulse as f(x) each impulse x; of the infinite series sweeps across the right-hand
pulse h(x’ —x) to give the triangular convolution g(x'). If the left-hand pulse is now
h(x’ — x) sweeping across the right-hand pulse f(x) with x} as a fixed location in A(x" — x),
the series of overlaps, as x; moves across f(x), gives the same triangular convolution.

The Convolution Theorem

The importance of the convolution process may be seen by considering the following.

When a signal, electrical or optical, passes through a system such as an amplifier or a
lens, the resulting output is a function of the original signal and the system response. We
have seen that a slit, in passing light from an optical source, may act as an angular filter,
restricting the amount of information it passes and superimposing its own transform on the
radiation passing through. An electrical filter can behave in a similar fashion.

Effectively there are two transformations, one into the intermediate system and one out
again.

A convolution reduces this to a single transformation. The transform of the intermediate
system is applied to the orginal function or signal and the resulting output is the integrated
product of each point operating on the transformed response.

The convolution theorem states that the Fourier transform of the convolution of two
functions is the product of the Fourier transforms of the individual functions, that is, if

g(¥) =f(x) ® h(x)

then

F(g) =F(f ©@h) = F(f)-F(h)

The proof is straightforward.
The convolution g(x’) is a function of k, so its transform is

Flg) =60 = [ gl)e™ax

—00

_[ Ux f(x)h(x’—x)dx]efkfdx’

—00 —00

:JOC “x h(x’—x)ef“’dx’]f(x)dx

—0o0 —0o0

Putting ¥ — x = y gives dy = dx’ and e = e ® e~ and so
Fle)=G0) = | fle e[ hije ™y

= F(f)-F(h) = F(h) - F(f)

We can use this result to find the Fourier Transform of the resulting triangular pulse in
Figure 10.15(b). The slit may be seen as a rectangular pulse of width d and its Fourier
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Transform on page 288 gave its diffraction pattern as o sin o/« where o = kld /2. Each of
the pulses in Figure 10.15(b) contributes a Fourier Transform o sin 3/ where

_up

7=

so the Fourier Transform of the isosceles triangular pulse is o sin’3 /B2

Note that the analysis above is equally true if the arguments of the two functions are
exchanged under the convolution process so that we have f(x’ — x) and A(x). We use this in
the discussion on the Optical Transfer Function on page 393.

(Problems 10.10, 10.11, 10.12, 10.13, 10.14, 10.15, 10.16, 10.17, 10.18, 10.19)

Problem 10.1

After inspection of the two wave forms in the diagram what can you say about the values of the
constant, absence or presence of sine terms, cosine terms, odd or even harmonics, and range of
harmonics required in their Fourier series representation? (Do not use any mathematics.)

]

2T -T T 2T

Problem 10.2

Show that if a periodic waveform is such that each half-cycle is identical except in sign with the
previous one, its Fourier spectrum contains no even order frequency components. Examine the result
physically.

Problem 10.3
A half-wave rectifier removes the negative half-cycles of a pure sinusoidal wave y = hsinx. Show
that the Fourier series is given by

h 2 2 2
y:;(l +% sinxfﬁcos2xfﬁcos4xfﬁcoséx...)
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Problem 10.4
A full-wave rectifier merely inverts the negative half-cycle in Problem 10.3. Show that this doubles
the output and removes the undesirable modulating ripple of the first harmonic.

Problem 10.5
Show that f(x) = x> may be represented in the interval + 7 by

—771' —|—E —cosnx

Problem 10.6
Use the square wave sine series of unit height f(x) = 4/7(sinx 4§ sin3x + 1 sin 5x) to show that

1-i+1-1=n/4

Problem 10.7
An infinite train of pulses of unit height, with pulse duration 27 and a period between pulses of 7, is
expressed as

f(y=0 for —3T <1< —1
=1 for —7<t<T
=0 forr<t<iT

and
fe+T)=f()
Show that this is an even function with the cosine coefficients given by

2 . 27
a, =— sin — n7T
nmw T

Problem 10.8

Show, in Problem 10.7, that as 7 becomes very small the values of a,, — 47/T and are independent
of n, so that the spectrum consists of an infinite set of lines of constant height and spacing. The
representation now has the same form in both time and frequency; such a function is called ‘self
reciprocal’. What is the physical significance of the fact that as 7 — 0, a,, — 0?

Problem 10.9
The pulses of Problems 10.7 and 10.8 now have amplitude 1/27 with unit area under each pulse.
Show that as 7 — O the infinite series of pulses is given by

ft) = 7—0— Z cos 2mnt/T

Under these conditions the amplitude of the original pulses becomes infinite, the energy per pulse
remains finite and for an infinity of pulses in the train the total energy in the waveform is also
infinite. The amplitude of the individual components in the frequency representation is finite,
representing finite energy, but again, an infinity of components gives an infinite energy.
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Problem 10.10

The unit step function is defined by the relation

=0(r<0)
A
()
I
1
o t —

This is a very important function in physics and engineering, but it does not satisfy the criteria for
Fourier representation because its integral is not finite. A similar function of finite period will satisfy
the criteria. If this function is defined

fH)=10<t<T)

= 0 elsewhere

show that if the transform

then

21 ) o
=_—4— e
2 ) i

(use the fact that for 7 very large

JOC i eiw(f*T) dw = JOC l efin dw=—7
1w 1w

—00 —00

Note that the integral for the second term of f(¢) gives —m for # < 0 and 4+ for > 0. This spectral
representation is shown in Figure 10.13.)

Problem 10.11

Optical wave trains emitted by radiating atoms are of finite length and only an infinite wave train
may be defined in terms of one frequency. The radiation from atoms therefore has a frequency
bandwidth which contributes to the spectral linewidth. The random phase relationships between
these wave trains create incoherence and produce the difficulties in obtaining interference effects
from separate sources.
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Let a finite length monochromatic wave train of wavelength Ao be represented by

f(t) :fO ei27w0t

and be a cosine of constant amplitude f, extending in time between + 7/2. The distance [ = c7 is
called the coherence length. This finite train is the superposition of frequency components of
amplitude F(v) where the transform gives

£) = Jw F(v)e™™ dy

—00
so that
F(l/) _ [ f(t/)e—iZﬂ'u[’ dfl
~_H'/2
— J f() efi27r(yfl/o)t’ dll
-7/2 ’
Show that
F(v) = for sin[r(v — vo)7]
(v —vo)T

and that the relative energy distribution in the spectrum follows the intensity distribution curve in a
single slit diffraction pattern.

Problem 10.12
Show that the total width of the first maximum of the energy spectrum of Problem 10.11 has a
frequency range 2Av which defines the coherence length [ of Problem 10.11 as )\% JAN

Problem 10.13
For a ruby beam the value of Av in Problem 10.12 is found to be 10* Hz and A ¢ = 6.936 x 10~7 m.
Show that A\ = 1.6 x 1077 m and that the coherence length [ of the beam is 3 x 10*m.

Problem 10.14

The energy of the finite wave train of the damped simple harmonic vibrations of the radiating atom
in Chapter 2 was described by E = Ege /2. Show from physical arguments that this defines a
frequency bandwidth in this train of Aw about the frequency wg, where the quality factor
0 = wp/Aw. (Suggested line of argument—at the maximum amplitude all frequency components
are in phase. After a time 7 the frequency component wg has changed phase by wg7. Other
components have a phase change which interfere destructively. What bandwidth and phase change is
acceptable?)

Problem 10.15
Consider Problem 10.14 more formally. Let the damped wave be represented as a function of time by

f(l) :foeiZm/()t e*t/T

where fj is constant and 7 is the decay constant.
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Use the Fourier transform to show that the amplitudes in the frequency spectrum are given by

fo

FO) =t —v)

Write the denominator of F(v) as re'’ to show that the energy distribution of frequencies in the
region of v — v is given by

2 2
FoP =l

7 (/1) + (w—wo)
Problem 10.16
Show that the expression |F(1/)|* of Problem 10.15 is the resonance power curve of Chapter 3; show
that it has a width at half the maximum value (fo7)* which gives Av = 1/77, and show that a
spectral line which has a value of A\ in Problem 10.12 equal to 3 x 10~ m has a finite wave train of
coherence length equal to 32 x 10~®m (32 um) if A = 5.46 x 107 m.

Problem 10.17
Sketch the self-convolution of the double slit function shown in Figure Q 10.17.

< d

Figure Q.10.17
Problem 10.18
Sketch the convolution of the two functions in Figure Q 10.18 and use the convolution theorem to
find its Fourier transform.

®

Figure Q.10.18
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Problem 10.19
The convolution of two identical circles of radius r is very important in the modern method of testing
lenses against an ideal diffraction limited criterion.

In Figure Q 10.19 show that the area of overlap is

Figure Q.10.19

A = r*(26 — 2sinf cos 0)
and show for

R <2r

1

R R2\2R

R)=r|2cos '——2(1-2) =
OR) =r l cos 2r < 4r2) 2r1

Sketch O(R) for O <R < 2r X
Apart from a constant the linear operator O is known as the modulation factor of the
optical transfer function.

that the convolution

Summary of Important Results
Fourier Series
Any function may be represented in the interval £ 7 by

1 L n .
f(x) :§a0+ Zl ancosnx+; b, sinnx
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where
1 27
ay=—| f(x)cosnxdx
T Jo
and
1 2m
b,=—1 f(x)sinnxdx
T™Jo

Fourier Integral
A single non-periodic pulse may be represented as

f([) _ JJrOO |: JJrOO f(l‘/) e—iZwut’ ds’ eiZm/th

or as
+o0o )
f(r) = F(v)e?™ dv
where
+o00 )
F(V) — f(t/) e—127wtdt/

f(¢) and F(v) are Fourier Transforms of each other. When r is replaced by x and v by k the
right hand side of each transform has a factor 1/v/2m. The Fourier Transform of a
rectangular pulse has the shape of sin /. (Important in optical diffraction.)
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Waves in Optical Systems

Light. Waves or Rays?

Light exhibits a dual nature. In practice, its passage through optical instruments such as
telescopes and microscopes is most easily shown by geometrical ray diagrams but the fine
detail of the images formed by these instruments is governed by diffraction which, together
with interference, requires light to propagate as waves. This chapter will correlate the
geometrical optics of these instruments with wavefront propagation. In Chapter 12 we shall
consider the effects of interference and diffraction.

The electromagnetic wave nature of light was convincingly settled by Clerk—Maxwell in
1864 but as early as 1690 Huygens was trying to reconcile waves and rays. He proposed
that light be represented as a wavefront, each point on this front acting as a source
of secondary wavelets whose envelope became the new position of the wavefront,
Figure 11.1(a). Light propagation was seen as the progressive development of such a
process. In this way, reflection and refraction at a plane boundary separating two optical
media could be explained as shown in Figure 11.1(b) and (c).

Huygens’ theory was explicit only on those contributions to the new wavefront directly
ahead of each point source of secondary waves. No statement was made about propagation
in the backward direction nor about contributions in the oblique forward direction. Each of
these difficulties is resolved in the more rigorous development of the theory by Kirchhoff
which uses the fact that light waves are oscillatory (see Appendix 2, p. 547).

The way in which rays may represent the propagation of wavefronts is shown in
Figure 11.2 where spherically diverging, plane and spherically converging wavefronts are
moving from left to right. All parts of the wavefront (a surface of constant phase) take the
same time to travel from the source and all points on the wavefront are the same optical
distance from the source. This optical distance must take account of the changes of
refractive index met by the wavefront as it propagates. If the physical path length is
measured as x in a medium of refractive index n then the optical path length in the medium
is the product nx. In travelling from one point to another light chooses a unique optical path
which may always be defined in terms of Fermat’s Principle.

The Physics of Vibrations and Waves, 6th Edition H. J. Pain
© 2005 John Wiley & Sons, Ltd., ISBN: 0-470-01295-1(hardback); 0-470-01296-X(paperback)
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Plane wavefront

Diverging _ Converging

> > N
wavefront / wavefront

NEN
/ '\ Ray

Figure 11.2 Ray representation of spherically diverging, plane and spherically converging
wavefronts

Fermat's Principle

Fermat’s Principle states that the optical path length has a stationary value; its first order
variation or first derivative in a Taylor series expansion is zero. This means that when an
optical path lies wholly within a medium of constant refractive index the path is a straight
line, the shortest distance between its end points, and the light travels between these points
in the minimum possible time. When the medium has a varying refractive index or the path
crosses the boundary between media of different refractive indices the direction of the path
always adjusts itself so that the time taken between its end points is a minimum. Fermat’s
Principle is therefore sometimes known as the Principle of Least Time. Figure 11.3 shows
examples of light paths in a medium of varying refractive index. As examples of light
meeting a boundary between two media we use Fermat’s Principle to derive the laws of
reflection and refraction.

The Laws of Reflection

In Figure 11.4a Fermat’s Principle requires that the optical path length OSI should be a
minimum where O is the object, S lies on the plane reflecting surface and I is the point on
the reflected ray at which the image of O is viewed. The plane OSI must be perpendicular
to the reflecting surface for, if reflection takes place at any other point S’ on the reflecting
surface where OSS’ and ISS’ are right angles then evidently OS’>OS and IS’ >1IS, giving
OS'T>OSI.

The laws of reflection also require, in Figure 11.4a that the angle of incidence i equals
the angle of reflection r. If the coordinates of O, S and I are those shown and the velocity of
light propagation is ¢ then the time taken to traverse OS is

r= () R
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Rare atmosphere

_----""" Apparent position

@
2
Straight path ™~
to sun
()
Cool Air
Eye
Apparent Tt b
reflecting N
surface
(b)

Figure 11.3 Light takes the shortest optical path in a medium of varying refractive index. (a) A
light ray from the sun bends towards the earth in order to shorten its path in the denser atmosphere.
The sun remains visible after it has passed below the horizon. (b) A light ray avoids the denser
atmosphere and the road immediately below warm air produces an apparent reflection

0(0, ) I(X y)
n<n’
I\r
Y4 S(x, 0) S(x, 0)
X 7‘8/
n’
r,
I(X, Y)

€Y (b)

Figure 11.4 The time for light to follow the path OSI is a minimum (a) in reflection, when OSI
forms a plane perpendicular to the reflecting surface and i=7r; and (b) in refraction, when
nsini = n’sinr’ (Snell's Law)
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and the time taken to traverse SI is

=X —x)? 57 e

so that the total time taken to travel the path OSI is
T=t+1t

The position of S is now varied along the x axis and we seek, via Fermat’s Principle of
Least Time, that value of x which minimizes 7, so that

daTr _ X X—x _0
¥ (291" (X =2+
But
x sin i
— —ini
(e 422
and
X —x .
X2y
Hence
sini = sinr
and
i=#

The Law of Refraction

Exactly similar arguments lead to Snell’s Law, already derived on p. 256.
Here we express it as

nsini = n'sinr’

where i is the angle of incidence in the medium of refractive index n and r’ is the angle of
refraction in the medium of refractive index n’(n’ > n). In Figure 11.4b a plane boundary
separates the media and light from O (0, y) is refracted at S (x, 0) and viewed at I (X, Y) on
the refracted ray. If v and v’ are respectively the velocities of light propagation in the media
n and n’ then OS is traversed in the time

t=x24+yH)" /e
and SI is traversed in the time

=X —x)*+ 1Y/
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The total time to travel from O to Iis T = ¢ + ¢’ and we vary the position of S along the x
axis which lies on the plane boundary between n and n’, seeking that value of x which
minimizes 7. So

dr 1 X 1 (X —x) B
e R (SR SR
where
X ..
m =sini
and
X —x .
(X —<x)2 +)Y2] i = s
But
1 n
v ¢
and
1 n
v ¢
Hence

nsini = n’sinr’

Rays and Wavefronts

Figure 11.2 showed the ray representation of various wavefronts. In order to reinforce the
concept that rays trace the history of wavefronts we consider the examples of a thin lens
and a prism.

The Thin Lens

In Figure 11.5 a plane wave in air is incident normally on the plane face of a plano convex
glass lens of refractive index n and thickness d at its central axis. Its spherical face has a
radius of curvature R >> d. The power of a lens to change the curvature of a wavefront is
the inverse of its focal length f. A lens of positive power converges a wavefront, negative
power diverges the wavefront.
Simple rays optics gives the power of the plano convex lens as
1 1
P=—-=m—-1)=

F=-1g
but we derive this result from first principles that is, by considering the way in which the
lens modifies the wavefront.
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Figure 11.5 A plane wavefront is normally incident on a plano-convex lens of refractive index n
and thickness d at the central axis. The radius of the curved surface R >> d. The wavefront is a surface
of constant phase and the optical path length is the same for each section of the wavefront. At a
radius r from the central axis the wavefront travels a shorter distance in the denser medium and the
lens curves the incident wavefront which converges at a distance R/(n — 1) from the lens

At the central axis the wavefront takes a time ¢ = nd/c to traverse the thickness d. At a
distance r from the axis the lens is thinner by an amount r2/2R (using the elementary
relation between the sagitta, arc and radius of a circle) so that, in the time ¢ = nd/c, points
on the wavefront at a distance r from the axis travel a distance

(d — r*/2R)
in the lens plus a distance (r2/2R + z) in air as shown in the figure. Equating the times
taken by the two parts of the wave front we have
nd/c = (n/c)(d—r?/2R) + (1/c)(z + r*/2R)
which yields
z=(n—1)r*/2R

But this is again the relation between the sagitta z, its arc and a circle of radius R/(n — 1)
so, in three dimensions, the locus of z is a sphere of radius R/(n — 1) and the emerging
spherical wavefront converges to a focus at a distance

f=R/(n=1)
(Problems 11.1, 11.2, 11.3)

The Prism

In Figure 11.6 a section, height y, of a plane wavefront in air is deviated through an angle 6
when it is refracted through an isosceles glass prism, base /, vertex angle § and refractive
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Mirror

Figure 11.6 A plane wavefront suffers minimum deviation (6 yi,) when its passage through a prism
is symmetric with respect to the central vertical axis (i =1i'). The wavefront obeys the Optical
Helmholtz Condition that ny tan « is a constant where n is the refractive index, y is the width of the
wavefront and « is shown. (Here o = )

index n. Experiment shows that there is one, and only one, value of the incident angle i for
which the angle of deviation is a minimum = 6y;,. It is easily shown using ray optics that
this unique value of i requires the passage of the wavefront through the prism to be
symmetric about the central vertical axis as shown in the figure so that the incident angle i
equals the emerging angle i’. Equating the lengths of the optical paths AVA’ and BB’ (= nl)
followed by the edges of the wavefront section gives the familiar result

sin —Hmin O\ _ nsin ﬁ
2 B 2

which is used in the standard experiment to determine 7, the refractive index of the prism.

Now there is only one value of i which produces minimum deviation and this leads us to
expect that the passage of the wavefront will be symmetric about the central vertical axis
for if a plane mirror (M in the figure) is placed parallel to the emerging wavefront the
wavefront is reflected back along its original path, and if i # i’ there would be two values
of incidence, each producing minimum deviation. At i for minimum deviation any rotation
increases i’.
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However, the real argument for symmetry from a wavefront point of view depends on the
optical Helmholtz equation which we shall derive on p. 321. This states that for a plane
wavefront the product nytan o remains constant as it passes through an optical system
irrespective of the local variations of the factors n, y and tan . Now the wavefront has the
same width on entry into and exit from the prism so y = y’ and although n changes at the
prism faces the initial and final medium for the wavefront is air where n = 1.

Hence, from the optical Helmholtz equation tan o = tan ¢’ in Figure 11.6. It is evident
that as long as its width y =y’ the wavefront section will turn through a minimum angle
when the physical path length BB’ followed by its lower edge is a maximum with respect
to AVA’, the physical path length of its upper edge.

Ray Optics and Optical Systems

An optical system changes the curvature of a wavefront. It is formed by one or more optical
surfaces separating media of different refractive indices. In Fig. 11.7 rays from the object
point Lo pass through the optical system to form an image point L’. When the optical
surfaces are spherical the line joining Lo and L', which passes through the centres of
curvature of the surfaces, is called the optical axis. This axis cuts each optical surface at its
pole. If the object lies in a plane normal to the optical axis its perfect image lies in a
conjugate plane normal to the optical axis. Conjugate planes cut the optical axis at
conjugate points, e.g. Lo and L’. In Figure 11.7 the plane at +o0o has a conjugate focal
plane cutting the optical axis at the focal point F. The plane at —oo has a conjugate focal
plane cutting the optical axis at the focal point F”’.

Paraxial Rays

Perfect geometrical images require perfect plane and spherical optical surfaces and in a real
optical system a perfect spherical optical surface is obtained by using only that part of the
wavefront close to the optical axis. This means that all angles between the axis and rays are
very small. Such rays are called paraxial rays.

Positive Negative
curvature curvature
—00 «— —>» + o
Ly F F’ L’
| | | |
A AN
Pole 7 Optic axis

_
Direction of
incident light

Figure 11.7 Optical system showing direction of incident light from left to right and optical
surfaces of positive and negative curvature. Rays from L pass through L’ and this defines L and L’
as conjugate points. The conjugate point of F is at o0, the conjugate point of F’ is at —co
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+ 1 — <> + [
—_—>
Direction of ¢—
incident light

Figure 11.8 Sign convention for lengths is Cartesian measured from the right angles at 0. Angles
take the sign of their tangents. O is origin of measurements

Sign Convention

The convention used here involves only signs of lengths and angles. The direction of
incident light is positive and is always taken from left to right. Signs for horizontal and
vertical directions are Cartesian. If AB =/ then BA = —/[. The radius of curvature of a
surface is measured from its pole to its centre so that, in Figure 11.7, the convex surface
presented to the incident light has a positive radius of curvature and the concave surface
has a negative radius of curvature.

The Cartesian convention with origin O at the right angles of Figure 11.8 gives the angle
between a ray and the optical axis the sign of its tangent.

If the angle between a ray and the axis is « then, for paraxial rays

sina = tano = «
and

cosa =1
so that Snell’s Law of Refraction
. . ] . /
nsini =n' sinr
becomes

ni=nr

Power of a Spherical Surface

In Figure 11.9(a) and (b) a spherical surface separates media of refractive indices n and n’.
Any ray through L is refracted to pass through its conjugate point L’. The angles are
exaggerated so that the base of 4 is very close to the pole of the optical surface which is
taken as the origin. In Figure 11.9(a) the signs of R, I’ and o’ are positive with / and «
negative. In Figure 11.9(b) R, [, I’ , o and o' are all positive quantities. In both figures
Snell’s Law gives

ni=nr
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R, I', o, are positive
S o I, o are negative

\ R, I, I', o, o are positive

(b)

Figure 11.9 Spherical surface separating media of refractive indices n and n’. Rays from L, pass
through L’. Snell’s Law gives the power of the surface as

n' n n'—n
! 1 R

ie.
n@—a)=n'(6—-a)
or
/_
na’ —na=n"—n)f= <n R n>h—9h (11.1)
Thus

/ o
LA TNy (11.2)

I’ I R

where 2 is the power of the surface. For n’ > n the power Z is positive and the surface
converges the wavefront. For n’ < n, 2 is negative and the wavefront diverges. When the
radius of curvature R is measured in metres the units of & are dioptres.
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Magnification by the Spherical Surface

In Figure 11.10 the points QQ’ form a conjugate pair, as do LoL'. The ray QQ’ passes
through C the centre of curvature, LyQ is the object height y, L'Q’ is the image height y’ so

1.

ni=nr
gives
ny/l=n'y'/l
or
nyh/l =n'y'h/l
that is

nya =n'y'a’ (11.3)

This is the paraxial form of the optical Helmholtz equation.
The Transverse Magnification is defined as

Mr=y'/y=nl'/n'l
The image y’ is inverted so y and y’ (and [ and [’) have opposite signs.
The Angular Magnification is defined as
M, =d/a
Note that
My =n/n'M,

which, being independent of y, applies to any point on the object so that the object in the
plane LoQ is similar to the image in the plane L'Q’.

y N .
ES
/ .l\
rh o <
; < ,
o TN > o L
L / ‘NLC\\
(R —
' . y
n n’ S
o

Figure 11.10 Magnification by a spherical surface. The paraxial form of the optical Helmholtz
equation is nya = n'y’a’ so Transverse Magnification My =y’/y = nl’/In’ Angular Magnification
M, = o’ /a. Note that the image is inverted so y and y’ (and [ and (') have opposite signs
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A series of optical surfaces separating media of refractive indices n, n'n” yields the

expression

which is the paraxial form of the optical Helmholtz equation.

Power of Two Optically Refracting Surfaces

n._n_

nya =n'y'a’ =n"y"a

If Figure 11.11 the refracting surfaces have powers #; and 2, respectively. At the first
surface equation (11.1) gives

and at the second surface

nioq —I’l()z:y]h]

na' —nia; =Pk,

Adding these equations gives

n'a' —na = Pl + Pohy

If the object is located at —oo so that o = 0 we have

or

n'a = Pih + Pohy

1
o' :;(91/’11 +y2h2)

n / n, 2 n
/I \
! \
I ‘\
_oo — e _____ L
0=0 ] % \
l, “
: hy * <3~ -
! h \ Tt--l
2 -
: l v| Lo 0T
X |
Object ' X Image
space First refractive Second refractive ~ SP3c®

surface

surface

Figure 11.11 Two optically refracting surfaces of power 2| and 2, have a combined power of
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This gives the same image as a single element of power £ if
o = %(Qzlhl + Prhy) = %?}hl
where
g}:hll(@]hmu%hz) (11.4)

is the total power of the system. This is our basic equation and we use it first to find the
power of a thin lens in air.

Power of a Thin Lens in Air (Figure 11.12)
Equation (11.2) gives

n n n—n
_——_ = :9
A R

for each surface, so that in Figure 11.12
@1 = (n1 — 1)/R1

and
92 = (1 —nl)/Rz

From equation (11.4)

1
P = (P1hi + P2ha)
1

with

hy =h,
T h,=h,
h
\ o

£ > [
n=1
AN
R,

Figure 11.12 A thin lens of refractive index n4, and radii of surface curvatures R, and R, has a

power
1 1 1

P=n;—1)[=———) ==

(n1 )<R1 Rz) Iz

where f' is the focal length. In the figure R is positive and R, is negative

STUDENTS-HUB.com Uploaded By: Jibreel Bornat


https://students-hub.com

Power of a Thin Lens in Air (Figure 11.12) 319

we have
P=P+2,

so the expression for the thin lens in air with surfaces of power 2| and 2, becomes

11 11 ]
=5 - 5= —1 _——— | = —
P=p—7=m )<R1 R2) Iz

where f’ is the focal length.

Applying this result to the plano convex lens of p. 311 we have R; = oo and R; negative
from our sign convention. This gives a positive power which we expect for a converging
lens.

Effect of Refractive Index on the Power of a Lens

Suppose, in Figure 11.13, that the object space of the lens remains in air (n = 1) but that
the image space is a medium of refractive index n) # 1. How does this affect the focal
length in the medium n}?
If 2 is the power of the lens in air we have
nsa' —na = Phy (11.5)
and for
a=0

we have

Oé/ zg’h]/n/z :]’ll/l’l/zf/

where f’ is the focal length in air.
If f; is the focal length in the medium rn, then

ro1
& :/’11

m

Figure 11.13 The focal length of a thin lens measured in the medium n/, is given by f, = n} f'
where f' is the focal length of the lens measured in air
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SO
o = hi/fy =hi/n)f’
giving
fi= s

Thus, the focal length changes by a factor equal to the refractive index of the medium in
which it is measured and the power is affected by the same factor.

If the lens has a medium ny in its object space and a medium #; in its image space then
the respective focal lengths f and f; in these spaces are related by the expression

filfo = —ni/no (11.6)

where the negative signs shows that f and f; are measured in opposite directions (fy is
negative and f; is positive).

Principal Planes and Newton’s Equation

There are two particular planes normal to the optic axis associated with every lens element
of an optical system. These planes are called principal planes or unit planes because
between these planes there is unit transverse magnification so the path of every ray between
them is parallel to the optic axis. Moreover, any complex optical system has two principal
planes of its own. In a thin lens the principal planes coincide.

The principal planes of a single lens do not, in general, coincide with its optical surfaces;
focal lengths, object and image distances are measured from the principal planes and not
from the optical surfaces. In Figure 11.14, PH and P'H’ define the first and second

First focal plane Second focal plane
conjugate to +oo — <— conjugate to —oo
| |
I I
L Y H_o_H Y
' |
X n n '
Y
I
\ o F P P o F
’ T ’
Ly o a : Ly
F 4
<« X—><«—f—F----- ! L’
< / 5| Q Q’ <« X —>
< I

Figure 11.14 Between the principal planes PH and P’H’ of a lens or lens system there is unit
magnification and rays between these planes are parallel to the optic axis. Newton’s equation defines
xx' = ff'. The optical Helmholtz equation is nya = constant for paraxial rays and nytana =
constant for rays from oo
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principal planes, respectively, of a lens or optical system and PF and P'F’ are respectively
the first and second focal lengths. The object and image planes cut the optic axis in L and
Ly, respectively.

The ray LH parallel to the optic axis proceeds to H' and thence through F' the second
focal point. The rays LH and H'F’ meet at H' and therefore define the position of the
second principal plane, P’H’. The position of the first principal plane may be found in a
similar way.

If Figure 11.14, the similar triangles FLoL and FPQ give y/y’ = x/f where, measured
from P, only y is algebraically positive. The similar triangles F'L{L" and F'P"H’ give

vy =f'/x,

where, measured from P’, only y’ is algebraically negative.
‘We have, therefore,

x/f =f'/x,
where x and f are negative and x’ and f' are positive.
Thus,

xx' =ff'

This is known as Newton’s equation.
If 1, the object distance, and !/, the image distance, are measured from the principal
planes as in Figure 11.14, then

I=f+x and I'=f" +x'
and Newton’s equation gives

xx! = (= f)I' =) =1 = 1'f —If +ff =ff’
so that
frof
7-1—?— 1
But from nf’ = —n'f (equation (11.6)) we have

! /
won_n_-n_
o1 f f

the power of the lens.

Optical Helmholtz Equation for a Conjugate Plane at Infinity

Suppose now that the object is no longer located at LyL but at infinity so that the ray LH
originates at one point from the distant object while the ray LFQ comes from a point on the
object much more distant from the optic axis.
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We still have from triangle F'P’H’ that

y =f"tana’
and from triangle FPQ that
y' =ftana
S0
tan o
fJ:t’ = X/ and JJ:/y tano =y tan o’
ana’ y
But
f —n
o
S0
nytana = —n'y’ tan o’

(Note that o, o’ and y’ are negative.)

This form of the Helmholtz equation applies when one of the conjugate planes is at
infinity and is to be compared with the general unrestricted form of the Helmholtz equation
for paraxial rays

1.0 !
nya =n'y'«

The infinite conjugate form ny tan & = constant is valid when applied to the prism of p. 312
because the plane wavefront originated at infinity.

(Problems 11.4, 11.5, 11.6, 11.7, 11.8)

The Deviation Method for (a) Two Lenses and (b) a Thick Lens

Figure 11.11 illustrated how the deviation of a ray through two optically refracting surfaces
could be used to find the power of a thin lens. We now apply this process to (a) a
combination of two lenses and (b) a thick lens in order to find the power of these systems
and the location of their principal planes. We have already seen in equation (11.5), which
may be written

na' —nja= 2y (11.7)

where 2 is the power of the first lens in Figure 11.15a or the power of the first refracting
surface in Figure 11.15b. If the incident ray is parallel to the optic axis, then a = 0 and we
have

na' =2y, (11.8)
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(b)

Figure 11.15 Deviation of a ray through (a) a system of two lenses and (b) a single thick lens. P’ is
a principal plane of the system. All the significant optical properties may be derived via this method

At the second lens or refracting surface

nytiy = }’lllall

o)
nhah, —nial = Py, (11.9)
Equation (11.8) plus equation (11.9) gives

nyah =21y + Py, (11.10)

Now the incident ray strikes the principal plane P’ at a height y; so, extrapolating the ray
from F’, the focal point of the system, through the plane P’ to the plane P’, we have

nyah = Py, (11.11)

where 2 is the power of the complete system.
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From equations (11.10) and (11.11) we have
Py1=21y1+ P2y (11.12)

Moreover, Figure 11.15 shows that, algebraically

ya =yi —da)
which, with equation (11.8) gives
d -
YZ:)’l_n_,lgl)’l:)H—d«J?lyl, (11.13)
where
d=d/n}
This, with equation (11.12), gives
P =P+ Py — dP P> (11.14)

where 2 is the power of the whole system.
From Figure 11.15 we have algebraically

Y1 —)2

PiP' = ,
[0
2

which with equations (11.11) and (11.13) gives

. —n’zci?]

PyP = —2 (11.15)

For a similar ray incident from the right we can find

where P is the first principal plane (not shown in the figures).

A more significant distance for the thick lens of Figure 11.15(b) is P,F’ the distance
between the second refracting surface and the focal point F’.
Now

P,F' =P'F' — P’P’2
which with

P'F' =n)|? (11.16)
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gives
!/ ! 7
, ny  nyd?
P =572
n’ -
:5%(1 —d?) (11.17)

We shall see in the following section that the factor 1 — d%| and the power 2 of the
system arise quite naturally in the matrix treatment of this problem.

The Matrix Method

Tracing paraxial rays through an optical system involves the constant repetition of two
consecutive processes and is particularly suited to matrix methods.

A refracting R process carries the ray from one medium across a refracting surface into a
second medium from where it is taken by a transmitting 7 process through the second
medium to the next refracting surface for R to be repeated. Both R and T processes and
their products are represented by 2 x 2 matrices.

An R process is characterized by

n'a’ —na =2y (11.7)

which changes na but which leaves y unaffected.
We write this in the form

a'—a=2y (11.18)
where

5[,‘:1’1,’061'

The reader should review Figure 11.8 for the sign convention for angles.
A T process is characterized by

y=y-da (11.19)

which changes y but leaves & unaffected. The thick lens of the last section demonstrates the
method particularly well and reproduces the results we have already found.
In Figure 11.16 note that
nyap = njal

that is

— —/
Qy = O

We express equations (11.18) and (11.19) in a suitable 2 x 2 matrix form by writing them
as separate pairs.
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— ,
ny ni =n, n;

Figure 11.16 The single lens of Figure 11.15 is used to demonstrate the equivalence of the
deviation and matrix methods for determining the important properties of a lens system. The matrix
method is easily extended to a system of many optical elements

For R we have
O_éll =a;+ 21y,

where 2 is the power of the first refracting surface and

vy =0a; + ly,

s0, in matrix form we have

al I 21| Qa
' = = Rl
Y1 0 1 Yi Yi
This carries the ray across the first refracting surface.
For T we have

a, = la) + 0y
ya=—dia) + 1y

a- _ 1 07Ta} _ a)
y2 —d! 1]y 2y

This carries the ray through the lens between its two refracting surfaces.
At the second refracting surface we repeat R to give

where @, = @/, so

ah=1la,+ 2y

yy = 0as + Ly,

1 2, 552]
= =R
{0 )’2] 2[)’2

or

SRR
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a’ (%)
[ ,Z}ZRz{ }=R12T12{
) Y2
B 1 2, 1 0
o 1 )[-d) 1

which, after matrix multiplication, gives

Therefore
Qa
= R,T12R,
yi
1

R

|:Oé/2:|_ 1—(,7/1,@2 ,@]4‘9”2—(?/1!@],@2 |:d1:|
¥) —d, 1—-d\2, Y1

Writing

an ap
RyT2R, = [021 022}

we see that a; is the power £ of the thick lens (equation (11.14)) and that a,; apart from
the factor n, /2 is the distance between the second refracting surface and the second focal
point. The product of the coefficient a; and n|/Z? gives the separation between the first
focal point and the first refracting surface. Note, too, that a;; and a;; enable us to locate
the principal planes with respect to the refracting surfaces.

The order of the matrices for multiplication purposes is the reverse of the progress of the
ray through R T »R,, etc.

If the ray experiences a number J of such transformations, the general result is

_, _
[a/]] =R,Tj-1yRy-1...RoT 2R, {al}
y J Yi

The product of all these 2x2 matrices is itself a 2x2 matrix.

It is important to note that the determinant of each matrix and of their products is unity,
which implies that the column vector represents a property which is invariant in its passage
through the system.

The components of the column vector are, of course, &1y; that is, na and y and we
already know that for paraxial rays the Helmholtz equation states that the product nyo
remains constant throughout the system.

(Problems 11.9, 11.10, 11.11)

Problem 11.1
Apply the principle of p. 311 to a thin bi-convex lens of refractive index n to show that its power is

where R and R, the radii of curvature of the convex faces, are both much greater than the thickness
of the lens.
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Problem 11.2

A plane parallel plate of glass of thickness d has a non-uniform refractive index n given
by n = ng — ar? where ng and « are constants and r is the distance from a certain line perpendicular
to the sides of the plate. Show that this plate behaves as a converging lens of focal length 1/2ad.

Problem 11.3

For oscillatory waves the focal point F of the converging wavefront of Figure 11.17 is located where
Huygens secondary waves all arrive in phase: the point F’ vertically above F receives waves whose
total phase range A¢ depends on the path difference AF’—BF’. When F’ is such that A¢ is 27 the
resultant amplitude tends to zero. Thus,

B

Figure 11.17

the focus is not a point but a region whose width x depends on the wavelength A and the angle 6
subtended by the spherical wave. If PF’ is perpendicular to BF the phase at F’ and P may be
considered the same. Show that the width of the focal spot is given by x = A/sin 6. Note that sin 6 is
directly related to the f'/d ratio for a lens (focal length/diameter) so that x defines the minimum size
of the image for a given wavelength and a given lens.

Problem 11.4

As an object moves closer to the eye its apparent size grows with the increasing angle it subtends at
the eye. A healthy eye can accommodate (that is, focus) objects from infinity to about 25 cm, the
closest ‘distance of distinct vision’. Beyond this ‘near point’ the eye can no longer focus and a
magnifying glass is required. A healthy eye has a range of accommodation of 4 dioptres (1/00 to
1/0.25 m). If a man’s near point is 40 cm from his eye, show that he needs spectacles of power equal
to 1.5 dioptres. If another man is unable to focus at distances greater than 2 m, show that he needs
diverging spectacles with a power of —0.5 dioptres.

Problem 11.5
Figure 11.18 shows a magnifying glass of power P with an erect and virtual image at I’. The angular
magnification

M, = ﬁ/7
_angular size of image seen through the glass at distance !’

angular size of object seen by the unaided eye at d,,
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where d,, is the distance of distinct vision. Show that the transverse magnification M7 = I’ /l where [
is the actual distance (not d,) at which the object O is held. Hence show that M, = d, /I and use the
thin lens power equation, p. 318, to show that

My=do(P+1/l'")=Pd,+1

when I’ = d . Note that M , reduces to the value Pd, when the eye relaxes by viewing the image at oo.

Lens power P

Figure 11.18

Problem 11.6

A telescope resolves details of a distant object by accepting plane wavefronts from individual points
on the object and amplifying the very small angles which separate them. In Figure 11.19, « is the
angle between two such wavefronts one of which propagates along the optical axis. In normal
adjustment the astronomical telescope has both object and image at co so that the total power of the
system is zero. Use equation (11.14) to show that the separation of the lenses must be f, + f. where
fo and f. are respectively the focal lengths of the object and eye lenses.

If 2y is the width of the wavefront at the objective and 2y’ is the width of the wavefront at the eye
ring show that

!

fo

fe

|
Plane o | f
wavefronts I Object lens
-

D
d

=3

N][v]

i

i Rays from virtual
image at oo

Figure 11.19
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where D is the effective diameter of the object lens and d is the effective diameter of the eye lens.
Note that the image is inverted.

Problem 11.7

The two lens microscope system of Figure 11.20 has a short focus objective lens of power P, and a
magnifying glass eyepiece of power P.. The image is formed at the near point of the eye (the
distance d, of Problems 11.4 and 11.5). Show that the magnification by the object lens is
M, = —P,x’ where the minus sign shows that the image is inverted. Hence use the expression for
the magnifying glass in Problem 11.5 to show that the total magnification is

M=MM,=—P,P.d,x’

The length x’ is called the optical tube length and is standardized for many microscopes at 0.14 m.

Eye/
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0 0 [
' \
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1 - e -
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Figure 11.20
Problem 11.8
Microscope objectives are complex systems of more than one lens but the principle of the oil
immersion objective is illustrated by the following problem. In Figure 11.21 the object O is
embedded a distance R/n from the centre C of a glass sphere of radius

Glass

Figure 11.21
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R and refractive index n. Any ray OP entering the microscope is refracted at the surface of the sphere
and, when projected back, will always meet the axis CO at the point I. Use Snell’s Law to show that
the distance IC =nR.

Problems 11.9, 11.10, 11.11

Using the matrix method or otherwise, find the focal lengths and the location of the principal plane
for the following lens systems (a), (b) and (c). The glass in all lenses has a refractive index of n = 1.5
and all measurements have the same units. R; is a radius of curvature.

R,=-05

Rl = oo R3 =-1 R4 = oo
R =-1 R,=o0
03> <0.15>« 02 ><0.15»>
@
(b)
R,=-05
Rlzoo R3=+0,5 R4:oo
<0.15><« 06 »><0.15>
(c)

Summary of Important Results

Power of a Thin Lens

where n is the refractive index of the lens material, R; and R, are the radii of curvature of
the lens surfaces and f is the focal length.

Power of two thin lenses separated a distance d in Air
P=P+P)—dP P,

where 2| and 2, are the powers of the thin lenses.
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Power of a thick lens of thickness d and refractive index n
97:@1 +<@2—d/n91902

where 2| and #, are the powers of the refracting surfaces of the lens.

Optical Helmholtz Equation

For a plane wavefront (source at co) passing through an optical system the product
nytan o = constant

where n is the refractive index, y is the width of the wavefront section and « is the angle
between the optical axis and the normal to the wavefront.
For a source at a finite distance, this equation becomes, for paraxial rays,

nya = constant
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Interference and Diffraction

All waves display the phenomena of interference and diffraction which arise from the
superposition of more than one wave. At each point of observation within the interference
or diffraction pattern the phase difference between any two component waves of the same
frequency will depend on the different paths they have followed and the resulting
amplitude may be greater or less than that of any single component. Although we speak of
separate waves the waves contributing to the interference and diffraction pattern must
ultimately derive from the same single source. This avoids random phase effects from
separate sources and guarantees coherence. However, even a single source has a finite size
and spatial coherence of the light from different parts of the source imposes certain
restrictions if interference effects are to be observed. This is discussed in the section on
spatial coherence on p. 360. The superposition of waves involves the addition of two or
more harmonic components with different phases and the basis of our approach is that laid
down in the vector addition of Figure 1.11. More formally in the case of diffraction we
have shown the equivalence of the Fourier transform method on p. 287 of Chapter 10.

Interference

Interference effects may be classified in two ways:
1. Division of amplitude

2. Division of wavefront

1. Division of amplitude. Here a beam of light or ray is reflected and transmitted at a
boundary between media of different refractive indices. The incident, reflected and
transmitted components form separate waves and follow different optical paths. They
interfere when they are recombined.

2. Division of wavefront. Here the wavefront from a single source passes simultaneously
through two or more apertures each of which contributes a wave at the point of
superposition. Diffraction also occurs at each aperture.

The Physics of Vibrations and Waves, 6th Edition H. J. Pain

© 2005 John Wiley & Sons, Ltd., ISBN: 0-470-01295-1(hardback); 0-470-01296-X(paperback)
333
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The difference between interference and diffraction is merely one of scale: in optical
diffraction from a narrow slit (or source) the aperture is of the order of the wavelength of
the diffracted light. According to Huygens Principle every point on the wavefront in the
plane of the slit may be considered as a source of secondary wavelets and the further
development of the diffracted wave system may be obtained by superposing these wavelets.

In the interference pattern arising from two or more such narrow slits each slit may be
seen as the source of a single wave so the number of superposed components in the final
interference pattern equals the number of slits (or sources). This suggests that the complete
pattern for more than one slit will display both interference and diffraction effects and we
shall see that this is indeed the case.

Division of Amplitude

First of all we consider interference effects produced by division of amplitude. In Fig-
ure 12.1 a ray of monochromatic light of wavelength A in air is incident at an angle i on a
plane parallel slab of material thickness ¢ and refractive index n > 1. It suffers partial
reflection and transmission at the upper surface, some of the transmitted light is reflected at
the lower surface and emerges parallel to the first reflection with a phase difference
determined by the extra optical path it has travelled in the material. These parallel beams
meet and interfere at infinity but they may be brought to focus by a lens. Their optical path
difference is seen to be

n(AB + BD) — AC = 2nAB — AC
= 2nt/cos § — 2t tan O sin i
2nt

= (1 — sin?f) = 2nt cos §
cos §
(because sini = nsin#).
S
Cc
/
A D 1
6
n>1 t constant
0

B

Figure 12.1 Fringes of constant inclination. Interference fringes formed at infinity by division of
amplitude when the material thickness t is constant. The mth order bright fringe is a circle centred at
S and occurs for the constant 6 value in 2ntcosd = (m + )X
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This path difference introduces a phase difference
27
0 =—2ntcos0
y, 2nt eos

but an additional phase change of 7 rad occurs at the upper surface.
The phase difference ¢ between the two interfering beams is achieved by writing the
beam amplitudes as

yi =a(sinwr +6/2) and y, =asin(wt—6/2)
with a resultant amplitude

R = a[sin (wt 4 6/2) + sin (wt — 6/2)

= 2asinwtcos §/2

and an intensity
I = R? = 4a’sin® wtcos? §/2

Figure 12.2 shows the familiar cos? §/2 intensity fringe pattern for the spatial part of I.

Thus, if 2nt cos @ = m (m an integer) the two beams are anti-phase and cancel to give
zero intensity, a minimum of interference. If 2n7cos@ = (m+ 4)A the amplitudes will
reinforce to give an interference maximum.

Since ¢ is constant the locus of each interference fringe is determined by a constant value
of # which depends on a constant angle i. This gives a circular fringe centred on S. An
extended source produces a range of constant 6 values at one viewing position so the
complete pattern is obviously a set of concentric circular fringes centred on S and formed
at infinity. They are fringes of equal inclination and are called Haidinger fringes. They
are observed to high orders of interference, that is values of m, so that  may be relatively
large.

432
/
5 > —4n —4n 0 2n 4
m—> -2 -1 0 1 2

Figure 12.2 Interference fringes of cos? intensity produced by the division of amplitude in Figure
12.1. The phase difference 6 = 27nt cos /X and m is the order of interference
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Figure 12.3 Fringes of constant thickness. When the thickness t of the material is not constant the
fringes are localized where the interfering beams meet (a) in a real position and (b) in a virtual
position. These fringes are almost parallel to the line where t = 0 and each fringe defines a locus of
constant t

When the thickness ¢ is not constant and the faces of the slab form a wedge, Figure 12.3a
and b the interfering rays are not parallel but meet at points (real or virtual) near the wedge.
The resulting interference fringes are localized near the wedge and are almost parallel to
the thin end of the wedge. When observations are made at or near the normal to the wedge
cos 6 ~ 1 and changes slowly in this region so that 2nt cos 6 ~ 2nt. The condition for bright
fringes then becomes

2nt = (m+HA

and each fringe locates a particular value of the thickness t of the wedge and this defines
the patterns as fringes of equal thickness. As the value of m increases to m + 1 the thickness
of the wedge increases by A/2n so the fringes allow measurements to be made to within a
fraction of a wavelength and are of great practical importance.
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The spectral colours of a thin film of oil floating on water are fringes of constant
thickness. Each frequency component of white light produces an interference fringe at that
film thickness appropriate to its own particular wavelength.

In the laboratory the most familiar fringes of constant thickness are Newton’s Rings.

Newton’s Rings

Here the wedge of varying thickness is the air gap between two spherical surfaces of
different curvature. A constant value of ¢ yields a circular fringe and the pattern is one of
concentric fringes alternately dark and bright. The simplest example, Figure 12.4, is a
plano convex lens resting on a plane reflecting surface where the system is illuminated
from above using a partially reflecting glass plate tilted at 45°. Each downward ray is
partially reflected at each surface of the lens and at the plane surface. Interference takes

Focal plane
of L

}
Incident 5
light
E—
\\\ Semi-silvered
l ~ reflector
Interfering
beams >

| OPTICAL FLAT

Figure 12.4 Newton's rings of interference formed by an air film of varying thickness between the
lens and the optical flat. The fringes are circular, each fringe defining a constant value of the air film
thickness
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place between the light beams reflected at each surface of the air gap. At the lower (air to
glass) surface of the gap there is a 7 rad phase change upon reflection and the centre of the
interference fringe pattern, at the point of contact, is dark. Moving out from the centre,
successive rings are light and dark as the air gap thickness increases in units of A\/2. If R is
the radius of curvature of the spherical face of the lens, the thickness ¢ of the air gap at a
radius r from the centre is given approximately by f~ r?/2R. In the mth order of
interference a bright ring requires

2t=(m+HA=r*/R

and because t o r? the fringes become more crowded with increasing r. Rings may be
observed with very simple equipment and good quality apparatus can produce fringes for
m > 100.

(Problem 12.1)

Michelson’s Spectral Interferometer

This instrument can produce both types of interference fringes, that is, circular fringes of
equal inclination at infinity and localized fringes of equal thickness. At the end of the
nineteenth century it was one of the most important instruments for measuring the structure
of spectral lines.

As shown in Figure 12.5 it consists of two identical plane parallel glass plates G| and G,
and two highly reflecting plane mirrors M| and M,. G has a partially silvered back face,
G, does not. In the figure G| and G, are parallel and M| and M, are perpendicular. Slow,
accurately monitored motion of M is allowed in the direction of the arrows but the
mounting of M, is fixed although the angle of the mirror plane may be tilted so that M,
and M, are no longer perpendicular.

The incident beam from an extended source divides at the back face of G . A part of it is
reflected back through G| to M| where it is returned through G| into the eye or detector.
The remainder of the incident beam reaches M, via G, and returns through G, to be
reflected at the back face of G into the eye or detector where it interferes with the beam
from the M| arm of the interferometer. The presence of G, assures that each of the two
interfering beams has the same optical path in glass. This condition is not essential for
fringes with monochromatic light but it is required with a white light source where
dispersion in glass becomes important.

An observer at the detector looking into G| will see M, a reflected image of M, (M5,
say) and the images S; and S’ of the source provided by M; and M,. This may be
represented by the linear configuration of Figure 12.6 which shows how interference takes
place and what type of firnges are produced.

When the optical paths in the interferometer arms are equal and M; and M, are
perpendicular the planes of M| and the image M/, are coincident. However a small optical
path difference ¢ between the arms becomes a difference of 2 between the mirrored images
of the source as shown in Figure 12.6. The divided ray from a single point P on the
extended source is reflected at M; and M, (shown as M) but these reflections appear to
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My
Allowed
| movement
of M,
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G
1 GZ

Source
S

Eye or detector

Figure 12.5 Michelson’s Spectral Interferometer. The beam from source S splits at the back face of
G1, and the two parts are reflected at mirrors M1 and M, to recombine and interfere at the eye or
detector. G, is not necessary with monochromatic light but is required to produce fringes when Sis a
white light source

come from P; and P/ in the image planes of the mirrors. The path difference between the
rays from P, and P/ is evidently 27 cos §. When 2¢ cos § = m\ a maximum of interference
occurs and for constant # the interference fringe is a circle. The extended source produces a
range of constant 6 values and a pattern of concentric circular fringes of constant
inclination.

If the path difference 7 is very small and the plane of M, is now tilted, a wedge is formed
and straight localized fringes may be observed at the narrowest part of the wedge. As the
wedge thickens the fringes begin to curve because the path difference becomes more
strongly dependent upon the angle of observation. These curved fringes are always convex
towards the thin end of the wedge.
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Figure 12.6 Linear configuration to show fringe formation by a Michelson interferometer. A ray
from point P on the extended source S reflects at M1, and appears to come from P, in the reflected
plane S;. The ray is reflected from M, (shown here as M}) and appears to come from P} in the
reflected plane S}. The path difference at the detector between the interfering beams is effectively
2t cos O where t is the difference between the path lengths from the source S to the separate mirrors
M1 and M2

The Structure of Spectral Lines

The discussion on spatial coherence, p. 362, will show that two close identical sources
emitting the same wavelength A produce interference fringe systems slightly displaced
from each other (Figure 12.17).

The same effect is produced by a single source, such as sodium, emitting two
wavelengths, A and A — A\ so that the maxima and minima of the cos? fringes for \ are
slightly displaced from those for A\ — A\. This displacement increases with the order of
interference m until a value of m is reached when the maximum for )\ coincides with a
minimum for A — A\ and the fringes disappear as their visibility is reduced to zero.

In 1862, Fizeau, using a sodium source to produce Newton’s Rings, found that the
fringes disappeared at the order m = 490 but returned to maximum visibility at m = 980.
He correctly identified the presence of two components in the spectral line.

The visibility

(Imax - Imin)/<1max + Imin)
equals zero when
mA = (m+ 3 (A= AN

and for A =0.5893 um and m =490 we have A\ = 0.0006 um (6 A), which are the
accepted values for the D lines of the sodium doublet.

Using his spectral interferometer, Michelson extended this work between the years 1890
and 1900, plotting the visibility of various fringe systems and building a mechanical
harmonic analyser into which he fed different component frequencies in an attempt to
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reproduce his visibility curves. The sodium doublet with angular frequency components w
and w 4+ Aw produced a visibility curve similar to that of Figures 1.7 and 4.4 and was easy
to interpret. More complicated visibility patterns were not easy to reproduce and the
modern method of Fourier transform spectroscopy reverses the procedure by extracting the
frequency components from the observed pattern.

Michelson did however confirm that the cadmium red line, A = 0.6438 um was highly
monochromatic. The visibility had still to reach a minimum when the path difference in his
interferometer arms was 0.2 m.

Fabry — Perot Interferometer

The interference fringes produced by division of amplitude which we have discussed so far
have been observed as reflected light and have been produced by only two interfering
beams. We now consider fringes which are observed in transmission and which require
multiple reflections. They are fringes of constant inclination formed in a pattern of
concentric circles by the Fabry—Perot interferometer. The fringes are particularly narrow
and sharply defined so that a beam consisting of two wavelengths A and A — A\ forms two
patterns of rings which are easily separated for small AX. This instrument therefore has an
extremely high resolving power. The main component of the interferometer is an etalon
Figure 12.7 which consists of two plane parallel glass plates with identical highly reflecting
inner surfaces S| and S, which are separated by a distance d.

Suppose a monochromatic beam of unit amplitude, angular frequency w and wavelength
(in air) of A strikes the surface S; as shown. A fraction ¢ of this beam is transmitted in
passing from glass to air. At S, a further fraction ¢’ is transmitted in passing from air to
glass to give an emerging beam of amplitude 7/ = T. The reflection coefficient at the air—
S1 and air—S, surfaces is r so each subsequent emerging beam is parallel but has an
amplitude factor 72 = R with respect to its predecessor. Other reflection and transmission
losses are common to all beams and do not affect the analysis. Each emerging beam has a
phase lag 6 = 4xd cos 6/ A with respect to its predecessor and these parallel beams interfere
when they are brought to focus via a lens.

The vector sum of the transmitted interfering amplitudes together with their appropriate
phases may be written

A — Teiw[ + TRel(UJ[*{S) + TR2 ei(w172(5) .
=Te“ [l +Re ™ 4 R?e 2.

which is an infinite geometric progression with the sum
A=Te“ /(1 —Re ™)
This has a complex conjugate

A* — Te—iwl‘/(l _Reié)
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Figure 12.7 S; and S, are the highly reflecting inner surfaces of a Fabry—-Perot etalon with a
constant air gap thickness d. Multiple reflections produce parallel interfering beams with amplitudes
T, RT, R?T, etc. each beam having a phase difference

6 = 4md cos O/

with respect to its neighbour

If the incident unit intensity is / the fraction of this intensity in the transmitted beam may
be written

Ip  AA* T? _ T?

Io Iy (1—Re®)(1—-Re®) (1+R2—2Rcosd)

or, with

cosd =1—2sin?§/2
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Figure 12.8 Observed intensity of fringes produced by a Fabry-Perot interferometer. Transmitted
intensity Iy versus 8. R = r2 where ris the reflection coefficient of the inner surfaces of the etalon.
As R increases the fringes become narrower and more sharply defined

as

I T? T? 1

Io (1-R)2+4Rsin?6/2 (1—R)*1+ 4Rsin?6/2/(1 — R)7]

But the factor 72/(1 — R)? is a constant, written C so

Iy~ 1+ [4Rsin?6/2/(1 —R)7]

I, !

Writing Cly = I'nax, the graph of I, versus 6 in Figure 12.8 shows that as the reflection
coefficient of the inner surfaces is increased, the interference fringes become narrow and
more sharply defined. Values of R > 0.9 may be reached using the special techniques of
multilayer dielectric coating. In one of these techniques a glass plate is coated with
alternate layers of high and low refractive index materials so that each boundary presents a
large change of refractive index and hence a large reflection. If the optical thickness of
each layer is \/4 the emerging beams are all in phase and the reflected intensity is high.

Resolving Power of the Fabry — Perot Interferometer

Figure 12.8 shows that a value of R = 0.9 produces such narrow and sharply defined
fringes that if the incident beam has two components A and A — A\ the two sets of fringes
should be easily separated. The criterion for separation depends on the shape of the fringes:

STUDENTS-HUB.com Uploaded By: Jibreel Bornat


https://students-hub.com

344 Interference and Diffraction

Imax
1.0
05
>
‘@
c
g
IS
} }
Order m m+Am m+1 Order
Phase 0 § 281 2n Phase
2

Figure 12.9 Fabry-Perot interference fringes for two wavelength A and A — A\ are resolved at
order m when they cross at half their maximum intensity. Moving from order m to m + 1 changes the
phase 6 by 27 rad and the full ‘half-value” width of each maximum is given by Am = 264/, which is
also the separation between the maxima of A\ and A — A\ when the fringes are just resolved

the diffraction grating of p. 373 uses the Rayleigh criterion, but the fringes here are so
sharp that they are resolved at a much smaller separation than that required by Rayleigh.

Here the fringes of the two wavelengths may be resolved when they cross at half their
maximum intensities; that is, at I, = I,x/2 in Figure 12.9.

Using the expression

1
L sin? §/2
(1-R)

Il :Imax :

we see that I, = I',,x when § = 0 and I, = I;,,x/2 when the factor
4Rsin?6/2/(1 —R)* =1

The fringes are so narrow that they are visible only for very small values of 4 so we may
replace sin6/2 by §/2 in the expression

4Rsin?§/2/(1 —R)* =1
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to give the value

(1-R)
d1p = R1/2

as the phase departure from the maximum, 6 = 0, which produces the intensity I, = I1pax /2
for wavelength A. Our criterion for resolution means, therefore, that the maximum intensity
for A — A) is removed an extra amount 0, along the phase axis of Figure 12.9. This axis
also shows the order of interference m at which the wavelengths are resolved, together with
the order m + 1 which represents a phase shift of 6 = 27 along the phase axis.

In the mth order of interference we have

2d cos 0 = mA

and for fringes of equal inclination (f constant), logarithmic differentiation gives
A AXN = —m/Am

Now Am = 1 represents a phase change of 6 = 27 and the phase difference of 2.6/,
which just resolves the two wavelengths corresponds to a change of order

Am = 2.61/2/27’(’

Thus, the resolving power, defined as

A

mr  mnR'/?

m
AN ’ATJ " 61p (1-R)
The equivalent expression for the resolving power in the mth order for a diffracting

grating of N lines (interfering beams) is shown on p. 376 to be

A

ano N

SO wWe may express
N’ =7R'?/(1 —R)

as the effective number of interfering beams in the Fabry—Perot interferometer.
This quantity N is called the finesse of the etalon and is a measure of its quality. We see that

,_ 2m 1 _ separation between orders m and m + 1
26, 2 Am ‘half value’ width of mth order

Thus, using one wavelength only, the ratio of the separation between successive fringes to
the narrowness of each fringe measures the quality of the etalon. A typical value of N’ ~ 30.

Free Spectral Range

There is a limit to the wavelength difference A\ which can be resolved with the Fabry—
Perot interferometer. This limit is reached when A is such that the circular fringe for A in
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the mth order coincides with that for A — A\ in the m + 1th order. The pattern then loses its
unique definition and this value of A\ is called the free spectral range.
From the preceding section we have the expression

A __m
AN Am

and in the limit when A\ represents the free spectral range then
Am =1

and
AXN=—\/m

But m\ = 2d when 6 ~ 0 so the free spectral range
AN = —)\%/2d

Typically d ~ 1072 m and for \ (cadmium red) = 0.6438 microns we have, from 2d = m),
a value of

ma~3x 10*

Now the resolving power

so, for

the resolving power can be as high as 1 part in 10°.

Central Spot Scanning

Early interferometers recorded flux densities on photographic plates but the non-linear
response of such a technique made accurate resolution between two wavelengths tedious
and more difficult. This method has now been superseded by the use of photoelectronic
detectors which have the advantage of a superior and more reliable linearity. Moreover, the
response of such a device with controlled vibration of one mirror of the etalon allows the
variation of the intensity across the free spectral range to be monitored continuously.

The vibration of the mirror, originally electro-mechanical, is now most often produced
by using a piezoelectric material on which to mount one of the etalon mirrors. When a
voltage is applied to such a material it changes its length and the distance d between the
etalon mirrors can be varied. The voltage across the piezoelectric mount is tailored to
produce the desired motion.

Changing d by A/2 is equivalent to changing Am by 1, which corresponds to a scan of
the free spectral range, A\, when A/AX = |m/Am| (Figure 12.9).
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E = Etalon P = Pinhole
S = Source D = Detector
Sc = Screen

H ===

Sc Sc

Figure 12.10 Fabry—Perot etalon central spot scanning. The distance between the etalon mirrors
changes when one mirror vibrates on its piezoelectric mount. The free spectral range is scanned
over many vibration cycles at a central spot and a stationary trace is obtained on the oscilloscope
screen

One of the most common experimental arrangements is that of central spot scanning
(Figure 12.10). Where the earlier photographic technique recorded the flux density over a
wide region for a short period, central spot scanning focuses on a single point in space for a
long period over many cycles of the etalon vibration. Matching the time base of the
oscilloscope to the vibration period of the etalon produces a stationary trace on the screen
which can be measured directly in addition to being filmed for record purposes.

The Laser Cavity

The laser cavity is in effect an extended Fabry—Perot etalon. Mirrors coated with multi-
dielectric films described in the next section can produce reflection coefficients R ~ 0.99
and the amplified stimulated emission in the laser produces a beam which is continuously
reflected between the mirror ends of the cavity. The high value of R allows the amplitudes
of the beam in opposing directions to be taken as equal, so a standing wave system is
generated (Figure 12.11) to form a longitudinal mode in the cavity.

The superposed amplitudes after a return journey from one mirror to the other and back
are written for a wave number k and a frequency w = 27v as

E = Al(ei(wt—kx) _ ei(wt+kx))

=A (e ™ —e el = —2iA | sinkxe™’

of which the real part is E = 2A | sin kx sin wt.
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M = Highly reflecting mirror

Figure 12.11 A longitudinal mode in a laser cavity which behaves as an extended Fabry-Perot
etalon with highly reflecting mirrors at each end. The standing wave system acquires an extra \/2 for
unit change in the mode number m. A typical output is shown in Figure 12.12

If the cavity length is L, one round trip between the mirrors creates a phase change of
4L
¢=—2Lk+20=—""y+2a
c

where « is the phase change on reflection at each mirror.
For this standing wave mode to be maintained, the phase change must be a multiple of
27, so for m an integer

4L
¢:m27r:iy—2a
c

or

mc n ac
V=—4—
2L 2wl

When m changes to m + 1, the phase change of 27 corresponds to an extra wavelength A
for the return journey; that is, an extra A/2 in the standing wave mode. A series of
longitudinal modes can therefore exist with frequency intervals Av = ¢/2L determined by
a unit change in m.

The intensity profile for each mode and the separation Av is best seen by reference to
Figure 12.9, where ¢ = 4 is given by the unit change in the order of interference from m to
m—+ 1.

The intensity profile for each cavity mode is that of Figure 12.9, where the full width at
half maximum intensity is given by the phase change

2(1 - R)

261 = R1/2

where R is the reflection coefficient. This corresponds to a full width intensity change over
a frequency dv generated by the phase change

4L
do = o dv in the expression for ¢ above
c
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The width at half maximum intensity for each longitudinal mode is therefore given by

4rL 2(1 — R
ArL _2(1-R)

c V= R1/2

or
(1R
dv = pionL

For a laser 1 m long with R = 0.99, the longitudinal modes are separated by frequency
intervals

£ 15%10%Hz

Av =
2L

Each mode intensity profile has a full width at half maximum of

dv =102~ 45 x 10°Hz
27
For a He—Ne laser the mean frequency of the output at 632.8 nm is 4.74 x 10'4 Hz. The
pattern for Av and dv is shown in Figure 12.12, where the intensities are reduced under the
dotted envelope as the frequency difference from the mean is increased.
The finesse of the laser cavity is given by

Av  15x10%

—=—---~300
dv  45x10°

for the example quoted.

Intensity

¢ < Av > v
Mean frequency

Figure 12.12 Output of a laser cavity. A series of longitudinal modes separated by frequency
intervals Av = ¢/2L, where c is the velocity of light and L is the cavity length. The modes are
centred about the mean output frequency and are modulated under the dotted envelope. For a He-Ne
laser 1 m long the separation Av between the modes ~ 300 full widths of a mode intensity profile at
half its maximum value
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The intensity of each longitudinal mode is of course, amplified by each passage of the
stimulated emission. Radiation allowed from out of one end represents the laser output but
the amplification process is dominant and the laser produces a continuous beam.

Multilayer Dielectric Films

We have just seen that in the mth order of interference the resolving power of a Fabry—
Perot interferometer is given by

A/AX = mN'
where the finesse or number of interfering beams
N' =7R'?/(1 —=R) = nr/(1 — r?)

and r is the reflection coefficient of the inner surfaces of the etalon.

It is evident that as r — 1 the values of N’ and the resolving power become much larger.
The value of r can be increased to more than 99% by using a metallic coating on the inner
surfaces of the etalon or by depositing on them a multilayer of dielectric films with
alternating high and low refractive indices. For a given monochromatic electromagnetic
wave each layer or film has an optical thickness of A\/4.

The reflection coefficient r for such a wave incident on the surface of a higher refractive
index film is increased because the externally and internally reflected waves are in phase; a
phase change of 7 occurs only on the outer surface and is reinforced by the 7 phase change
of the wave reflected at the inner surface which travels an extra A/2 optical distance.

High values of r result from films of alternating high and low values of the refractive
index because reflections from successive boundaries are in phase on return to the front
surface of the first film. Those retarded an odd multiple of 7 by the extra optical path length
per film also have a 7 phase change on reflection to make a total of 27 rad.

We consider the simplest case of a monochromatic electromagnetic wave in a medium of
refractive index n 1, normally incident on a single film of refractive index n’, and thickness
d}. This film is deposited on the surface of a material of refractive index n’, which is called
a substrate (Figure 12.13). The phase lag for a single journey across the film is written 6.

The boundary conditions are that the components of the E and H fields parallel to a
surface are continuous across that surface. We write these field amplitudes as E; and
Hy = nEy for the forward-going wave to the right in Figure 12.13 and £, and H, = nE, for
the reflected wave going to the left.

We see that at surface 1 the boundary conditions for the electric field E are

Ef+En =Ef +Ey, (12.1a)
and for the magnetic field

mEp —mkEn :nllE}l —n\E, (12.1b)

where the negative sign for the reflected amplitude arises when the E x H direction of the
wave is reversed (see Figure 8.7).
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Film Substrate
Eq Ef Ef>
Erl ;1
nqy n\ ny

Figure 12.13 A thin dielectric film is deposited on a substrate base. At each surface an
electromagnetic wave is normally incident, as Eg, in a medium of refractive index n; and is reflected
as E;. A multilayer stack of such films, each of optical thickness /4 and of alternating high and low
refractive indices can produce reflection coefficients >99%

At surface 2 in Figure 12.13, E]Cl arrives with a phase lag of § with respect to E }1 at
surface 1 but the E/, wave at surface 2 has a phase 6 in advance of E, at surface 1, so we
have the boundary conditions

Ej e +E) " =E}, (12.1c)
and

i0

n{\Ej e —n{E) e® =n)E}, (12.14)

We can eliminate E }1 and E/, from equations (12.1a)—(12.1d) to give

E, ! E}
1+ = (cosé—i—in—,2 siné)ﬁ (12.2)
Ep n Eji
and
E E;
ny —ny = = (in) sin§ + n’, cos §) == (12.3)

which we can express in matrix form

1 n 1 |En _ | cosé isind/ny || 1 E_}z
ni —ny | Ep insiné  cosd ny | Ef
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] L=l

where r = E, /Ey; is the reflection coefficient at the first surface and r = E }2 /Ey is the
transmitted coefficient into medium n/, (a quantity we shall not evaluate).
The 2x2 matrix

We write this as

injsindé  cosé

. ,
M, = [ cos lsmé/nl]

relates r and ¢ across the first film and is repeated with appropriate values of n! for each
successive film. The product of these 2 x 2 matrices is itself a 2 x 2 matrix as with the
repetitive process we found in the optical case of p. 325.

Thus, for N films we have

1 1 1
[nl] + {—M}R_M1M2M3"'MN{n’N+1}T’ (12.4)

where R=E, /Es as before and T =F }( N41) /Es1 the transmitted coefficient
after the final film. Note, however, that E | in R is now the result of reflection from all the
film surfaces and that these are in phase.

The typical matrix M5 relates r to ¢ across the third film and the product of the matrices

M \MsMs---My =M = [M” Mlz}

My My

is a 2x2 matrix.
Eliminating T from the two simultaneous equations (12.4) we have, in terms of the
coefficients of M

R=— " (12.5)

where
A=ni (M +Mupny,,)
and
B= (M +Mnny,,)
If we now consider a system of two films, the first of higher refractive index ny and the

second of lower refractive index n;, where each has an optical thickness d = \/4, then the
phase 6 = /2 for each film and

MM, — [.0 i/nH] [io i/nﬂ _ [_,,L/nﬂ 0

ing 0 ny O 0 —np/ng
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A stack of N such pairs, 2N films in all with alternating ny and ny, produces

( L> 0
n
MMy - Moy = M M) = "

giving R the total reflection coefficient from equation (12.5) equal to

o) -Gy

GGy
— +
ng nr
We see that as long as ny # ny, then as N — oo, R — 1 and this value may be used in
our derivation of the expressions for the finesse and resolving power of the Fabry—Perot
interferometer.
Multilayer stacks using zinc sulphate (ny = 2.3) and cryolite (n, = 1.35) have achieved
R values > 99.5%.
Note that all the 2x2 matrices and their products have determinants equal to unity which

states that the column vectors represent a quantity which remains invariant throughout the
matrix transformations.

(Problem 12.2)

The Thin Film Optical Wave Guide

Figure 12.14 shows a thin film of width d and refractive index n along which light of
frequency v and wave number £ is guided by multiple internal reflections. The extent of the

Figure 12.14 A thin dielectric film or fibre acts as an optical wave guide. The reflection angle 6
must satisfy the relation nsin @ > n’, where n’ is the refractive index of the coating over the film of
refractive index n. Propagating modes have standing wave systems across the film as shown and
constructive interference occurs on the standing wave axis where the amplitude is a maximum.
Destructive interference occurs at the nodes
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wave guide is infinite in the direction normal to the page. The internal reflection angle 6
must satisfy

nsinf>n’

where n’ is the refractive index of the medium bounding the thin film surfaces. Each
reflected ray is normal to a number of wave fronts of constant phase separated by A, where
k = 2m/\ and constructive interference is necessary for any mode to propagate. Reflections
may take place at any pair of points P and O along the film and we examine the condition
for constructive interference by considering the phase difference along the path POQ,
taking into account a phase difference « introduced by reflection at each of P and Q.

Now
PO = cosf/d
and
0Q = POcos 20
so with
cos20 = 2cos? 6 — 1
we have

PO + OQ = 2dcos

giving a phase difference

2
Ap =g~ dp=—— (n2dcost) + 20
c
Constructive interference requires
Ap =m2m

where m is an integer, so we write

2
mZWZﬂI’lZdCOSQ—Z?TAm
c

where
Am =2a/2m

represents the phase change on reflection.
Radiation will therefore propagate only when

_ c(m+ Am)

0
o8 v2nd

form=20,1,2,3.
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The condition nsin @ > n' restricts the values of the frequency v which can propagate. If
0 =0,, for mode m and

cosf,, = (1 - sin® Om) 1/2

then
nsinf,, >n’
becomes
I 2 1/2
cosf, <|1— <—)
n
and v must satisfy
c(m+ Am)

e 2d(n2 _ n/2)1/2

The mode m = 0 is the mode below which v will not propagate, while Am is a constant
for a given wave guide. Each mode, Figure 12.14, is represented by a standing wave system
across the wave guide normal to the direction of propagation. Constructive interference
occurs on the axis of this wave system where the amplitude is a maximum and destructive
interference is indicated by the nodes.

Division of Wavefront

Interference Between Waves from Two Slits or Sources

In Figure 12.15 let S; and S, be two equal sources separated by a distance f, each
generating a wave of angular frequency w and amplitude a. At a point P sufficiently distant
from S| and S, only plane wavefronts arrive with displacements

y1 =asin (wt — kx;) from S;
and

y2 = asin (wt — kx;) from S,
so that the phase difference between the two signals at P is given by

2
5:]((162—161) :TW(XQ—)Q)

This phase difference 6, which arises from the path difference x, — x;, depends only on x1,
x, and the wavelength X\ and not on any variation in the source behaviour. This requires that
there shall be no sudden changes of phase in the signal generated at either source — such
sources are called coherent.
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8= 2T”(Xz—Xl) = Constant

2
8= SF0G-X)

= Constant

Figure 12.15 Interference at P between waves from equal sources S; and S, separation f, depends
only on the path difference x, — x;. Loci of points with constant phase difference § = (27/X)
(x2 — x1) are the family of hyperbolas with S; and S, as foci

The superposition of displacements at P gives a resultant
R =y +y, =alsin (wr — kx;) + sin (wt — kx;)]

Writing X = (x; + x2)/2 as the average distance from the two sources to point P we
obtain

kxi =kX —6/2 and ke, =kX +6/2

to give
R = afsin (wt — kX + 6/2) + sin (wr — kX — 6/2)]
= 2asin (wt — kX) cos /2

and an intensity

I = R? = 4a’sin® (wr — kX) cos* §/2
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When
cos - = =*1
the spatial intensity is a maximum,

[ = 4a*

and the component displacements reinforce each other to give constructive interference.
This occurs when

N>

(x2—x1)=nm

>3

that is, when the path difference
Xo — X1 = nA
When

Z=0
cos 5

the intensity is zero and the components cancel to give destructive interference. This
requires that

g:(2n+1) =—(x2—x1)

>0

™
2
or, the path difference

Xy —x1=(n+3HA

The loci or sets of points for which x, — x; (or §) is constant are shown in Figure 12.15 to
form hyperbolas about the foci S| and S, (in three dimensions the loci would be the
hyperbolic surfaces of revolution).

Interference from Two Equal Sources of Separation f
Separation f > M. Young's Slit Experiment

One of the best known methods for producing optical interference effects is the Young’s slit
experiment. Here the two coherent sources, Figure 12.16, are two identical slits S| and S,
illuminated by a monochromatic wave system from a single source equidistant from S and
S,. The observation point P lies on a screen which is set at a distance / from the plane of
the slits.

The intensity at P is given by

I = R? = 4a” cos?

N>
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S,” Sfsing~ sz
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0 Z
toP
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————————————————— I el €
toP

Figure 12.16 Waves from equal sources S; and S, interfere at P with phase difference 6 = (27/))
(x2 —x1) = (27/N\) fsinf = (2w/X) f(z/!). The distance [ > z and f so S1P and S,P are effectively
parallel. Interference fringes of intensity I = I, cos2§/2 are formed in the plane PP,

and the distances PPy = z and slit separation f are both very much less than / (experi-
mentally ~ 103 /). This is indicated by the break in the lines x; and x, in Figure 12.16
where S|P and S;P may be considered as sufficiently parallel for the path difference to be

written as

X3 — X :fsinH:f§

to a very close approximation.

Thus
2 2 2
5:7”()@ —x1) :%fﬁn&:%f%
If
1)
I = 4a’®cos® =
a“ cos 5
then
I=1y=4a> when cos—-=1
that is, when the path difference
f%:o, X, 42N, ...4n)
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and
I =0 when 0055:0

that is, when

A 3\
f% =3, £, £+

Taking the point Py as z = 0, the variation of intensity with z on the screen PoP will be
that of Figure 12.16, a series of alternating straight bright and dark fringes parallel to the
slit directions, the bright fringes having I = 4a? whenever z = nAl/f and the dark fringes
I =0, occurring when z = (n+1)Al/f, n being called the order of interference of the
fringes. The zero order n = 0 at the point P, is the central bright fringe. The distance on the
screen between two bright fringes of orders n and n 4 1 is given by

Al A

o f

which is also the physical separation between two consecutive dark fringes. The spacing
between the fringes is therefore constant and independent of n, and a measurement of the
spacing, [ and f determines \.

The intensity distribution curve (Figure 12.17) shows that when the two wave trains
arrive at P exactly out of phase they interfere destructively and the resulting intensity or
energy flux is zero. Energy conservation requires that the energy must be redistributed, and
that lost at zero intensity is found in the intensity peaks. The average value of cos?§/2 is %,
and the dotted line at / = 2a? is the average intensity value over the interference system
which is equal to the sum of the separate intensities from each slit.

There are two important points to remember about the intensity interference fringes
when discussing diffraction phenomena; these are

Zop1 — Zn = [(n+ 1) — 1]

e The intensity varies with cos? /2.

e The maxima occur for path differences of zero or integral numbers of the wavelength,
whilst the minima represent path differences of odd numbers of the half-wavelength.

T

2a2 - _ L L2 _ 4a2

l

bn -3t -n 0« 3t 5n —> 0

Figure 12.17 Intensity of interference fringes is proportional to cos? §/2, where § is the phase
difference between the interfering waves. The energy which is lost in destructive interference
(minima) is redistributed into regions of constructive interference (maxima)
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Figure 12.18 The point source A produces the cos? interference fringes represented by the solid
curve A’C’. Other points on the line source AB produce cos? fringes (the displaced broken curves B’)
and the observed total intensity is the curve DE. When the points on AB extend A’B’ to C the fringes
disappear and the field is uniformly illuminated

Spatial Coherence In the preceding section nothing has been said about the size of the
source producing the plane wave which falls on S| and S,. If this source is an ideal point
source A equidistant from S; and S,, Figure 12.18, then a single set of cos? fringes is
produced. But every source has a finite size, given by AB in Figure 12.18, and each point
on the line source AB produces its own set of interference fringes in the plane PPy; the eye
observing the sum of their intensities.

If the solid curve A’C’ is the intensity distribution for the point A of the source and the
broken curves up to B’ represent the corresponding fringes for points along AB the
resulting intensity curve is DE. Unless A’B’ extends to C the variations of DE will be seen

as faint interference bands. These intensity variations were quantified by Michelson, who
defined the

I
Visibility = P
max min
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The cos? fringes from a point source obviously have a visibility of unity because the
minimum intensity /,,;, = O.

When A’B’ of Figure 12.18 = A’C, the point source fringe separation (or a multiple of
it) the field is uniformly illuminated, fringe visibility = 0 and the fringes disappear.

This occurs when the path difference

AS,; —BS; = ABsiny = )\/2 where AS,; = AS;.

Thus, the requirement for fringes of good visibility imposes a limit on the finite size of the
source. Light from points on the source must be spatially coherent in the sense that
ABsiny < A\/2 in Figure 12.18.

But for f < d,

siny = f/2d
so the coherence condition becomes

siny = f/2d < \/2AB
or
AB/d < \/f

where AB/d measures the angle subtended by the source at the plane S;S,.
Spatial coherence therefore requires that the angle subtended by the source

< Mf

where f is the linear size of the diffracting system. (Note also that A/f measures 6(~ z/I)
the angular separation of the fringes in Figure 12.16.)

As an example of spatial coherence we may consider the production of Young’s
interference fringes using the sun as a source.

The sun subtends an angle of 0.018 rad at the earth and if we accept the approximation

d ~faf
with A =0.5pum ,
we have
0.5
~—— 14
I~ 30.01) ~ 4Hm

This small value of slit separation is required to meet the spatial coherence condition.

Separation f < A(kf < 1 where k = 27/ \)

If there is a zero phase difference between the signals leaving the sources S; and S, of
Figure 12.16 then the intensity at some distant point P may be written

cos? kfsind

6
I:4(120052§:4IS ~ 41,
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where the path difference S,P — S|P =fsinf and I = a? is the intensity from each
source.

We note that, since f < A\(kf < 1), the intensity has a very small 6 dependence and the
two sources may be effectively replaced by a single source of amplitude 2a.

Dipole Radiation (f < \)

Suppose, however, that the signals leaving the sources S| and S, are anti-phase so that their
total phase difference at some distant point P is
6= (60 + kfsind)

where 6o = 7 is the phase difference introduced at source.
The intensity at P is given by

1)
1=41I, c02§—41 cos <

— 4] sin? (kfsm@)

Iy(kfsin6)?

m kfsin9
2 2

because
kf <1

Two anti-phase sources of this kind constitute a dipole whose radiation intensity / < I
the radiation from a single source, when kf < 1. The efficiency of radiation is seen to
depend on the product kf and, for a fixed separation fthe dipole is a less efficient radiator at
low frequencies (small k) than at higher frequencies. Figure 12.19 shows the radiation
intensity / plotted against the polar angle 6 and we see that for the dipole axis along the
direction 6 = /2, completely destructive interference occurs only on the perpendicular
axis # = 0 and 6 = 7. There is no direction (value of 6) giving completely constructive
interference. The highest value of the radiated intensity occurs along the axis § = /2 and
6 = 37/2 but even this is only

1= (kf)*I

where

kf <1

The directional properties of a radiating dipole are incorporated in the design of
transmitting aerials. In acoustics a loudspeaker may be considered as a multi dipole source,
the face of the loudspeaker generating compression waves whilst its rear propagates
rarefactions. Acoustic reflections from surrounding walls give rise to undesirable
interference effects which are avoided by enclosing the speaker in a cabinet. Bass reflex
or phase inverter cabinets incorporate a vent on the same side as the speaker face at an
acoustic distance of half a wavelength from the rear of the speaker. The vent thus acts as a
second source in phase with the speaker face and radiation is improved.
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=z
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.............. Imax = Is (K F)?
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0= 1 C 0=0
f<<A
kf<<1
dipole
axis

Figure 12.19 Intensity I versus direction @ for interference pattern between waves from two equal
sources, 7 rad out of phase (dipole) with separation f < \. The dipole axis is along the direction
0=+m/2

(Problems 12.3, 12.4, 12.5)

Interference from Linear Array of N Equal Sources

Figure 12.20 shows a linear array of N equal sources with constant separation f generating
signals which are all in phase (69 = 0). At a distant point P in a direction 6 from the
sources the phase difference between the signals from two successive sources is given by

2
6:77rfsin9

and the resultant at P is found by superposing the equal contribution from each source with
the constant phase difference § between successive contributions.
But we found from Figure 1.11 that the resultant of such a superposition was given by
sin (N6/2)
= qqdq—
sin (6/2)
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Nf f

Nfsin@
f sine

Figure 12.20 Linear array of N equal sources separation f radiating in a direction 6 to a distant
point P. The resulting amplitude at P (see Figure 1.11) is given by

R =a[sinN(6/2)/sin (6/2)]
where a is the amplitude from each source and
6= (2w/X\)fsind

is the common phase difference between successive sources

where a is the signal amplitude at each source, so the intensity may be written

R g2 sin? (N6/2) _ sin? (N7if sin@/\)
sin” (6/2) * sin? (f sin6/)\)

sin>? NG

sin? 3

:IS

where I is the intensity from each source and 3 = 7if sin6/\.
If we take the case of N = 2, then

sin? 20

I=1
Ssinzﬁ

= 41 cos’ B = 41, cos?

N>

which gives us the Young’s Slit Interference pattern.

We can follow the intensity pattern for N sources by considering the behaviour of the
term sin> N3/sin’ 3.
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We see that when

ﬂzgsinG:Oinizn,ew.

i.e. when
fsinf =0, £A, £2\... £ nA

constructive interference of the order n takes place, and

sin?’NgG  N2p?
—
sin? 3 (32

—>N2

giving
I = N2,
that is, a very strong intensity at the Principal Maximum condition of

fsinf = nA
We can display the behaviour of the sin’> N / sin? 3 term as follows

Numerator sin® NS is zero for NG — Ox...Nw...2Nw

! ! !

Denominator sin” 3 is zero for 6 — 0 ... = ... 27

The coincidence of zeros for both numerator and denominator determine the Principal
Maxima with the factor N2 in the intensity, i.e. whenever f sin @ = n\.

Between these principal maxima are N — 1 points of zero intensity which occur
whenever the numerator sin> N3 = 0 but where sin’  remains finite.

These occur when

. A2 A
fsmeN7 N coo(n l)N

The N — 2 subsidiary maxima which occur between the principal maxima have much
lower intensities because none of them contains the factor N2. Figure 12.21 shows the
intensity curves for N = 2,4,8 and N — oc.

Two scales are given on the horizontal axis. One shows how the maxima occur at the
order of interference n = f sin /. The other, using units of sin § as the ordinate displays
two features. It shows that the separation between the principal maxima in units of sin 6 is
A/f and that the width of half the base of the principal maxima in these units is A\/N f (the
same value as the width of the base of subsidiary maxima). As N increases not only does
the principal intensity increase as N2 but the width of the principal maximum becomes
very small.

As N becomes very large, the interference pattern becomes highly directional, very
sharply defined peaks of high intensity occurring whenever sin § changes by A/f.
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Figure 12.21 Intensity of interference patterns from linear arrays of N equal sources of separation
f. The horizontal axis in units of f sin §/X gives the spectral order n of interference. The axis in units
of sin @ shows that the separation between principal maxima is given by sinf = A\/f and the half-
width of the principal maximum is given by sin§ = A/Nf

The directional properties of such a linear array are widely used in both transmitting and
receiving aerials and the polar plot for N = 4 (Figure 12.22) displays these features. For N
large, such an array, used as a receiver, forms the basis of a radio telescope where the
receivers (sources) are set at a constant (but adjustable) separation f and tuned to receive a
fixed wavelength. Each receiver takes the form of a parabolic reflector, the axes of which
are kept parallel as the reflectors are oriented in different directions. The angular separation
between the directions of incidence for which the received signal is a maximum is given by

sinf = \/f.

(Problems 12.6, 12.7)

Diffraction

Diffraction is classified as Fraunhofer or Fresnel. In Fraunhofer diffraction the pattern is
formed at such a distance from the diffracting system that the waves generating the pattern
may be considered as plane. A Fresnel diffraction pattern is formed so close to the
diffracting system that the waves generating the pattern still retain their curved
characteristics.
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1Sources

Figure 12.22 Polar plot of the intensity of the interference pattern from a linear array of four
sources with common separation f = A\/2. Note that the half-width of the principal maximum is
0 = 7/6 satisfying the relation sin® = A\/Nf and that the separation between principal maxima
satisfies the relation that the change in sinf = A\/f

Fraunhofer Diffraction

The single narrow slit. Earlier in this chapter it was stated that the difference between
interference and diffraction is merely one of scale and not of physical behaviour.

Suppose we contract the scale of the N equal sources separation f of Figure 12.20 until
the separation between the first and the last source, originally Nf, becomes equal to a
distance d where d is now assumed to be the width of a narrow slit on which falls a
monochromatic wavefront of wavelength A where d ~ A. Each of the large number N equal
sources may now be considered as the origin of secondary wavelets generated across the
plane of the slit on the basis of Huygens’ Principle to form a system of waves diffracted in
all directions.

When these diffracted waves are focused on a screen as shown in Figure 12.23 the
intensity distribution of the diffracted waves may be found in terms of the aperture of the
slit, the wavelength X and the angle of diffraction . In Figure 12.23 a plane light wave falls
normally on the slit aperture of width d and the waves diffracted at an angle 6 are brought
to focus at a point P on the screen PP(. The point P is sufficiently distant from the slit for all
wavefronts reaching it to be plane and we limit our discussion to Fraunhofer Diffraction.

Finding the amplitude of the light at P is the simple problem of superposing all the small
contributions from the N equals sources in the plane of the slit, taking into account the
phase differences which arise from the variation in path length from P to these different
sources. We have already solved this problem several times. In Chapter 10 we took it as an
example of the Fourier transform method but here we reapply the result already used in this
chapter on p. 364, namely that the intensity at P is given by

.2
sin“ Nj3 T

where NB =—-Nfsinf
sin? 3 b A !

=1,

is half the phase difference between the contributions from the first and last sources. But
now N f = d the slit width, and if we replace 3 by o where o = (/) d sin 6 is now half
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Figure 12.23 A monochromatic wave normally incident on a narrow slit of width d is diffracted
through an angle 6 and the light in this direction is focused at a point P. The amplitude at P is the
superposition of all the secondary waves in the plane of the slit with their appropriate phases. The
extreme phase difference from contributing waves at opposite edges of the slit is ¢ =
2rdsinf/\ = 2«

the phase difference between the contributions from the opposite edges of the slit, the
intensity of the diffracted light at P is given by

] — sin? (/\)dsind sin? o
~° sin?(x/AN)dsinf  sin®(a/N)

For N large

and we have

sin’ sin?

I=N?I, — =1

2
(recall that in the Fourier Transform derivation on p. 289,

d*h?
= 4n2

Iy

where /& was the amplitude from each source).
Plotting I = Iy(sin® /) with o = (7/\)d sin @ in Figure 12.24 we see that its pattern
is symmetrical about the value
a=60=0

where I = I because sina /v — 1 as &« — 0. The intensity I = 0 whenever sin « = 0 that
is, whenever « is a multiple of 7 or

«@ :l;dsiné =47 + 27 + 37, etc.
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Figure 12.24 Diffraction pattern from a single narrow slit of width d has an intensity I =
Iysin?a/a? where o = wdsin /A

giving
dsinf = £\ £2)\ £ 3\ etc.
This condition for diffraction minima is the same as that for interference maxima
between two slits of separation d, and this is important when we consider the problem of

light transmission through more than one slit.
The intensity distribution maxima occur whenever the factor sin” o/ has a maximum;

that is, when
d /sina 2_ d /sina _ 0
da « da « -

cosa sinao
b -0

or

a a?

This occurs whenever o = tan o, and Figure 12.25 shows that the roots of this equation
are closely approximated by ov = £37/2, £57/2, etc. (see problem at end of chapter on
exact values).

Table 12.1 shows the relative intensities of the subsidiary maxima with respect to the
principal maximum /.

The rapid decrease in intensity as we move from the centre of the pattern explains why
only the first two or three subsidiary maxima are normally visible.

Scale of the Intensity Distribution

The width of the principal maximum is governed by the condition d sin § = £\. A constant
wavelength A\ means that a decrease in the slit width d will increase the value of sin # and
will widen the principal maximum and the separation between subsidiary maxima. The
narrower the slit the wider the diffraction pattern; that is, in terms of a Fourier transform the
narrower the pulse in x-space the greater the region in k- or wave number space required to
represent it.
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tan o y=a

INE]
N

Figure 12.25 Position of principal and subsidiary maxima of single slit diffraction pattern is given
by the intersections of y = a« and y = tan«

Table 12.1
sin® o Iysin? «
@ a? a?
1 Iy
3 4 I()
2 Or? 22.2
St 4 10
2 2572 61.7
I 4 I()
2 4972 121

(Problems 12.8, 12.9)

Intensity Distribution for Interference with Diffraction
from N Identical Slits

The extension of the analysis from the example of one slit to that of N equal slits of width d
and common spacing f, Figure 12.26, is very simple.
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o ———

—>

Plane wave front normally incident on slits

/=
Plane of a? sin?B
focusing

lens

Figure 12.26 Intensity distribution for diffraction by N equal slits is

sin? asin® Nj
a? sin?p

I=1I,

the product of the diffraction intensity for one slit, Iosin?a/a? and the interference intensity
between N sources sin? N3/sin? 3, where o = (7/\)dsin6 and 8 = (7/)) fsin6

To obtain the expression for the intensity at a point P of diffracted light from a single
slit we considered the contributions from the multiple equal sources across the plane of the
slit.

We obtained the result

by contracting the original linear array of N sources of spacing f on p. 364. If we expand the
system again to recover the linear array, where each source is now a slit giving us the
diffraction contribution

we need only insert this value at / in the original expression for the interference intensity,

sin? Nj3

I1=1
) sin?g

STUDENTS-HUB.com Uploaded By: Jibreel Bornat


https://students-hub.com

372 Interference and Diffraction

on p. 364 where
T
=—fsinf
B=11
to obtain, for the intensity at P in Figure 12.26, the value

sin® asin? NG
I=1 B . 2, 0
«@ sin“3

where
a= ;d sin 6

Note that this expression combines the diffraction term sin? o / a2 for each slit (source) and
the interference term sin’> N3 / sin? B from N sources (which confirms what we expected
from the opening paragraphs on interference). The diffraction pattern for any number of
slits will always have an envelope

sin? o

a?

(single slit diffraction)

modifying the intensity of the multiple slit (source) interference pattern

sin? N3
sin’ 3

Fraunhofer Diffraction for Two Equal Slits (N = 2)
When N = 2 the factor

sin> NG
sin® 3

=4cos’f8

so that the intensity

sin? o

1 =4I, cos’ 3

ol
the factor 4 arising from N2 whilst the cos? 3 term is familiar from the double source
interference discussion. The intensity distribution for N = 2, f = 2d, is shown in Figure 12.27.
The intensity is zero at the diffraction minima when dsinf = n\. It is also zero at the
interference minima when f sin = (n + ).

At some value of 6 an interference maximum occurs for f sin @ = n\ at the same position
as a diffraction minimum occurs for d sin = mA.
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0 1 2 3 4 —> n
2L —> dsing

>

Figure 12.27 Diffraction pattern for two equal slits, showing interference fringes modified by the
envelope of a single slit diffraction pattern. Whenever diffraction minima coincide with interference
maxima a fringe is suppressed to give a ‘missing order’ of interference

In this case the diffraction minimum suppresses the interference maximum and the order
n of interference is called a missing order.
The value of n depends upon the ratio of the slit spacing to the slit width for

ﬂ _ [sinf
m\  dsin@
i.e.
n_f_B8
m d «
Thus, if
f
—=2
d

the missing orders will be n = 2,4,6, 8, etc. for m = 1,2, 3,4, etc.
The ratio

ISH RN
SN

governs the scale of the diffraction pattern since this determines the number of interference
fringes between diffraction minima and the scale of the diffraction envelope is governed by a.

(Problem 12.10)
Transmission Diffraction Grating (N Large)

A large number N of equivalent slits forms a transmission diffraction grating where the
common separation f between successive slits is called the grating space.
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single slit

(‘ . / diffraction envelope

) N n = spectral order

The intensity of each

\ spectral line contains
the factor N2

n:Oln:l n=2n=3

N- 2 subsidiary maxima

Figure 12.28 Spectral line of a given wavelength produced by a diffraction grating loses
intensity with increasing order n as it is modified by the single slit diffraction envelope. At
the principal maxima each spectral line has an intensity factor N2 where N is the number of lines in
the grating

Again, in the expression for the intensity

sin® a sin>?Ng

a?  sin?p

1=1,

the pattern lies under the single slit diffraction term (Figure 12.28).

sin® o

2
The principal interference maxima occur at

fsinf = n\

having the factor N2 in their intensity and these are observed as spectral lines of order n.
We see, however, that the intensities of the spectral lines of a given wavelength decrease
with increasing spectral order because of the modifying sin” o/ envelope.

Resolving Power of Diffraction Grating

The importance of the diffraction grating as an optical instrument lies in its ability to
resolve the spectral lines of two wavelengths which are too close to be separated by the
naked eye. If these two wavelengths are A and A + d\ where d\/\ is very small the
Resolving Power for any optical instrument is given by the ratio A/d\.
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Two such lines are just resolved, according to Rayleigh’s Criterion, when the maximum
of one falls upon the first minimum of the other. If the lines are closer than this their
separate intensities cannot be distinguished.

If we recall that the spectral lines are the principal maxima of the interference pattern
from many slits we may display Rayleigh’s Criterion in Figure 12.29 where the nth order
spectral lines of the two wavelengths are plotted on an axis measured in units of sin §. We
have already seen in Figure 12.21 that the half width of the spectral lines (principal
maxima) measured in such units is given by A/Nf where N is now the number of
grating lines (slits) and fis the grating space. In Figure 12.29 the nth order of wavelength A
occurs when

fsinf = nA

nth order spectral
line for A + dA

nth order spectral
line for A

f(sin@+ Asing) = n(A + di)

fsing = nA

sing
> <
A(sing) = MINFf

Figure 12.29 Rayleigh’s criterion states that the two wavelengths A and A + d\ are just resolved
in the nth spectral order when the maximum of one line falls upon the first minimum of the other as
shown. This separation, in units of sin 6, is given by A/Nf where N is the number of diffraction lines
in the grating and f is the grating space. This leads to the result that the resolving power of the
grating A\/d\ = nN

STUDENTS-HUB.com Uploaded By: Jibreel Bornat


https://students-hub.com

376 Interference and Diffraction

whilst the nth order for A + d\ satisfies the condition
flsin@ + A(sin )] = n(A 4 d\)
so that
fA(sin€) = ndA

Rayleigh’s Criterion requires that the fractional change

A(sinf) = Nif

so that

A
A(sinf) = ndX\ = —
fA(sinf) =n N

Hence the Resolving Power of the diffraction grating in the nth order is given by

Ay
o

Note that the Resolving Power increases with the number of grating lines N and the
spectral order n. A limitation is placed on the useful range of n by the decrease of intensity
with increasing n due to the modifying diffraction envelope

sin? o
2

(Fig. 12.28)

Resolving Power in Terms of the Bandwidth Theorem

A spectral line in the nth order is formed when fsinf = nA where fsinf is the path
difference between light coming from two successive slits in the grating. The extreme path
difference between light coming from opposite ends of the grating of N lines is therefore
given by

Nfsinf = Nn)

and the time difference between signals travelling these extreme paths is

_Nn)\
o

At

where c is the velocity of light.
The light frequency v = ¢/ has a resolvable differential change

|AN| c
= C =
Az Nn)

|Av|

because AN/ = 1/Nn (from the inverse of the Resolving Power).
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Hence
¢ 1
YT Nnx T At
or Av At = 1 (the Bandwidth Theorem).

Thus, the frequency difference which can be resolved is the inverse of the time difference
between signals following the extreme paths

(AvAr=1 is equivalent of course to Aw At = 27)

If we now write the extreme path difference as
Nn) = Ax
we have, from the inverse of the Resolving Power, that
AN 1
A Nn

SO

AN (D) Ak 11
A2 A 2r  Nn\ Ax
where the wave number k = 27/ \.

Hence we also have

Ax Ak =2m

where Ak is a measure of the resolvable wavelength difference expressed in terms of the
difference Ax between the extreme paths.

On pp. 70 and 71 we discussed the quality factor Q of an oscillatory system. Note that
the resolving power may be considered as the Q of an instrument such as the diffraction
grating or a Fabry—Perot cavity for

A

w

14
A)\:’B’:E:Q

(Problems 12.11, 12.12, 12.13, 12.14)

Fraunhofer Diffraction from a Rectangular Aperture

The value of the Fourier transform method of Chapter 10 becomes apparent when we
consider plane wave diffraction from an aperture which is finite in two dimensions.
Although Chapter 10 carried through the transform analysis for the case of only one
variable it is equally applicable to functions of more than one variable.
In two dimensions, the function f(x) becomes the function f(x,y), giving a transform
F(ky,ky) where the subscripts give the directions with which the wave numbers are
associated.
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/

Plane wavefront Plane of

S Plane of
normally incident focusing diffraction
on rectangular y lens image
aperture
/ka?———::;':
_>T ——___ | _Lightdiffracted
in direction k
b focuses at P
l 7 /

Figure 12.30 Plane waves of monochromatic light incident normally on a rectangular aperture are
diffracted in a direction k. All light in this direction is brought to focus at P in the image plane. The
amplitude at P is the superposition of contributions from all the typical points, x, y in the aperture
plane with their appropriate phase relationships

In Figure 12.30 a plane wavefront is diffracted as it passes through the rectangular
aperture of dimensions d in the x-direction and b in the y-direction. The vector k, which is
normal to the diffracted wavefront, has direction cosines [ and m with respect to the x- and
y-axes respectively. This wavefront is brought to a focus at point P, and the amplitude at P
is the superposition of the contributions from all points (x,y) in the aperture with their
appropriate phases.

A typical point (x,y) in the aperture may be denoted by the vector r; the difference in
phase between the contribution from this point and the central point O of the aperture is, of
course, (2w/)\) (path difference). But the path difference is merely the projection of the
vector r upon the vector k, and the phase difference is k - r = (27/X)(Ix + my), where
Ix + my is the projection of r on k.

If we write

2nl 2
Tﬂzkx and " =k,

we have the Fourier transform in two dimensions

1 ~ > —i(kx+k,
Flky ky) = e Jm Jw S y)e Erh) dxdy

where f(x,y) is the amplitude of the small contributions from the points in the aperture.
Taking f(x,y) equal to a constant a, we have F(ky, ky) the amplitude in k-space at P

a +d/2 +b/2 ) )
__ 7 J J e*lk,xx e*lkvy dx dy

2m)? )ap )op
_a sin o sin 3
4q2 a pB
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where
_wld_kd
TN T2
and
mmb kb
=T

Physically the integration with respect to y evaluates the contribution of a strip of the
aperture along the y direction, and integrating with respect to x then adds the contributions
of all these strips with their appropriate phase relationships.

The intensity distribution of the rectangular aperture is given by

sin? asin? 3

I=h=
and relative intensities of the subsidiary maxima depend upon the product of the two
diffraction terms sin® o/ and sin® 3/32.

These relative values will therefore be numerically equal to the product of any two terms
of the series

The diffraction pattern from such an aperture together with a plan showing the relative
intensities is given in Figure 12.31.

Fraunhofer Diffraction from a Circular Aperture

Diffraction through a circular aperture presents another two-dimensional problem to which
the Fourier transform technique may be applied.

As in the case of the rectangular aperture, the diffracted plane wave propagates in a
direction k with direction cosines / and m with respect to the x- and y-axes (Figure 12.32a).
The circular aperture has a radius ry and any point in it is specified by polar coordinates
(r,0) where x = rcos @ and y = rsin . This plane wavefront in direction k is focused at a
point P in the plane of the diffraction pattern and the amplitude at P is the superposition of
the contributions from all points (r,6) in the aperture with their appropriate phase
relationships. The phase difference between the contribution from a point defined (x, y) and
that from the central point of the aperture is

2 2
; (path difference) = ; (Ix +my) = kyx + kyy (12.6)
as with the rectangular aperture, so that the Fourier transform becomes

F(kxk”)_wlr)zj ) r@ Flox,y) e k) 4y dy (12.7)

—00 —00
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Wide diffraction pattern from y dimension

Figure 12.31 The distribution of intensity in the diffraction pattern from a rectangular aperture is
seen as the product of two single-slit diffraction patterns, a wide diffraction pattern from the narrow
dimension of the slit and a narrow diffraction pattern from the wide dimension of the slit. This
‘rotates’ the diffraction pattern through 90° with respect to the aperture

If we use polar coordinates, f(x,y) becomes f(r,§) and dx dy becomes rdr df, where the
limits of § are from O to 27. Moreover, because of the circular symmetry we may simplify
the problem. The amplitude or intensity distribution along any radius of the diffraction
pattern is sufficient to define the whole of the pattern, and we may choose this single radial
direction conveniently by restricting k to lie wholly in the xz plane (Figure 12.32b) so that
m =k, = 0 and the phase difference is simply

2
—Wlx =k.x =k,rcosf
A
Assuming that f(r, 6) is a constant amplitude «a at all points in the circular aperture, the

transform becomes

27 1o )

Flky) = — J do J e “Hkarcosty g (12.8)
27 0 0

This can be integrated by parts with respect to r and then term by term in a power series

for cos 6, but the result is well known and conveniently expressed in terms of a Bessel

function as

ar
Flky) = k—ojl(ero)

X

where J(kyro) is called a Bessel function of the first order.
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Figure 12.32 (a) A plane monochromatic wave diffracted in a direction k from a circular aperture is
focused at a point P in the image plane. Contributions from all points x, y in the aperture superpose
at P with appropriate phase relationships. (b) The direction k of (a) is chosen to lie wholly in the xz-
plane to simplify the analysis. No generality is lost because of circular symmetry. The variation of the
amplitude of diffracted light along any one radius determines the complete pattern

Bessel functions are series expansions which are analogous to sine and cosine functions.
Where sines and cosines are those functions which satisfy rectangular boundary conditions
defined in Cartesian coordinates, Bessel functions satisfy circular or cylindrical boundary
conditions requiring polar coordinates.

Standing waves on a circular membrane, e.g. a drum, would require definition in terms of
Bessel functions.

The Bessel function of order n is written

7,0) x" 1 x2 n x4
2(x) = —
2"n! 2-2n+2 2-4-2n+2-2n+4

so that

X X3 )CS x7

=27 224 " 2247  224%678

Jl(x)

The expression a*r3[J1(kyro)/kro] 2, which measures the intensity along any radius of the
diffraction pattern due to a circular aperture is normalized and plotted in Figure 12.33.
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1.22x z.izn > 5T 1ysing)
61L  116A—>  1sin6,

Figure 12.33 Intensity of the diffraction pattern from a circular aperture of radius ry versus r, the
radius of the pattern. The intensity is proportional to [Jl(ero)/ero]z, where J is Bessel’s function
of order 1. The pattern consists of a central circular principal maximum surrounded by a series of
concentric rings of minima and subsidiary maxima of rapidly diminishing intensity

J1(kyrg) has an infinite number of zeros, and the diffraction pattern is formed by an
infinite number of light and dark concentric rings. The first dark band will occur at the first
zero of J(kyro) which is given by k,ro = 1.219m.

However,

2 2
kxl"o :—ﬂ-lr() = —Frosin9z’

A A

where 6. is the angle between the vector k and the z-axis and defines the angle of
diffraction. The first minimum therefore occurs at r sin Hz’ = 0.61) and the next minimum
at rosin @] = 1.16\.

If the aperture were square with a side length 2r (the diameter of the circle) the first dark
fringe would be at rpsinf] = 0.5X and the second at rysin§, = .

As the radius of the circular aperture is reduced the value of 6. for the first minimum
is increased and the whole pattern expands. This reminds us that a reduction of the pulse in
Xx-space requires an increase in wave number or k-space to represent it.

We may write equation (12.8) as

ro 27 )
F(ky) aJ J e Tikereost 4rq0

21 Jo Jo

where foz T eTkereosfgy — 2o (kor) and Jp is the Bessel function of order zero.
Then
o
F(ky) = aJ Jo(kyr)rdr
0
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Now J; (k,r) and Jo(k,r)rdr are related by

k1o
J Jo(kerYkyrd(ker) = kerody (kero)

0
giving
2.]1 (ero)
F(ky) = anrl | =22
(ky) = anrg [ ko
where 7 is the radius of the aperture.
The Intensity
o Jl (er()) 2
I=1
kx}"()

with the curve shown in Figure 12.33.

Fraunhofer Far Field Diffraction

If we remove the focusing lens in Figure 12.32 and leave the aperture open or place the
lens within it we have the conditions for far field diffraction, Figure 12.34, where R() the
distance from O to P’ is > distances in the aperture and image planes from the optic axis.
The aperture is uniformly illuminated by a distant monochromatic source and a small area
ds = dxdy in the aperture is < A2, where ) is the wavelength.

P/(X.Y'\Z)

R/

Figure 12.34 In Fraunhofer far field diffraction the distance from the aperture to the image point
P’ is > distances in the aperture and image planes from the optic axis. The electric field at P’ is the
integral of the spherical waves from small areas ds in the aperture plane and the resulting intensity
pattern is that of Figure 12.33. It is known as the Airy disc
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The electric field at P’ due to the spherical wave from d5 is

E i
dEy = o e N ds

Where Ee™ is the field at ds
Now

RP=2"+( -0+ (/-3
and
R/2 _ Z/Z + x/2 +y/2
5 =
which combine to give

R = Ro[1 + (¥ +37)/RG — 2( + Y'5) /Rg'"?

and R > (¥* +77)
SO we write

R =Ryl = 20’ +y5)/R5]'"?
and if we neglect higher terms

R = Ry[l — (Y% +5)/Rg]

We use this value for R’ in the expression for dE,, to give the total field at P’ as

E eiwt—ka) ;i k(X’iJ;y’?)
[
RO aperture

Comparison with equation (12.6) shows that kX/R;, =kl and ky/R{, = km of that
equation and proceeding via polar co-ordinates we obtain the same value for the intensity
of the diffraction pattern,

ie.

c N 2
I =1 (M) in Figure 12.33
krosin 6,

This far field diffraction pattern is known as the Airy disc, Figure 12.35, and its size places
a limit on the resolving power of a telescope. When the two components of a double star
with an angular separation A¢ are viewed through a telescope with an objective lens of
focal length / and diameter d their images will appear as two Airy discs separated by the
angle A¢. The two diffraction patterns will be resolved if A¢ is much wider than the
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Figure 12.35 Photograph of an Airy disc showing the central bright disc, the first dark ring and the
first subsidiary maximum. Compare this with Figure 12.33

angluar width of a disc but not if it is much less. Lord Rayleigh’s criterion (Figure 12.29)
gives the critical angle A¢ for resolution as that when the maximum of one disc falls on the
first minimum of the other A, Figure 12.36. Figure 12.33 then gives

0.61A  1.22)

ro d
(A¢p = ©. in Figure 12.33)

Ap =

where A is the rediated wavelength.

Ag

Ag

Figure 12.36 Two stars with angular separation A¢ form separate Airy disc images when viewed
through a telescope. Rayleigh’s criterion (Figure 12.29) states that the these images are resolved
when the central maximum of one falls upon the first minimum of the other
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This condition is known as diffraction-limited resolution. A poor quality lens will
introduce aberrations and will not meet this criterion.

The Michelson Stellar Interferometer

In the discussion on Spatial Coherence (p. 360) we saw that the relative displacement of the
interference fringes from separate sources 1 and 2 led to a partial loss of the visibility of the
fringes defined as

V= Imax —1 min
1 max + 1, min
and eventually when the displacement was equal to half a fringe width V = 0 and there was
a complete loss of contrast.

Michelson’s Stellar Interferomenter (1920) used this to measure the angular separation
between the two components of a double star or, alternatively, the angular width of a
single star.

Initially, we take the simplest case to illustrate the principle and then discuss the
practical problems which arise. We assume in the first instance that light from the stars is
monochromatic with a wavelenght \g. Michelson used four mirros M; M, M3 My mounted
on a girder with two slits §; and S, in front of the lens of an astronomical telescope, Fig-
ure 12.37. The slits were perpendicular to the line joining the two stars. The separation / of
the outer pair of mirrors (~meters) was increased until the fringes observed in the focal
plane of the objective just disappeared. Assuming zero path difference between M;M; P
and My M3 Py the light from star A will form its zero order fringe maximum at Py and its
first order fringe maximum at P;, due to a path difference SN = d sin = )\ so the fringe
spacing is determined by d, the separation between the inner mirrors M, and M3.

The condition for fringe disappearance is that rays from star B will form a first order
maximum fringe midway between Py and P, that is, when

CM]MQS]PO — M4M352P0 = CM] = hsingb = )\0/2

The condition for fringe disappearnce is therefore determined by & while the angular size
of the fringes depends on d so there is an effective magnification of h/d over a fringe
system produced by the slits alone.

The angles # and ¢ are small and the minimum value of 4 is found which produces
V = 0 so that the fringes disappear at

ho = Xo/2 or h:%

Measurement of / thus determines the double-star angular separation.

Several assumptions have been made in this simple case presentation. First, that the
intensities of the light radiated by the stars are equal and that they are coherent soruces. In
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Figure 12.37 In the Michelson stellar interferometer light from stars A and B strike the movable
outer mirrors M; and M, to be reflected via fixed mirrors M, and M3 through two slits S; and S, and a
lens to form interference fringes. Light from Star A forms its zero order fringe at Py and its first order
fringe at P; when S;N = dsin 6 = \q. The minimum separation h of MM, is found for light from B to
reduce the fringe visibility to zero, that is, when the path difference h = sin ¢ = \o/2. The angles
are so small that 6 and ¢ replace their sines. Note that the fringe separation depends on d, but the
fringe visibility is governed by h

fact, even if the sources are incoherent their radiation is essentially coherent at the
interferometer. Second, the radiation is not monochromatic and only a few fringes around
the zero order were visible so A9 must be taken as a mean wavelength. Finally, the
introduction of a lens into the system inevitably creates Airy discs and the visibility must
be expressed in terms of the Airy disc intensity distribution. This results in

)

u = mho/

where
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If this visibility is plotted against h¢/ )\ its first zero occurs at 1.22 so the fringes disappear
when h = 1.22 \o/¢.

In fact, Michelson first used his interferometer in 1920 to measure the angular diameter
of the star Betelgeuse the colour of which is orange. His astronomical telescope was the
2.54 m (100 in.) telescope of the Mt. Wilson Observatory. A mean wavelength
Ao = 570 x 10~°m was used and the fringes vanished when 4 = 3.07 m to give an angular
diameter ¢ = 22.6 x 107® radians or 0.047 arc seconds. The distance of Betelgeuse from
the Earth was known and its diameter was calculated to be about 384 x 10°km, roughly
280 times that of the Sun. This magnitude is greater than that of the orbital diameter of
Mars around the Sun.

The Convolution Array Theorem

This is a very useful application of the Convolution Theorem p. 297 5th edn, when one of
the members is the sum of a series of & functions.

e.g.
X) @D 8(x — xm)

- Jio fl(x')Z(S(x—x' — Xp)dx’
= Zfl(x_xm)

This is a linear addition of functions each of the form f;(x) but shifted to new origins at
Xm(m=1,2,3...), Figure 12.38.
The convolution theorem gives the Fourier Transform of g(x) as

Flg()] = FIAM)IF lz 6(x — xm)]

F(ky) = Fi[fi(x Zeﬂkxx’”

so the transform of the spatially shifted local function is just the product of the transform of
the local function and a phase factor.

This is the Array Theorem which we now apply in a more rigorous approach to the effect
of diffraction on the interference fringes in Young’s slit experiment (p. 358) where the
illuminating source is equidistant from both slits.

The Array Theorem may be applied to any combination of identical apertures but
Young’s experiment involves only the two rectangular (slits) pulses in Figure 12.39a. Here,
fi(x) is a rectangular pulse of width d and the x,, values above are x,, = +a/2.
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fi f
[e o] [e o] oo
X X
Xy X2 X3
L®f
> X
X1 X, X3

Figure 12.38 1In the convolution array theorem a function f;(x) is convolved with a series of Dirac
functions which shift it to new origins

Thus, we have the transform amplitude

Fke) = Fi(k) Y e o

m

where ky = k - x = kxsin 6 and k in Figure 13.39b is the vector direction from x = —a/2 to
a point P on the diffraction-interference pattern. p. 288 gives

sin o

Fi(k,
1()0<a

where

« :zdsinﬁ

A

The second term, a phase factor, is

Ze—ikxxm _ [Eik)‘a/2 + e—ikxa/Z} — 2¢os kxa/Z

m
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Figure 12.39 Young's double slit experiment represented in convolution array theorem (a) by two
reactangular pulses and (b) with a path difference in the direction k of dsin¢ where a is the
separation between the pulse centres

We may equate kya/2 with §/2 on p. 358 where § = 37 (x, — x;) is the phase difference at
point P due to the path difference from the two sources. Here, k.a/2 = kasin6/2 =
masin @/ (Figure 13.39b). When cosk,a/2 = 1 for maximum constructive interference

kasin0/2 = ga sinf = nm

i.e.
asinf = n\

The amplitude squared or intensity is, therefore

.2
sin“«
I x 2 4cos?(8/2)

a cos?® interference system modulated by a diffraction envelope as shown in Figure 12.27
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This method can be extended to produce the pattern for a diffraction grating of N
identical slits.

The Optical Transfer Function

The modern method of testing an optical system, e.g. a lens, is to consider the object
as a series of Fourier frequency components and to find the response of the system to
these frequencies. A test chart with a sinusoidal distribution of intensity would make a
suitable object for this purpose. The function of the lens or optical system is considered to
be that of a linear operator which transforms a sinusoidal input into an undistorted
sinusoidal output.

The linear operator is defined in terms of the Optical Transfer Function (OTF)
which may be real or complex. The real part, the Modulation Transfer Function (MTF),
measures the effect of the lens on the amplitude of the sinusoidal input; the complex
element is the Phase Transfer Function (PTF), a shift in phase when aberrations are present.
If there are no aberrations and the effect on the image is limited to diffraction the PTF is
Zero.

Changing the amplitude of the object frequency components affects the contrast between
different parts of the image compared with the corresponding parts of the object. We shall
evaluate this effect at the end of the analysis.

We shall assume that the object is space invariant and incoherent. Space invariance
means that the only effect of moving a point source over the object is to change the location
of the image. When an object is incoherent its intensity or irradiance varies from point to
point and all contributions to the final image are added under the integral sign.

Over a small area dx dy of the object the radiated flux will be Iy(x, y)dx dy and this makes
its contribution to the image intensity. In addition, every point source on the object creates
a circular diffraction pattern (Airy disc) around the corresponding image point so the
resulting intensity of the image at (x',y’) will be

dr'(x',y") = Ip(x,y)O(x, y,x'y")dx dy

where O(x,y,x’y’) is the radially symmetric intensity distribution of the diffraction pattern
(Airy disc). In this context it is called the Point Spread Function (PSF).
Adding all contributions gives the image intensity

1’<x’,y’>:j j Io(x, ¥)O(x, y, ¥y )dx dy

If, as we shall assume for simplicity, the magnification is unity, there is a one-to-one
correspondence between the point (x,y) on the object and the centre of its diffraction
pattern in the image plane. Using (x,y) as the coordinate of this centre the value of
O(x,y,x',y') at any other point (x’,y") in the diffraction pattern is given by

o' —x, y —vy)
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Thus, the intensity or irradiance at any image point may be written

FWJU=J J Io(x,y)0(x" — x,y" — y)dxdy

—o0 J—o00

This is merely the two-dimensional form of the convolution we met on p. 293 and we
reduce it to one dimension by writing

I'x) = J Ip(x) O(x' — x)dx = J Iy(x' — x) O(x)dx
because the convolution theorem of p. 297 allows us to exchange the variables of the
functions under the convolution integral.

This is evidently of the form

I'=L®0
with Fourier Transforms
F(I') = F(Ih) - F(0)

The choice of one dimension which adds clarity to the following analysis tranforms the
PSF to a Line Spread Function (LSF) by cutting a narrow slice from the three-dimensional
PSE. This is achieved by using a line source represented by a Dirac ¢ function, the sifting
property of which isolates an infinitesimally narrow section of the PSF.

The shape of the three-dimensional PSF may be imagined by rotating Figure 12.33 about
its vertical axis for a complete revolution. The profile of a slice along the diameter through
the centre of the PSF is then the intensity of Figure 12.33 together with its reflection about
the vertical axis. Any other slice, not through the centre, will have a similar profile but will
differ in some details, e.g. its minimum values will not be zero, Figure 12.40.

Thus, in one dimension, replacing O(x) by L(x) the LSF, we have

I'(x') = rc Iop(x" — x) L(x)dx
—0
or
I'=1h@L=L®I
with

F(I') = F(lo) - F(L) = F(L) - F(Io)

Let us write the intensity distribution of an object frequency component in one dimension
as a + bcosk,x, where b modulates the cosine and a is a positive d.c. bias greater than b so
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Figure 12.40 The profile of the Line Spread Function L(x) is formed by cutting an off-centre slice
from the three-dimensional Point Spread Function: L(x) is the area under the curve. Note that the
minimum values of L(x) are non-zero, unlike the curve of Figure 12.33

that the intensity is always positive. Then, in the convolution above
Iy = a + beosk,(x' — x)
and the image intensity at x’ is

I'(x') = JOC [a + beosk, (X' — x)]L(x) dx

_ rc L(x)la + beosk,(x' — x) dx

—00

We remove the x’ terms from the integral by expanding the cosine term to give

00

L(x) cos kyxdx + b sin kx’ J L(x) sin k,x dx

—00

o0 o0

r'ix)= aJ L(x)dx + bcos kxx’J

—00 —00

(12.9)

The integrals in the second and third terms on right-hand side of this equation are,
repectively, the cosine and sine Fourier transforms from pp. 285, 286.
If we write

C(ky) = JOO L(x)cosk,xdx

—0oQ
and

S(ky) = JOO L(x)sink,xdx
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we have

where

is the MTF and ¢ %) is the PTF with
tan¢ = S(kx)/c(kx)

The OTF is, therefore, the Fourier transform of the LSF.

If the LSF is symmetrical, as in the case of the diffraction pattern, the odd terms in S(k,)
are zero, so the phase change ¢ = 0 and the OTF is real.

For a given frequency component n we can normalize L(x) to give

L(x)

B ffooo L,(x)dx =1

L,(x)

so that equation (12.9) becomes
I'(x') = a + M(ky)b(coskx'cosp — sink,x'sing)
= a+ M(k,)b(coskx' + )

In the absence of aberrations, that is, in the symmetric diffraction limited case, ¢ = 0. I is
shown in Figure 12.41(a) and I'(x") in Figure 12.41(b) where ¢ # 0 due to aberrations.

b

1(x) ;
A
a
@) ¥

Figure 12.41 (a) The object frequency component a + b cos kyx is modified by the Optical Transfer
Function
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I'(x) :

A
a
\ 4

(b)

Figure 12.41 (b) In the image component a + M(k)bcos (kX' + ¢), M(k) is the Modulation
Transfer Function, which is < 1 and the phase change ¢ results from aberrations. The contrast in the
image is less than that in the object. Note that in (b) ¢ is negative in the expression cos(kex' + ¢)

The effect of the MTF on the amplitude of the frequency components is to reduce the
contrast between parts of the image compared with corresponding parts of the object.

We have already met an expression for the contrast which we called Visibility on p. 360.
Thus, we can write

Imax - Imin - - .
Contrast = = (a+b)=(a=b) = b for the object
Inix + Inin~ (a+b) + (a—b)

The image contrast M(k,)b/a < b/a so the image contrast is less than that of the object.

Fresnel Diffraction
The Straight Edge and Slit

Our discussion of Fraunhofer diffraction considered a plane wave normally incident upon a
slit in a plane screen so that waves at each point in the plane of the slit were in phase. Each
point in the plane became the source of a new wavefront and the superposition of these
wavefronts generated a diffraction pattern. At a sufficient distance from the slit the
superposed wavefronts were plane and this defined the condition for Fraunhofer diffraction.
Its pattern followed from summing the contributions from these waves together with their
relative phases and on p. 21 we saw that these formed an arc of constant length. When the
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contributions were all in phase the arc was a straight line but as the relative phases
increased the arc curved to form closed circles of decreasing radii. The length of the chord
joining the ends of the arc measured the resulting amplitude of the superposition and the
square of that length measured the light intensity within the pattern.

Nearer the slit where the superposed wavefronts are not yet plane but retain their curved
character the diffraction pattern is that of Fresnel. There is no sharp division between
Fresnel and Fraunhofer diffraction, the pattern changes continuously from Fresnel to
Fraunhofer as the distance from the slit increases.

The Fresnel pattern is determined by a procedure exactly similar to that in Fraunhofer
diffraction, an arc of constant length is obtained but now it convolutes around the arms of a
pair of joined spirals, Figure 12.42, and not around closed circles.

An understanding of Fresnel diffraction is most easily gained by first considering, not the
slit, but a straight edge formed by covering the lower half of the incident plane wavefront
with an infinite plane screen. The undisturbed upper half of the wavefront will contribute
one half of the total spiral pattern, that part in the first quadrant.

yzfsin%n:uzdu

051

1 05 /cos%nuzduzx

Z;

Figure 12.42 Cornu spiral associated with Fresnel diffraction. The spiral in the first quadrant
represents the contribution from the upper half of an infinite plane wavefront above an infinite
straight edge. The third quadrant spiral results from the downward withdrawal of the straight edge.
The width of the wavefront contributing to the diffraction pattern is correlated with the length u
along the spiral. The upper half of the wavefront above the straight edge contributes an intensity
(021)2 which is the square of the length of the chord from the origin to the spiral eye. This intensity
is 0.25 of the intensity (Z1Z})? due to the whole wavefront
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Undisturbed
intensity

10

0.25

Geometric
shadow

Figure 12.43 Fresnel diffraction pattern from a straight edge. Light is found within the geometric
shadow and fringes of varying intensity form the observed pattern. The intensity at the geometric
shadow is 0.25 of that due to the undisturbed wavefront

The Fresnel diffraction pattern from a straight edge, Figure 12.43, has several significant
features. In the first place light is found beyond the geometric shadow; this confirms its
wave nature and requires a Huygens wavelet to contribute to points not directly ahead of it
(see the discussion on p. 305). Also, near the edge there are fringes of intensity greater and
less than that of the normal undisturbed intensity (taken here as unity). On this scale the
intensity at the geometric shadow is exactly 0.25.

To explain the origin of this pattern we consider the point O at the straight edge of Fig-
ure 12.44 and the point P directly ahead of O. The line OP defines the geometric shadow.
Below O the screen cuts off the wavefront. The phase difference between the contributions
to the disturbance at P from O and from a point H, height /& above O is given by

27 271 h?

where OP = [ and higher powers of 42 /I? are neglected.

We now divide the wavefront above O into strips which are parallel to the infinite
straight edge and we call these strips ‘half period zones’. This name derives from the fact
that the width of each strip is chosen so that the contributions to the disturbance at P from
the lower and upper edges of a given strip differ in phase by 7 radians.

Since the phase A(h) o< h? we shall not expect these strips or half period zones to be of
equal width and Figure 12.45 shows how the width of each strip decreases as & increases.
The total contribution from a strip will depend upon its area; that is, upon its width. The
amplitude and phase of the contribution at P from a narrow strip of width dk at a height &
above O may be written as (dh)e® where A = 7h? /AL

This contribution may be resolved into two perpendicular components

dx=dhcos A
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>0

Semi-infinite HP - OP.~ % 2|
screen

Figure 12.44 Line OP normal to the straight edge defines the geometric shadow. The wavefront at
height h above 0 makes a contribution to the disturbance at P which has a phase lag of wh?2 /Al with
respect to that from 0. The total disturbance at P is the vector sum (amplitude and phase) of all
contributions from the wavefront section above 0

N —> € W><h>

Zone widths

n 2n 3m 4rm A(h) in half period units

Figure 12.45 Variation of the width of each half period zone with height h above the straight edge

STUDENTS-HUB.com Uploaded By: Jibreel Bornat


https://students-hub.com

Fresnel Diffraction 399

and
dy = dhsin A

If we now plot the vector sum of these contributions the total disturbance at P from that
section of the wavefront measured from O to a height /4 will have the component values
X = j dx and y = [ dy. These integrals are usually expressed in terms of the dimensionless
variable u = h(2/\l) 12 the physical significance of which we shall see shortly.

We then have A = mu?/2 and dh = ()\l/2) 12 dy and the integrals become

X = J dx = J: cos (mu®/2) du

and
y= J dy = J sin (7u?/2) du
0

These integrals are called Fresnel’s Integrals and the locus of the coordinates x and y
with variation of u (that is, of &) is the spiral in the first quadrant of Figure 12.42. The
complete figure is known as Cornu’s spiral.

As h, the width of the contributing wavefront above the straight edge, increases, we
measure the increasing length u from 0O along the curve of the spiral in the first quadrant
unit, as & and u — oo we reach Z; the centre of the spiral eye with coordinate x = %,y = %

The tangent to the spiral curve is

and this is zero when the phase
A(h) = Th* /N = Tu*/2 = mn

where m is an integer so that u = /(2m) relates u, the distance measured along the spiral to
m the number of half period zones contributing to the disturbance at P. The total intensity at
P due to all the half period zones above the straight edge is given by the square of the
length of the ‘chord’ OZ,. This is the intensity at the geometric shadow.

Suppose now that we keep P fixed as we slowly withdraw the screen vertically
downwards from O. This begins to reveal contributions to P from the lower part of the
wavefront; that is, the part which contributes to the Cornu spiral in the third quadrant. The
length # now includes not only the whole of the upper spiral arm but an increasing part of
the lower spiral until, when u has extended to Z, the ‘chord’ ZZ, has its maximum value
and this corresponds to the fringe of maximum intensity nearest the straight edge. Further
withdrawal of the screen lengthens u to the position Z3 which corresponds to the first
minimum of the fringe pattern and the convolutions of an increasing length u around the
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spiral eye will produce further intensity oscillations of decreasing magnitude until, with the
final removal of the screen, u is now the total length of the spiral and the square of the
‘chord” length Z,Z' gives the undisturbed intensity of unit value. But Z,Z’ = 2Z,0 so
that the undisturbed intensity (Z 12’1)2 is a factor of four greater than (Z;0)? the intensity
at the geometric shadow.

The Fresnel diffraction pattern from a slit may now be seen as that due to a fixed height &
of the wavefront equal to that of the slit width. This defines a fixed length u of the spiral
between the end points of which the ‘chord’ is drawn and its length measured and squared
to give the intensity. At a given distance from the slit the intensity at a point P in the
diffraction pattern will correlate with the precise location of the fixed length u along the
spiral. At the centre of the pattern P is symmetric with respect to the upper and lower edges
of the slit and the fixed length u is centred about O (Figure 12.46). As P moves across the
pattern towards the geometric shadow the length u moves around the convolutions of the
spiral. In the geometric shadow this length is located entirely within the first or third
quadrant of the spiral and the magnitude of the ‘chord’ between its ends is less than
OZ;. When the slit is wide enough to produce the central minimum of the diffraction
pattern in Figure 12.47 the length u is centred at O with its ends at Z; and Z4 in
Figure 12.46.

0.5+

| | |
T T T
N
I

Z,

Figure 12.46 The slit width h defines a fixed length u of the spiral. The intensity at a point P in the
diffraction pattern is correlated with the precise location of u on the spiral. When P is at the centre
of the pattern u is centred on 0 and moves along the spiral as P moves towards the geometric
shadow. Within the geometric shadow the chord joining the ends of u is less than 0Z;
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Intensity

< Slit width >

Figure 12.47 Fresnel diffraction pattern from a slit which is wide enough for the spiral length u to
be centred at 0 and to end on points Z3 and Z, of Figure 12.46. This produces the intensity minimum
at the centre of the pattern

Circular Aperture (Fresnel Diffraction)

In this case the half period zones become annuli of decreasing width. If r, is the mean
radius of the half period zone whose phase lag is nm with respect to the contribution from
the central ring the path difference in Figure 12.48 is given by

NP —OP=A=n)\/2=1r2/I

Unlike the rectangular example of the straight edge where the area of the half period
zone was proportional to its width dz each zone here has the same area equal to wAl

Each zone thus contributes equally to the disturbance at P except for a factor arising
from the rigorous Kirchhoff theory which, until now, we have been able to ignore. This
is the so-called obliquity factor cos xy where x is shown in the figure. This factor is
negligible for small values of n but its effect is to reduce a zone contribution as n
increases. A large circular aperture with many zones produces, in the limit, an undisturbed
normal intensity on the axis and from Figure 12.49 where we show the magnitude
and phase from successive half zones we see that the sum of these vectors which represents
the amplitude produced by an undisturbed wave is only half of that from the innermost
zone.

It is evident that if alternate zones transmit no light then the contributions from the
remaining zones would all be in phase and combine to produce a high intensity at P similar
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«— S —— 2
=

Figure 12.48 Fresnel diffraction from a circular aperture. The mean radius r,, defines the half period
zone with a phase lag of n7 at P with respect to the contribution from the central zone. The obliquity
angle x which reduces the zone contribution at P increases with n

to the focusing effect of a lens. Such circular ‘zone plates’ are made by blacking out the
appropriate areas of a glass slide, Figure 12.50. A further refinement increases the intensity
still more. If the alternate zone areas are not blacked out but become areas where the
optical thickness of the glass is reduced, via etching, by A/2 the light transmitted through
these zones is advanced in phase by 7 rad so that the contributions from all the zones are
now in phase.

Figure 12.49 The vector contributions from successive zones in the circular aperture. The
amplitude produced by an undisturbed wave is seen to be only half of that from the central zone.
Removing the contributions from alternate zones leaves the remainder in phase and produces a very
high intensity. This is the principle of the zone plate of Figure 12.50
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Figure 12.50 Zone plate produced by removing alternate half zones from a circular aperture to
leave the remaining contributions in phase

Holography

Why is it that when we observe an object we see it in three dimensions but when we
photograph it we obtain only a flat two dimensional distribution of light intensity? The
answer is that the photograph has lost the information contained in the phase of the
incident light. Holographic processes retain this information and a hologram reconstructs a
three-dimensional image.

The principle of holography was proposed by Gabor in 1948 but its full development
needed the intense beams of laser light. A hologram requires two coherent beams and the
holographic plate records their interference pattern. In practice both beams derive from the
same source, one serves as a direct reference beam the other is the wavefront scattered from
the object.

Figure 12.51 shows one possible arrangement where a partly silvered beam splitter
passes the direct reference beam and reflects light on to the object which scatters it on to
the photographic plate. Mirrors or deviating prisms are also used to split the incident beam.

In Figure 12.51 let the reference beam amplitude be A e'“’. If the holographic plate lies
in the yz plane both the amplitude and phase of scattered light which strikes a given point
(y,z) on the plate will depend on these co-ordinates. We simplify the analysis by
considering only the y co-ordinate shown in the plane of the paper and we represent the
scattered light in amplitude and phase as a function of y, namely

A ()7) ei(wt+(ﬁ(y))

It is this information we shall wish to recover.
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Figure 12.51 The hologram records the interference between two parts of the same laser beam. The
original beam is divided by the partially silvered beam splitter to form a direct reference beam and a
wavefront scattered from the object. The amplitude and phase information contained in the
scattered wavefront must be preserved and recovered

We may now write the resulting amplitude at y (after removing the common e
factor) as

A=Ag+A(y)eD

The intensity is therefore

I =AA" = [Ag+A(y)eW][Ag + A(y) e 79V
—AZ+AD)2+AA®) [ 4 e W)

The holographic plate records this intensity as shown in Figure 12.52 where the
reference intensity A§ is modulated by the terms which contain A(y) and ¢(y), the original
scattered amplitude and phase information. This modulation shows of course as contrasting
interference fringes whose local intensity is governed by the amplitude A(y) and whose
distribution along the y axis is determined by the phase ¢(y). The wavefront scattered by
the object is now reconstructed to form the holographic image. This is done by shining the
reference beam through the processed hologram which acts as a diffraction grating. The
greater the recorded intensity the lower the transmitted amplitude. If the developed
photographic emulsion possessed idealized characteristics the relation between
the transmitted amplitude of the reference beam and the exposure would be linear.
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Figure 12.52 Total intensity recorded as a function of y by the holographic plate. The direct
reference beam intensity A3 is modulated by information from the scattered wavefront. This shows as
variations in the intensity of an interference fringe pattern

Exposure defines the product of incident intensity and exposure time. The curve relating
the characteristics for a real holographic emulsion is shown in Figure 12.53 and this is
linear only over a limited range near the centre indicated by the dotted lines. This imposes
several conditions on practical holography.

In the first place the exposure must be correctly chosen at the value Ec. Secondly, the
value of the reference beam intensity A3 must be chosen to produce the correct transmitted
amplitude Ty on the vertical axis of Figure 12.53. This value of T} is at the centre of the
linear range. Finally, the modulation of A% by the scattered intensity A(y) % in Figure 12.53
must be small enough for the transmission of the modulated signal to remain within the
linear range of the characteristic curve. Excursions outside this range introduce non-linear
distortions by generating extra Fourier frequency components (the situation is similar to
that for characteristic curves in electronic amplifiers).

Experimentally this final restriction requires A(y) < Ay.

Shining the reference beam through the processed hologram produces a transmitted
amplitude

AT = A3+ A2A(y) eV + A2A(y) e 790
= AjlAo+AY) eV + A(y)e V]
where we have neglected the A(y)2 term as < A(z) and have written the negative and
positive exponential terms separately. This has a profound physical significance for we see

that apart from the common constant factor A2, the observed transmitted beam has three
components A, A(y)e®) and A(y)e 90,
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Figure 12.53 Characteristic curve of a real holographic emulsion (transmittance versus exposure).
Only the central linear section of the curve is used. The transmittance T, (governed by the reference
beam intensity A3) is chosen with the critical exposure £¢ to produce the central point on the linear
part of the curve. Information from the scattered wavefront must keep the modulations within the
linear range for faithful reproduction free from distortion

) ) Plane of .
Virtual image hologram Real image
Plane of ® |
hologram \
: // ‘ Ay
'\‘\\ A(y)et0) ,’l, N AN
L0 Wavefronts ™
‘\3}\\ from object
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Figure 12.54 (a) Shining the reference beam through the processed hologram produces three
components Ao, A(y) e*%) and A(y) e ¥ in the directions shown. Movement of the eye from X to Y
about the component A(y) e*%) resolves the separate points 0 and 0’ on the image of the object to
reveal its three dimensional nature. (b) This image at O is seen to be virtual while the image
associated with the component A(y) e “%) is real. This real image is ‘phase reversed’ and the object
appears ‘inside out’
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The first term, Ao, shows that the incident reference beam has continued beyond the
hologram to form the central beam of Figure 12.54a. The second component A(y) e'90) has
the same form in amplitude and phase as the original wavefront scattered from the object.
As shown in Figure 12.54b it is seen to be a wavefront diverging from a virtual image of
the object having the same size and three dimensional distribution as the object itself.
Moving the eye across this beam in 12.54a exposes a different section OO’ of the virtual
image to produce a three dimensional effect.

The third component of the transmitted beam is identical with the second except for the
phase reversal; it has a negative exponential index. It forms another image, in this case a
real image often referred to as ‘pseudoscopic’. It is an image of the original object turned
inside out. All contours are reversed, bumps become dents and the closest point on the
original object when viewed directly by the observer now becomes the most distant.

Problem 12.1

Suppose that Newton’s Rings are formed by the system of Figure 12.4 except that the plano convex
lens now rests centrally in a concave surface of radius of curvature R; and not on an optical flat.
Show that the radius r, of the nth dark ring is given by

}"3 = R]Rzl’l/\/(Rl —Rz)

where R, is the radius of curvature of the lens and R; > R, (note that R; and R, have the
same sign).

Problem 12.2

Light of wavelength A in a medium of refractive index n; is normally incident on a thin film of
refractive index n, and optical thickness A/4 which coats a plane substrate of refractive index n3.
Show that the film is a perfect anti-reflector (r = 0) if n3 = nn;.

Problem 12.3

Two identical radio masts transmit at a frequency of 1500 kc s ~! and are 400 m apart. Show that the
intensity of the interference pattern between these radiators is given by I = 2Iy[1 + cos (4 sin 6)],
where I is the radiated intensity of each. Plot this intensity distribution on a polar diagram in which
the masts lie on the 90°-270° axis to show that there are two major cones of radiation in opposite
directions along this axis and 6 minor cones at 0°, 30°, 150°, 180°, 210° and 330°.

Problem 12.4

(a) Two equal sources radiate a wavelength A and are separated a distance A/2. There is a phase
difference 6o = 7 between the signals at source. If the intensity of each source is I, show that the
intensity of the radiation pattern is given by

I = 41 sin? (g sin9>

where the sources lie on the axis +m/2.
Plot I versus 6.
(b) If the sources in (a) are now \/4 apart and 69 = 7/2 show that

=41, [cos2 2(1 +sin 9)}

Plot I versus 6.
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Problem 12.5

(a) A large number of identical radiators is arranged in rows and columns to form a lattice of which
the unit cell is a square of side d. Show that all the radiation from the lattice in the direction € will be
in phase at a large distance if tan @ = m/n, where m and n are integers.

(b) If the lattice of section (a) consists of atoms in a crystal where the rows are parallel to the crystal
face, show that radiation of wavelength A incident on the crystal face at a grazing angle of 6 is
scattered to give interference maxima when 2d sin § = n\ (Bragg reflection).

Problem 12.6

Show that the separation of equal sources in a linear array producing a principal maximum along the
line of the sources (§ = +7/2) is equal to the wavelength being radiated. Such a pattern is called
‘end fire’. Determine the positions (values of #) of the secondary maxima for N = 4 and plot the
angular distribution of the intensity.

Problem 12.7

The first multiple radio astronomical interferometer was equivalent to a linear array of N = 32
sources (receivers) with a separation f = 7m working at a wavelength A = 0.21 m. Show that the
angular width of the central maximum is 6 min of arc and that the angular separation between
successive principal maxima is 1°42.

Problem 12.8

Monochromatic light is normally incident on a single slit, and the intensity of the diffracted light at
an angle 6 is represented in magnitude and direction by a vector I, the tip of which traces a polar
diagram. Sketch several polar diagrams to show that as the ratio of slit width to the wavelength
gradually increases the polar diagram becomes concentrated along the direction 6 = 0.

Problem 12.9

The condition for the maxima of the intensity of light of wavelength A diffracted by a single slit of
width d is given by a = tan o, where o« = 7d sin 8/ A. The approximate values of a which satisfy this
equation are o = 0,+3m/2,+57/2, etc. Writing o = 3w/2 — 6,57/2 — 6, etc. where § is small,
show that the real solutions for a are a = 0, +£1.437, £2.4597, +3.47 17, etc.

Problem 12.10
Prove that the intensity of the secondary maximum for a grating of three slits is é of that of the
principal maximum if only interference effects are considered.

Problem 12.11

A diffraction grating has N slits and a grating space f. If 8 = 7if sin#/), where 6 is the angle of
diffraction, calculate the phase change df required to move the diffracted light from the principal
maximum to the first minimum to show that the half width of the spectral line produced by the
grating is given by df = (nN cot 9)71, where n is the spectral order. (For N = 14,000,n = 1 and
0 =19° df = 5s of arc.)

Problem 12.12

(a) Dispersion is the separation of spectral lines of different wavelengths by a diffraction grating and
increases with the spectral order n. Show that the dispersion of the lines when projected by a lens of
focal length F on a screen is given by

dl_ _df nF

N
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for a diffraction angle 6 and the nth order, where [ is the linear spacing on the screen and f is the
grating space.

(b) Show that the change in linear separation per unit increase in spectral order for two wavelengths
A=5x10"7m and A\, =52x10""m in a system where F=2m and f =2 x 10 °m is
2x 1072 m.

Problem 12.13

(a) A sodium doublet consists of two wavelength A\ = 5.890 x 10™"m and A, = 5.896 x 10~ m.
Show that the minimum number of lines a grating must have to resolve this doublet in the third
spectral order is ~ 328.

(b) A red spectral line of wavelength A = 6.5 x 107 m is observed to be a close doublet. If the two
lines are just resolved in the third spectral order by a grating of 9 x 10* lines show that the doublet
separation is 2.4 x 1072 m.

Problem 12.14
Optical instruments have circular apertures, so that the Rayleigh criterion for resolution is given by
sinf = 1.22\/a, where a is the diameter of the aperture.

A

s exaggerated. Consider OB || O'B
OA || O’A

Two points O and O’ of a specimen in the object plane of a microscope are separated by a distance
s. The angle subtended by each at the objective aperture is 2i and their images I and I’ are just
resolved. By considering the path difference between O’A and O'B show that the separation
s = 1.22)\/2sini.

Summary of Important Results

Interference: Division of Wavefront (Two Equal Sources)

Intensity
I =4I cos®6/2
where
I = source intensity
and

2
6= Tﬁ(path difference) | is phase difference
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Interference (N Equal Sources - Separation f)

sin>? N3

T
where = sin 6
sin? 3 p 4

=1, =3

Principal Maxima

I =N?I; atfsinf=n\

Fraunhofer Diffraction (Single Slit - Width d)

Intensity
sin® o

I1=1 where oz:;dsine

a2
Intensity Distribution from N Slits (Width d - Separation f)

sin® asin? NG

[ =, e Y
072 sin’ 3

(interference pattern modified by single slit diffraction envelope).

Resolving Power of Transmission Grating

ER
!

where n is spectral order and N is number of grating lines:
Expressible in terms of Bandwidth Theorem as

AvAr =1

where Av is resolvable frequency difference and At is the time difference between extreme
optical paths.
Resolving power

A

w

A)\:‘ﬁ‘:Aw:Q

where Q is the quality factor of the system.

STUDENTS-HUB.com Uploaded By: Jibreel Bornat


https://students-hub.com

13

Wave Mechanics

The wave mechanics of Schrodinger (1926) and the equivalent matrix formulation by
Heisenberg (1926) are the basis of what is known as ‘modern physics’. Without exception
they have been successful in replacing or including classical mechanics over the whole
range of physics at atomic and molecular levels; these in turn govern the larger scale
macroscopic properties. Very high energy phenomena in the physics of elementary
particles still, however, present many problems.

In this chapter we shall be concerned only with Schrodinger’s wave mechanics and in the
way it displays the dual wave—particle nature of matter. This dual nature was first
established for electromagnetic radiation but the parallel attempt to establish the wave
nature of material particles is the basic history of twentieth century physics.

Origins of Modern Quantum Theory

In the nineteenth century interference and diffraction experiments together with classical
electromagnetic theory had confirmed the wave nature of light beyond all doubt but in
1901, in order to explain the experimental curves of black body radiation, Planck
postulated that electromagnetic oscillators of frequency v had discrete energies nhr where
n was an integer and & was a constant (p. 252). A quarter of a century was to elapse before
this was formally derived from the new quantum mechanics.

X-rays had been found by Roentgen in 1895, their wave-like properties were displayed
by the diffraction experiments of von Laue in 1912, and their electromagnetic nature was
soon proved. A much longer time was required to reconcile a wave nature with the
negatively charged particles which J. J. Thomson found in his cathode ray experiments of
1897. It was not until 1927 that interference effects from reflected or scattered electrons
were obtained by Davisson and Germer whilst in 1928 G. P. Thomson (the son of J. J.)
produced concentric ring diffraction patterns by firing electrons through a thin foil.

In the meantime, in 1906, Einstein had used Planck’s idea to explain the photoelectric
effect where light falling on a given surface caused electrons to be ejected. Einstein
considered the light beam as a stream of individual photons, or quanta of light, each of

The Physics of Vibrations and Waves, 6th Edition H. J. Pain
© 2005 John Wiley & Sons, Ltd., ISBN: 0-470-01295-1(hardback); 0-470-01296-X(paperback)
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412 Wave Mechanics

energy hv. Collisions between these quanta and electrons in the target material gave the
electrons sufficient energy to escape.

In 1912 the alpha particle scattering experiments of Rutherford led to his proposal that
the atom consisted of a small positively charged nucleus surrounded by enough negative
electrons to leave the atom electrically neutral. This atom was the model used by Bohr and
Sommerfeld in their ‘old quantum theory’, a mixture of classical mechanics and quantum
postulates, attempting to explain, amongst other things, the regularity of spectroscopic
series from radiating atoms. Electrons were required to orbit the nucleus at definite energy
levels (like planets round the Sun), and radiation at a fixed frequency v was given out when
an electron moved from a higher to a lower energy orbit with an energy difference
AE = hv. These orbits were required to be stable or ‘stationary’ orbits with quantized, that
is, allowed values of energy and angular momentum. The fact that classical
electromagnetic theory had shown that an accelerating charge (electron in an orbit) was
itself a source of radiation remained an unresolved difficulty.

By 1920 Einstein had provided two of the vital tools necessary for further progress (a)
that a quantum of radiation has energy E = hv, and (b) that a particle of momentum
p = mv and rest mass m has a relativistic energy E where E2 = p2¢2 + (moc?)>.

This relation established the equivalence of matter and energy; a stationary particle
v =0 has an energy E = moc? where c is the velocity of light.

The time was now ripe for the final steps leading to the modern quantum theory. The first
of these was provided by Compton (1922-23) and the second by de Broglie in 1924.

Compton fired X-rays of a known frequency at a thin foil and observed that the
frequency v of the scattered radiation was independent of the foil material. This implied
that the scattering was the result of collisions between X-ray quanta of energy hv and the
electrons in the target material. In addition to scattering at the incident frequency a lower
frequency of scattered radiation was always found which depended only on the mass of the
scattering particles (electrons) and the angle of scattering. Compton showed that these
results were consistent if momentum and energy were conserved in an elastic collision
between two ‘particles’, the electron and an X-ray of energy hv, a rest mass mo = 0 and
(from Einstein’s relativistic energy equation), a momentum

where ¢ = V.

De Broglie in 1924 proposed that if the dual wave-particle nature of electromagnetic
fields required a particle momentum of p = h/J, it was possible that a wavelength A of a
‘matter’ field could be associated with any particle of momentum p = mv to give the
relation p = h/\. His argument was as follows.

If the phase velocity of such a ‘matter’ wave obeys the usual relation

Vp = VA

where v is the frequency, the assumption that any particle has a momentum p = h/A
together with Einstein’s expression E = hv yields v, = E/p.
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The theory of relativity gives, for a particle of rest mass mg and velocity v an energy
E = mc? and a momentum p = mv, where

’U2 —1/2
m=mg| 1 —2

is the particle mass at velocity v. For such a particle the phase velocity

that is,

_ .2
VUp =C

(an expression we met earlier for the wave guides of p. 243).
This gives a phase velocity v, > c for a particle velocity v < c. However, the energy in
the de Broglie wave (or particle) travels with the group velocity

Ow
’nga
which, for
h
E = I’lV:z—
T
and
_h_n
p= A 27
gives
L o OE
£ ok Op

Such a particle with relativistic energy E where

E? = p2c? + (moc?)?

has

E
2Ea— = 2pc?

STUDENTS-HUB.com Uploaded By: Jibreel Bornat


https://students-hub.com

414 Wave Mechanics

or

po = OE _pe® _we
£ op E 2

so that the group velocity of de Broglie matter wave corresponds to the particle velocity v.

Even the ‘old quantum theory’ of Bohr—Sommerfeld gained something from de
Broglie’s hypothesis. Their postulate that the angular momentum of stationary orbits was
restricted to integral (quantum) numbers of the unit angular momentum 4 was shown, for
the circular orbit of radius r, to yield

27rp = nh
or
n
2nr = — =n\
p
so that the circumference of a stationary orbit was a standing wave system and contained an
integral number n of A, the de Broglie wavelength.

Within three years, however, such quantum numbers ceased to be assumptions. They
were the natural outcome of the new quantum theory of Schrodinger and Heisenberg.

Heisenberg’s Uncertainty Principle

Although, as we shall see, Schrodinger’s equation takes the form of a standing wave
equation, the fitting of an integral number of de Broglie standing waves around a Bohr orbit
presents a fundamental difficulty. The azimuthal symmetry of such a pattern, Figure 13.1,

Figure 13.1 Integral number of de Broglie standing waves A = h/p around a circular Bohr orbit
does not allow the exact position of the electron to be specified at a particular time
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representing an electron in an orbit, does not allow the exact position of the electron to be
specified at a particular time. This dilemma was resolved by Heisenberg on the basis of the
Bandwidth Theorem we first met on p. 134.

There, a group of waves with a group velocity v, and a frequency range Av superposed
effectively only for a time At where

Av At~ 1

Similarly, a group in the wave number range Ak superposed in space over a distance Ax
where

Ax Ak =~ 27

But the velocity of the de Broglie matter wave is essentially a group velocity with a

momentum
h h
=—=—k="hk
P=X" 2
where
et
27
SO
Ap = h Ak

and the Bandwidth Theorem becomes Heisenberg’s Uncertainty Principle
AxAp ~h

Since

it follows that

AE
—=AEAr~
A, t=h

0

and
AE ~ hAw

are also expressions of Heisenberg’s Uncertainty Principle.
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<----- AX  ----- >
€-------- AX  aeeeeee-- >
Same group
after time t
Wave group

Figure 13.2 A wave group representing a particle showing dispersion after time t. The square of the
wave amplitude at any point represents the probability of the particle being in that position, and the
dispersion represents the increasing uncertainty of the particle position with time (Heisenberg’s
Uncertainty Principle)

This relation sets a fundamental limit on the ultimate precision with which we can know
the position x of a particle and the x component of its momentum. If Figure 13.2 shows a
wave group representing the particle, the range Ax shows the uncertainty of the position of
the particle in the range of space over which it could be found, with the probability of its
being at a particular place given by the square of the wave amplitude of that position. The
relation

AxAp=h

means that the velocity of the particle (p = mv) is also uncertain, the more accurate the
knowledge of the particle position, the less certain that of the value of its velocity. If the
particle is ‘observed’ at some later time, dispersion of the group will have increased the
range Ax and decreased the amplitude. The uncertainty of the position has increased and
the probability of its being at any one place has become less. But this is because of the
original uncertainty of its velocity, through Ap, which makes an accurate forecast of its
position after time ¢ even more unlikely.

The shape of the wave group above is often taken as a Gaussian curve written ¥ (x, ¢)
with a width Ax at # = 0 where the value ¥(x,7) is e~! of its maximum value (see p. 289).

P(xt) defines the probability density of finding the particle at a position Ax, i.e. within
the range x and x + Ax.

The position x and momentum p, of a particle are conjugate parameters, so the
representation of the particle in momentum space ®(p,,t) is the Fourier transform of
U(x,t) and ®(py, 1) is also a Gaussian curve with a width Ap, where ®(p,t) is e~! of its
maximum value.

If the group velocity of the wave packet is v, = po/m a rigorous treatment of the time
development of these functions leads to the conclusion that P(xt) falls to e~ of its
maximum value at the points where

X — vt = £Ax
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where

and hence increases with time.
If the time is sufficiently small so that

mh
<t =—m35

(APX)Q

the second term in the bracket is negligible and the wave packet propagates with only a

very small change in its width. . . o
As an example, a Gaussian wave packet for an electron localized at time ¢ = 0 to within

a distance of 10~ % (atomic dimensions) with Ap, = /i JAx ~ 107**kg - m - s~! will have
spread to twice its size at time ¢ = 1, V3 ~ 10716,
An example of the relation

AEAt~h

may be found in considering the time spent by an electron in an atomic orbit. In a stable
orbit this time At is long and the energy uncertainty AFE is small so the energy levels of
stable orbits are well defined. When an electron changes energy levels and radiation is
emitted the time in the orbit may be short and the energy levels ill defined so that the term
AE contributes to the breadth of a spectral line.

(Problems 13.1, 13.2, 13.3, 13.4, 13.5, 13.6, 13.7, 13.8, 13.9, 13.10)

Schrodinger’s Wave Equation

The old quantum theory had sought to establish rules for the existence of discrete
frequencies and energy levels. An integral number of de Broglie half wavelengths could be
fitted around a circular Bohr orbit. Both of these facts are consistent with the classical
standing wave systems we examined in Chapters 5 and 9 when waves travelling between
rigid boundaries were perfectly reflected.

In Chapter 5 we saw that the transverse displacement y(xz) of a string of length / with
both ends fixed obeys the wave equation

9%y 1 0%

XYY 9
Ox? vgaﬂ

where v, is the wave velocity.
The x and ¢ dependence could be separated in the solution for standing waves to give

. WpX
y(x, 1) = Asin —= sinw,t
v
p

STUDENTS-HUB.com Uploaded By: Jibreel Bornat


https://students-hub.com

418 Wave Mechanics

where n could take the integral values n = 1,2, 3, etc. to give the discrete eigenfrequencies,

nmv
_ p
Wy = ]

The solution y(x,¢) corresponding to a given w, is called an eigenfunction or a wave
function.

In developing the Schrodinger wave equation which applies to particle behaviour we use
arguments below which in no way constitute a proof because wave mechanics cannot be
derived from classical mechanics. Wave mechanics is based on certain postulates the
validity of which can be confirmed only by the accuracy of the predicted results.

From the preceding sections we have the representation of a particle as a matter wave
with energy E = fiw, momentum p = 7k and velocity v, = Ow/0k.

Wave mechanics uses the notation

\I/(x7 t) =, e ilwr—kr) _ U, eilpx—En)/n

to define the amplitude of a matter wave at a point x at time ¢. The physical significance of
1) is amplified on p. 422 but for the moment we note the reversed sign of the exponential
index which follows the convention used in all books on quantum mechanics. This merely
introduces a 7 rad phase difference from the notation consistently used in the earlier
chapters of this book but the new convention will be used throughout this chapter to avoid
confusion with other texts and attention will be carefully drawn to any possible ambiguity.

In classical mechanics the total energy E of a particle of mass m and momentum p in a
conservative field of potential V is given by

E=p*2m+V
Differentiating W(x, 7) gives
2 _p?
w \I/(X, t) = 7 ‘I/()C, t)

and inserting this value of p? in the classical energy equation above gives

h* 92

If we now express ¥ (x,t) = 1(x) e " we may cancel the common e ~*“' factor from the

equation above to obtain the time independent Schrodinger wave equation
h* 9?
2m dx2

$(x) + (E = V)(x) =0

This time independent wave equation will give states of constant frequency; that is, of
constant energy, and these are the only states we shall consider in this book.
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Note that this equation has the same form as the standing wave equation we first met on
p. 124.

States which are not of constant energy require the time dependence to be retained in
Schrodinger’s equation. We do this by using the fact that

0 —iE
&\I/(x, t) = T‘I’(}Q t)

and inserting this value of E in the classical energy equation. This gives the time dependent
Schrodinger wave equation

—n? 92

D e+ V) = D ().

ot

One-dimensional Infinite Potential Well

Consider as a first example the case of a particle constrained to move in a region between
x =0 and x = a where the potential V = 0. At x =0 and x = a the potential walls are
infinitely high as shown in Figure 13.3. This is an idealized form of the potential seen by an
electron in the low energy levels near the nucleus of an atom.

V(x)

n=3 —— E3;=9E;
n=2 —— E,=4E;

w=0 v,= Asin k,x y=0
n=1 —— E; = h?z7?
2ma?

V(x)=0 >
x=0 X=a

Figure 13.3 An infinitely deep potential well showing allowed energy levels £, for a particle
constrained to move within it with wave function ¢, = Asin k,x where kf, = 2mE/}‘72 and m is the
particle mass
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Since V(x) = 0 for 0 < x < a Schrodinger’s equation becomes

0%p(x)  2mE
a2 Tz v=0

which may be written, as on p. 124, in the form

62
TR =0
with
2mE
2
T

The boundary conditions are that ¢ (x) =0 at x =0 and x = a where V(x) becomes
infinite, whilst the other terms in the equation remain finite. The particle must lie within the
well and classically, whatever the value of its energy E it will rebound elastically off the
potential ‘walls’. When moving to the right the particle behaviour may be represented by a
wave function of the form e T¥* which satisfies Schrodinger’s equation, and when moving
to the left by a wave function of the form
o —ikr

But, as with the waves on the string, perfect reflection which reverses the amplitude
allows 1, (x), the solution of Schrodinger’s equation, to represent a standing wave system
at w,; expressed in the form

wn(x) — Ceik"x _ Cefik,,x

= Asink,x
where
C
A=—
2i
The boundary condition ,(x) =0 at x =a gives k,a = nm for n =1,2,3, etc. ie.
k, =nn/a.
Hence

giving energy eigenvalues
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Thus, we see that discrete energy values governed by the quantum number 7 arise naturally
from the application of boundary conditions to the wave function solutions of
Schrodinger’s equation. Values of the particle momentum are also quantized since

h nrmh
p A a

It is evident that in an infinite potential well, an electron or particle cannot have an arbitrary
energy but must take only the quantized values E,. This restriction will hold whenever
Schrédinger’s equation is solved for a potential V(x) which imposes boundary conditions
constraining the particle to move in a limited region.

The wave functions 1, (x) for n = 1,2,3 are plotted in Figure 13.4 showing them to be
identical with the allowed amplitude functions for standing waves on a vibrating string
with fixed ends. Note that the interval between allowed energy states decreases as either the
mass of the particle or the dimensions of the potential box increase relative to A. For
particles of large mass and systems of large dimensions the allowed energy states form, for
all practical purposes, a continuum and are no longer quantized. Thus, in passing from
atomic to much larger dimensions the results of quantum mechanics approach those of
classical physics.

We see that the minimum value of the energy of the particle in the potential well is not
zero but

h*r?

E =
' 2ma?

Y3 |V/3|
n=3 A ............... /\/
2
vl
Y2 /\
N B
, . 2
Vi |V’1|
n=1 Ll _______________
x=0 Xx=a x=0 X=a

Figure 13.4 Wave functions ¢, (x) and probability densities |,(x)|? for the first three allowed
energy levels in an infinitely deep potential well of width a

STUDENTS-HUB.com Uploaded By: Jibreel Bornat


https://students-hub.com

STUDENTS-HUB.com

422 Wave Mechanics
This minimum energy is related to Heisenberg’s Uncertainty Principle
AxAp ~h

The uncertainty in the position of the particle is obviously Ax =a and the particle
momentum p may be in either the positive or negative x direction giving an uncertainty

Ap=2p
Thus
AxAp=a-2p=h
or
h
P=%

Now, for V(x) =0

2

EF=—=~ N ——
2m 8ma? 2ma?

This is an example of the so-called zero point energy. We shall meet others.

(Problem 13.11)

Significance of the Amplitude y/,(x) of the Wave Function

In Figure 13.4 the amplitude v, (x) of the wave function is plotted for the values n = 1,2, 3
together with the values

[$a(0)]

In the waves we have met so far, the amplitude, or rather the amplitude squared, has been a
measure of the intensity of the wave. At a position of high amplitude, the wave was more
intense—more energy was localized there. Here we have expressed the motion of a particle
confined to a small region of space in terms of its associated matter wave. The amplitude of
the wave function t(x) varies from point to point within the small region in which the
particle is to be found. Outside the infinite well ¥)(x) is zero. The intensity of the matter
wave is written

[$(0)]* = " () 9(x)

where the complex conjugate ¢*(x) indicates that 1)(x) may sometimes be complex. Since
the matter field describes the motion of the particle we may say that the regions of space in
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which the particle is more likely to be found are those in which the intensity |1(x)|* is
large, or, more formally

‘the probability of finding the particle described by the wave function ¢ (x) in the
interval dx around the point x is [(x)|*dx’.

The probability per unit length of finding the particle at x is
P(x) = [1(x)|®

In three dimensions a wave function would be of the form 1/ (x,y,z) and the probability of
finding the particle in the unit volume element surrounding the point xyz is

P(xyz) = [¥(xyz)|”

The probability of finding the particle within a finite volume V is obviously
Py = evolardya:
v

Now the particle must always be somewhere in space so, in extending the integral over all
space, the probability becomes a certainty; that is, it equals unity, or

J [(xyz)|* dxdydz = 1
all space

This process of integrating over all possible locations to give unity is called
normalization and it always imposes restrictions on the form of (x,y,z) which must
tend to zero as x, y or z tends to infinity.

Normalization determines the value of the constant A in our wave function

nmx

P,(x) = Asin —

for the case of the infinite potential well.

There
| waoras= [ e
—AZJ sin? P gr =422 2
0 a 2

Hence

2

A=/2

a
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and the normalized wave function

2 nmx

Yp(x) = 4/=sin —

a a

(Problem 13.12)

Particle in a Three-dimensional Box

Suppose the particle is confined to a rectangular volume abc at the bottom of an infinitely
deep potential well (V = 0) where a, b and ¢ are the lengths of the sides of the rectan-
gular box.
The energy of the particle is then
2
_pr L 2 2 2
=5 = 5 (P TPy +P)

where the momentum components are

7h
Px=n1—
a

7h

n J—

Py 2 b
Th

P =n3—

and ny, ny and n3 are integers.
The energy levels allowed in the box are therefore given by
252 /2 2 2
_ TR (g ns
2m \a? b?% 2

and solutions for the space part of the wave function may be written

. nMTX . namy . N3TZ
P(x,y,z) = Asin sin sin
a b c

in accordance with the three-dimensional normal mode solution of p. 249.
If the box is cubical so that a = b = ¢ the allowed energy levels become

242 22
mh 2 2 2 mhe
E:2ma2(n1+n2+n3): 2

2ma
where k% = n? + n3 + n3 with wave functions

. MITX . NoTy . N3TZ
P(xyz) = Asin —— sin — Y sin 12
a

a a
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Table 13.1

Energy ni, ny, n3 Combinations Degeneracy
3E, (1,1, 1 1
0E, 2,1,D)1,2,1H)1,1,2) 3
9E, (2,2,1D)2,1,2)(1,2,2) 3
11E, G, L 1)(A,31)d,1,3) 3
12E, 2,2,2) 1
14E, (1,2,3)(3,2, D) (2,3, 1D (1,3,2) (2, 1,3) 3, 1, 2) 6

We saw, however, on p. 250 that combinations of different n values can give the same k
value; that is, the same energy value. When n, n, and nj3 are permuted without changing
the k value, the wave function is also changed so that a certain energy level may be
associated with several different wave functions or dynamical states. The energy level is
said to be degenerate, the order of degeneracy being defined by the number of different or
independent wave functions associated with the given energy.

In the case of the cubic potential box, the lowest energy level is 3£, i.e.

(n1:n2:n3:1)

where
2R

E ="
' 2ma?

The next energy level is given by 6FE, with a degeneracy of 3 where the n values are
given by (2, 1, 1) (1, 2, 1) and (1, 1, 2). Higher energy values with degeneracy orders are
shown in Table 13.1 above.

(Problem 13.13)

Number of Energy States in Interval E to £ + dE

As long as the dimensions of the cubical box above are small the energy levels remain
distinct. However, when the volume increases, as is the case for free electrons in a metal,
successive energy levels become so close that an almost continuous spectrum is formed.

If we wish to find how many energy levels may be contained in the small energy range
dE when the potential box is very large, we have only to apply the result of p. 251 where
we found that the number of possible normal modes of oscillation per unit volume of an
enclosure in the frequency range v to v + dv is given by

dn — 47wjd1/
P
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There we stressed that the result was independent of any particular system and we applied
it to Planck’s Radiation Law and Debye’s Theory of Specific Heats. Here we use it with

2 E h
E=L —p and p:—:—y
2m c c
(sothat
dE =L dp = hdv
m
and
hd
dp:_”>
c

to give the number of states per unit volume in the energy interval dE as

dn(2m?)'?EV?
dn(E) = SR E— dE
This may be applied directly to determine how free electrons in a metal may distribute
themselves in a band of energies from zero to some value E. Each energy level can
accommodate two electrons (with opposing spins) according to Pauli’s Principle so the
total number of electrons per unit volume in the energy range zero to E is

2
2 -4m(2m3?) !/ JE EV24E

n= J dn(E) = 3

_ 16m(2m}) 1/2
N 3h3

0

E3/2

where m. is the electron mass.

If the metal is in its ground state the available electrons will occupy the lowest possible
energy levels, and if the total number of electrons per unit volume n is less than the total
number of energy levels in the band, then the electrons will occupy all energy states up to a
maximum energy Er called the Fermi Energy which is given by

B 167?(2m2)1/2 Eé/z
o= 343
Typical values of Er are of the order of 5 eV (1eV = 1.6 x 1071?]).

(Problems 13.14, 13.15)

The Potential Step

The standing wave system of the infinite potential well where the wave function

Yu(x)
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E>V
Vix)=V
ya(x)
/-\ va(x)
E<V
2ik _
) A<ikx+ Ky + o ey va(x) = ikl—locAe "
vil) = Al o e
1
k;2=2mE|[ h?
o2 = 2m(V=E)
@3 h?
V(x)=0
() =0

Figure 13.5 Wave functions 1 (x) and v ,(x) for a particle mass m, energy £ < V at a potential
step V(x) =V

is finite in the region V(x) =0 but zero at all other points is unique in the formal
correspondence it presents between classical and quantum mechanical results. The
quantum effects become evident when we consider the general case of the potential step of
finite height Vin Figure 13.5 which is an idealized form of the very steep potential gradient
of a conservative force

ov

F(x) = ~

Such a potential step would be seen by a free electron near the surface of a metal.
It is necessary to consider separately the two cases where the total particle energy E is (a)
less than the potential energy V, and (b) greater than V, where
2
P
E=—+V

o T V)
@E<V
When E is less than V, the region x > 0 of Figure 13.5 is forbidden to the particle by
classical mechanics for the kinetic energy

2

2m
would then have a negative value.
In finding the complete solution for (x) for the potential step we must solve
Schrodinger’s equation for the separate regions of Figure 13.5, x < O (region 1) and x > 0
(region 2).
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In region 1, V(x) = 0 and we have

0% 2mE
axlz<X)+%wl<x):O

with a solution
wl(-x) :Aeiklx _'_Befiklx

where

k2 ="+
1 72
The term A e'¥'* (with the sign convention of this chapter) is the wave representation of an
incident particle moving to the right, and B e~ represents a reflected particle moving to
the left.
In region 2, V(x) = V and Schrodinger’s equation becomes

0%, (x) N 2m(E —V)

Ox? K2 Pa(x) =0
or
0% (x)
R a?1hy(x) =0
where
o — 2m(V2— E)
h

This equation has the solution
Pa(x) =Ce " +De™

Now the probability of finding the particle in region 2 where it is classically forbidden
depends on the square of the wave function amplitude |1/, (x)|? with the condition that for

any wave function to be normalized | i.e. for

[lwatpac=1)

the wave function ¢, (x) — 0 as x — oo.
This forbids the second term De®* which increases with x but still leaves

a(x) = Ce ™™
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to give a finite probability of finding the particle beyond the potential step, a probability
which decreases exponentially with distance. This is a profound departure from classical
behaviour.

At the boundary x = 0, ¢(x) must be finite to give a finite probability of finding the
particle there, but there is a finite discontinuity in V(x). In these circumstances
Schrodinger’s equation asserts that the second derivative

0%9(x)

Ox?

at x = 0 is finite, which means that both (x) and (O(x)/0x) are continuous at x = 0.
These are the boundary conditions which allow the separate solutions

¢1(x) and ’(ﬁz(x)

for the wave function, to be matched across the boundary of the two regions.
The continuity of 1(x) at x = 0 gives 1;(x) = 12(x) or A + B = C whilst

Hp1(x) _ Oa(x)
ox  Ox

at x = 0 gives

iki(A —B) = —aC = —a(A + B)

Thus
B= (%kl +O‘>A
ik —«
and
_ 2iky
_ikl —

The wave functions for the separate regions then become

. lkl + o .
ik1x ik 1x
wl(x)A<e +—ik1 (S )

and

2ik;
ik] —

¥a(x) = Ae

and these are shown in Figure 13.5. Note particularly that the intensity of the incident part
of the wave function

[1(0)]* = [A]*
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whilst the reflected intensity is

ik + «
ikl—a

2
B = Al =

Thus, for any energy E < V we have total reflection as in the classical case, even for those
particles which penetrate the classically forbidden region x > 0 where 1, (x) is finite.
In region 2 the probability of finding the particle is

P(x) = [1h2(x)]* = |Ce™™|
2ik oA
ik —a kK +a?

—Qx

A 2 e —2ax

Since the exponential coefficient o depends on V(x) the greater the value V/(x) the faster
the wave function v,(x) goes to zero in region 2 for a given total energy E < V.

When V(x) — oo, as in the case of the infinite potential well, 1), (x) becomes zero, as we
have seen; and there is no penetration into the classically forbidden region.

Several important physical phenomena may be explained on the assumption that a
particle with E < V meeting a potential step of finite height V and finite width b has a wave
function 1), (x) which is still finite at x = b, making it possible for the particle to tunnel
through the potential barrier (Figure 13.6). The probability that the particle will penetrate
the barrier to x = b is given by

P(3) = [92(x)|? oce 2

and beyond this barrier the particle will propagate in region 3 with a wave function 3(x)
of reduced amplitude. The boundary conditions must then be applied at x = b to match

’(ﬁz(x) to w3(x).

Region 1

V2(X) Region 3

v1(X) \

AV
SV

Figure 13.6 Narrow potential barrier of width b penetrated by a particle represented by 11 (x)
leaving a finite amplitude 3 (x) as a measure of the reduced probability of finding the particle in
region 3

v3(X)
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Metal surface

potental N - Vo
Tunnelling
of energetic >
electron
V= Vy—Ex

x=0

Figure 13.7 Application of an electric field £ to the surface of a metal at potential V, reduces the
potential to V = Vo — Ex forming a barrier of finite width which may be penetrated by an energetic
electron near the metal surface

This quantum ‘tunnel effect’ is the basis of the explanation of the radioactive decay of
the nucleus. In addition the potential step seen by a free electron near the surface of a metal
may be distorted, as shown in Figure 13.7, by the application of an external electric field, to
form a barrier of finite width. The most energetic electrons near the surface of the metal can
leak through the barrier in a process known as field electron emission.

Another example results from the two possible positions of the single nitrogen atom with
respect to the three hydrogen atoms in the ammonia molecule NH3. These positions are
shown as N and N’ in Figure 13.8 together with the potential barrier presented to the
nitrogen atom as it moves to and fro between N and N’. This penetration occurs at a
frequency of 2.3786 x 10'° Hz for the ground state of NH3 and its high definition is used
as an atomic clock to fix standards of time.

Vv for
N motion

Potential
barrier

Figure 13.8 The two possible configurations N and N’ of the nitrogen atom with respect to the
triangular hydrogen base in the ammonia molecule NH 3 and the finite potential barrier penetrated by
the nitrogen atom at a frequency of >10%° Hz in the NH3 ground state
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(Problem 13.16)

Wave Mechanics

b)E>V
In the region x < 0 in Figure 13.5 V(x) = 0 and Schrodinger’s equation is
0%1(x) 2mE
Ox? +7¢1(x) =0
or
9%,
57 T ki =0
with
2mE
2
kl - 7

having a solution
wl(x) — Aeiklx +Be*ik1x
with both incident and reflected terms.

The momentum of the particle is p; where p% /2m =E.
In the region x > 0, V(x) = V and Schrodinger’s equation is

0% (x) N 2m(E — V)

Ox? h? ¥a2(x) =0
or
8(;;&; + k2, =0
where
e

and the particle momentum p, is given by p3/2m = (E — V).

In the wave function solution for this region we consider only the right-going or
transmitted term since there is nothing beyond x = 0 to cause a reflection, so

a(x) = Ce>

Now the wave number k is related to the de Broglie wavelength of the particle and we
see that k changes when the potential V changes; that is, when the particle experiences a
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change in the force acting on it. Such a particle therefore reacts to a changing potential as
light reacts to changing refractive index. As the potential V increases for £ > V the
momentum p and wave number k(p = fik) decrease and the wavelength \ increases.

At x = 0 the conditions for continuity give

1) = o)
or
A+B=C
and
O1(x) _ Do)
Ox Ox
or

ki(A—B) =k,C
These two equations give

(k1 — k2)
(kl + kz)

and

2k,
ky ks

Since B is not zero, some reflection takes place at x = 0 even though the energy E > V.
This is clearly not classical behaviour. If many particles form an incident beam at x = 0
and each particle has velocity

_p1 Bk
V) =—=—
m m

then the velocity of transmitted particles will be

P2 hk,
1)2:—:—
m

The incident flux of particles; that is, the number crossing unit area per unit time, may be
seen as the product of the velocity and the intensity; that is

vilA]?
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The reflected flux is
2
V1 |B|
and the transmitted flux is
2
v | C|

Thus, the reflection coefficient, the ratio of reflected to incident flux is

Rl B> _ (ki —k2)’
viAIP (ki + ko)

and the transmission coefficient, the ratio of transmitted to incident flux is

_0|CP ke (2k)?_ 4kik
vi A2 ki (ki k) (ko)

results which are similar to those for our classical waves in earlier chapters.

Note that R + T = 1 showing that the number of particles is conserved.

We have chosen here to apply R and T to a number of particles forming a beam. These
coefficients, when applied to identical particles forming the beam, measure the average
probability that an individual particle will be reflected or transmitted.

(Problem 13.17)

The Square Potential Well

Let us consider a particle with energy E < V moving in the square potential well of width a
in Figure 13.9. Within the well the potential is zero, and the value Vof the height of the well

V(x)=V
E<V _— - - — — — — ] — — — — —
wg ) Wl () V/Z( X)
3 1 2
V(X):O ........
x=0 X=a

Figure 13.9 A particle with energy £ < V(V = the finite height of a square potential well of width
a) may take only the energy values £ satisfying the equation

[2mE  2,\/E(V—F)
tanay/— = —————
h 2E—V
The wave functions in the three regions are matched at the boundaries x =0 and x = a by the
conditions that (x) and dy(x)/0x are continuous
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is finite. This potential approximates that of a finite range force which has no influence
beyond a limited distance. Outside the range of the force the potential may be considered
constant. From our discussion of the infinitely deep potential well (V = co) and of the
potential step we can expect our wave function representation to have the form of an
integral number of de Broglie half wavelengths within the well, plus an exponentially
decaying penetration into the wall on either side.

Writing Schrdodinger’s equation for each of the three regions, we have for region
1(0 <x<a)

8% 1 ()C)
Ox?

2mE
+ Fw 1(x) =0
with a solution, for k? = 2mE/h?* of

w](x) :Aeik|x+Be—ik1X
= A(coskx +isinkx) + B(coskix —isink;x)
=Ajcoskix+ B;sinkx

where Ay = A+ B and B; = i(A — B).
In region 2(x > a)

0*pa(x)  2m(E—V)
Ox? - h?

has the solution

where

In region 3, (x < 0)

has the solution

1r/)3(x) :A3e(¥x +33 ef(yx

For 1)(x) to remain finite as x — 4o0c (normalization condition) A, and B3 must be zero,
and the boundary conditions )(x) and 9y (x)/dx continuous, must be satisfied at x = 0 and
x=a.
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Atx =0,
¥1(x) = ¥3(x) and a‘bal)fx) = a‘g}fx)
give
AL = A (13.1)
and
kiBy = aAj; (13.2)

whilst at x = a

001(x) _ ()

wl(x) = lﬂg(X) and

Ox Ox
give
Ajcoskia+ B sinkja=Bye™ (13.3)
and
—k1Asinkja+ kB coskja=—aB,e (13.4)

In order to satisfy equations (13.1), (13.2), (13.3) and (13.4) some conditions must be
imposed on k and «; that is, on the value of E, so only certain values of E are allowed.
Equations (13.1) and (13.2) give
A 1 k]

Bl a «
and this equation with equations (13.3) and (13.4) yields

2k10&

tank;a = ——
k2 —a?

or

2 _
tana\/ mE _ 2\/E(V—E)
h? 2E -V

Only those values of E which satisfy this relation are allowed energy states, but these
values must be found by numerical or graphical methods.

The wave functions for the first three allowed energy values are shown in Figure 13.10
and their general behaviour may be clarified by considering Schrodinger’s equation in the
form

0%

o2 /111 = —(+4ve constant)(E — V)
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v (X) for E5

N4 N

v (X) for E,

/

v (x) for E;

/ \

x=0 X=a

Figure 13.10 Wave functions for a particle in a square potential well with the lowest three allowed
energies E4, E,, E5. Note the exponential decay of ¢(x) outside the box

Now 9%/0x? is the rate of change of the slope; that is, the curvature of the wave function
and when E > V both sides of the equation are negative and the 1) curve must everywhere
keep its concave side towards the x axis as it always does, for example, in sine and cosine
curves. The curvature increases with E so we shall expect more de Broglie half
wavelengths in the higher energy levels. This is consistent with the argument that an
increase in E increases the wave number k and reduces the de Broglie wavelength A.

In the lowest energy level the ¢ curve is always without a node, the next level always has
one node, the third two nodes, etc. but the zeros will not be quite equally spaced and the v
amplitude will not be uniform across the well. In particular it will increase near the
potential walls as the particle is slowed down to give a higher probability of the particle
being found there. Where E < V the ratio

0%/ 0x?
(4
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will be positive and the v curve must keep its convex side towards the axis as in
exponential curves. The classical boundary £ = V must always mark the division where
the character of the v curve changes from one form to the other and the two parts of the
curve will only match for certain values of E.

The Harmonic Oscillator

As a final example to illustrate the fitting of v curves into a potential well we shall consider
the potential curve V = %sx2 of the harmonic oscillator in Figure 13.11. The calculation of
the ¢ curves is too complicated for this chapter but their essential features confirm what we
may expect from our earlier examples. Moreover, by purely classical arguments we shall
obtain a very good approximation to the wave mechanical results.

In 1901 Planck had postulated that the energy of such an oscillator could have the values
E = nhyv where n was an integer and v was the frequency. Schrodinger was able to derive
this result in 1926 but one essential difference arises from the Uncertainty Principle which
requires a minimum energy level or zero point energy of %hu.

For a classical oscillator the minimum energy E = 0, point 0 in Figure 13.11 gives the
precise and simultaneous values x =0 and p = 0; that is, a zero oscillation. The
Uncertainty Principle forbids this. If ag is the smallest amplitude of the oscillator
compatible with the Uncertainty Principle, then

ag ~ %Ax

NS

Figure 13.11 Potential energy curve V of a harmonic oscillator with allowed energy levels
En = (n+ })hv . The energy E (with oscillator amplitude a) is shown in the text to define an average
value of the de Broglie wavelength X\ = h/(%mE) 12

STUDENTS-HUB.com Uploaded By: Jibreel Bornat


https://students-hub.com

The Harmonic Oscillator 439

If p is the maximum momentum of the oscillator with amplitude a it may be either in the
positive or negative direction so

PON%AP

The energy of a classical oscillator is given by

All other energy levels will therefore take integral steps of hv above this zero point energy.
Let us consider the energy level of the oscillator which has an amplitude a so that

2 2 1 |
E= gtV =gty s’ —gmeta’
so that
2 JE
2a =—1\/—
w m

The value of the kinetic energy of the oscillator averaged over the distance 2a between +a
may be written

‘ p2/2mdx 1 [ I ! 2
M—_J (E——mw2x2>dx—E——mw2a2——E
—a

J"fa dx 2a 2 6 3
because
E = %mu}za2
Thus, the average value of the kinetic energy
2
p
Z _ZF
2m 3
giving
_h [AmE
P=37V3
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and we expect n half wavelengths to fit into the length 2a at energy E where

2 J2E
2a = —4|—
wV m

Thus

A nh 2 2E

n———— —
2 2\/4mE/3 wV m

Writing w = 27v we have

3
E = % \/;nhu = 0.96 nhv

which is a fairly close approximation to nhAv. The correct result, however, must take into
account the zero point energy of hv and the energy levels are given by

E=(n —|—%)hu, n=0,1,2,3,etc.

The v curves for the first four energy levels are plotted in Figure 13.12 together with those
for [4]%.

We see that whilst a classical oscillator may never exceed its maximum amplitude a
particle obeying a wave mechanical description has a finite probability of being found
beyond this limit.

/TN A V/VANS Ey= 5 hv
~ \W/ A
< E, E1=§hv

> 2
%l

|
/% E SING Ey= 5 hv

0 0

Figure 13.12 Wave functions 1(x) and probability densities |1(x)|? for the first four energy levels
of the harmonic oscillator
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(Problems 13.18, 13.19)

Electron Waves in a Solid
Bloch Functions and the Kronig-Penney Model

When electrons move through a solid, e.g. a metal, they meet a series of potential barriers
generated by the atoms or ions located at the centre of the valleys between successive
barriers. Figure 13.13 shows such a one-dimensional lattice array of ions. The electron
wave function is derived via Bloch functions and the electron behaviour is demonstrated
using the Kronig—Penney Model which replaces Figure 13.13 in the first instance with a
periodic series of potential wells of finite depth as shown in Figure 13.14. An exact but
unwieldy solution can be found for the situation described by Figure 13.14, but Kronig and
Penney, by deepening the wells and reducing their separation, were able to show how the
electrons behaved and to demonstrate the restrictions imposed on their motion.

XG)m@m@( Xﬁam@m@(
L

Figure 13.13 A one-dimensonal periodic array of poterntial barriers formed by ions or atoms

located along a crystal lattice

<« ph —>

<« g —>
|

Figure 13.14 A series of finite potential wells used by Kronig and Penney as a first approximation
of Figure 13.13
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In Figure 13.14 the space between the potential wells is a, the well thickness is b and its
height is V. The problem is similar to that described on p. 435 where the total energy of
the electron is E — Vj so the wave equation is

0% 2m
W+?(E—VO)¢:O

Now, V(x) is periodic so V, = V(x + ) where [ = a + b. Evidently, since the probability
of finding an electron at x or at x + [ is the same, we have

2 2
[Y)I” = [¥(x+ D)

Hence, we may write ¢)(x + [) = yi)(x) where vy* = |~y|2 = 1 (v* is the complex conjugate

of 7).

At this stage we could write v = ¢/**, but this does not define k well enough to satisfy the
boundary conditions at each end of the crystal. For periodic functions the conventional
method to meet the boundary conditions is to form a ring of circumference of length
L = NI where L is the length of the crystal and N is the number of atoms along its length.

Note that in Figure 13.13 the potential barriers at each end of the crystal add [ to its length.
Proceeding along the crystal (or around the ring) we have

Y +20) =gl +1+1) = wlx+1) = ()
or for r integral steps
P(x +rl) =v"P(x) r=(0,1,2,3...N—1)
Now r =0 and r = N are identical positions (one complete circuit of the ring), so
Yl +NI) = 7"(x) = 9(x)
that is
=1
We may now write
y=e2"N  (r=0,1,2,3...)
so that
Y+ 1) = yi(x) = 2Ny (x)
The Bloch function s (x) is defined by

Y(x) = p(x)e™
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where
pe(x) = pe(x +1)

Here, k = 27tr /IN and py(x) has the periodicity of the potential. Since r changes by units as
we move along the crystal each step of r/N (for N large) is so small that k = 27r/IN may
be considered as varying continuously.

The Bloch functions satisfy all conditions because

P+ 1) = 0 (x4 1) = e gy (x) = e F(x) = 1p(x)

The wave equations of Figure 13.14 are

3;;@1 +a*h =0 O<x<a (13.5)
and
Py o
o — B =0 -b<x<0 (13.6)
where
o? :2:;—2E and [ :i—rzn(Vo —F)
with

Vx)=V(x+1) andl=a+b

The Bloch function py(x) = pux(x+1) where I=a+b, so for x=—b we have
px(a) = px(—=b), which is evident from Figure 13.14.

Earlier examples in this chapter have shown that the boundary conditions require (x)
and its first derivative to be continuous across any potential change.

Applying 1(x) = ju(x)e™ to equations (13.5) and (13.6), we have

1 (x) = Aell@7Rx 4 geilathx 0<x<a
pi2(x) = CelP~Hx 4 pe~ ik —-b<x<0

so that the boundary conditions are

- . O\ _ (O
p1(0) = pa(0)  with ( Ox >xo_ ( Ox >x0

and

o | o) _ (O
pi(a) = po(=b) with <8x>xa_ <8x>xb
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which give four homogenous equations.
Remember that

p(x) = p(x +1)

As with the rectangular well on p. 435 these boundary conditions determine the permitted
values of E (via o and ). Here, the boundary conditions require either
A=B=C=D=0 or the determinant of their coefficients to be zero. Equating the
determinant of the coefficients to zero gives the unwieldy expression

/82 _ a2
2a0

sin ca sinh Bb 4+ cos aacosh Bb = cosk(a + b) (13.7)

Kronig and Penney simplified this equation by allowing V, to tend to infinity as b
approached zero in such a way that Vyb remained constant. This has two important
implications. First, the potential wells become very deep so that Figure 13.14 approximates
Figure 13.13. Second, their separation is narrowed so that / = a + b =~ a and we may
rewrite equation(13.7) as

Vob (m;z) TN | cosaa = coska (13.8)
h oa

The values of o = (2mE/ hz)% which satisfy this equation determine the permitted energy
values and wave functions of the electrons.
Note that when Vy — oo equation (13.8) requires sin «a = 0 to remain valid, leaving

a=+" (n=1,2,3..)
a

or

2 h2n?

T 2ma?

which are the quantized energies of the tightly bound electron in the infinitely deep
potential of p. 420.
At the other extreme when V; = 0 equation (13.8) gives

which allows E to take any positive value. This gives a free particle solution to the wave
equation (graphed as the dotted parabola in Figure 13.16).

Between these two extreme values of V|, the permitted values of the energy E are
displayed on the graph in Figure 13.15 where the left-hand side of equation (13.8) is plotted
against aa where aa is written w and Vob(}4) is written K.
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K Sin W + Cos W,
W
+1
Cos ka
0 b4 2n 3n W =oa
F Cos ka
-1

Figure 13.15 Allowed electron energy values are denoted by heavy horizontal lines which define
the Brillouin zones. These occur when the left-hand side of equation (13.8) has values between =+ 1.
The curve is symmetric about the axis w = 0.

Now the limits of cos ka in equation (13.8) are +1 and these determine the allowed
values of w = aa indicated by the heavy horizontal line on the w or aa axis. These in turn
denote the permitted ranges or bands of energy values which the electron may take. The
bands increase with w = aa and between the bands are gaps where electron energies are
forbidden. The limits of each energy band are defined by coska = £1 that is

k=" (n=1,2,3,..)
a

and the regions in k space defining the energy bands are known as Brillouin zones. The
band for n = 1 is called the first Brillouin zone, n = 2 is the second Brillouin zone and so
on. Figure 13.15 can be displayed as the energy E versus k graph in Figure 13.16 where the
dotted parabola defines the free electron energy E = %kz and the heavy lines at the k
boundaries denote the permitted electron energies in a given band. The cosine curves
joining the zone boundaries are justified by Figure 5.15, which shows that no new
information is gained by extending the k range beyond —n/a < k < w/a. This limited
range of k values defines the reduced zone scheme.
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B,
V3
/ \ ]
, A
V2
y
N W %
Vl
— — T
> k
_ 3

a a a a a a

Figure 13.16 Figure 13.15 displayed as allowed electron energies versus k. The dotted parabola
defines the free electron energy £ = /%k? /2m and the allowed energy bands are the Brillouin zones
B;. V1, V2, V5 are the energy gaps between the zones. The cosine curves joining the zone boundaries
are justified by Figure 5.15, i.e. all relevant information is contained in the region =F < k <72

The number of energy states (excluding spin) in each zone is determined by

B 2nr B 2nr

== =0,1,2,3...N — 1
lN aN (r Y )

for each k value represents an allowed energy state. Each value of r gives a different value
of k; there are N such values. Hence, in this range

™ T . 2w 27ur
——<k<-ie—=— where a ~ [
a a a Na

the number of energy levels is equal to the number of atoms.

As a+ b =1— oo each band contracts to a single level which is N-fold degenerate
since the electron can be bound to any one of the atoms. For finite values of [ this
degeneracy is removed and each discrete atomic level spreads into a band of N levels.
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Figure 13.17 Elastic Bragg reflection occurs when electron waves are scattered by atoms in planes
separated by a distance a. Principal maxima are formed when 2asin = n\

Only free electrons will escape interaction with the ions in the crystal lattice; almost free
electrons will experience weak coupling to the lattice. Coupling which is strong enough to
reflect electron waves may be seen in terms of Bragg reflection, Figure 13.17. Here, waves
reflected by successive planes in a crystal which are separated by a distance a reinforce to
give maxima on reflection when 2asin 6 = nA.

When 6 = 7/2 and the coupling is strong enough the electron waves will be reflected
from successive ions, Figure 13.18, giving a path difference of 2a. Reflection maxima
occur for

20— dn) =402 e k=4
k a

Thus, Bragg reflections define the Brillouin zone boundaries.

z <
2 > )
1
1> > )
o < a > e < a >e < a > e < a > e

Figure 13.18 When 6 = /2 in Figure 13.17 Bragg scattering by electron--ion interactions gives
principal maxima when electron waves are reflected from ions separated by multiples of a. The
condition 2a = n\ defines the Brillouin zone boundaries for n = 1, 2, 3, etc.
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Yeven

A

v / ¥odd
//\‘\ ) /\/\\\

ﬁl \ a\/ 2a 3a\< X

Figure 13.19 The wave function \ (even) has an anti-node at an ion (atom) site. The anti-node for
 (odd) is located midway between sites. This governs the energy of interaction, which is different
for the two \ values

Wave functions of electrons can be represented by travelling waves in both directions,
i.e. by e** and for k = 4 nn/a standing waves will be formed by the sum or difference of,

e.g.

inx/a —inx/a

e and e

The sum of these terms creates
™
q/jeven = COS —
a
and their difference gives
. TX
Podd = SIin —
a

The energies associated with these two wave functions will differ when they interact with
the ions. 1even = €08 mx/a has anti-nodes (maxima) at the site of each ion so the electron—
ion interaction is attractive and the energy corresponding to eye, is lowered.
1odd = Sinmx/a has its anti-node midway between ion sites where the potential is
repulsive, Figure 13.19. The calculation of these energy shifts requires knowledge of the
effective potential, but it can be shown that for 1)eyen the energy change at a given V), in
Figure 13.16, where V,, is the energy gap between bands, is AE = —%Vn and for t,qq the
energy change is AE =1V, (see Problem 13.21). Note that the band widths and gaps
increase with n.

The band structure may also be demonstrated by considering the effect of tunnelling.
Two widely separated equivalent potential wells may each contain a single electron
occupying identical energy levels. When the potential well separation becomes small
enough for the tunnelling of Figure 13.6 to be possible this symmetry is destroyed because
the wave function of an electron spreads right across both wells and their separating
potential barrier, Figure 13.20. There is a finite probability of finding an electron at any
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Figure 13.20 When an electron can tunnel between two potential wells (a, b) and — (a, b) it cannot
exist in a single energy state. The higher of the two resulting energy states has a greater curvature

point x of its wave function (x) so the two electrons cannot occupy the same energy level
and the single state splits into two. The lowest lying energy levels split into a narrow band
of very closely spaced states since the barrier to tunnelling is very large for electrons in
these levels. Higher energy levels have a wider spread and it is even possible for bands to
overlap. The band structure helps to explain the difference between electrical conductors
and insulators.

Once an energy level is occupied by an electron it cannot accept another electron.
However, in a metal only the lower energy levels in a band or Brillouin zone are occupied
and an applied electric field can accelerate electrons which move to occupy higher
available energy states within the band. Insulators have completely filled energy bands so
the electrons cannot move under the influence of an electric field — there are no empty
neighbouring states.
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However, a very strong electric field can cause an electron to jump from the top of a band
across a gap to occupy an empty level immediately above the gap, so the insulator breaks
down. A spark can jump across an air gap between two terminals; lightning is such a spark
on a much larger scale. A semiconductor is basically an insulator with a very narrow
forbidden gap where even a small energy change will switch the insulator into a conductor.

Phonons

Pages 135 and 162 showed that the elastic field in a crystal could sustain transverse and
longitudinal modes of vibration along a chain of atoms acting as a series of coupled
oscillators. In a normal mode of angular frequency w; every atom performed simple
harmonic oscillations of w;. On p. 440 we saw that the energy of such oscillations at atomic
and sub-atomic levels was quantized with values of (n + 1/2)hw.

The concept of photons as quanta of energy /iw associated with an electromagnetic field
allows the analogy of phonons as quanta of energy associated with the elastic field. In a
normal mode of angular frequency w; the energy of a phonon is 7iw; so phonons can be seen
as exciting a mode to an energy state (n + %)hw,-. When n = 0 the mode w; is left with the
zero-point energy %hwi. A more detailed calculation of Debye’s theory of specific heats
(page 253) takes account of this quantization.

Normal modes are plane waves extending throughout the crystal and phonons are not
localized particles. The uncertainty principle prevents an exact determination of a phonon
position and it exists as a localized wave packet of combined modes with a small spread of
frequency and wavelength and a group velocity dw/k. The number of phonons, like that of
photons, is not conserved. They are created and absorbed by collisions and, like photons,
they obey Bose—FEinstein statistics (appendix 1). However, unlike photons, they exist only
within the crystal. They contribute to the crystal momentum but do not carry momentum.
This is evident from Figure 5.15 where a lattice vibration has a wave number
k=kx"F (m=1,2,3,...) so hik has no precise meaning. Indeed, when the mode
oscillations are purely harmonic the equilibrium position is zero so phonon momentum is
Zero.

Phonon—phonon collisions are usually three-phonon processes in which both transverse
and longitudinal waves are involved. They are characterized by energy conservation

hwy = hwy + hws
and by phonon wave vector conservation

q = ¢ +q3

A phonon of wave vector q; can separate into two phonons with wave vectors q, and qs.
Alternatively, q, can absorb g3 to form q;. Phonon—phonon collisions play a role in the
thermal conductivity of a crystal; neutron interactions with the crystal lattice also involve
the concept of phonons.

When particles, as waves, interact with crystal structures they create diffraction patterns
when the particle wavelength is of the order of atomic separation within the crystal,
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typically ~ 2 x 107! m. The waves of X-rays striking a crystal create principal maxima
on reflection to satisfy Braggs Law (p. 447) when the path difference

2asinf = n\

where a is the separation between the reflecting (diffracting) planes. If k is normal to the
particle wave fronts before striking the crystal and k' is normal to the wave front leaving
the crystal the condition |k| = |K'| defines the scattering as elastic, so Bragg scattering is
elastic. Knowing the plane separation of a nickel crystal, determined by X-rays, Davisson
and Germer were able to find the wavelength of electrons by Bragg elastic scattering (see
Problem 13.20).

Neutrons with A ~ 2 x 107! m have been used in non-elastic scattering experiments
where [k| # |K'| to probe the structure of crystals, that is, the atomic arrangements and
separation. Where X-rays interact chiefly with electrons surrounding the nucleus of an
atom, uncharged neutrons interact much more strongly with its nucleus; lattice vibrations
are set up so phonons play a role in the scattering.

Non-elastic scattering may be seen in terms of Figure 13.21 where waves in the wave
front normal to k are scattered by atoms 1 and 2 in a row where the atomic separation is a.
The phase lag of the wave incident on atom 2 is 27’741 sin 6 with respect to that striking atom
1, but after scattering it leads the wave scattered by atom 1 by a phase 2/\—7,%1 sing. A
diffraction maximum occurs when the phase difference

2 2
%asin@—%asimﬁ — kasin® — Kasing = 2 (1=1,2,3,...)
1.e.
a(k — k) = 21
or
2
k-k =1
a

Figure 13.21 When electrons are scattered from atoms separation a, in the same plane, the
scattering may be inelastic, i.e. |k| # |K'|. Here, the electron of wave number k = 27/ strikes atom
1 ahead in phase of that striking atom 2 by 27/ A asin 6, but after scattering it lags that from atom 2
by a phase difference &7 asin ¢. Note that A need not =2’
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Note that k — Kk’ is a vector in diffraction space and X' need not equal . This is true for
every row of lattice points in the x direction.

The expression [27/a represents a series of planes in k space with a separation 27/a.
Crystal planes in a second dimension with separation » would form another series of planes

m2t(m = 1,2,3,...) with separation 27” in k space having lines of intersection with the

seriies 1. A set of crystal planes in a third dimension with separation ¢ would form a final set
of planes n2% (n = 1,2,3,...) with separation 27/c in k space. These three sets of planes
would meet in points (I, m,n) in k space to form the reciprocal lattice. In three dimensions
the diffracted vector k — k' would end on a reciprocal lattice point [, m,n. There is no
requirement for the directions a, b and c in the crystal to be mutually perpendicular, but a
symmetry exists between the crystal lattice and its reciprocal in that planes in the one are
perpendicular to rows of points in the other and the plane spacing in one is 27 times the
reciprocal of the point spacing in the other.

When neutrons are diffracted from a crystal lattice in which a phonon of wave vector q
and frequency w is already excited, more than one diffraction maximum can appear. This
first maximum will result from Bragg elastic scattering, i.e. [k| = |K/|.

A second maximum occurs in a vector direction
ge=k-kK +q

or
K=k+q—g

This suggests that a neutron of wave vector k has absorbed a phonon of wave vector q to
become a neutron of wave vector k'. In the scattering, because the neutron is initially
outside the crystal, the crystal plus the phonon receives a momentum

h(k — k') = h(g — q)

Conventionally, the momentum 7g is associated with the whole lattice while /q (associated
with the absorbed phonon) is known as the crystal or quasi-momentum of the phonon
because it acts as a momentum when absorbed by the neutron.

In pure phonon—phonon collisions two processes may occur. The three phonons involved
may begin and end in the same Brillouin Zone. this is called a normal process. In some
cases, however, the third phonon may finish outside the Brillouin zone. This is known as
the Umklapp process. This occurs when a phonon is Bragg reflected (at the edge of a
Brillouin zone) at the same time as it absorbs another phonon. We know, however, that a
phonon of wave vector q is identical with a phonon of wave vector q =+ 27”, so the third
phonon may be considered as remaining within the Brillouin zone. Umklapp processes play
a role in the thermal conductivity of a crystal in the following way.

When the crystal lattice vibrations are purely harmonic the separation between adjacent
atoms during vibrations contributes an energy term o< (x; — Xt )2, where x; is the
displacement of an atom from its equilibrium position. In this case a phonon may travel
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along hundreds of atoms without hindrance. However, with increasing energy, i.e.
temperature, vibrations become anharmonic and cubic terms replace the squared term
above because separate normal modes become coupled. Effectively, a cubic term describes
the emission of a phonon by another phonon or the decay of a phonon into two phonons
and the energies of individual phonons are changed. The phonons constitute a gas where
the phonons have approximately constant speed (unlike in a real gas), but have a larger
number density and energy density at the hot end of the crystal. Heat flow is primarily by
phonon flow with phonons being created at the hot end and destroyed at the cold end. The
thermal resistance in an insulator is produced by collisions which reverse the group
velocity of the phonons, and the Umklapp process involving high-energy phonons at Bragg
reflection on the edge of the Brillouin zone is significant here.

(Problems 13.20, 13.21)

Problem 13.1
The energy of an electron mass m charge e circling a proton at radius r is

p2 62

- 2m dreor

where p is its momentum.
Use Heisenberg’s Uncertainty Principle in the form ApAr = h to show that the minimum energy
(H, atom ground state) is

—me4

Eg=—
07 8e2n?

at a Bohr radius
€0h2

mme?

Problem 13.2

The observation of a particle annihilates its mass m and its rest mass energy is converted to radiation.
Use the relations Ap Ax =~ h and E = pc for photons to show that the short wavelength limit on
length measurement is the Compton wavelength

A=—
mc

Show that this is 2.42 x 1012 m for an electron.

Problem 13.3
When x and p vary simple harmonically it can be shown that the averaged values of the squares of
the uncertainties satisfy the relation

(&) (B =
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If the energy of a simple harmonic oscillation at frequency w is written

2
1
E = Zp—m+§mw2x2

show that its minimum energy is %hy.

Problem 13.4

An electron of momentum p and wavelength A = i/p passes through a slit of width Ax. Its
diffraction as a wave may be regarded in terms of a change of its momentum Ap in a direction
parallel to the plane of the slit (its total momentum remaining constant). Show that the approximate
position of the first minimum of the diffraction pattern is in accordance with Heisenberg’s
uncertainty principle. (Note that the variation of the intensity of the principal maximum in the
pattern is a direct measure of the probability of the electron arriving at a point on the screen.)

Problem 13.5
A beam of electrons with a de Broglie wavelength of 10> m passes through a slit 10 ~#m wide.
Show that the angular spread due to diffraction is 5°47’.

Problem 13.6
Show that the de Broglie wavelength of an electron accelerated across a potential difference V is
given by

A=h/2meeV)"* =129 %107V~ m

where V is measured in volts.

Problem 13.7
If atoms in a crystal are separated by 3 x 107'°m (3 A) show that an accelerating voltage of ~ 3kV
would be required to produce electrons diffracted by the crystal.

Problem 13.8

Electromagnetic radiation consists of photons of zero rest mass. Show that the average momentum
per unit volume associated with an electromagnetic wave of electric field amplitude E is given by

p=3e0Ej/c
(Verify the dimensions of this relation.)

Problem 13.9

Show that the average momentum carried by an electromagnetic wave develops a radiation pressure
P=cp= %EoE (2)
when the wave is normally incident on a perfect absorber and a pressure

P=2cp= E()Eg
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when the wave is normally incident on a perfect reflector. (Radiation incident from all directions
within a solid angle of 27 will introduce a factor of 1/3 in the expressions above.)

Problem 13.10

If the radiation energy from the sun incident upon the perfectly absorbing surface of the earth is
1.4 W m~2 and the radiation comes from all directions within a solid angle of 27 show that the
radiation pressure is about 10~!! of the atmospheric pressure.

Problem 13.11
In a carbon molecule the two atoms oscillate with a frequency of 6.43 x 10~'! Hz. Show that the
zero point energy is 1.34 x 1073eV (1eV = 1.6 x 10717).

Problem 13.12
A particle of mass m moves in an infinitely deep square well potential of width 2a defined by

Vix)=0 —a<x<+a
V(x) =00 |x| > a

If it is described by the wave function

1 2,2
P(x) :75 (l 7%) for |x| <a
=0 |x| > a
show by calculating [ [4(x)] ? dx that the probability of finding it in the box is 0.96.
Show that in its normalized ground state, it is represented by v(x) = (1/+/a) cos (mx/2a) and
expand this in powers of mx/2a to compare it with the wave function above.

Problem 13.13

Show that the normalization constant for the wave function

. X | nom . h3mzZ
(xyz) = Asin sin 2 sin
a b c

describing an electron in a volume abc at the bottom of a deep potential well is equal to
(8 /abc) 2.

Problem 13.14
A total of N electrons occupy a volume Vin a solid at a very low temperature between the energy
levels O to Ef the Fermi energy.

Show that their total energy

Eg d
U:JEdn:J ES 4k
o _dE

3
=>NE
5 F

giving an average energy per electron of %E F
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Problem 13.15

Copper has one conduction electron per atom, a density of 9 and an atomic weight of 64. Show that
no, the number of free electrons per unit volume is =~ 8 x 10%® m =3 and that the value of its Fermi
energy level is about 7 eV (1eV = 1.6 x 107 1J).

Problem 13.16
The probability of a particle of mass m penetrating a distance x into a classically forbidden region is
proportional to e ~2%* where

a?=2m(V—E)/h*

If xis 2x 107m (2 A) and (V — E) is 1 eV (1.6 x 107'°J) show that

e 2% = (.1 for an electron

=10~* for a proton

Problem 13.17

A particle of total energy E travels in a positive x direction in a region where the potential energy
V =0. The potential suddenly drops to a very large negative value. Show that, quantum
mechanically, the amplitude of the reflected wave tends to unity and that of the transmitted wave to
zero. Note that this implies non-classical total reflection.

Problem 13.18
Show that Schrodinger’s equation for a one dimensional simple harmonic oscillator of frequency w is
given by

d* 2m 1,5,
@+E—Z{E75mwx =0

and verify that if a> = mw/h then
olx) = (af ym) P/
and
V1) = (a/2v/m) PP2axe )
are respectively the normalized wave functions for £y = %hw (zero point energy) and E| = %hw.
Problem 13.19

The normalized wave function for a one-dimensional harmonic oscillator with energy
E,=(n+1hwis

¥, = N,H,(ax) ef‘lz)‘z/z,
where

N, = (a/nl/22"n!)l/2

a’>=muw/h
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and
d” 2
H(v) — n y? & -y
0)= (-1"e” o
Verify that 1 (x) and ¢ (x) of Problem 13.18 satisfy the expression for v, and calculate 1,(x) and
P3(x).

Problem 13.20

Davisson and Germer (1927) fired electrons with an energy of 54 eV at a nickel crystal which had an
atomic plane separation of 0.91 x 107'%m (0.91 A) Bragg reflection gave a diffraction maximum at
65°. Calculate the reflected electron momentum p and the kinetic energy to show that the difference
between the incident and scattered kinetic energies was within 3.9%.

Problem 13.21
The perturbed energies of | (odd) and \ (even) due to electron—ion interactions are given by

*Vepdx
AE = M—q’b where 1" is the complex conjugate of v

Jorpdx

If the zero of energy is taken as the mean value of the potential then the potential may be written as
a Fourier series in the form

o0
V== Z V, cos 2mnx/a
n=1

where the V, are the potential gaps in Figure 13.16. They are positive numbers for a potential with
strong negative peaks at the lattice sites. For travelling waves 1) = e*** so ) *¢) = 1, which gives
AE =0 in the above expression except for ¢ = sinkx or coskx when k = nmw/a where a is the
periodicity of the lattice.

Show that for ¢ = sinka

2kxV, cos % dx
| sin?kxdx

AE— _if sin
n—1

1
= EV" for k=nn/a

Show that ¢ = cos kx in the above expression gives AE = —%Vn for k = nr/a

Summary of Important Results

De Broglie Wavelength \ = h/p

Heisenberg’s Uncertainty Principle (Bandwidth Theorem)
AxAp =~ h
AEAt=h

determines zero point energy.
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Schrodinger’s time independent wave equation

2 —
ddd;(zx) +2m(l;2 V) bx) = 0

w(x) — Aeikx +Befikx,

where
2m(E -V
R =2mEZV) gy
h
P(x) =Ce*  +De™ %,
where
2m(V — E
2=V oE) g
/]

Normalization

J [(xyz)|* dxdydz = 1

all space

Harmonic oscillator

Energy levels E, = (n+ §)hv
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Non-linear Oscillations and Chaos

The oscillations discussed in this book so far have all been restricted in amplitude to those
which satisfy the equation of motion where the restoring force is a linear function of the
displacement. This restriction was emphasized in Chapter 1 and from time to time its
limiting influence has required further discussion; for example, in Chapter 6 on acoustic
waves in a fluid. We now discuss some of the consequences when this restriction is lifted.
We begin with simple examples in mechanical, solid state and electrical oscillators.
More complicated behaviour associated with chaos in these oscillators is also examined
together with the appearance of chaos in biological and fluid mechanical systems.

Free Vibrations of an Anharmonic Oscillator — Large Amplitude
Motion of a Simple Pendulum

In Figure 1.1 the equation of motion of the simple pendulum was written in terms of its

angular displacement as
2

d<6 2

— 4wy =0

de2 * 70

where w(z) = g/I. Here, an approximation was made by writing 6 for sin 6; the equation is
valid for oscillation amplitudes within this limit. When 6 > 7° however, this validity is lost
and we must consider the more complicated equation

d’o

W + w(2) sinf =0

Multiplying this equation by 2df/dr and integrating with respect to  gives (df/dr)* =
2w(2) cosf + A, where A is the constant of integration. The velocity df/dr is zero at the
maximum angular displacement 6 = 6, giving A = —2w? cos f so that

i—f = wo[2(cos O — cos B)] />

The Physics of Vibrations and Waves, 6th Edition H. J. Pain
© 2005 John Wiley & Sons, Ltd., ISBN: 0-470-01295-1(hardback); 0-470-01296-X(paperback)
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or, upon integrating,

; J dé
wol =
{2[cos 6 — cos f]} '/

If = 0 at time r = 0 and T is the new period of oscillation, then § = 0 at t = T/4, and
using half-angles we obtain

T J"o do

wo— =
4 Jo 2[sin®0y/2 —sin?0/2)"?

If we now express 6 as a fraction of 6y by writing sin /2 = sin (fo/2) sin ¢, where, of
course, —1 < sin¢ < 1, we have

3(c0s0/2)60 = (sino/2) cos 6

giving

nT Jﬂ/z do
2To  Jo [1—(sin®6/2)sin¢]'"/?

where Ty = 27/wj.
Expansion and integration gives

T=To(l+1sin*09/2+2 sin*0p/2+ -

or approximately
T = TO(I —l—i sin? 90/2)

(Problem 14.1)

Forced Oscillations -- Non-linear Restoring Force

When an oscillating force is driving an undamped oscillator the equation of motion for
such a system is given by

mx + s(x) = Focoswt

where s(x) is a non-linear function of x, which may be expressed in polynomial form:

s(x) = s1x + sox% 5323

where the coefficients are constant. In many practical examples s(x) = s1x + s3x°, where
the cubic term ensures that the restoring force s(x) has the same value for positive and
negative displacements, so that the vibrations are symmetric about x = 0. When s and s3
are both positive the restoring force for a given displacement is greater than in the linear
case and, if supplied by a spring, this case defines the spring as ‘hard’. If 53 is negative the
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Restoring force

s -
s Cc
2 A~

P

P

4 displacement

Figure 14.1 Oscillator displacement versus restoring force for (a) linear restoring force, (b) non-
linear ‘hard” spring, and (c) non-linear ‘soft’ spring

restoring force is less than in the linear case and the spring is ‘soft’. In Figure 14.1 the
variation of restoring force is shown with displacement for s3 zero (linear), s3 positive
(hard) and s3 negative (soft). We see therefore that the large amplitude vibrations of the
pendulum of the previous section are soft-spring controlled because

sinf ~ 9—%93

Figure 14.2 shows a mass m attached to points D and D’, a vertical distance 2a apart, by

two light elastic strings of constant stiffness s and subjected to a horizontal driving force

Focoswt. At zero displacement the tension in the strings is 7y and at a displacement x (not

limited in value) the tension is 7 = Ty + s(L — a) where L is the stretched string length.
The equation of motion (neglecting gravity) is

mx = —2T sin 0 + Fcos wt

= —2[To + s(L —a)] % + Fcoswrt

<>
Fq cos wt

Figure 14.2 A mass m supported by elastic strings between two points D and D’ vertically
separated by a distance 2a and subjected to a lateral force Fq coswt
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Inserting the value
)1 1/2
L=a {1 + (E> }
a
and expanding this expression in powers of x/a, we obtain by neglecting terms smaller than
(x/a)’
2T —-T
_ 2y (sa—To)

— = Y3 4 Fycoswt

mx =
a a3

which we may write
. 3 Fy
X+ 851X+ 853x° = — coswrt
m
where
o 2T0 o sa — T()

= and s3 = 3
ma ma

If 53 is small we assume (as a first approximation) the solution x; = A cos wt, which yields
from the equation of motion

. Fy
X1 = —s1Acoswt — s3A° cos® wr + — coswt
m

Since cos® wt = 2 coswr + ; cos 3wt, this becomes
X1 =—(s1A +353A% — Fo/m) coswt — }53A% cos 3wt

Integrating twice, where the constants become zero from initial boundary conditions, gives
as a second approximation to the equation

3

. Fo
X+ 851X+ 853x° = — coswrt
m

the solution

1 s3A3

3 Fy
=— A+Zs53A° -2
X2 5 (sl 4S3 >coswt+36 cos 3wt

w?

Thus, for s3 small we have a value of w appropriate to a given amplitude A, and we can plot
a graph of amplitude versus driving frequency. Note that we have a third harmonic. We see
that for a system with a non-linear restoring force resonance does not exist in the same way
as in the linear case. In the example above, even when no damping is present, the amplitude
will not increase without limit for a driving force of a given frequency, for if w is the natural
frequency at low amplitude it is no longer the natural frequency at high amplitude. For s3
positive (hard spring) the natural frequency increases with increasing amplitude and the
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. Shock
| jump

Amplitude

@) (b) (c)

Figure 14.3 Response curves of amplitude versus frequency for oscillators having (a) a ‘hard” spring
restoring force, and (b) a ‘soft’ spring restoring force. In the extreme case (c) the tilt of the maximum
is sufficient to allow multi-valued amplitudes at a given frequency and ‘shock jumps’ may occur (See
Figure 15.1 for comparable behaviour in a high amplitude sound wave.)

amplitude versus frequency curve has a tilted maximum (Figure 14.3a). For a soft spring,
s3 is negative and the behaviour follows Figure 14.3b. It is possible for the tilt to become so
pronounced (Figure 14.3c) that the amplitude is not single valued for a given w and shock
jumps in amplitude may occur at a given frequency (see the next chapter on the
development of a shock front in a high amplitude acoustic wave).

(Problems 14.2, 14.3)

Thermal Expansion of a Crystal

Chapter 1 showed that the curve of potential energy versus displacement for a linear
oscillator was parabolic. Small departures from this curve are consistent with anharmonic
oscillations. Consider the potential energy curve for a pair of neighbouring ions of opposite
charge +e in a crystal lattice such as that of KCI. If r is the separation of the ions the
mutual potential energy is given by

ae’ B

where a and § are positive constants and p = 9. This is plotted in Figure 14.4, which shows
that the potential energy curve is no longer parabolic. The first term of V(r) is the energy
due to Coulomb attraction; the second is that of a repulsive force. The value of o depends
upon the presence of neighbouring ions and is about 0.3. The constant 3 can be found in
terms of « and the equilibrium separation r( because, in equilibrium,

dv 2
( > _aet pB
r=ro

qr- 2 p+1
dr rs rh
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Figure 14.4 Non-parabolic curve of mutual potential energy between oppositely charged ions in
the lattice of an ionic crystal (NaCl or KCL). The combination of repulsive and attractive forces yields
an equilibrium separation rq. Very small energy increments give harmonic motion about ro but
oscillations at higher energies are anharmonic, leading to thermal expansion of the crystal

giving
2 p-1
_aeTrg

p

B

X-ray diffraction from such crystals gives ry = 3.12 A for KCl, so that (£ may be found
numerically.

To consider small displacements from the equilibrium value r( let us expand V(r) about
r =ro in a Taylor series to give

dv x? (d*V x3 (d*v
vor-vo+x(g) <5 (5), (@),

where x = r — ry. Since (dV/dr), =0, we may write

2 B 3
V(r) — V(re) = V(x) = A% + 3—",

The quantity Ax?/2 is the quadratic term familiar in the linear oscillator, so that for very
small disturbances the bottom of the potential energy curve is parabolic, and a small gain in
energy causes the ion pair to oscillate symmetrically about r = ry. An increase in the ion
pair energy involves the second term Bx?®/6, and oscillations are no longer symmetric
about rg, because |r, — ro| > |r; — ro| in Figure 14.4. Hence the time average for r — rg is
not zero as it is for a linear oscillator, and this time average r, > rp. If all ion pairs acquire
this amount of energy, for example by heating, the crystal expands. We may consider the
force between the two ions as

ro
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and note that the quadratic term here is responsible for the lack of symmetry in the motion.
If it were a cubic term as in the previous example the symmetry of motion about ry would
still occur. The coefficient A in the force equation is the force constant in the discussion on
crystals in Chapters 5 and 6 and leads directly to Young’s modulus. The coefficient B gives
information on the coefficient of thermal expansion of the crystal.

(Problems 14.4, 14.5)

Non-linear Effects in Electrical Devices

A feature of the non-linearity in the mechanical devices discussed earlier was the
introduction of harmonics of the fundamental frequency of the driving force. It is
comparatively simple to avoid these effects of non-linearity in electronic systems by
choosing a small linear portion of the operating characteristic and amplifying the response
in stages. In an electromechanical device such as a piezoelectric crystal linearity is again
achieved by restricting all oscillations to small amplitudes and amplifying the response. In
electroacoustic devices such as microphones and loudspeakers the introduction of
harmonics often leads to severe distortion. In the loudspeaker of Figure 14.5 even if a
pure sinusoidal wave is delivered to the speech coil it is difficult to provide a mechanical
suspension for the cone which has a linear response. The cone acts as a piston radiating
acoustic power, and limitation of amplitude together with inevitable mismatching of
acoustic impedances reduces the efficiency of transforming electrical into acoustic power
to less than 10%. Fortunately the ear is a sensitive device.

Non-linear electrical oscillators are, however, often used, and Figure 14.6a shows a
‘relaxation oscillator’ circuit where a capacitance is discharged very rapidly through a
gaseous conductor such as a hydrogen tube. E is the constant charging potential and i is the
instantaneous value of the current which charges the capacitor through the resistor R to a
potential Vg, the striking potential, at which the gas in the tube is ionized. The tube

Driving force F
o current in coil x magnetic field in gap

<>
Sinusoidal s anharmonic output at high amplitude
input |:
VAVAN N
Lessw
S >

Figure 14.5 A pure sinusoidal wave input to an electroacoustical device such as a loudspeaker will
lead to distorted sound output if the cone suspension has a non-linear stiffness at high amplitudes

STUDENTS-HUB.com Uploaded By: Jibreel Bornat


https://students-hub.com

466 Non-linear Oscillations and Chaos

R
oU
= .8
2z A
gg L
O 8_ c__ Vuutput
v v
SV
(@) B
VS
(b)
Ve A
t t+T t+2T

Figure 14.6 Electrical circuit of a non-linear ‘relaxation oscillator. A capacitance C is charged
through a resistance R to a potential Vi < E, at which the gas-filled valve strikes and rapidly
discharges the condenser to an extinction potential V., when the valve ceases to conduct and the
cycle is repeated

becomes highly conducting and discharges the capacitance in a negligibly short time to V.,
the extinction potential, at which the tube ceases to conduct. The capacitance charges again
to V; and the cycle is repeated. The variation of voltage across the capacitance with time is
shown in Figure 14.6b. Assume that at point A and time ¢ the capacitance has just
discharged. If current i is flowing at time ¢ = O then

V. =E —ioRe /RC

The capacitance charges to the potential V in a time 7 so that

Vy=E — igRe (H7/RC

giving
Vi — Ve = ioR (e "/RC — g =(#7)/RC)

= ioRe_’/RC[l _ e—T/RC]

= (E— Vo)l —e 7/
giving

o~7/RC _ E—-Vq

E-V,

or
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The period of oscillation is therefore directly proportional to the charging time constant RC.

A more sophisticated circuit produces a linear charging system with a very short
discharge time so that the exponential voltage output becomes linear and gives a ‘sawtooth’
waveform. From Chapter 10 we know that this periodic function contains many harmonics.
A sawtooth voltage output applied to the time base of an oscilloscope produces a linear
sweep of the spot across the tube.

Electrical Relaxation Oscillators
Van der Pol and Chaos (1926-1927)

The work of Van der Pol continues to attract the attention of research workers in chaos
chiefly because of an equation he derived at that time. His relaxation oscillator was a
multivibrator, a two stage resistance-capacity coupled amplifier with the output of the
second triode fed back as input to the grid of the first. His analysis used the mechanical
form of the damped simple harmonic equation with a negative resistance term which
increased the amplitude, thus

¥F—oax+wix=0
with a solution
x = Ce™%sin[(w? — a?/4)t + ¢]

for a > 0 and o?/4 < w?.
He restricted the unlimited growth of x by replacing « with o — 3v/x? where 7 is a
constant, writing wt = ¢’ and x = (a/37) /2 to give his equation the form

v—e(l—vHo+v=0

where ¢ = a/w and ¥ = dv/dr’.

It is this equation with a forcing term A sin wgt on the right hand side which is known as
Van der Pol’s equation and which has formed the basis of a number of studies in chaos, one
of which we shall meet later. Van der Pol found that as € increased his oscillator gradually
assumed the period 7 = RC with the output for € = 10 shown in Figure 14.7 (Van der Pol,
1926).

Even more interesting from the viewpoint of chaos was the oscillator by which he could
produce subharmonics of its natural frequency. Such a phenomenon, period doubling,
tripling, etc. is now recognized as an early sign of chaos, indeed Li and Yorke (1975) have
published a paper entitled ‘Period 3 implies Chaos’.

Van der Pol’s period doubling circuit is shown in Figure 14.8. With Ey =0 and
C = 1073 puF the relaxation frequency of the system was 103 cycles. Setting E sinwt at
7.5sin27103¢ he was able, by increasing C through the range 5-40 x 103 pF to produce
subharmonics w/2,w/3...w/40...w/200. He registered the output on a pair of loosely
coupled telephone earpieces and his paper makes the interesting comment that ‘often an
irregular noise is heard in the telephone receivers before the frequency jumps, however this
is a subsidiary phenomenon’. In fact, such internally generated noise accompanied by
subharmonics is one of the early signs of chaos (Van der Pol and Van der Mark, 1927).
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Figure 14.7 Non-Llinear relaxation oscillations of period 7 = RC for an unforced Van der Pol system

200V

—— i —

Neon gas tube

i

E, sin ot

Figure 14.8 Van der Pol’s period doubling circuit
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Chaos in Population Biology

Chronological accounts of a modern research topic rarely present the most coherent
picture. The significance of early developments is not always recognized until much later;
indeed the first recorded strange or chaotic attractor, that of Lorenz in 1963, comes at the
end of this account but only because of its level of sophistication. Even the simple example
with which we begin was not fully explained when it first appeared.

Despite its simplicity the example of population biology reveals many of the
characteristics displayed by chaotic systems. These are:

e The chaos is deterministic and not random; that is, the paths followed by trajectories are
governed by solutions to given non-linear equations.

e Trajectories from closely neighbouring starting points diverge with time.

e Trajectories can, according to the conditions, finish on a stable point attractor, they can
diverge to infinity from a repellor or at some stage they can orbit in what is known as a
limit cycle.

e Such a limit cycle can develop an infinite series of period doubling; odd number periods
may be generated, also completely aperiodic trajectories which still remain within a
bounded region of space.

e With the appearance of chaotic motion the sharp definition of these frequencies is
gradually overcome by a growing background of wide band noise which is internally
generated.

A number of equations dealing with population biology has been widely studied but we
consider the simplest, a quadratic equation discussed by May (1976) in a classic review.
This is known as the logistic map and is given by

Xnp1 =4, (1 —x,)

where the subscripts refer to the year in which the population was measured and A is a
parameter. Restricting the values of x and Ato 0 < x < 1 and 0 < X\ < 1 is a scaling device
which keeps the dynamics within the limits of a diagram. Because it involves only the
coordinate x this logistic equation is known as a one-dimensional map.

Much of the behaviour of populations under this quadratic rule is shown by the
interaction of the parabola and the straight line bisector x,.; = x, of gradient unity and
this behaviour is divided into three distinct categories by the A ranges 0 < A < i,i <AL %
and % <A< L

To illustrate the general use of the bisector consider what happens to a population with a
constant reproduction rate; that is, the straight line x,,; = 4\x,. Figure 14.9a shows the
line for A > i compared with the bisector x,,+; = x,. Taking x( as the starting value of the
population gives x| on the A > % line which then projects horizontally to the same value
(x1) on the bisector. This gives the value x; on the base line which projects vertically to
the A > % line to give x, and the process is repeated. Evidently for A > }1 the population
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Figure 14.9 Change of population with constant reproduction rate given by x,.1 = 4\x,. (a) for
A >  the population — oo as the trajectories move away from the origin (a repellor). (b) For A < 1
the population is extinguished, all trajectories moving to the stable point attractor at zero. The
initial population at xo gives x; on the A > 1 line which projects horizontally to the same value on
the bisector x,,1 = x,,. The value x; projects vertically to x on the X > 1 line and the process
repeats itself. Similarly for A\ <
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increases without limit, the trajectories move to infinity from a repellor. For x < J, Fig-

ure 14.9b, the same process of horizontal and vertical projection produces x; < x and the

population is extinguished, all trajectories moving to the stable point attractor at zero.
The method is equally applicable to the parabola

Xpp1 =4, (1 — xp)

For X\ > % we have Figure 14.10 and where the curve and the bisector intersect we have
Xnt+1 = X, corresponding to a fixed point in the iteration process. Writing this value as
Xpi1 =X, =x* we find from x* = 4 ™ (1 — x*) the two roots x* =0 and x™ =1 —
each of which is a fixed point.

Restricting x and A to the values between 0 and 1 gives for A < % only the value x* = 0
but for § < XA < 1,x™ may take both values. If x* is stable; that is, a fixed point to which
the end points of all trajectories become infinitely close, Figure 14.10, it is a point attractor
and this stability depends on the slope of the curve at x*™. We write x,,| =
4 x,(1 —x,) =f(x,) and if —1 <f’(x) <1 at x*, x™ is stable. When the slope f”(x)
equals —1 stability is lost and x™ bifurcates into two new values, each of which is stable.
This is called a pitchfork bifurcation and is the origin of the period doubling sequence in
the logistic map. Odd numbered periodic cycles arise at a later stage from bifurcations into
pairs of new values, only one of each pair being stable. These are called tangent

bifurcations.
o<a<¥,
4 4 Xp+1=Xp

Xn+1

A '

A :

[> ] E

Xo X1 Xy X*= 1_]7/4X 1 Xn

Figure 14.10 The logistic equation x,,; = 4)\x,(1 —x,) cut by the bisector x,,; = x, at the
points x* = 0 and x* =1 — . When 2 < X < 2 the latter value of x* is a stable point attractor for
all trajectories as shown
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The dependence of stability upon f’(x) at the fixed point x* follows from Taylor’s
theorem for, with x,, ., = f(x,) and x, = x* 4 ¢, where ¢, is a very small quantity, we have

Xn+1 :f(X* +€n) %f(X*) +€nf/(x>k)
=x* +e,f'(x%)

because x* = f(x™*) at this fixed point x*.

Now x,11 =x™ +e,11, giving f'(x*) = e,,1/e, and for n — oo, £,,1 — 0 only if
—1<f'(x) < 1.

Thus, x* = 0 is a stable point attractor for all trajectories when \ < i but becomes
unstable at A :4—1‘ while x* =1 — ﬁ is a stable point attractor for all trajectories when
T<A<3 At A=3 the slope of f(x) at x* =1 —Z; equals —1, stability is lost, x*
bifurcates and a stable oscillation between two new values x; and x5 develops. We can see
this by studying the behaviour of x,, versus x,, obtained by a double application of the
logistic equation.

We can express X,i2 = f(x,11) = ff(x,) =f>(x,) where the superscript defines the
double application. A graph of f2(x), which is symmetric, is shown in Figure 14.11a where
the central minimum decreases as A increases. The bisector is now of course x,,» = x,
and, as shown, it cuts f2(x) at three fixed points. The value of \ is chosen so that x} is near
the minimum and x5 is near a maximum. The slope of f?(x) (written f%(x)) at x} and x5
is therefore close to zero and x and x are stable fixed points of £2(x). It is at this value of
A =3 that period doubling begins.

The third fixed point x* is clearly the original fixed point of £(x). This follows from
noting that the point x* = x, = x, 11 = x,1» falls on both f(x) and f?(x) and on their
respective bisectors. In addition, the stability behaviour of x* is the same for f(x) and
f2(x). We can show this via the chain rule, for if

X2 :f(xl) :fz(xo) where X1 :f(XO)

then

f2/(x) :f/(xl) — d[f(xl)]% _ |:df(x1)

!
fllen _ S ]f @)
where all derivatives are evaluated at x = x. This result holds for higher values of the

superscript n in f"(x).
Taking x, as the fixed point x* then

x* = X0 —= X1 = X2
and
PO =) = ()2

Thus, if x* is stable (unstable) in f(x) then it is stable (unstable) in £2(x).
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Figure 14.11 (a) x and x; are two of the three fixed points formed by the intersection of
Xnv2 = f%(x,) and its bisector x,,» = x,. The third fixed point is the original fixed point
x* =1—% of xp11 = f(x,). (b) When the value of X is just greater than 2 period doubling begins
between two new fixed points x* and xJ
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The stable fixed points x} and x5 of 2 (x) for A > 3 are not fixed points of f(x). Clearly,
since these points lie on the bisector x,., = x,, each will return to itself every second
iteration. This can occur only when the expressions

xp =f(x3) and xy =f(x7)

jointly hold so a trajectory ends in the cycle x| — x5 —x} —x}, Figure 14.11(b).

(Problem 14.6)

In the same way that x} and x3 became the two stable points at A\; = 2 they will become
simultaneously unstable for some larger value A\, when f%(x*) = —1. At Ay, x| and x5
will each bifurcate to two stable points to give a stable 4-cycle period based on the stable
fixed points of f*(x). As the period doubling sequence continues, via pitchfork bifurcations,
the values Aj, A2, A3, \4... for the cycles 2,2%,23 2" ... converge geometrically and
Feigenbaum (1978) found that for this period doubling sequence the limit as n — oo is
given by

)\n+1 —-A

Opsoe = ——— " — 4.6692016
)\n+2 - )\n+1

This result appears to be verified not only for the logistic map but for other non-linear
equations with a single maximum and many experiments, computer simulated and
otherwise, support Feigenbaum’s result.

The value of A at which the cycle 2"(n — oo) is approached is given by A, = 0.8925.
This is illustrated in Figure 14.12 where the successive bifurcations of 2" cycles become

1.0

09

0.8 [

0.7 |

0.6 [

051

04 r

03 r

0.2 r

0.1

0.0
0.75 Moo 1.0

Figure 14.12 Bifurcations at period doubling for the logistic map begin at A :% and reach the
limit 2°° at A . Between A, and A = 1 chaotic behaviour is interspersed with regions or windows
at which odd numbered cycles of period k and their harmonics k2" appear. Some cycles are aperiodic
(Figure 14.13). (From Tabor, 1989)
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Figure 14.13 An aperiodic cycle which remains bounded within the system for % <A<l

increasingly compressed in the A space. Between the values of Ao, and A =1 a very rich
behaviour is observed; there is an infinite number of different periodicities and an
uncountable number of very long cycles of no measurable period but which remain
bounded within the system (Figure 14.13).

The order in which these cycles appear has been successfully predicted by Metropolis et
al. (1973). The first odd cycle appears at A = 0.9196 and the first period 3 cycle appears at
A =0.9571. This is an important cycle because of the paper by Li and Yorke entitled
‘Period 3 implies Chaos’ (Li and Yorke, 1975).

We can examine the origin of the first period 3 cycle in Figure 14.14(a). At some value
\* the bisector x,,43 = x,, is tangent to the curve x,.3 = f(x,) at the three fixed points xT,
x5, x3. The slope of f3(x,) at these points must equal +1 and each of these three unstable
fixed points bifurcates into a pair of which one is stable and the other is unstable. This is the
tangent bifurcation. The period 3 cycle orbits between the three stable fixed points (one
from each bifurcation) and we can follow the bifurcation process by increasing A beyond
A* by a small quantity. This heightens the maxima and deepens the minima so that the
bisector now cuts f3(x,) in pairs of points one on each side of the tangent position. A
typical pair is shown in Figure 14.14(b) on a magnified scale. The tangent point T
splits into points A and B each of which moves along the curve from T as A increases.
Point A moves from a gradient position of +1 around the curve maximum to a
gradient position of less than 1 and forms the stable fixed point of the bifurcated pair. Point
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Xn+3| (q) A <0.9571 Xp+3=Xp

Xn+3=Xp

A=0.9571

Figure 14.14 (a) The first period 3 cycle appears at A = 0.9571. Just below this value of A the
bisector x,,3 = x, is tangent to x,,3 = f3(x,) at three unstable fixed points (gradient = +1). A
small increase of A splits these points into pairs, one point of each pair becoming stable. (b)
Magnification at tangent point T which splits into a pair A and B with a small increase in A\. At T the
gradient is +1 (unstable), A is stable at a reduced gradient and B is unstable at an increased gradient
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Xn+1

Xn+1

X, iy

2

Figure 14.15 The one-dimensional logistic equation x,.1 = 4Mx,(1 —x,) is non-invertible
because trajectories cannot be traced uniquely backwards to their origins. Each x,., can arise from
two different values of x,

B moves from T (gradient +1) along the curve to a steeper gradient position and remains
unstable.

Thus, to quote May, ‘the fundamental stable dynamical units are of basic period k which
arise by tangent bifurcation along with their associated cascade of harmonics of periods
k2™ which arise by pitchfork bifurcation. The hierarchy of stable cycles of period 2”
(namely, k = 1) is merely a special case albeit a conspicuously important one’.

The one dimensional logistic map has one profound limitation. Figure 14.15 shows that
it is symmetric about the point x = 1 so that any x,;; can arise from one of two different
values x, and x/. This fails an essential requirement in chaos theory, namely that all
trajectories may be traced uniquely backwards in time to their origins. This property is
known as ‘invertibility’ and clearly the logistic map is non-invertible.

Chaos in a Non-linear Electrical Oscillator

The development of the varactor has made it possible to display many features of the
preceding section on a cathode ray oscilloscope in a first year university laboratory
experiment. The varactor acts as a diode in the forward direction but behaves in the reverse
direction as a variable non-linear capacitance in a series LCR circuit. Testa et al. (1982)
confirmed not only many of the results above but, in addition, supported two predictions
made by Feigenbaum (1979). These were

1. That bifurcation at period doubling follows a distinct procedure—as a 2" cycle loses
stability after 2" iterations, a point of the attractor just misses duplicating itself with
duplication occurring only after another 2” iterations. Thus each element of the cycle
splits into closely spaced pairs with 2" iterations required to visit an element from its
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(@) (b)

Figure 14.16 In the period doubling process the separation of adjacent elements in a pair is
reduced by a universal factor « from one bifurcation to the next. For period doubling between 16 and
32a=a/b=2.35and @ = c/a = 2.61. Reproduced by permission of The American Physical Society
from Testa et al. (1982)

adjacent neighbour. From one bifurcation to the next, separation of adjacent elements in
a pair is reduced by a universal factor a = 2.5029 (Figure 14.16).

2. After a spectral component in the period doubling process has been generated, its
amplitude remains approximately constant during further bifurcation and each new
subharmonic of this frequency can be predicted as having its amplitude reduced by
10logopt where

4
p=—"9 657

(2 +#) 1/2

A typical varactor LCR circuit is shown in Figure 14.17 with the non-linear capacitance
given by

C(V) = Co/(1+Ve/B)’

where V. is the voltage across the varactor. In Testa’s experiment Cg = 300 pF,
8=0.6,y=0.5,L=10mH and R = 28¢). For low values of V this gave a high Q
resonance circuit at a frequency of 93 kHz. With f fixed near the resonance frequency in the
driving voltage V sin27ft, V) was varied and the varactor voltage V() was measured.
Testa et al. assumed that V| played the role of A in the logistic equation and that V.
corresponded to x. A real time display on a double beam CRO of V() and V(z) clearly
revealed threshold values of Vi, for bifurcations into subharmonics f/n where
n=2,48,16. At n =4 (not shown by Testa) this would appear as Figure 14.18.

Figure 14.19 was obtained on the oscilloscope screen by Testa with a slow horizontal
scan of V| versus the varactor voltage V. which was magnified in selected steps of 10 mV.
The numbers on the horizontal axis indicate the generation of particular periods and
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!

Vy(t) | Vosin2rft

|

A C
Ve ()
v Varactor

Figure 14.17 Non-linear LCR series circuit where the non-linear element is the varactor C which
acts as a diode in the forward direction but becomes a variable non-linear capacitance in the reverse
direction

bifurcations are clearly visible. The threshold values of V| for these periods are shown in
Table 14.1. The first four threshold values V, gave

Voo — Vo

5 = =4.257+0.1
YT Ve — Vo
-« 1 —
Ve (1)
41 >

Figure 14.18 Double beam oscilloscope showing driving voltage Vo (t) at frequency f and varactor
voltage V.(t) at frequency f/4. Values of Vo, for appearance of f/n are given in Table 14.1
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Figure 14.19 Slow horizontal scan of Vg versus V.. The numbers on the horizontal axis indicate the
generation of particular periods. Bifurcations are clearly visible. Threshold values of V, for various
periods are shown in Table 14.1. Reproduced by permission of The American Physical Society from

Testa et al. (1982)

Table 14.1 Table of periods and the threshold values Vy at which they appear

Period

Threshold Vj
(rms volts)

comments

2
4
8
16
32
Chaos
12
24
6
12
5
10
7
14
3
6
12
24
9
18

0.639
1.567
1.785
1.836
1.853
1.856
1.901
1.902
2.073
2.074
2.353
2.363
2.693
2.696
3.081
3.338
3.711
3.821
4.145
4.154

—_— —— —— o —— | —

Threshold for periodic bifurcation

Onset of noise

Window
Window
Window

Window

Wide Window

Window

Reproduced by pemission of the American Physical Society from Testa et al. (1982)
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and
Vos — Voo

6, =
Voa — Vo3

=4.275+£0.1
in the Feigenbaum convergence series.

To test the first of Eigenbaum’s predictions the values of ¢, @ and b in Figure 14.16 were
measured for the bifurcations between periods 16 and 32. These gave

a=2-235 and a=S=261
b a

As periods doubled the power reduction in their frequency components was measured and
the results were consistent with Feigenbaum’s analysis.

Phase Space

One of the most vital concepts in the description of chaos is that of phase space. In one
dimension, e.g. the logistic equation, trajectories can be followed without introducing it. In
higher dimensions it is essential.

The idea of phase space has many applications in physical sciences. Students meet it
initially in the Maxwell-Boltzmann statistical distribution where the question is asked:
‘Given N gas particles at a temperature T occupying a volume V, what fraction of N will be
found in the velocity range v to v 4 dv in the small volume range dV?” We shall discuss this
application to statistical distributions in an appendix at the end of the book.

The number of dimensions of phase space is determined by the number of coordinates
required to define the complete physical state of the system. For each gas particle above we
need six dimensions, three for the v, vy, v, components in velocity space and three for the
X y z components in the configuration space V.

Each point in phase space defines the complete physical state of the system (here a gas
particle) and trajectories in phase space follow the physical development of the system.

When the energy of an ensemble of systems (particles) is conserved the phase space or
volume associated with them remains constant, but if any energy is dissipated the phase
volume contracts. This contraction generates a sub-space, there is a reduction in the
number of coordinates required and their range is reduced.

Figures 14.20—14.23 show, in turn, the two dimensional phase space diagrams of
different oscillators using the coordinates x and x.

1. A linear simple harmonic oscillator (Figure 14.20).
2. a damped simple harmonic oscillator (Figure 14.21).

3. an undamped non-linear oscillator formed by a pendulum supported on a light rigid rod
(Figure 14.22)

4. (a) an undamped oscillator with a potential energy

_ 1,2 1.4
V=—3ax +4bx
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Xeo

Figure 14.20 Linear simple harmonic oscillator represented in the two dimensional phase space of

x and x. Each ellipse corresponds to a curve of constant energy and encloses a constant area of phase
space

Y

1/2 m)'<2+1/2 mw2 x2=E

. 2
N g2, MOT2-9
2E 2E

> Xeo

/AN

\J]

Figure 14.21 The energy loss per cycle in a damped simple harmonic oscillator is shown in its

phase space diagram as a reduction of area with each cycle as its trajectory spirals to a stable point
attractor at the origin
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Figure 14.22 Phase portraits for a non-linear pendulum on a light rod. The closed curves represent
energy values up to the limit § = 0 at pendulum amplitude § = + 7 (6 = 0 is the hanging rest
position). The open curves represent fast rotations with energy values large enough for
6>0atd=(2n+1)x

(b) the oscillator of 4(a) now lightly damped (Figure 14.23).
The features of each will now be described, introducing ideas which are frequently met in
chaotic systems.

1. The trajectory in xx phase space for a simple harmonic oscillator of constant energy is
an ellipse of constant area. Its potential energy curve is the familiar parabola of p. 10.

2. For a lightly damped simple harmonic oscillator where energy is dissipated the phase
space is an inward spiral on to the equilibrium zero position which is a stable point
attractor. As energy is lost each orbit of the spiral encloses a smaller element of phase
space than its predecessor, unlike (1).

3. Here we plot the phase portraits for a large range of pendulum energies E. The closed
curves represent those energy values up to the limit where the pendulum (rigid rod)
stands on its head with zero velocity and angular amplitude §# = +x measured from the
hanging rest position. Higher E values have open curves because their rotations are fast
enough to pass through the values of § = (2n + 1)7 with velocities 6 > 0. The largest
closed curve has pointed ends, at maximum amplitude 6, because 6 is small for changes
of 6 in that range. Each interval of 27 along the horizontal axis represents a complete
rotation.

The curves passing through 6 = +7 evidently separate those energies capable of
allowing complete rotations from those which cannot. Such a curve is called a
separatrix and the points § = £ are called saddle points.
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V(x)

o
8

(b)
1

Figure 14.23 Potential energy curve V = —lax? —I—%bx4 with phase portraits for the damped and
undamped oscillators. For the undamped oscillator energies V(x) < 0 restrict the motion to that
potential well containing the xx starting position. (a) When the starting position is on the curve
V(x) > 0 the trajectories cross the potential barrier repeatedly. (b) For the damped oscillator
trajectories from a given range of xx starting positions will finish at the bottom of a particular
potential well (indicated by the shaded region known as the basin of attraction). The other basin of
attraction is unshaded. Reproduced by permission of John Wiley & Sons from Thompson and Stewart
(1986)

4. The potential energy curve V = —lax?+1bx* is drawn together with the phase
portraits for the undamped and damped oscillators. For the undamped oscillator any
starting position with total energy less than V(x) = 0 restricts the motion to one or other
of the potential wells. For any starting position greater than V(x) = 0 the motion may
cross the potential barrier repeatedly. The trajectory associated with motion starting
from rest at any of the three V(x) = 0 positions is the separatrix through the saddle
point.

If the oscillator now has a small damping term rx the final rest position is determined
exclusively by its starting values x and x. The saddle connection is broken and the two
equilibrium states are now competing point attractors. Starting positions of (x, x) which
lie in the dotted regions of the phase space generate trajectories which will come to
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Figure 14.24 Repellor and limit cycle. Phase trajectories of an oscillator governed by the equation
mx — rx + dx3 + sx = 0. For x small and r positive, trajectories spiral outwards from the repellor at
the origin. For large x, the dx3 term dominates and trajectories spiral inwards. These effects balance
at some boundary to form a stable limit cycle. Reproduced by permission of John Wiley & Sons from

Thompson and Stewart (1986)

equilibrium in the dotted attractor spiralling to rest at the minimum of the right hand
potential well. Similarly the clear region of phase space defines the starting positions
and trajectories which will finish at the minimum of the left hand potential well. Each of
these two phase space regions is called a basin of attraction.

Repellor and Limit Cycle

To illustrate the concepts of repellor and limit cycle in two dimensional phase space we
consider the damped non-linear oscillator governed by the equation

mi—rx+di’ +sx=0

When x is very small we can neglect the dx> term and if r is positive we have negative
damping giving outwardly spiralling trajectories from the central point which is therefore a
repellor. For large values of x, dx> is the dominant term and the trajectories spiral inwards.
These competing effects are balanced at some boundary to form a steady state oscillation in
a stable limit cycle of fixed period, Figure 14.24.

The Torus in Three-dimensional (x,x,t) Phase Space

Extending the ideas about phase space let us consider the generation of a torus by following
the trajectory of a particle (or system) subject to the influence of two perpendicular circular
simple harmonic motions of angular frequencies wy and w1, where w traces a circle in the
azimuthal plane with a radius ro while w; causes the particle to spiral on the surface of a
torus of radius r; (Figure 14.25). A cross section of the torus will be a circle of radius r,
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Figure 14.25 Torus in (xxt) phase space generated by a system subject to the influence of two per-

SN
pendicular circular simple harmonic motions. The trajectory of the system spirals on the torus surface

/

N

I

and the particle will register some point on the circumference of the circle each time it
passes the cross section. If w; = wq this point will be identical for each period
To = 2m/wo. However, if w; # wy the particle will arrive at different points on the circle
circumference after each interval 7¢; for example, if w; = 3w(/4, the particle will travel
only % of the circumference for each 7y and will register the points A B C D of Figure 14.26
in that order.

Such a cross section is called a Poincaré section in phase space and is a vital tool in
describing the multiple excursions of trajectories in phase space associated with chaos. It is
always taken at some fixed interval of the system such as 7, a typical example, as we shall
see, is the period of the force driving an oscillator displaying chaotic motion.

The Poincaré section for a simple harmonic oscillator taken in the upper half plane
containing the X axis but normal to the x axis consists of only one spot at the maximum
value of x as the system passes through this position at intervals of 7. A similar section for
the damped oscillator will register a series of points between x maximum and the origin as
the trajectory spirals inwards.

c

Figure 14.26 When w; = 3w /4 in Figure 14.25, the system will register the points ABCD in that
order at a given cross section. This is an example of a Poincaré section in phase space
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If the motion associated with w is not circular the surface of the torus will be distorted.
We shall see that it can be pulled out, crinkled and folded back on itself so that its Poincaré
section will assume remarkable shapes. When the repeated excursions of trajectories are
located on such a surface it is called a manifold. The final state of such a distorted surface
represents the reduced phase space which follows the dissipation of energy. Within this space
is located the attractor to which the orbiting trajectories are bound.

Chaotic Response of a Forced Non-linear Mechanical Oscillator

Fifty years ago no engineer calculating the forced vibrations of a beam via the equation

%+ kx + x> = Bcost

could have foreseen the complexity of response which computer simulated solutions have
uncovered. Ueda (1980) has found no fewer than 21 distinct regions of behaviour using a
range of B values (0—25) and k values (0—0.8) where the units are unspecified. Five of
these 21 regions display chaos, the others contain a variety of different attractors.
Thompson and Stewart (1986) have chosen particular B and k values from Ueda to
illustrate many basic features of chaotic oscillators and the use of Poincaré sections to
identify them. Even with the same B and k values the long term behaviour of the oscillator
is found to depend critically upon the starting values of x and x and Figure 14.27 shows the
phase trajectories and wave forms of five stable periodic motions around attractors for
B = 0.2 and k = 0.08 where the letter A denotes the starting point in each case.

We have already noted that one sign of impending chaos in a system is the divergence
with time of phase trajectories from almost identical starting positions even though their
behaviour is determined by the same equation. For a forced damped oscillator we saw on
p. 58 that this behaviour consists of two terms, a transient which decays with time leaving
the steady state component.

One of Ueda’s chaotic regimens lies in the B range (6—8) and the k range (0.03-0.1) and
Thompson and Stewart chose B = 7.5 and k = 0.05 for their illustration. Figure 14.28
shows phase trajectories of the oscillator for two almost identical starting positions labelled
A and a of (,x). Because the vibration waveform of the oscillator is so irregular there is
only one way of registering the passage of time on this two-dimensional phase diagram and
that is by marking off the constant period 7 associated with cos ¢ of the driving force. This
gives points B and b and the trajectory divergence is already evident. This divergence may
be traced over many periods of 7¢ and is found to be exponential with time. We can
associate the points B and b and their successors after each interval of 7¢ with the
formation of our Poincaré section of the torus on p. 489. Figure 14.29 shows the history of
the single phase trajectory which started at A marked off in alphabetical order over the first
nine periods of 7. Note that each letter represents a maximum of the driving force B cos ¢
and that all letters fall on the right hand side of the x axis, that is x positive.

Tracing this complicated trajectory on the three-dimensional (xxt) phase surface of the
torus would separate that is time resolve, the apparent trajectory crossing points in the two-
dimensional picture. If now only the Poincaré section points A, B, C, D, etc. are plotted
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Figure 14.27 Phase trajectories for the oscillator X 4 0.08x 4+ x> = 0.2 cos t are seen to depend
critically upon the starting values of x and x. The letter A denotes each starting position. Reproduced
by permission of John Wiley & Sons from Thompson and Stewart (1986)

over a very large number of intervals of 7y they build up a shape of which that shown in
Figure 14.30 is typical.

Irrespective of any starting position or of the size and duration of any transients all long
term, steady state, Poincaré section points eventually settle to contribute to this pattern. It
bears the signature of a chaotic attractor for high resolution displays a fine structure known
as fractal. It is an example of the stretching and folding of an ensemble of steady state
trajectories in phase space during which the trajectories become thoroughly mixed; that is,
change from one set of close neighbours to another. The important point is that despite
mixing, the trajectories retain their distinct identities and never merge; their time histories
are invertible.

A Brief Review

We now review briefly the discussion so far in order to present a clearer picture of what we
shall expect to identify in following sections.

We saw on p. 474 how chaos could be approached via period doubling but that the
symmetry of the population biology equation created an ambiguity on the route to chaos, so
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Ueda’s éolution(k)

Figure 14.28 Two phase trajectories from almost identical starting positions A and a for the
oscillator ¥ + 0.05x + x> = 7.5 cost. After one period of the driving force the trajectories have
diverged respectively to B and b. Reproduced by permission of John Wiley & Sons from Thompson and
Stewart (1986)

that no final point on a trajectory could be uniquely time reversed back to its origin. This
essential time reversal arises from the continuity of unique solutions to the non-linear
equations governing the system. The solution at a given time defines the complete state of
the system and occupies a point in phase space so that, with time, the trajectory traces a
line in phase space. However, trajectories with close origins in a chaotic attractor system
diverge exponentially with time while the energy dissipation always associated with chaotic
attractors requires the phase space volume to contract. To reconcile these contradictory
features, phase space of at least three dimensions is required and the problem is resolved
essentially through stretching and folding this phase space. The distortion of phase space
on a torus surface is an example of this.

To illustrate this process of stretching and folding, which we shall discuss later in more
detail, we may consider two trajectories, originally close neighbours, which diverge as they
spiral outwards on a plane (Figure 14.31) leaving the plane only to fold over by attraction
and return back to the centre of the spiral. The divergence; that is, the sensitivity to initial
conditions results from the stretching process and the folding comes from the attraction.
The uniqueness of the trajectories in phase space ensures that they remain distinct, that they
never merge, no matter how complex the phase space structure becomes. This complexity
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Ueda’s solution(k)

-3 -2 -1 0 1 2 3

Figure 14.29 A single phase trajectory traced over the first nine periods of the driving force in
Figure 14.28. In three dimensional phase space the apparent crossing points would be separated by
time resolution. Reproduced by permission of John Wiley & Sons from Thompson and Stewart (1986)

is revealed by the fractal nature of the highly resolved Poincaré section of the chaotic
attractor in Figure 14.30.

We now explain what is meant by fractal structure and discuss how theories of phase
space distortion or mapping produce it.

Fractals

In topology a curve has a dimension of one and a surface a dimension of two. There are
higher integral dimensions. The word ‘fractal’ was coined by Mandelbrot in 1975 to
express the idea of a ‘shape’ with a non-integral dimension. He has since published books
on the subject containing many beautiful computer generated patterns. The essential
feature of all these fractal patterns is that they are self similar which means that,
irrespective of scale, they retain the same geometric appearance. A well known example is
the Koch snowflake.

Koch Snowflake

Figure 14.32 shows an equilateral triangle of side length 3/. On the central section of each
side is placed a similar triangle of side / and the process is repeated indefinitely to produce
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Figure 14.30 Poincaré section for an oscillator similar to that of Figures 14.28 and 14.29. High
resolution displays a fractal fine structure. Reprinted with permission from ‘Steady motions exhibited
by Duffing’s equation: A picture book of regular and chaotic motions’, by Yoshisuke Ueda, published
in New Approaches to Nonlinear Problems in Dynamics, pp. 311--322. Copyright 1980 by the Society
for Industrial and Applied Mathematics, Philadelphia, Pennsylvania. All rights reserved

a curve of infinite length (37 x % X %‘. ..) but which encloses a finite area less than that of

the circle surrounding the original triangle.

Mandelbrot was first led to the idea of fractals by studying noise on a transmission line.
He found that the pattern or the distribution of the noise remained the same whether taken
over a period of an hour, a minute or a second; that is, self similarity prevailed. He identified
the pattern as belonging to a Cantor set which dates from the nineteenth century and which
G. D. Birkhoff had suggested in the 1920s might be significant in dynamical systems.

Cantor Set

The Cantor set (Figure 14.33) is constructed by removing the centre part / of a line of
length 3/ and repeating the process indefinitely. We define the total set of points lying on
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Figure 14.31 Trajectories around a chaotic attractor diverge yet remain within a bounded region.
This is achieved by the stretching and folding of phase space

the line segment / to be some function f(/) and assume this total set to be preserved so that
f3h) =21(1)

If then f(I) is considered to vary as some power & of [ so that f(I) ~I° we have
f(31) = 2f(I) giving (31)® = 21° so that 3° =2 and § = log2/log3 = 0.6309. This is the
non-integral fractal dimension of the Cantor set.

Figure 14.32 The Koch snowflake has a fractal non-integral dimension. The final pattern has
infinite length but encloses a finite area less than that of the circle surrounding the original triangle
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Figure 14.33 A Cantor set has a fractal non-integral dimension and is produced by removing the
central third of a line and repeating the process indefinitely with the remaining segments. Poincaré
sections of chaotic attractors have a Cantor set-like structure

(Problem 14.7)

The importance of the Cantor set is that the highly resolved Poincaré section of a chaotic
attractor such as that on p. 493 reveals a Cantor set-like structure. It results from stretching
the phase space and folding it closely into layers. It is the signature of a chaotic attractor
and we now look at how this may be achieved.

Smale Horseshoe

The mathematical process which describes the stretching and folding of phase space is
called mapping and a number of such maps have now been devised to produce this effect,
e.g. the Smale horseshoe (Smale, 1963).

In this example (Figure 14.34) a square is taken, stretched to double its length while its
width is reduced to form a rectangle of area less than the square. The square may be taken
as a cross section of a particular volume of phase space containing an ensemble or
collection of trajectories the ends of which are shown as dots within the square. The
reduction of area in the stretching process is equivalent to reducing the phase space by
energy dissipation; at the same time it separates trajectories from their neighbours. The
rectangle is then folded over into a horseshoe, the stretching and folding process is now
repeated with the horseshoe again and again, so that successive cross sections reveal a
Cantor set-like structure. The relative positions of the original trajectories are completely
changed in this process.
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Figure 14.34 The Smale horseshoe takes a square cross section of phase space containing an
ensemble of trajectories (dotted ends), stretches the square to a rectangle of reduced area and folds
the rectangle into a horseshoe. The process is repeated continuously with successive cross sections
revealing a Cantor-set-like structure. The relative positions of the trajectories are changed in the
process as the trajectories are mixed

Chaos in Fluids

Turbulence in fluids is the most widely observed of all chaotic motions. Fast flowing water
from a tap or around a blunt obstacle loses its low speed coherence and flow symmetry. A
satisfactory description of the behaviour is made more difficult because:

e The theory of the liquid state is less well developed than that of gases and liquids.

e Experimental methods have until recently used probes which disturb the state of the
system being measured.

The second of these difficulties has now been overcome by the development of laser-
Doppler techniques combining the holographic system (p. 404) with the Doppler effect
(p. 141).

Typically, a laser beam of frequency v and wavelength )\ is split so that one half acts as
a reference beam while the other is focused on a small fluid element (~ 0.1 mm diameter)
moving with a velocity u. This beam is scattered through an angle 6 with a frequency vs.
The relationship between vy and vy is shown in Figure 14.35b. In Figure 14.35a the
scattered beam joins the reference beam which is now modulated to give a component at
the detector of the Doppler shift frequency vp = v — vg. If kg and k¢ are the wave number
vectors associated respectively with v and v then the component of the velocity u parallel
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Figure 14.35 (a) Scheme of the laser-Doppler technique for velocity measurements in a fluid. (b)
The vector relationship between the scattered frequency v, the incident laser frequency vo and the
fluid velocity u; r is a unit vector, n the refractive index of the fluid and ¢ the velocity of light. The
Doppler shift frequency is vp = vs — vo

to the vector k = kg — k depends only upon Ay, sin /2 and vp. Velocities in the range of
107% to 103 ms~' are capable of being measured by this system.

The frequency vp is so much greater than the frequencies associated with the fluid
motion that the measured u(r) gives an instantaneous velocity value. Continuous records of
u(t) over long periods may be Fourier analysed to show sharply defined frequency
components when the flow is periodic with the appearance of broad band noise when the
flow becomes chaotic.

Chaos in fluids has been studied chiefly in two systems:

1. Couette flow where the appropriate parameter is the dimensionless Reynolds number.

2. Rayleigh—Bénard convection where the parameter is the dimensionless Rayleigh
number. This system is the model used by Lorenz in finding the original strange attractor.

Couette Flow

This flow was completely defined in the classic paper of G. I. Taylor (1923). In its simplest
form it is produced in a fluid contained in the gap between two concentric cylinders with
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radii differing by about a centimetre. One of the cylinders is fixed while the others rotates
with an angular velocity w although sometimes both cylinders may rotate with different
angular velocities. The outer cylinder is usually glass, allowing observation of the flow.
At low speeds of angular rotation the flow is symmetric in the azimuthal direction
(Figure 14.36a).

For flow in one dimension the relevant equation would read

y Ou, —0p n 10%u,
Pl or = Tox Ox?

where p is the fluid density, u, is the velocity in the x direction, p is the pressure and p is
the fluid viscosity. Each term in the equation has the dimensions of force per unit volume;
the left hand side term may be considered as an inertial force and the last term may be seen
as the viscous force. Flow symmetry depends on the relative strengths of these forces and
the Reynolds number is written dimensionally as

inertial force pu’L? _uL

viscous force L pu n

where n = u/p is the kinematic viscosity and u and L are a characteristic velocity and
length of the system.
For Couette flow

riwd
n

Re =

where r; is the radius of the inner cylinder and d is the width of the cylindrical gap.

For slow speeds, that is low Re, any departure from symmetry is overcome by the viscous
force restoring the system to equilibrium but as Re increases with increasing w, the inertial
effects of any departure from symmetric flow may be too great for the restoring viscous
force and purely azimuthal Couette flow is lost.

This loss of symmetry for high Re first shows itself as a series of vortices around each
azimuthal flow line, so that fluid elements follow a spiral path in the azimuthal direction
(Figure 14.36b). These vortices, called Taylor cells, are seen to arise as follows.

An elemental toroid of the fluid initially at radius 7, circulating at angular velocity w,,
is displaced to radius r,. If its angular momentum is conserved we have

2_ 12
Wy =W, Iy

where w’rl is its new angular velocity. Its centrifugal force will exceed that of the fluid
originally at r, circulating with angular velocity w,, if

’w;l ’ > |wr2|

Hence an instability develops if |w,1r1|2> |<,u,2r2|2 for ro > ry; that is, if

d
5|wr2| <0
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Figure 14.36 In Couette flow a liquid is contained in the gap between two concentric cylinders one
of which has an angular velocity w with respect to the other. At low Reynolds number Re the flow is
azimuthal as in (a). As Re increases flow symmetry is lost and vortices develop (b). A further increase
of Re develops transverse waves along the lines of vortices (c)

This is known as the Rayleigh criterion for the instability of Couette flow.

When the inner layers of the fluid are moving more rapidly than the outer layers they
tend to move outwards because the centrifugal force is greater than the pressure holding
them in place. A whole layer cannot move out uniformly because the outer layers are in the
way so it breaks into cells which circulate.

The rotational motion of a fluid element in a Taylor cell appears as a periodic velocity
variation in the z direction of Figure 14.36. Increasing Re that is the angular velocity of the
cylinder, now causes harmonic oscillations of the vortices in the z direction as transverse
waves travel around the azimuthal torus (Figure 14.36¢). The frequency of these waves will
be registered via the velocity measurements and as Re increases still more, other
frequencies are generated and broad band noise begins to dominate with the appearance of
chaos (Figure 14.37).

Rayleigh-Bénard Convection

In this process heat provides the energy driving asymmetries in the flow. The incom-
pressible fluid is contained between two horizontal plates about a centimetre apart, the
lower of which is heated. For a small constant temperature difference between the plates
the thermal conductivity and viscosity of the fluid ensure that the heat is conducted
upwards in an orderly fashion (Figure 14.38a). When the temperature gradient is too steep
the effect of these forces in maintaining equilibrium is overcome, flow symmetry is
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COUETTE FLOW
10" — f,

1071 —

POWER SPECTRUM, P(f) (cm?s2 Hz™)

101~
f1
107 [~ f2
1073 LMM
|
0 1 2

RELATIVE FREQUENCY f/f,

Figure 14.37 The number of frequencies of the waves in Figure 14.36¢ increases with Re but broad
band noise begins to dominate with the appearance of chaos in the bottom figure. Reproduced by
permission of the American Institute of Physics from Swinney and Gollub (1978)

lost and convective rolls in both clockwise and anti-clockwise directions can develop
(Figure 14.38b).

This occurs at some critical value of the Rayleigh parameter which we derive from the
relevant equations. These are, in the positive z direction

ou, Op 0%u,

__» ¢ pgaAT
P, 0z Ton a2~ 8%
ar 4T
" dz  dz?

In the last term of the first equation g is the acceleration due to gravity, « is the thermal
expansion coefficient and AT is the constant temperature difference between the plates.
This term is the buoyancy force which drives the warmer, less dense, liquid upwards. In the
second equation K is the thermal diffusivity (p. 190) and equals k/pC,, where k is the
thermal conductivity and C,, is the specific heat at constant pressure.
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Figure 14.38 (a) at low Rayleigh numbers Ra fluid in a Rayleigh--Bénard cell conducts heat away
from the base in a symmetric fashion. At some critical value Ra. flow symmetry is lost (b) and
convective rolls develop in clockwise or anti-clockwise directions

In the first equation the buoyancy force responsible for upward motion is opposed by the
viscous term. If the strength of these forces is comparable, a low pressure gradient in the fluid
will keep the inertial force on the left hand side low enough for the flow to remain symmetric.

Comparable values of the buoyancy and viscous terms will give

82
U o gaAT

0z?
to yield some characteristic velocity
ATL?
U~ (14.1)
o
where L, a characteristic length, is usually the depth of the liquid.
The second equation determines the temperature distribution and the ratio
dT/d UL
udr/dz UL (14.2)

Kd’T/dz2 K

tells us that for K large enough the thermal conductivity will distribute the heat rapidly
enough for the symmetric conduction process to prevail. Combining (14.1) and (14.2) using
the common factor U gives the Rayleigh number

_ gaATL?
e

Ra

When the Rayleigh number is small enough, x+ and K govern the conduction process. At
some critical Rayleigh number Ra. convective fluid motion driven by AT replaces pure
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Figure 14.39 The development of frequencies in the velocity flow spectrum at the critical Rayleigh
number Ra. with the onset of noise as chaos sets in (bottom figure). Reproduced by permission of
the American Institute of Physics from Swinney and Gollub (1978)

heat conduction, instabilities develop and the flow becomes asymmetric. At the critical
value Ra. convective rolls in the right or left handed direction begin to show, with a single
frequency and its harmonics appearing in the velocity flow spectrum. Increasing Ra beyond
Ra. introduces further frequency components which are followed by the onset of noise as
chaos sets in (Figure 14.39).

The Strange Attractor of Lorenz

Lorenz (1963) used the Rayleigh—Bénard process as the basis of his model of atmospheric
convection in assessing the possibility of long range weather forecasting. The physical
model is so restricted that it yields only the most rudimentary information about weather
patterns, enough however to show that long range forecasting is not feasible because phase
trajectories starting from almost identical positions diverge after a relatively short time.
The two-dimensional convection rolls which appear in the rectangular cross section of
Figure (14.38b) when Ra > Ra. can be described by two velocity components together
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Figure 14.40 The first mode X(t) in the Lorenz equations gives a single convective roll, clockwise
for X positive, anti-clockwise for X negative. Warm rising fluid in this mode indicates where X and Y
have the same sign. The ratio h/l determines the geometric factor b in the Lorenz equations

with the deviation of the temperature from the linear conduction profile of low Ra. These
three quantities, two of velocity and one of temperature, were expanded in two-
dimensional Fourier series with terms (modes) of the form A;(¢)sink;xsink;z (p. 248)
where the time dependence now appears in the amplitude coefficient. These expansions
were used in the hydrodynamic equations of the last section to produce an infinite set of
ordinary differential equations, but Lorenz reduced this number to three by considering
only the first three modes of the Fourier expansion.

The first mode X(¢) determined by the velocity components gives a single convective roll
filling the rectangular cell (Figure 14.40). The second mode Y(7) describes the temperature
differences between ascending and descending currents in the convective roll and the third
mode Z(r) represents the departure from linearity of the vertical temperature profile.

Each mode is a phase space coordinate and the modes XYZ represent the physical state of
the system at a given time.

The Lorenz equations take the form

X =0(Y -X)
Y=rX-Y-XZ
7 =XY —bZ

where o is the ratio of the fluid viscosity to its thermal conductivity, r is the ratio Ra/Ra.
and b is a geometric factor governed by the ratio h/l (height/length) of the cell in
Figure 14.40. Lorenz took o = 10 (the approximate value for water) and b = 8/3.

To show that the volume of phase space containing the trajectories decreased with time,
Lorenz used a transport theorem of fluid dynamics relating the space rate of change of
vectors describing a flow integrated over a volume V to the time rate of change of the same
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volume. The vector in phase space may be written as F(X,Y,Z) to give

d
Yy = J div F dv
di y

Div F from p. 203 is given by
oX N )4 N oz
oX oY 0z
with a value of —(o 4+ b+ 1) = —13.67 in Lorenz’s equations, so dV(z)/dr is negative.
This reduction in phase space volume indicates that the trajectories will eventually be
confined to some limiting manifold.
The overall behaviour of the system can be conveniently divided into various ranges of

the value of r = Ra/Ra..
When

X=Y=7=0

there are three solutions to the Lorenz equations. These are

(1) X=Y=Z=0
2) X=Y=+p(r-1]"?:Z=0r-1)
(B) X=Y=—[b(r—1D]"*:2=(r—1)

When r < 1 solution (1) corresponds to a steady process of pure conduction with no
convection, typical behaviour for small AT. Solutions (2) and (3) correspond to states of
steady convection which exist only when r > 1.

If there is now a small perturbation from the condition X = ¥ = Z = 0 the behaviour of
(1) remains stable as pure conduction for r < 1, trajectories moving to the origin X =
Y =Z =0 as a point attractor. As r increases beyond unity, steady convection will give
way to the right and left handed convective rolls of solutions (2) and (3) which now
correspond to separate stable attractors each with its own basin of attraction and set of
spiralling trajectories.

At r =~ 13.9 the separation between the basins of attraction is lost and trajectories move
between (2) and (3) before settling on one or the other. At r = 24.7 (2) and (3) lose their
stability as limit cycles and beyond this value of r the trajectories form two connecting
bands, one centred on (2), the other on (3). (2) and (3) are now chaotic attractors with
trajectories orbiting aperiodically around one before switching to the other.

Problem 14.1
If the period of a pendulum with large amplitude oscillations is given by

1. ,0
T = To(l +Zsin27°)
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where T is the period for small amplitude oscillations and 6 is the oscillation amplitude, show that
for 6 not exceeding 30°, T and T differ by only 2% and for 8y = 90° the difference is 12%.

Problem 14.2
The equation of motion of a free undamped non-linear oscillator is given by

mi = 1 (x)

Show that for an amplitude x its period

m (*° dx o
To = 4\/; Jo W, where F(xo) = ,[o f(x)dx

Problem 14.3

The equation of motion of a forced undamped non-linear oscillator of unit mass is given by
¥ =s(x) = Focoswt

Writing s(x) = syx + s3x3, where s; and s; are constant, choose the variable wf = ¢, and for
s3 < §1 assume a solution

x = nz?(ancos g¢+bn sin gqﬁ)

to show that all the sine terms and the even numbered cosine terms are zero, leaving the fundamental
frequency term and its third harmonic as the significant terms in the solution.

Problem 14.4
If the mutual interionic potential in a crystal is given by

b))

where r is the equilibrium value of the ion separation r, show by expanding Vabout V that the ions
have small harmonic oscillations at a frequency given by w? ~ 72 Vo /mr2, where m is the reduced
mass.

Problem 14.5
The potential energy of an oscillator is given by

where a is positive and < k.
Assume a solution x = A coswt + Bsin2wt + x; to show that this is a good approximation at
wl=w?=k/mif x; = aA?/2w} and B = —aA?/6w}, where o = a/m.

Problem 14.6
Prove that when A > 0.75 in Figure 14.11 then the slopes of £2(x) at x¥ and x¥ are the same.
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Problem 14.7

Use the arguments in the paragraph on the Cantor set (p. 495) to show that the Koch snowflake has a
fractal dimension of 1.2618.

Recommended Further Reading
Non-linear Dynamics and Chaos by Thompson, J. M. T. and Stewart, H. B., Wiley, New York (1986).
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Non-linear Waves, Shocks
and Solitons

Non-linear Effects in Acoustic Waves

The linearity of the longitudinal acoustic waves discussed in Chapter 6 required the
assumption of a constant bulk modulus

4P
avjv

If the amplitude of the sound wave is too large this assumption is no longer valid and the
wave propagation assumes a new form. A given mass of gas undergoing an adiabatic

change obeys the relation
P (Vo\" Vo 7
Py \V/) [Vo(1+6)

in the notation of Chapter 6, so that

oP 0p

oP _dp ) 9
Ox Ox

= —’)/P()(l +6) ze

since 6 = On/0x.
Since (1 +6)(1 +s) = 1, we may write

op 1071
i —7Po(1 +5) 2

The Physics of Vibrations and Waves, 6th Edition H. J. Pain
© 2005 John Wiley & Sons, Ltd., ISBN: 0-470-01295-1(hardback); 0-470-01296-X(paperback)
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Pressure

St

@

Figure 15.1 The local sound velocity in a high amplitude acoustic wave (a) is pressure and density
dependent. The wave distorts with time (b) as the crest overtakes the lower density regions. The
extreme situation of (c) is prevented by entropy-producing mechanisms and the wave stabilises to an
N type shock-wave (d) with a sharp leading edge

and from Newton’s second law we have

op__ 9%
ox o
so that
*n 5 1 0% Py
Z T2 Tz h PR 15.1
52 co(l+5s) 52 Where ¢p o (15.1)

Physically this implies that the local velocity of sound, co(1 + s) (+1)/ 2 depends upon

the condensation s, so that in a finite amplitude sound wave regions of higher density and
pressure will have a greater sound velocity, and local disturbances in these parts of the
wave will overtake those where the values of density pressure and temperature are lower.
A single sine wave of high amplitude can be formed by a close fitting piston in a tube
which is pushed forward rapidly and then returned to its original position. Figure 15.1a
shows the original shape of such a wave and 15.1b shows the distortion which follows as it
propagates down the tube. If the distortion continued the wave form would eventually
appear as in Figure 15.1c, where analytical solutions for pressure, density and temperature
would be multi valued, as in the case of the non-linear oscillator of Figure 14.3c. Before
this situation is reached, however, the wave form stabilizes into that of Figure 15.1d, where
at the vertical ‘shock front’ the rapid changes of particle density, velocity and temperature
produce the dissipating processes of diffusion, viscosity and thermal conductivity. The
velocity of this ‘shock front’ is always greater than the velocity of sound in the gas into
which it is moving, and across the ‘shock front’ there is always an increase in entropy. The
competing effects of dissipation and non-linearity produce a stable front as long as the
wave retains sufficient energy. The N-type wave of Figure 15.1d occurs naturally in
explosions (in spherical dimensions) where a blast is often followed by a rarefaction.
The growth of a shock front may also be seen as an extension of the Doppler effect
(p- 141), where the velocity of the moving source is now greater than that of the signal. In
Figure 15.2a as an aircraft moves from S to S’ in a time ¢ the air around it is displaced and
the disturbance moves away with the local velocity of sound vs. The circles show the
positions at time ¢ of the sound wave fronts generated at various points along the path of the
aircraft but if the speed of the aircraft u is greater than the velocity of sound vg regions of
high density and pressure will develop, notably at the edges of the aircraft structure and
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UAt <

Figure 15.2 (a) The circles are the wavefronts generated at points S along the path of the aircraft,
velocity u > vs the velocity of sound. Wavefronts superpose on the surface of the Mach Cone (typical
point P) of half angle o = sin " vs/u to form a shock front. (b) At point P sound waves arrive
simultaneously from positions A and B along the aircraft path when (u/vs) cos@ = 1. (6 + a = 90°)

along the conical surface tangent to the successive wavefronts which are generated at a
speed greater than sound and which build up to a high amplitude to form a shock. The
cone, whose axis is the aircraft path, has half angle o where

. Vs
sina = —
u

It is known as the ‘Mach Cone’ and when it reaches the ground a ‘supersonic bang’ is heard.

The growth of the shock at the surface of the cone may be seen by considering the sound
waves in Figure 15.2(b) generated at points A (time ) and B (time #p) along the path of
the aircraft, which travels the distance AB = x = u/\¢ in the time interval At = g — 4.
The sound waves from A will travel the distance r( to reach the point P at a time

ro
to =1ta +—
Us
Those from B will travel the distance r; to P to arrive at a time

1
Iy =tp+—
Us
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If x is small relative to 7o and r{, we see that
r1—ro~xcosf = ultcosf

so the time interval

rp—r
f—to = tg — tp + 10
Us
:At_uAtcosﬁzAt<1_ucosﬂ>
vUs vs

For the aircraft speed u < vs, 1 — t¢ is always positive and the sound waves arrive at P in
the order in which they were generated.
For u > wg this time sequence depends on § and when

u
—cosf =1
vs

t1 =ty and the sound waves arrive simultaneously at P to build up a shock.
Now the angles # and o are complementary so the condition

vs
cosfd =—
u
defines
. Vs
sinag = —
u

so that all points P lie on the surface of the Mach Cone.

A similar situation may arise when a charged particle g emitting electromagnetic
waves moves in a medium of refractive index greater than unity with a velocity v, which
may be greater than that of the phase velocity v of the electromagnetic waves in the
medium (v < ¢). A Mach Cone for electromagnetic waves is formed with a half angle o where

. v
sina = —
Uq

And the resulting ‘shock wave’ is called Cerenkov radiation. Measuring the effective
direction of propagation of the Cerenkov radiation is one way of finding the velocity of the
charged particle.

Shock Front Thickness

The extent of the region over which the gas properties change, the shock front thickness,
may be only a few mean free paths in a monatomic gas because only a few collisions
between atoms are necessary to exchange the energy required to raise them from the
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equilibrium conditions ahead of the shock to those behind it. In a polyatomic gas the
collisions are effective in producing a rapid increase in translational and rotational
mode energies, but vibrational modes take much longer to reach their new equilibrium, so
that the shock front thickness is very much greater.

Within the shock front thickness the state of the gas is not easily found, but the state of
the gas on one side of the shock may be calculated from the state of the gas on the other
side by means of the conservation equations of mass, momentum and energy.

Equations of Conservation

In a laboratory, shock waves are produced in a tube which is divided by a diaphragm into a
short high-pressure section and a much longer low-pressure section. When the diaphragm
bursts the expanding high pressure gas behaves as a very fast low-inertia piston which
compresses the low pressure gas on the other side of the diaphragm and drives a shock
wave down the tube. The profile of this shock wave is the step function shown as the dotted
line in Figure 15.3, and the gas into which the shock is propagating is considered to be
at rest. This simplifies the analysis, for we can consider the situation in Figure 15.3 as it
appears to an observer O travelling with the shock front velocity #; into the stationary gas.
The shock front is located within the region bounded by the surfaces A and B of unit area,
each of which remains fixed with respect to the observer. The stationary gas which moves
through the shock front from surface B acquires a flow velocity # < u; and a velocity
relative to the shock front of u, = u; — u. From the observer’s viewpoint the quantity of
gas flowing into unit area of the region AB per unit time is pu, where p; is the density of

: -« Shock front velocity u;

I
) C:) « Observer on shock front
>
@ |
@ Shocked gas | |Stationary gas
o Density p, | |Density p,
Plressurle P, | Pressure P,
Flow velocity u | |Relative velocny
Relative velocity | Uy <— Unshocked
U= U-u | gas at rest
A | B
— X

Figure 15.3 The pressure ‘step profile’ of a shock wave developed in a shock tube is shown by the
dotted line. The plane cross-sections at A and B remain fixed with respect to the observer 0 moving
with the shock front at velocity u; into unshocked gas at rest of pressure p; and density pq. The
shocked gas has a pressure p,, a density p, and a velocity u, with a relative velocity u, =uq; —u
with respect to the shock front. The states of the gas at A and B are related by the conservation
equations of mass, momentum and energy across the shock front. Experimental measurement of the
shock velocity u is sufficient to determine the unknown parameters if the stationary gas parameters
are known
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the gas ahead of the shock. The quantity leaving unit area of AB per unit time is
p2(uy — u) = pou,, where p, is the density of the shocked gas.

Conservation of mass yields pju; = pou,; = m (a constant mass). The force per unit area
acting across the region AB is p, — p1, which equals the rate of change of momentum of
the gas within the unit element, which is m(u; — u;). The conservation of momentum is
therefore given by

Pi +P1M% :Pz—l-/)zu;

The work done on unit area of the region per unit time is pju| — pou,, and this equals the
rate of increase of the kinetic and internal energy of the gas passing through unit area of the
shock wave.

The difference

P1 P2
piuy —paUy =—m—-—m

P1 P2
so that if the internal energy per unit mass of the gas is written e( p, p), then the equation of
conservation of energy per unit mass becomes

L, pi_1 P2
-uiter+—=-u;+er+—
2T T2 P2
where for an ideal gas p/p = RT and e = ¢, T = (1/v — 1)p/p, where T is the absolute
temperature, ¢ is the specific heat per gram at constant volume and v = ¢, /c., where ¢, is
the specific heat per gram at constant pressure.

These three conservation equations

piuy = pauy =m (mass)
pi1+piud =py+poul  (momentum)

and

together with the internal energy relation e( p, p) completely define the properties of an ideal
gas behind a shock wave in terms of the stationary gas ahead of it.

In an experiment the properties of the gas ahead of the shock are usually known, leaving
five unknowns in the four equations, which are the shock front velocity u, the density of
the shocked gas p», the relative flow velocity behind the shock u,, the shocked gas pressure
p» and its internal energy e,. In practice the shock front velocity u; is measured and the
other four properties may then be calculated.

Mach Number

A significant parameter in shock wave theory is the Mach number. It is a local parameter
defined as the ratio of the flow velocity to the local velocity of sound. The Mach number of
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the shock front is therefore My = u;/cy, where u; is the velocity of the shock front
propagating into a gas whose velocity of sound is c.

The Mach number of the gas flow behind the shock front is defined as M; = u/c», where
u is the flow velocity of the gas behind the shock front (u < u;) and ¢, is the local velocity
of sound behind the shock front. There is always an increase of temperature across the
shock front, so that ¢, > ¢y and M, > M/. The physical significance of the Mach number
is seen by writing M? = u?/c?, which indicates the ratio of the kinetic flow energy,
%uz mol !, to the thermal energy, c> = YRT mol ~!. The higher the proportion of the total

gas energy to be found as kinetic energy of flow the greater is the Mach number.

Ratios of Gas Properties Across a Shock Front

A shock wave may be defined in terms of the shock Mach number M, the density or
compression ratio across the shock front 3 = p,/p;, the temperature ratio across the shock
T,/T; and the compression ratio or shock strength y = p,/p;.

Given the shock strength, y = p,/p1, the conservation equations are easily solved to

yield
uj (y—i—a)l/z
MS:—:
(o 1+«
where
v—1
o=—
v+1
pr 1+ay
and

T, (l—i-ay)
Tl_y a—+y

Alternatively these may be written in terms of the experimentally measured parameter M as

&:y:Msz(lJra)—a
P1

Pr_g__ MI
p1 l—a+aM?

and

Ty [aMZ—1)+M2aM;—1)+1]
T, M?

For weak shocks (where p,/p is just greater than 1) 3, T, /T and M are also just greater
than unity, and the shock wave moves with the speed of sound.
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Strong Shocks

The ratio p,/p; > 1 defines a strong shock, in which case

1
Mf—>(72+ )y
Y

and

ﬁ:&HC_H)
P v—1

a limit of 6 for air and 4 for a monatomic gas for a constant . The flow velocity

2M1

U=uy—uUy — ——<
(v+1)

and the temperature ration

Ty _ <02>2 (v—1

2 (22) o y

T, i (v+1)
The temperature increase across strong shocks is of great experimental interest. The
physical reason for this increase may be seen by rewriting the equation of energy
conservation as fuf + hy =3u3 + hy, where h = (e +p/p) is the total heat energy or
enthalpy per unit mass. For strong shocks 4, > h of the cold stationary gas and u; > u5,
so that the energy equation reduces to s, ~ %u% which states that the relative kinetic
energy of a stationary gas element just ahead of the shock front is converted into thermal
energy when the shock wave moves over that element. The energy of the gas which has
been subjected to a very strong shock wave is almost equally divided between its kinetic
energy and its thermal or internal energy. This may be shown by considering the initial
values of the internal energy e and pressure p; of the cold stationary gas to be negligible
quantities in the conservation equations, giving the kinetic energy per unit mass behind the
shock as

u? =3 (u —u2)2 =e,

=

the internal energy per unit mass of the shocked gas.

In principle, the temperature behind very strong shock waves should reach millions of
degrees. In practice, real gas effects prevent this. In a monatomic gas high translational
energies increase the temperature until ionization occurs and this process then absorbs
energy which otherwise would increase the temperature still further. In a polyatomic gas
the total energy is divided amongst the various modes (translational, rotational and
vibrational) and the temperatures reached are much lower than in the case of the
monatomic gas. The reduction of v due to these processes is significant, since with
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increasing ionization v — 1, and the temperature ratio depends upon the factor
(v —1)/(v+ 1) which becomes very small.

(Problems 15.1, 15.2, 15.3, 15.4, 15.5, 15.6)

Solitons

We have seen that a pulse, limited in space, is also limited in time. Fourier analysis shows
that a pulse is the superposition of a large number of components with different frequencies
and that the high frequency components contribute to the vertical edges of the pulse Fig-
ure 10.3. The superposition of these components changes as phase differences develop;
different frequencies will have different phase velocities and the pulse disperses.

It is surprising, therefore, that high amplitude solitary waves or solitons are known to
exist. The first recorded observation of a soliton is that of Scott—Russel (1844) who saw a
single wave about 40 cm high travelling along a canal in Scotland. Rayleigh (1876)
developed an expression for the shape of this soliton based on the hydrodynamics of waves
in shallow water.

That expression, the bell-shaped Figure 15.4 is given by

n = asech’a(x — xq)

where

o 1 3a
2\ hX(h+a)
n =asec hza(x—xo)-T--___, a
n
v

| > X
X0

Figure 15.4 The solitary wave (soliton) on a shallow canal seen by Scott—Russel (1844) was
described as a sech? bell-shaped function by Rayleigh (1876). The canal depth is h, the soliton
amplitude is a and 7 measures a displacement on the soliton curve. The soliton is centred at x, and
is a function of @ and h
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7, a, h and x are all shown in Figure 15.4. The coordinate x( about which the static figure
is centred is replaced by ct when the soliton is moving; c is the soliton velocity and ¢ is the
time. We shall see that c is related to the height of the soliton. Larger amplitude solitons
move faster.

Further sightings of solitons on Dutch canals led to a thorough discussion of waves with
finite amplitude in shallow water by Korteweg and de Vries (1895). Their equation
describing soliton behaviour is known as the KdV equation and is now taken as the basis of
soliton theory. We shall not pursue the relevant fluid dynamics necessary to obtain the KdV
equation but we shall obtain its mathematical form by a method which may lack formal
rigour but which provides a good working model. It also emphasizes the physical
characteristics which produce a soliton.

The underlying physics of solitons is the competition between two processes. One of
these causes a high amplitude or non-linear wave to break; we have seen this in the
formation of a shock wave in Figure 15.1c. This results from the increased phase velocities
of the high amplitude non-linear components of the wave.

In a soliton this is opposed by the dispersion of the wave components in such a way that
a stable profile is maintained.

We shall derive the form of the KdV equation and then discuss the following topics:

e Solitons, Schrodinger’s equation and elementary particles.

e Solitons in optical fibres. Telecommunications..

A list of references is given at the end of the chapter.

Non-Linearity

Equation (15.1) shows that the higher amplitude components of an acoustic wave
propagate with a phase velocity

0 ,
V= 8—); = Co(l + S) 1+1/2

where c is the phase velocity of a small amplitude linear wave and s, the condensation, is a
measure of the compression in the wave.
We may expand this, to a first order, to give

v:%:co<l+7;1s...> (15.2)

ot
In a linear, low-amplitude, right-going wave we have

n=nmn ei(wtka)
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So, denoting O/t as i, and On/Ox as 1, we have

—Ww
Ne/Nx = 7: —Co

or
N+ cone =0 (15.3)

Throughout this chapter we shall indicate partial differentiation with respect to a variable
by writing that variable as a subscript. Thus, 1, = dn/0t; n, = dn/0x; n, = 0°n/0t* and
N = 0?1/0x?. Replacing cq in equation (15.3) by v in equation (15.2) gives

+1
n,+co[1+<72 )s] e =0

which, because s = k7 is in phase with 7, (Figure 6.2), becomes

+1 +1
N+ co {1 + <W7)kn} N =1+ conx + CO<’Y > )knm =0 (15.4)

We are interested in non-linear effects and after removing the linear contribution of
equation (15.4) we are left with the non-linear expression

ne+bnne=0 (15.5)

1
b:c0(72 )k

Equation (15.5) provides the first two terms of the KdV equation. We now consider the
third, the dispersion term, which competes with the non-linear bnn, term.

where

Dispersion and the Form of the KdV Equation A typical dispersion equation is that for
transverse and longitudinal waves in a periodic structure given by equation (5.12) as

w sin ka/2
vV=—=c¢
k— °\ ka/2

where k is the wave number and a is the particle separation. For small &, long A\, we may
expand the sine term to give

w co |ka ka\’ n
V=—= _— —_—
k  ka/2|2 2
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or
ka\ 3
w=rcok|l— > = cok — dk (15.5a)
where
d = coa’/4
Writing a linear wave in the form
n=nn ei(wt—kx)

gives
Ny =1iwn, ne=—ikn and 9., =iky

which, with equation (15.5a), gives

Nt + Ccolx + dnxxx =0
Again, the contribution 7, 4+ con, applies only to linear waves and replacing this for non-
linear waves by equation 15.5

N+ bnny

gives

N +bnne +dng =0 (156)

where b and d are constant coefficients. This is the form of the KdV equation which
describes soliton behaviour. The coefficients b and d depend upon the particular soliton
under discussion.

We gain an insight into the effect of the dispersion term by considering the following.
Let us write a right-going linear wave in the form

i(wrt—kx) ik(cot—x)

n="nme =MNme

where

w=cok

The effect of dispersion, from the previous section, changes w = cok to

ot

so we have

STUDENTS-HUB.com Uploaded By: Jibreel Bornat


https://students-hub.com

Solitons 517

and dispersion has the effect of shifting the wave. Note that in this case of normal
dispersion the shift retards the higher k, shorter wavelength terms.

Mathematically, this dispersive shift is used to offset the steepening, wave breaking
effects of non-linearity. The technique, known as a Gardner—Morikawa transformation, is
to choose a coordinate system which moves with the velocity c(, the pulse rides on this
moving coordinate so that dispersion relative to c( is much reduced. In addition, because
any dispersive change is now so much slower, a much longer time scale 7 > ¢ is chosen and
the final aim is to show that changes in the soliton profile are negligible in the 7 time scale.

The Elements of the KdV Equation Although we derived the form of the KdV equation
using the amplitude 7, the equation is most often written in terms of a quantity u which
may represent any property of the wave which varies with distance and time.

In their paper ‘The Discovery of the Soliton’ (1965) Zabusky and Kruskal used the
equation in the form

U+ g + 6%y =0 (15.7)

where 6 < 1.
Their experiment was made by computer simulation. In the absence of the third
dispersive term the non-linear equation

u,+uuy =0 (15.8)

describes the development of the shock wave of Figure 15.1. The positive pulses of Figure
15.1a, b and c are superposed in Figure 15.5 with u plotted against x. It is evident that u,
increases with higher values of u and equation (15.8) retains a single valued solution only
as long as the gradient u, of the leading edge becomes increasingly negative as the pulse
steepens.

Now equation (15.8) is satisfied by any function u = f(x — ur)—see Problem 15.7—and

uy = (1—uy)f’ (15.9)

> X

Figure 15.5 Figs. 15.1 (a), (b) and (c) superimposed to show breaking of a non-linear wave
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JAN AN

D
v

Figure 15.6 The velocity of a soliton increases with its magnitude and solitons are transparent in
mutual collisions, each retaining its own identity. A large soliton A overtakes a smaller soliton B to
emerge as A’ with B unaffected

where

= Of /O(x — ut)

Taking the pulse profile at t =0 as u =f(x) = cosmx equation (15.9) shows that
u, = —oo at u = 0 (the foot of the pulse) when x = 0.5 and t = 1/7. At this point the wave
becomes infinitely steep and breaks. This behaviour was observed by Zabusky and Kruskal.
When Zabusky and Kruskal added the third dispersion term in their computer experiment
to give the KdV equation

U4 utty + 6%y =0

they found that after a time # = 1/7 the solution broke into a train of solitary waves
(solitons) of successively larger amplitudes with the larger waves travelling faster than the
smaller ones. Even more important from the point of view of optical solitons, after one
soliton had overtaken another, each soliton retained its unique identity (Figure 15.6).
Solitons are transparent to each other and are unaffected by mutual collisions.

(Problems 15.7, 15.8)
Two Important Forms of the KdV Equation

1. The KdV equation for shallow water waves may be written in the form
U+ 6un, + iy =0 (15.10)
with a solution
u(x,t) = 2a*sech? ax — ct)
2

a 210g[ +e2(y(xfct)]
or
2

a "
u(x, l‘) = Zwlog [1 + 672(1()(741)]
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X
Figure 15.7 The KdV equation u;-+ 6uuy+uxxx =0 has a soliton solution u(x,t)=
2a?sech? a(x — ct) with a maximum value of 22

Note that the exponents in the log solutions may be positive or negative.

The sech? form of the solution may be seen to fit equation (15.10) with a soliton
velocity ¢ = 4a? (twice the maximum value of u) by showing that

u; = 2auc tanh ¢,

where ¢ = a(x — ct)
u, = —2om’ tanh ¢

and

Uyry = —8cutanh ¢ + 120w? tanh ¢

The sech? shape of the soliton is shown in Figure 15.7. Its peak value is

u=2a’
(Problems 15.9, 15.10)

2. The second important form of the KdV equation is

Uy — O6utty + ity =0 (15.11)
(the shallow water wave form with a negative second term). This has a time
independent soliton solution of

u(x) = —2a% sech?(x — x)
where x( locates the centre of the soliton. This solution may be shown to satisfy
equation (15.11) by calculating u, and u,,, as for equation (15.10).

A graph of this soliton, Figure 15.8, shows its minimum to have a value of —2a2. Its
importance is its connection with Schrodinger’s equation, which we now discuss.
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Figure 15.8 The KdV equation u¢ — 6uuy, + uxxx = 0 has a time independent solution u(x) =
—2a2sech?a(x —xo) with a minimum value of —2a?2. This equation is related via Miura’s
transformation to Schrodinger's equation which has an eigenvalue of A = —a?

(Problem 15.11)

Solitons, Schrédinger’s Equation and Elementary Particles
In 1968, Miura found a remarkable connection between equation (15.11) and the equation
v + 6020 4 Vi = 0 (15.12)

which itself has a soliton solution.
Miura showed that if v + v, = u then

0
<a——|—2v) (v — 600, + Vyry) = Uy — OUtt + Uy (15.13)
X

(Problem 15.12)

So if v satisfies equation (15.12) with the sign of its second term changed, then u satisfies
equation (15.11). Now Miura’s transformation with

v? + v, =u(x) and v=1,/1
yields
Yoo —u(x)p =0 (15.14)

(Problem 15.13)

If u(x) is now transformed to u(x) — A, where A is a constant, then equation (15.14)
becomes Schrédinger’s equation

P+ (A —u(x)p=0

with \ as an eigenvalue.
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So Miura’s transformation has related the KdV equation

u; —6uy +uy, =0 (15.11)
to Schrodinger’s equation
Vux + (A —u(x)) =0 (15.15)
Using the soliton solution
u = —2a”sech? a(x — x)

of equation (15.11) we can show that the wave function
1 =Asecha(x —xg), where A is a constant (15.16)

satisfies equation (15.15) when the eigenvalue A = —«a? which is half the value of the
minimum of the soliton with which it is associated (Figure 15.8) (See Gardner et al., 1967).

(Problems 15.14, 15.15, 15.16)

Since A is negative this represents a bound state in wave mechanics.

Other values of A > 0 may be associated with solitons but these are not bound states and
are related to progressive waves.

The fact that solitons may be associated with Schrodinger’s equation and retain their
unique identities in mutual collisions has led physicists to postulate that solitons may
appear as massive elementary particles much heavier than the proton.

Solitons may enter particle physics in another way, confined not only in space but in
time. In this case they are called instantons. Instantons have already been used to explain a
pattern of particle masses which had posed a long-standing puzzle.

There are four ways of making quark—antiquark mesons from light quarks. Three of
these mesons have been known for many years: the negative, positive and neutral pi
mesons (pions) with masses equivalent to about 140 MeV (an electron equivalent mass is
~ 0.5MeV).

The fourth meson has never been found but the eta meson has all the required properties
except its mass which is about 550 MeV. Instantons explain this mass anomaly—they
appear as energy excitations, located in space, in the field which binds the quarks together.
They change the mass distribution among the mesons because they affect the various quark
combinations in different ways (see Rebbi, 1979).

Optical Solitons

At the time of this writing the most practical use of solitons is in telecommunications.
Optical fibres act as wave guides to microwaves and higher frequency electromagnetic
waves and optical solitons are able to carry information along single mode silica fibres at
multigigabit rates for distances greater than 9000 km, the width of the Pacific Ocean, with
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a bit error rate (BER) < 107, the international standard. Modern fibres have a very low
loss rate of < 1 dB km~! and an effective area of ~ 30 um?. The electrical power involved
is very low and a total optical system is feasible including the amplifiers spaced along the
cable. This permits a simpler, faster and more easily maintained system than that using
conventional electronics. Research on optical solitons is world-wide but, for the English
reader, the work of Linn Mollenauer and his colleagues at the A. T. & T. Bell Labs, New
Jersey is the most accessible (see references).

Optical solitons have the normal sech? intensity profile and their amplitudes are given by
sech wave function solutions to a non-linear Schrédinger equation (see Appendix, p. 555).

As with all solitons, optical solitons are produced by a balance between the competing
effects of dispersion and non-linearity but the non-linearity of optical fibres is a very
special case which contributes in a remarkable way to the maintenance of the soliton
profile.

The Kerr Optical Effect and Self-phase Modulation In some materials, including silica
fibres, the index of refraction for light of a given wavelength varies with the intensity of the
light. This is the Kerr optical effect, which is expressed by

n—ny=nyl

where n is the index of refraction for a light wave of intensity I (large enough for non-
linearity), n¢ is the refractive index for a low amplitude wave of the same frequency and n,
is a constant equal to 3.2 x 107 '9cm? W ~!. The value of n, is small but the area of a
single mode optical fibre ~ 10~ cm?, so we must think in terms of megawatts per square
metre. Moreover, the effects of non-linearity build up over fibre distances of many
kilometres.

Since nl is positive we have

1 1
n—n0:c<—) >0
v Vo

so the phase velocity v of a high amplitude wave is less than v, the phase velocity of a low
amplitude linear wave of the same wavelength.
At a given wavelength this creates a phase retardation between the two amplitudes of

A¢ = 277([4112[

over a length L of the fibre. This phase retardation is obviously greater for the short
wavelength high frequency components of the pulse, Figure 15.9, than for the lower
frequencies and so in the high intensity central section of the pulse the higher frequencies
are shifted towards the tail of the pulse while the lower frequencies advance to the front.

This process is opposed by the dispersive properties of the fibre because at the
wavelength at which the solitons are centred; that is, A ~ 1.5 pm (1500 nm) the dispersion
is negative (anomalous) so that Ov,/0X < 0, where v, is the group velocity.

Negative dispersion advances the trailing higher frequencies and retards the lower
frequencies, both in a direction towards the centre of the pulse, so the pulse sharpens

STUDENTS-HUB.com Uploaded By: Jibreel Bornat


https://students-hub.com

STUDENTS-HUB.com

Solitons 523

N
e
)
)
55

2

o
ke
£

high
frequencies «——
lag

o

low
——> frequencies
lag

7

o

.'

-

o

-
Teats
.
52215
s

A
.
<

T
o
5%
ol
e
o
e
%
i,
o

o
o
5,
o
eyt
.
o
e
o
’0
<
*
o

i
e
g
S
e
Jel e
L
255242
R
o
oy
e
s
S

=
X ¥
s
2
o
¥,
S

o
-
>

e

.

5y
K
ot
sl

.
o
i
el
it
e
<
%‘Q"
e
R
Cds
L
Sl
o

T
Lty
S
o
oio}
&
&
e

i
&
3
e

4’,
e
=,
)
9
£
s
sy
et
o
L

~.

L
i
"
e
ot
.
f@.
%
-
S
e

v‘
b
..
b

e
i

e

r
5
bty

bt
o
etetsd

T
2
e
halry
et
s
e

£
>
L

&

L5

-
L

S

7

L
&

e

.,4
o
‘o
e 3
e

L
e
2
e
oy
e

o)

2
i
<

Figure 15.9 In the Kerr optical effect the velocity of light at a given wavelength depends upon its

intensity. The high frequencies in the high intensity region of a soliton travelling in an optical fibre
suffer a phase retardation; the low frequencies are advanced

towards a soliton sech? shape, Figure 15.10, and in a loss-free perfect silica fibre the soliton

would maintain this shape indefinitely. In practice, the wavelength A\ ~ 1.5 um is close to

the minimum of the loss versus wavelength behaviour of the fibre, which accounts for low

loss fibres of < 1 dB km ~!. Optical amplifiers, which we shall discuss shortly, maintain the

shape of the soliton over very long distances but even without amplification a soliton can

travel several hundred kilometres along the fibre without changing its amplitude or shape.
This distance is called the soliton period, Figure 15.11, and is given by

n2er? 2

-
2 D—0.39B at A~ 1.55um

vac

zo = 0.322

where c is the velocity of light in free space, Ay, is the wavelength in free space, 7 is the
full width at half the maximum value of the soliton and D is the group velocity dispersion
parameter of the fibre; that is, the change in pulse delay with change in wavelength per unit
of fibre length.

The units of 7 are picoseconds and experimental solitons are produced in the range 1-
50 ps. The units of D are picoseconds per nanometre per kilometre and experimental values

of D are ~ 10psnm ~'km~!. At D ~ 1psnm~'km ! a 50 ps pulse has a soliton period
zo ~ 930 km.

high low
frequency ——> <«—— frequency
advance lag

Figure 15.10 The effects of Figure 15.9 are reversed by the negative (anomalous) dispersion of the
optical fibre at the wavelength on which the soliton is centred. This sharpens the soliton pulse

Uploaded By: Jibreel Bornat


https://students-hub.com

524 Non-linear Waves, Shocks and Solitons

Soliton
period

Figure 15.11 A soliton can travel several hundred kilometres in an optical fibre without being
degraded in any way. This distance z, is called the soliton period

Experimental Aspects Experimentally, the solitons are produced by a mode locked laser
with an additional fibre arm in the feedback loop. As the laser builds up from noise the
initially broad pulses are considerably narrowed by passing through the fibre arm and then
reinjected back into the laser cavity, forcing the laser itself to produce narrower pulses.
This process is repeated until the pulses become solitons and are ready for injection, via
coupling, into the transmission system. The laboratory cable is a fibre spool ~ 75 km long
and the solitons are recirculated through this loop to travel distances > 10000km if
required.

A typical laser soliton source produces pulses of ~ 50 ps with a power ~ 0.5mW at a
repetition rate of 2.5 GHz.

The Raman Effect This plays a very important role in optical soliton transmission. It
arises when molecules in a material absorb radiation and it involves the vibrational and
sometimes the rotational energy levels of the molecules. Figure 15.12 shows the vibrational

Virtual o o o
state A
v v v Vv-Av v Vv-Av
2 A
Av
1 y L ¥
Av
00— v —
Rayleigh Raman effect Raman effect
scattering Stokes line Anti-Stokes line

Figure 15.12 The Raman effect can degrade a soliton by transferring energy from its higher
frequency to its lower frequency components. Vibrational energy levels in the optical fibre absorb
higher frequency radiation v from the soliton which reabsorbs it at a lower frequency v — Av (Stokes
line). There are three possible processes. In Rayleigh scattering a photon returns to its original
vibrational energy level, the Raman effect provides a frequency change Av = +1, where Av is the
frequency interval between vibrational energy levels
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RGP—Raman Gain Pump
A=1470 nm

RGP
A=1560 nm J_}
/\ 1 1 1 1
< L X L X L >

Figure 15.13 The transmission line acts as its own distributed amplifier when solitons accept
higher energy photons via the Raman effect from optical pumps located at short intervals (distances
< 2y, the soliton period). Excessive noise production is avoided by frequent low gain amplification
(see Mollenauer et al., 1986)

energy levels in a molecule with O as the ground state. Suppose initially that the molecule is
in the energy level 1 and absorbs a photon of frequency v which raises it to an excited level
which may not be a stationary state. If the photon drops back to its original level the re-
radiated photon of frequency v is called Rayleigh scattering. However, selection rules also
allow vibrational level changes Av = +1, where Av is the vibrational energy level
interval, so the photon may drop back into level 2 or 0. The re-radiated or scattered photon
will then appear at the frequencies v — Av (Stokes line) or v + Av (anti-Stokes line).

The Raman effect can ‘degrade’ a single soliton via a process known as the °‘self-
frequency shift’. Here the vibrational levels of the silica fibre molecules absorb energy
from the higher frequencies in the soliton pulse and the scattered radiation acts as a Raman
pump for the lower frequencies in the pulse because the fibre provides a Raman acceptance
band over a broad frequency spectrum.

Indeed, although a power of 0.5 mW provides a stable single soliton, early experiments
showed that solitons with powers >1 W suffered from ‘self-frequency shift’ to such an
extent that the soliton initially narrowed but then formed smaller satellite solitons.

The Raman Effect and Optical Amplification Solitons can gain energy via the Raman
effect as well as lose it and this is the basis of amplification along an optical transmission
line. One method results in the line acting as its own distributed amplifier. Laser pumps
coupled into the line at regular intervals maintain the shape of a soliton by feeding in a
frequency higher than that of the soliton, the energy difference being very close to the
broad peak of the Raman gain band of the silica fibre. In Figure 15.13 the soliton
wavelength is A = 1.5 pm and the lasers pump energy at A ~ 1.4 um. The pumps can also
inject radiation in the counter-propagating direction, which helps to average out any effect
of pump fluctuations; the penetration of the amplifying beam along the fibre is also
enhanced. The intervals between the laser pumps are ~ 30 km which is a small fraction of
the soliton period z¢y (~ several hundred kilometres). In this way, the gain per interval is
kept low enough to avoid excessive amplification of noise.

A second method, Figure 15.14 uses lumped amplifiers in the form of short lengths
~ 3m of optically pumped fibres doped with a rare earth such as Erbium. Again, the
interval between these lumped amplifiers is < zo the soliton period to keep the noise
amplification low. The lumped amplifiers are energized by laser diode chips and for an
input of ~ 10 mW a gain of 30—40 dB is obtained at the useful wavelengths. The power of
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A—Erbium-doped amplifying fiber
OP—optical pump (4 = 1480 nm)
C—coils of transmission line

A=1532nm 45 A 25 km A 25 km A OP 25 km

C C C

Figure 15.14 Solitons are now maintained by lumped amplifiers in the form of ~ 3 m lengths of
optically pumped fibres doped with the rare earth Erbium separating 25 km lengths of transmission
line. The interval between the low gain amplifiers < zy (the soliton period) to avoid noise
amplification

these amplifiers is useful in multiplexing, the subject of the next section (see Desurvire,
1992).

Multiplexing This refers to the possibility of sending more than one channel of
information down a single fibre. In current transmission systems, non-linear interaction
causes severe interchannel interference but solitons are transparent to each other. They are
unaffected by collisions and do not interfere with each other.

In multiplexing, two channels along a single fibre are provided by solitons which are
polarized in planes perpendicular to each other.

Even more channels are possible with wavelength division multiplexing. Solitons of
different wavelengths have different velocities and analysis shows that in a system using a
chain of lumped amplifiers, adjacent WDM (wavelength division multiplexed) solitons
interact just as in a lossless fibre so long as the collision length (twice the length of a
soliton) is two or three times the amplifier spacing (Figure 15.15).

This implies that several multigigabit per second WDM channels spanning a wavelength
separation of 1 or 2 nm may be used in a single fibre.

A — Amplifier
location

! f i !

A A A A
Collision length >

Figure 15.15 Wavelength division multiplexing is possible with solitons of different wavelengths
and velocities. These solitons do not interfere with each other so long as the collision length (twice a
soliton length) is two or three times the lumped amplifier spacing (see Mollenauer et al., 1990)
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In a conventional transmission line each channel must be isolated at the regenerative
amplifiers and separately processed but one amplifier can handle all soliton channels and
Erbium-doped amplifiers are powerful enough to do this.

Random Noise Effects and the Frequency Sliding Guiding Filter There are two main
sources of error which affect an optical soliton transmission system: fluctuations of pulse
energy and arrival time at the receiver. Spontaneous emission (noise) always accompanies
coherent Raman gain and at each amplifier, amplified spontaneous emission (ASE noise) is
added to a soliton which can change its energy and its central frequency in a random way.
The change of energy may affect the amplitude of a soliton and the accumulated effect may
reduce a soliton to such an extent that its intended arrival as a ONE in the bit system is
registered as a ZERO. Alternatively, amplified noise may register a ONE in a ZERO space.
This contributes to the bit error rate (BER) which must be kept below the international
standard of < 10~°.

The ASE change in the frequency of the soliton changes its velocity and therefore affects
its arrival time, throwing the pulse out of its proper time slot.

Amplitude and time jitter may be reduced by narrowing the bandwidth of the
transmission line (Mollenauer, 1994), using a narrow band filter at each amplifier. Each
filter is a low-finesse Fabry—Perot etalon (p. 343), centred on the true frequency peak of
the soliton (Figure 15.16). A soliton whose frequency has been shifted from the filter peak
suffers a loss across the spectrum provided by the filter. This, together with the non-linear
effect which generates new frequencies, pushes the soliton back towards the filter peak. In
this way, the noise-induced frequency shift is returned to zero rather than being maintained
as it would in a broad-band transmission line.

Amplitude jitter is damped because a pulse with excess energy will narrow in time and
broaden in spectrum more than the average and will suffer a greater loss at each filter.
However, the soliton loss at each filter must be replaced at each amplifier by an excess gain
with a resulting growth in noise.

Mollenauer et al. (1994), found that even when the soliton source laser was not tuned
exactly to the filter peak frequency, the soliton was still guided rapidly on to the filter peak.
The filter peak frequencies were therefore gradually slid with distance so that the soliton
frequency followed the filters while the noise remained in its original frequency band and

Etalon filter

Soliton

Figure 15.16 Noise effects in an optical transmission line are reduced using a narrow band Fabry--
Perot etalon filter at each amplifier. The low finesse, R ~ 9%, of fixed frequency filters can be
increased, R > 9%, if the frequency of the filters is gradually shifted with distance along the line.
The soliton frequency has no difficulty in adjusting itself to this shift and noise is progressively
reduced (see Mollenauer et al., 1994)
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its growth was inhibited. This noise reduction allowed the etalon filters to be strengthened
to a higher finesse. Experiments with a soliton pulse width of 7~ 16ps, D ~
0.5 psnm ! km !, amplifier spacing = 26 km with one filter per amplifier, and a frequency
sliding rate of 7 GHz 103 km gave a net frequency shift over 9000 km (trans-Pacific
distance) of a few soliton bandwidths, i.e. 0.5 nm at A\ = 1557 nm. Such a series of sliding
frequency etalon filters can operate over a range of wavelengths wide enough to allow
several channels of wavelength division multiplexing.

Problem 15.1

The properties of a stationary gas at temperature 7 in a large reservoir are defined by c, the
velocity of sound, g = ¢, Ty, the enthalpy per unit mass, and -y, the constant value of the specific
heat ratio. If a ruptured diaphragm allows the gas to flow along a tube with velocity u, use the
equation of conservation of energy to prove that

ch _ y+1 o*2
y-1 2(v—-1)

where c¢* is the velocity at which the flow velocity equals the local sound velocity.
Hence show that if u;/c* =M™ and u,/c, = My, then

M*2 = (v+ 1M s2

(y—1M:+2

Problem 15.2

Using a coordinate system which moves with a shock front of velocity u;, show from the
conservation equations that ¢* in Problem 15.1 is given by

™ =uju,
where u, is the relative flow velocity behind the shock front.
Problem 15.3
Use the conservation equations to prove that the pressure ratio across a shock front in a gas of
constant +y is given by

p2_B-o

pi 1—pa
where 3 = py/p1, the density ratio, and o = (y — 1)/(y + 1).

Problem 15.4
Use the results of Problems 15.1 and 15.2 with the equation of momentum conservation to prove that
the shock front Mach number is given by

_up . yta

M. =1
* T e 1+«

where y = p»/p1, the pressure ratio across the shock and a = (v — 1)/( + 1). Hence show that the
flow velocity behind the shock is given by

ci(l1—a)y—-1)
1(1+a)(y+a)
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Problem 15.5

The diagrams show (a) a shock wave of pressure p, and flow velocity u propagating into a stationary
gas, pressure p 1, and (b) after reflexion at a rigid wall the reflected wave of pressure p3 moving back
into the gas behind the incident shock still at pressure p,. Use the result at the end of Problem 15.4 to
show that the flow velocity u, behind the reflected wave is given by

ur _ (1—a)(ps/p2—1)

2 \/(1+a)(ps/p2+a)

and since u + u, = 0 at the rigid wall, use this result together with the ratio for c¢2/c1 = (T2/T1) 12
to prove that

p3 _(Rat+l)y—a

P2 ay+1

where y = pa/py and a = (v — 1)/(y + 1)

Rigid - Rigid
wall wall
P3
—
U,
&) : '
I P2 : -
u— : Py u —» :
I
(@ (b)
Problem 15.6
Use Problem 15.5 to prove that the ratio
P3=P1_ 5. 1
P2 —P1 «

in the limit of very strong shocks. (Note that this value is 8 for v = 1.4 and 6 for v = 5/3, compared
with the normal acoustic pressure jump of 2 upon reflexion.)

Problem 15.7
Equation (15.9) evaluates u, for u = f(x — ut). Obtain u;, in a similar way and use this with equation
(15.9) to prove equation (15.8).

Problem 15.8

Burger’s equation u, + uu, —vu,, =0 where v >0 is a special case. It has a second-order
dispersion term and is directly integrable. Show that u = —2w), /1) transforms Burger’s equation
into the diffusion equation

0% 9%

a2~ Vox?

For fluids, v is a measure of viscosity which dissipates excess momentum in non-linear waves.
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Problem 15.9
Show that u(x,r) = 2a?sech’ a(x —ct) is a soliton solution of the KdV equation
u; + 6uu, + u,y, = 0 after calculating u,, u, and u,,, as shown in the text.

Problem 15.10
For small values of g, log (1 + g) = g. Show that values of u(x, t) near the base of Figure 15.5(a)
where uu, ~ 0 may be written

2

—2a(x—ct
e

u(x,t) =2
and that this satisfies the dispersion equation u, + u,, = 0 if ¢ = 4a.2.

Problem 15.11
Use the method of Problem 15.9 to show that u(x) = —2a? sech? a(x — x,) is a solution of the KAV
equation u, — 6uu, + U,y = 0.

Problem 15.12
Prove equation (15.13) if u = v + v,.

Problem 15.13
Verify equation (15.14) for u(x) = v, + v? and v = v, /1.

Problem 15.14
Show that the wave function ¢ = A sech a(x — x¢) where A is a constant satisfies Schrodinger’s
equation (15.15) when A = —a/2.

Problem 15.15
KdV equations are invariant to a Galilean transformation. Show that the transformations u — u — A
where A is constant together with x — x + 6\f returns u, + 6uu, + u,, = 0 to its original form.

Problem 15.16
At time 7 =0 a high amplitude signal has a profile y = asinwx with dy/dt = 0. Thereafter, it
propagates according to the non-linear wave equation

o*y 5 dy\ 0%y
W‘C°<1+55>W

where ¢ is a small positive constant.
Show that the time required for the leading edge of a positive signal to become infinitely steep is
given by

t =4/cocar?
Hint: Rayleigh’s method (Rayleigh, Theory of Sound, Vol. 2, Dover Press p. 35), shows the required
time to be the reciprocal of the maximum value of |du/dx| where du is the relative phase velocity

between two points on the leading edge of a positive signal separated by a horizontal distance dx.
Note that waves propagate in the positive and negative x-directions.
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Appendix 1: Normal Modes, Phase
Space and Statistical Physics

The last line of the introduction to the first edition states that ‘it is the wide validity of
relatively few principles which this book seeks to demonstrate’. Here we apply that concept
to the relationship between normal modes which feature in most of the book, phase space
of the final chapter, and statistical physics.

Firstly, we wish to show that the expression for the number of normal modes per unit
volume in the frequency range v to v + dv given on p. 253 as

dn — 47ry32d1/

c

is nothing more than the number of ‘cells’ of phase space per unit volume in the same range
v to v + dv available to particles in a statistical distribution.

Moreover, we can easily convert this expression in the frequency v to one in the velocity
v, the momentum p = mv or the energy E.

The particle may be a molecule in the classical Maxwell-Boltzmann distribution
(M-B), a fermion of half integral spin in the quantum Fermi—Dirac distribution (F—D) or
a boson or any other particle of integral spin in the quantum Bose—Einstein distribution
(B—E). Bosons are the messengers of the force fields in physics, e.g. the photon in the
electromagnetic field.

We shall see that each of these distributions is nothing more than the statement that

n; = g; X probable occupation of the phase space cell.

Here n; is a number of particles in the distribution and g; is our expression 472 dv/c? (or
its equivalent).

The expression for g; is common to all three types of distribution but the occupation
factor or relative probability of occupation depends on the way in which the particles are
allowed to distribute themselves.

Firstly, let us examine the various equivalent forms of g;. We write

gi=gi(v)dv =4m*dv/c?

The Physics of Vibrations and Waves, 6th Edition H. J. Pain
© 2005 John Wiley & Sons, Ltd., ISBN: 0-470-01295-1(hardback); 0-470-01296-X(paperback)
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as the number of phase space cells per unit volume in the frequency range v to v + dv. For
a quantum particle (p. 415) the momentum p = hk = hv/c where h is Planck’s constant, k
is the particle wave number = 27/ and c is the velocity of light, so

gi = gi(p)dp = 4mp*dp/h’

is the number of phase space cells per unit volume in the momentum range p to p + dp.
Note that 47p2dp is the volume of the shell in momentum space between spheres of radius
p and p +dp.

All particles in statistical distributions are required to be free particles, that is having
only kinetic energy with no potential energy interaction terms.

Thus, the energy of a particle E = 1 mv* = p?/2m where p = mv, m is the particle mass
and v is its velocity. Now

prdp = 2m*)VPEV2AE = m*vimdv = m3v* dv
SO
gi = gi(E)dE = 4x(2m*) '\ PE' > dE /K>

is the number of phase space cells per unit volume in the energy range E to E + dE and

gi = gi(v)dv = drm>v* dv/h?

is the number of phase space cells per unit volume in the velocity range v to v + dv.

Although we used the phase space of x or v with x in our discussion of chaos, the phase
space of mv or p with x is much more commonly used in physics. The phase space of (p, x)
reveals the significance of 43 in the denominators of g;. Consider the expression

4rp*dpV /h?

where V is the total volume (not the unit volume) so that the numerator expresses the phase
space over the momentum range p to p 4+ dp and the volume V = xyz of the system.

Heisenberg’s Uncertainty Principle, p. 416, tells us that AxAp ~ h, so we may write
(AxAp,)(AyApy)(AzAp,) as h3; that is, the ‘volume’ of a cell in (p, V) phase space.
This volume is the smallest acceptable volume which a particle may occupy for it defines
the volume associated with a particle as

Y\
A—p%)\DB

where Apg is the de Broglie wavelength of the particle (p. 412).
So g; measures the number of phase space cells each of ‘volume’ h* per unit volume in
the range p to p + dp. Each of these cells may or may not be occupied by a particle.
We now examine what we mean by a statistical distribution in order to find the probable
occupation of a cell. This occupation factor is different for each of the three distributions
M-B, F-D and B-E.
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We consider a system, say a gas, of N particles occupying a volume V and having a total
internal energy E. The macroscopic parameters E, V, N define a macrostate. The energy E
may be partitioned in many different ways among the N particles subject only to the
restrictions that £ =) n;e; and N =) n; remain constant where ¢; represents the
energy levels available to the particles. The probability of a system being found in a
particular partition is proportional to W the number of ways of distributing the energy
among the particles to achieve that partition.

Each different way is called a microstate and each microstate has a priori the same
probability. Each microstate contributes to the statistical weight of a partition so that the
particular partition reached by the greatest number of ways has the greatest statistical
weight and is therefore the most probable. The most probable partition with W (maximum)
defines the equilibrium of the macrostate and is written 2 (EVN).

It is here that we relate 2 (EVN) to the concept of entropy S. Entropy is a measure of the
disorder of a system which increases as the system tends to equilibrium. At constant
temperature and volume the internal energy E of the system may be written

E=F+TS

where T is the temperature, S is the entropy and the product 7S is a measure of the energy
of the system locked in the disorder amongst the particles and not available for work. F' is
defined as the Helmholtz free energy and measures the work which can be done by the
system at constant temperature. At best, in an ideal reversible thermodynamic process
the disorder energy 7S remains constant, but in a natural or thermodynamically irreversible
process TS increases at the expense of F as E remains constant.

An isolated system in equilibrium with the most probable partition of its energy among
its particles represents a maximum of its entropy S and Boltzmann related S and €2 through
his expression S = klog{) where k is Boltzmann’s constant. Fluctuations from the
equilibrium position are very small indeed and log {2 is a very sharply defined function.

Calculating the value of W the statistical weight of a partition in order to find W
(maximum) =  (EVN) for each of the three distributions is a mathematical exercise which
is straightforward and a little tedious but which fails to reveal the underlying physics.

We shall make these calculations at the end of this appendix but we adopt the procedure
of quoting the results below together with the forms in which we usually meet them. This
will raise questions the answers to which are not evident in the mathematical derivation
(Table A1.1).

For all three distributions the particles are identical and indistinguishable, the total
energy E and number of particles N are constant. There are no restrictions on the number of
particles having a particular energy in the M—B and B—E distributions but in the F-D
distribution, Pauli’s exclusion principle allows only one fermion per energy level (or two if
we include spin).

Note firstly that the occupation factor or relative probability of occupation for each
distribution includes the term e®™%i where « and 0§ arise as multipliers in the
mathematical derivation. The index of the exponential requires [ to be the inverse of an
energy and the relevant term in the normal form of the Fermi—Dirac distribution suggests
that « is the ratio of two energies.
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Table A1.1 The mathematical derivation for each statistical distribution in the left hand column is

compared with its more familiar form on the right

n; = g; X occupation

factor Normal form
1 n drpdp e pur
M-B ni=gi X -5 N~ e
e (27mkT)
=g e—a—ﬁe; (p = mq})
1 2.47V(2m?) ' PE2 1
F-D n;=g;x co B 11 n(E)dE = 73 X eleier)/kT ]
B-E n(v)dvhy = E(v) dv
B 1 _ 2.47v? dvhy 1
ni—gixm - o3 Xeln//kT_l

Planck’s radiation law

In comparing the two columns of the table several questions arise:

1. Is 8 = 1/kT?

. What has happened to the « term in the normal form of M—B?

2
3. What is the physical significance of the a term?
4

. What has happened to the « term in Planck’s radiation law?

In question 1 let us integrate by parts the expression

- e p=too Oe g
Je *dp =|[pe B“],’;_fooJrﬂJpa—pe *dp

where

e=p?/2m

For € — 0o as p — £oo the first term on the right hand side equals zero, leaving

the average value of
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From the equipartition of energy

e p? 1
Pop = m E
where kT is the average energy per particle.

In question 2 we note that the term ¢ ~® in M—B has been replaced by N/(2mmkT)>*
and that h® has been lost from the denominator of g;(p)dp. To explain this and its
consequences let us write not n per unit volume but n, in the range p to p + dp over all
V =xyz as

V47T[72 dpefpz/kaT
n, = 3

Then

—p?/2mkT

* 4rp2dpe

N=Yon =y | T

where the standard definite integral is well known to have a value of (27mkT) 32,
Thus

N = V(2amkT)*? /n?
Now the average particle momentum p = mv where 1mv* = kT (v is the most probable

velocity).
Hence

(2amkT)*? ~ p>
Thus, (V/N)p? replaces eh? and

_Vp? v 1
 Nh3 NAdp

Volume available to each particle

o

~ Volume associated with the thermal de Broglie wavelength of the particle

The value of e® = 0.026 m>/>T>/2 at a pressure of one atmosphere, where m is measured in
am.u. (0'% = 16).
For air at STP e® = 109 so for the Maxwell-Boltzmann distribution

8i
n;

— e(H»/fE,’ ~ loﬁesi/kT >> 1

This states that there are many more states or cells available for occupation than there are
particles to fill them, so the probable occupation of each cell is very small. This defines a
classical distribution.
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For the Bose—Einstein gas He* at 4 K and one atmosphere pressure e ~ 7.5 so the gas
is not safely classical.

Although it is not strictly applicable, for electrons in a metal at 300 K, e® ~ 10~* so the
classical description for the Fermi—Dirac case is totally invalid.

A distribution which is not classical is said to be degenerate. Note that for high enough
energies (temperatures) all three distributions become classical.

Before we examine the origin of « and its physical meaning let us note that a factor 2
appears in both the F—D and B-E distributions where each particle has two spin states for
each energy level which must be accounted for. In Planck’s radiation law these spin states
are equivalent to the polarization states of electromagnetic waves. Note also in Planck’s law
that E(v) dv, the energy per unit volume in the frequency range v to v + dv, is n(v) dvhv
where hv is the photon energy.

Turning to question (iii) on the significance of o we again use the expression § = klog 2
or 2 = e%*. Consider a system in contact with a large reservoir at constant temperature,
Figure Al.1, able to exchange both energy and particles with the reservoir. The
combination of reservoir and system is isolated and its energy E, volume V and total
number of particles N are all fixed and constant.

We ask ‘What is the probability of finding the system in a particular microstate with 7;
particles having total energy ¢;?” This will be proportional to the number of microstates in
the reservoir after n; and ¢; are supplied to the system.

The entropy equation with subscript R for reservoir becomes

oS oS
NV EV

where we neglect higher terms in the expansion.
Elementary thermodynamics shows that

A oS\  —pu
(aE),WT and (avaV T

system

reservoir

Figure A1.1 When a system, surrounded by a large reservoir with constant N, V and E receives n;
particles and total energy ¢; from the reservoir, the entropy change of the reservoir is AS =
(njp — €5)/T where p is the chemical potential
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where p is called the chemical potential. The chemical potential y is the free energy per
particle lost when the entropy S is increased in the relation £ = F + 7S where E is
constant. Thus, the entropy change may be written

AS = Sx(E—¢j,N — n;) — Sp(E,N) = — =4 4 il

T T
Because the statistical weight 2 (EVN) represents the probability of a partition, the
probability of the combination of two partitions may be written as the product of their

statistical weights so we have

Q(E—&PN—I’IJ)

Q(E,N) Qej,ny)
(E,N) eAS/k
E,N

(E,

In order to show the relation between o and —u/kT, we take as an example a system of
four fermions available to occupy any of four single particle energy states €, €, €3, €4
(Table A1.2). The particles and energies are supplied by the reservoir and each energy level
may be filled or empty. The numbers of possible microstates of the system using 0, 1, 2, 3
or 4 particles are shown below together with their relative probabilities.

For any microstate in which a particular energy level is filled we can find another which
differs only in having that energy level empty.

Q
Q

e (njpu—ejpr

Table A1.2 Distribution of four fermions among four single particle energy states with numbers of
possible microstates and their relative probabilities

No One Two Three Four
particles particle particles particles particles

Number of
microstates 1 4 6 4 1
Energy
level 4 0 0 0 0 1
Energy
level 3 0 0 0 1 1
Energy
level €, 0 0 1 1 1
Energy
level ¢, 0 1 1 1 1

nj:O anI I’lj:2 nj:3 nj:4

Ej:() gj=¢1 Ej:E]+52 Ej:é']+€2+€3 Ej251+€2+€3+84
Relative
probability
of micro-
state O-0/AT o (ue)/AT  oRu—(e1+el/AT o Bu—(e1+erte)l/AT o [du—(ertertestes)/kT
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Thus, for example

Relative probability of finding ¢3 filled  p
Relative probability of finding 3 empty 1 —p
eBu—(e1teates)|/kT
e u—(e1+er)]/kT
— o(u—es)/kT

More generally

SO

N T
where n; = g;n; and 7; or the relative probability is the average occupation of a cell.

This is the Fermi—Dirac occupation factor and we can identify o = —pu/kT (the ratio of
two energies) where w is the chemical potential. For the Fermi—Dirac distribution 7; <1
and Figure A1.2 shows 7; versus ¢ for electrons in a metal at 7 = 0 K.

Each energy level is occupied by one electron until the top energy level ey the Fermi
energy level is reached. At T = 0K the electron with € is the only one capable of moving
to change the entropy of the system and we identify its free energy with that of the
chemical potential p. Note that, at eg for T > 0, n; = % and this is indicated by the dotted
curve at ep in the #; versus € graph.

We may apply a similar procedure to particles obeying Bose—Einstein statistics where
there is no restriction on the number of particles n; in the energy level ¢;. If n; can take any
value, three identical bosons available to three energy levels (£1,e2,e3) can form the

l1/2_

€ €

Figure A1.2 Occupation number 7i1; versus energy ¢ for electrons in a metal at T = 0K (solid line).
A slight increase in T permits the electrons near e to move to higher energy levels (dotted curve)
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microstates (3, 0, 0) (0, 3,0) (0,0,3)(2,1,0) (0,2,1)(1,0,2)(0,1,2) (2,0, 1) (1,2, 0)
(1, 1, 1). The energy of each microstate is given by €; = n;e; withn; = > n;. Suppose,
as before, a large reservoir at temperature 7 surrounds a system to which it can supply
particles and energy.

We consider a particular microstate of the system with n,n,,n3...n; particles in the
various energy levels to have a probability p when n; = 0.

If the system now takes n; particles each of energy ¢; from the reservoir the probability
of the microstate (now with n; # 0) is given by

pen,‘(/l,fsi)/kT — penix

where x = (u —&;)/kT.
The total probability for the microstate with n; =0,1,2,3,...1is

n;i=o0 p
1= pe"* =
niz:o (1 _ex)

because ) . e"™ is a geometric progression.

Hence
p=(1-¢e
The average value
n;=o00
n;= nipenix
n,‘=0
But
d 1 e*
et — nix __ —
an dux dx(l_ex) (1 ex)2
Therefore
. pet  (1—eY)er  ef
C(l—e®)? (1—en)? (1—eY)
1 1

e X —1 elei—m/kT _q

The general expression for the Bose—Einstein distribution is therefore

_ 1
ni:g’ni_gixm

Finally we discuss the absence of « or —p/kT in Planck’s radiation law, noting that this is a
special case and that —u/kT is retained in other applications of Bose—Einstein statistics.
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Black body radiation is an equilibrium process, so that the system or cavity of a box of
photons is in equilibrium with the reservoir at temperature 7, the entropy S is a maximum
and this process results from the continual emission and absorption of photons by the walls
of the cavity. The number of photons in the cavity is not conserved, the energy requirement
could be satisfied by a few high energy photons in the y-ray region or by many photons in
the low energy infrared frequencies. This means that the occupation numbers are not
subject to the constraint which specifies the total number of particles in the gas.

Since N is not fixed, the entropy S of the reservoir is not affected by the n; photons in the
exponent n;u of the occupation factor for a given microstate; 7; has no role and nju =0
giving p = 0.

The graph of the entropy S versus N, the total number of particles, gives low S values,
that is few microstates or particle arrangements at low N (y-rays) and also at high N
(infrared) photons.

A typical microstate for y-rays occupying the energy levels €; would read

ny=0, np,=0, n3=0 with n_#0
and for infrared photons a typical microstate would read
ni#0 ny=0 n3=0

Both of these are extremely unlikely and would contribute to partitions of low statistical
weight.

At equilibrium the maximum of the S versus N curve occurs at that value of N providing
the greatest number of microstates and here

L O T
ON)p T

again giving p = 0.

Mathematical Derivation of the Statistical Distributions

The particles are identical but distinguishable by labels. All energy ¢ states are equally
accessible and have the same a priori probability of being occupied. The statistical weight
or probability of a particular partition is proportional to the number of different ways of
distributing particles to obtain that partition.

Maxwell-Boltzmann Statistics

We start by filling the ¢ states with n; particles from the constant total of N particles. We
can do this in

N!
I’l1!<N—n1)!

different and distinguishable ways.
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We now fill the €, state with n, particles from the N — n; remaining particles. This
gives

(N—nl)!/nzl(N—nl —I’lz)!

different and distinguishable ways.
Proceeding in this way for all remaining energy states we have

N!

a n1!n2!n3!...

as the number of different and distinguishable ways of choosing n,n;,,ns,... from the N
particles. Particles with the same ¢; may have g; differing amounts of angular momentum,
etc. This will give g; cells associated with €; in each of which a particle with £; may be
located. If g; is the probability of having one particle in the e; range of cells then
giXgi= g,.2 is the probability of two particles in that range and g} is the probability of n;
particles with ¢; being in that range.

Hence the total number of different distinguishable ways is

n n n
W:N!gl‘g22g33...
ni'nylns!. ..

The particles are distinguished by labels and if we now remove the labels and the condition
of distinguishable particles, we cannot recognize the difference in the partition when
particles are exchanged. Therefore all N! permutations among the particles occupying the
different states give the same partition with the total number of ways

ny nz ns3

_81'87°85" -

w 21295 0
n1!n2!n3! cen

We now maximize log W with the constraints that

1. The number of particles N = ) n; = constant so that dN =) dn; = 0.
2. The energy E = ) n;e; = constant so that dE = ¢;dn; = 0.

logW = Z(n,-logg,» —logn;!)

where for large n; Stirling’s formula gives

logn;! =n;logn; — n;

Hence

logW:Znilog%+Zni
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and

d(logW) =" dn;log (f’T) +3 " nidlog <i—> +Y dn
= Z dn;log <i—i> - Z n,-dnrzi

(because g; is constant andz dn; =0)
= Z dn;log <&>
n;
If > dn; =0 then —a ) dn; =0 and
ifZaidnizo then —ﬂZaidni:0

where « and 3 are called Lagrange multipliers.
Adding these constraint conditions to d(log W) gives

d(logW) =Y dn, <10g (i—) —a— 55,)

Maximizing W gives d(log W) =0 which, since all the coefficients dn; are arbitrary and

independent, leaves
log (g,) —a—pPe;i=0
n;

for each n;.
At W.x we have therefore

ni = gl X e(Y‘f’ﬁE,‘

Fermi-Dirac Statistics

We begin again with labelled identical particles. Here the Pauli exclusion principle
operates and no two particles may occupy the same state. The g; are quantum states, e.g.
spin gives a factor 2 to each g;. Also g; gives the maximum number of particles with €; so
n;<g;.

To fill the ¢; states with n; particles we put one particle in a g; cell and the next particle
in any of the (g; — 1) remaining cells. We can do this in g;(g; — 1) ways so the total
number of ways of filling the states of energy ¢; with n; particles is

gi(gi—1)...(gi—ni+1)
gi!
(gi —mni)!
If now the labels are removed and the particles become indistinguishable we reduce the
total of different distinguishable arrangements to g;!/n!(g; — n;)!.
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Applying this to all g; gives the total number of different distinguishable ways as

g1! 82! 83!

W =
l’ll!(gl —l’ll)! n2!(g2 —nz)! n3!(g3 —l’l3)!

Maximizing log W with > dn; =) €;dn; =0 we proceed as with the Maxwell—
Boltzmann example to obtain for W (max) the condition that

10g<&—1>—a—ﬂei:0

ni

to give

1

ni=8&i Xea+35i_|_]

Bose-Einstein Statistics

Here there is no exclusion principle and we begin again with labelled identical particles.

The number of distinguishable arrangements of n; particles in the g; cells of energy ¢;
equals the number of ways of putting n; objects in g; boxes with any number allowed in a
box. This means putting n; particles in a row separated by g; — 1 walls so that the number
of ways is the number of permutations of (n; + g; — 1) objects, i.e. particles and walls.
This gives (n; +g; — 1)! ways. If we now remove the particle labels to make them
indistinguishable we reduce the number of ways by a factor of n! to give (n; + g; — 1)!/n;!
ways.

However, all permutations of the g; — 1 dividing walls among the n; particles give the
same physical state, so the number of different distinguishable ways is given by
(ni+gi—1)!/n!(g; — 1)! and for all particles we have the number of ways

wom-—g—1) (mte-1)
mligr—1) ml(g—1)

Maximizing log W as for the other two distributions gives d(log W) =0 when
log(&—i-l) —a—pF;=0
nj
that is, when

"= 8igaE ]
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Appendix 2: Kirchhoff’s Integral
Theorem

Kirchhoff’s Integral Theorem is valid for any solution E of the scalar time independent
Helmbholtz equation (3), p. 187, that is

O’E
—— +kE=0
Ox?2 +
For the radial direction r in a spherical coordinate system this becomes
O’E  20E 0
or? ror
which is satisfied by
E= @ eikr
’

where E,/r is the amplitude at a distance r from the origin O of a spherical
electromagnetic wave. We note that the amplitude of such a wave decays as 1/r where
r is the distance from O.

Kirchhoff’s Theorem states that the complex amplitude Ep at a point P is related to the
complex amplitude E on a surface S enclosing P by

1 aeikR eikR(:)E
N e s

where R is the distance from P to the surface element dS and n is the direction normal to dS
(Figure A2.1).
If r is the distance from O to dS, then

E :& eikr
7

The Physics of Vibrations and Waves, 6th Edition H. J. Pain
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548 Appendix 2: Kirchhoff’s Integral Theorem

S

Figure A2.1 0 is the origin of an electromagnetic wave. Kirchoff's Theorem relates its complex
amplitude Ep at a point P to the complex amplitude E on a surface S enclosing P

and

E E, . 1
% _E elkr <ik - —> cos (n,r)

on r r

The term (ik — 1/r) shows that inside S there is a phase shift of 7/2 rad and an amplitude
factor 1/r. However, for r = m\, where m is large, then

so that 1/r may be neglected for distances much greater than A.
Similar arguments hold for
o eikR
on R

Thus, if P and O are many wavelengths from S, Kirchhoff’s integral becomes

ds

E,— —zJJ Eoei"(’*m (cosm,R — cosn,r)
A rR 2

where the cosine terms generate an inclination factor K () and cos(n,R) = cos x.

The problem of showing that Huygens wavelets on an unobstructed wavefront do not
propagate backwards reduces to that of demonstrating that K(x) can be zero. This occurs
where

cos (m,R) = cosm = —1
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Figure A2.2 When P’ is located on r within the surface of the spherical wavefront S, situated
within S, Ep: is reduced to zero proving that Huygens wavelets do not propagate backwards

and

cos (n,r) =cosm = —1

This is achieved in the following way.

The surface S designated S, now encloses a spherical wavefront surface S; centre O. S
and S, are said to be doubly connected and the surface integral now includes S; and S,
(Figure A2.2). At S, the normal n to dS on S, now points towards O and if the outer
surface of S, is allowed to expand to infinity its contribution to the integral becomes zero.
This leaves only the integral over the surface where S| and S, coincide. The singularity
Eo/r at O is excluded from the integral.

If P is now located on r, at P’, that is in the direction of backward propagation of
Huygens wavelets, then

cos (m,R) = cosm = —1
and

cos (n,r) = cosm = —1
K(x) is then equal to zero. Any other position for P gives

cosy —cos(m,r) 1+4cosy
K(x) = 5 =—>
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Appendix 3:
Non-Linear Schrodinger Equation

This equation describes phenomena in non-linear media with strong dispersion. It appears
in several forms. For optical soliton purposes, Mollenauer et al. (1982) derive it from the

equation
(Ou Ou —k> 0%u )
— k=) =—=— A3.1
1<8z+ ]81‘) 2 o el (A3.1)
where
8]( azk 1 ny
ki =— kry = — d = —ko—
I WA R N M P

n, and n( appear in the Kerr Optical Equation n — ng = n»l.
Equation (A3.1) is satisfied by a pulse of the form
E(Z, l‘) _ ”(Zv l‘) eiwor—koz)
Using the transformation of Mollenauer et al. (1980), (A3.1) assumes the dimensionless form
Ov  10%w 2
—i—== v
ot 20s?
which has a soliton solution u(€, s) = sech (s)e’s/> where

s=T'(t—hkiz) €= ka|T 2

N 1/2
v=T| — u
<|k2|>

where T is a measure of the width of the input optical pulse.

The first term on the right hand of equation (A3.2) describes the effects of dispersion
which may be seen as the kinetic energy term in the linear Schrodinger equation, while the
second term corresponds to the energy of a self-trapping potential proportional to |u|2
arising from the non-linear refractive index which may be interpreted in probability terms.

(A3.2)

and

The Physics of Vibrations and Waves, 6th Edition H. J. Pain
© 2005 John Wiley & Sons, Ltd., ISBN: 0-470-01295-1(hardback); 0-470-01296-X(paperback)

551

STUDENTS-HUB.com Uploaded By: Jibreel Bornat


https://students-hub.com

Index

Absorption of wave energy, 185, 191, 209
Acoustic waves, 151
finite amplitude, 505
Airy disc, 385
Anharmonic oscillations, 459
Attenuation coefficient, 185, 209

laser—Doppler technique, 495
limit cycle, 469, 485

logistic equation, 469

manifold, 487

period doubling, 469

pitchfork bifurcation, 471

phase space, 481, 533

Poincaré section, 486

population biology, 469
Rayleigh—Bénard convection, 497
Rayleigh criterion (flow instability),

Band Theory, 445, 448

Bandwidth Theorem, 132, 285, 376
Beats, 14, 83, 130

Bessel’s functions, 381

Bloch functions, 441
Bragg reflection, 447
Brewster angle, 220
Brillouin zone, 137, 445
Bulk modulus, 152

Cerenkov radiation, 508
Chaos,
attractors (chaotic),
Lorentz, 500
Ueda, 487
basin of attraction, 485
Cantor set, 491
Couette flow, 495
electrical oscillator
non-linear, 477
relaxation, 467
Feigenbaum limit, 474
fractal, 490
in fluids, 494
Koch snowflake, 490

The Physics of Vibrations and Waves, 6th Edition H. J. Pain

497
Rayleigh number, 499
repellor, 469, 485
Reynolds number, 496
saddlepoint, 483
separatrix, 483
Smale horseshoe, 493
stable point attractor, 469
Taylor cell, 496
Van der Pol equation, 467
varactor, 477

Complex number notation, 26, 53
Convolution, 292

Array Theorem, 388
Theorem, 297

Cornu spiral, 396
Coupled oscillations, 79

electrical, 87

on a loaded string, 90
spring-coupled pendulums, 79
wave motion as the limit of, 95
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Criterion for dielectric-conductor in plasma, 223
behaviour, 212 Electron waves in solids, 441
Cut off frequency, 95, 244, 355 Energy,
density in an electromagnetic wave, 208
Damped simple harmonic motion, 37, 41 distribution in a sound wave, 155
critical damping, 40 distribution in a velocity pulse, 278
dead beat damping, 39 in harmonic mode of a vibrating
logarithmic decrement, 44 string, 126
oscillations, 41 Evanescent wave, 256
rate of energy dissipation, 47 Exponential series, 25

relaxation time, 45
De Broglie wavelength, 412, 534, 537 Fabry—Perot interferometer, 341
Debye theory of specific heats, 253 central spot scanning, 346
Decibel, 158 filter, 527
Degeneracy, 250, 425 finesse, 345
Deviation by a prism, 312

by a lens system, 317, 322
Diffraction, Fraunhofer, 367

circular aperture, 379

far field, 383

rectangular aperture, 377

single narrow slit, 367

transmission grating, 373
Diffraction, Fresnel, 395

circular aperture, 401

Cornu spiral, 396

slit, 395

straight edge, 395

zone plate, 402
Diffusion equation, 187

added to wave equation, 190, 209
Dipole radiation, 362
Dirac & function, 292

Fourier transform, 292

sifting property, 292
Dispersion,

free spectral range, 345
resolving power, 343
Fermat’s Principle, 307
Fermi energy level, 426, 540
Forced oscillator,
electrical, 55
mechanical, 57
power supplied to, 68
steady state behaviour, 58
string as a forced oscillator, 115
transient behaviour, 58, 74
Fourier Integral, 283
Fourier Series, 267
application to plucked string, 275
application to velocity pulse, 278
frequency spectrum of, 281
Fourier Transform, 285
application to Gaussian function, 289
application to optical diffraction (one
dimension), 287
application to optical diffraction (two
anomalous, 131, 522 dimensions), 378, 379
.normal, 130, 515 application to slit function, 286
Displacement current, 201 Fraunhofer diffraction, 367
Doppler effect, 141 Fraunhofer far field diffraction, 383
shock waves, 506 Fresnel diffraction, 395

Earthquake, 161 Fresnel’s equations, 220

Eigenfrequencies, 86, 125, 245, 418

Eigenfunctions, 418 Group,

Electromagnetic waves, 199 many components, 132
in a conductor, 208 two components, 128
in a dielectric, 202 velocity, 109, 130
in the ionosphere, 227 wave group, 128
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Heisenberg’s Uncertainty Principle, 135, 414
Helmbholtz equation, 187

Helmbholtz equation (optical), 313, 321
Holography, 403

Huygens wavelets, 305, 547

Impedance
characteristic of string, 117
characteristic of transmission line
(lossless), 175
characteristic of transmission line
(real), 186
conductor, 215
connection with refractive index, 220
dielectric, 207
forced oscillator (electrical), 55
forced oscillator (mechanical), 57
quarter wave matching, 124
specific acoustic, 158
Instantons, 521
Intensity of sound waves, 157
Interference,
amplitude division, 333, 334
dipole radiation, 362
linear array of N sources, 363
missing orders, 373
spatial coherence criterion, 360
two sources, 355, 357
Young’s slit experiment, 357
wavefront division, 333, 355
Interference fringes, 358
of constant inclination, 335
of constant thickness, 336, 355
Newton’s Rings, 337
visibility, 360
Interferometer
Fabry—Perot, 341
Michelson’s Spectral, 338
Resolving power, 343
structure of spectral lines, 340
Tonic crystal
infrared absorption in, 140
thermal expansion in, 463
wave propagation in, 138
Tonosphere, 227

Kerr optical effect, 522
Kirchhoff Integral Theorem, 547
Kronig — Penney model, 441
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Lamé’s elastic constants, 159
Laser cavity, 347

Line spread function, 392
Lissajous figures, 19
Logarithmic decrement, 44

Mach Cone, 507
Mach number, 510
Magnification by spherical surface,
316

Magnifying glass, problem 328
Matrix applications

coupled oscillations, 86

lens systems, 325

multilayer dielectric films, 350
Maxwell’s equations, 202
Michelson’s spectral interferometer, 338
Michelson’s stellar interferometer, 386
Microscope, problem, 330
Modulation transfer function, 391
Multiplexing, 526

Newton’s optical equation, 320
Newton’s Rings, 337
Non-linear oscillations, 459

restoring force, 460
Non-linear waves, 505, 514, 515
Normal coordinates, 81
Normal frequencies, 81, 86
Normal modes, 81

one dimension, 81, 125

three dimensions, 250

two dimensions, 246
Normalization of wave functions, 423

Optical fibre wave guide, 353
Optical Helmholtz equation, 313, 321
Optical reflection and refraction,
217, 254, 307
Optical system, 313
Optical transfer function, 391
Oscillations
anharmonic, 459
coupled, 79
damped simple harmonic, 41
electrical relaxation, 465
finite amplitude, 459, 505
non-linear, 459
simple harmonic, 1
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Paraxial rays, 313
Partial differentiation (notation), 96,
107
Particle velocity, 109
Phase transfer function, 391
Phonons, 450
Pinch effect, 226
Planck’s Radiation Law, 251, 536, 541
problem, 262
Plasma, 223
Point spread function, 391
Poisson’s ratio, 159
Polarization, 17
Power (optical),
of one spherical surface, 314
of thin lens, 318
of two spherical surfaces, 317
Poynting’s vector, 206
Propagation constant, 185

Quality factor Q, 45
connection with Resolving Power, 377
of an oscillator, 70, 71

Radio transmission and reception, 229, 362,
366
Raman effect, 524
Reciprocal lattice, 452
Reduced zone scheme, 445
Reflection and transmission of waves at
a boundary
acoustic, 163
electromagnetic by a conductor
(normal incidence), 222
electromagnetic by a dielectric (normal
incidence), 217
electromagnetic by a dielectric
(oblique incidence), 218
electromagnetic (optical laws),
254, 307
electromagnetic (total internal), 256
on a string, 117
on a transmission line, 177
quantum particles at a potential
barrier, 419, 427
summary (table), 546
three-dimensional, 254
two-dimensional, 242

STUDENTS-HUB.com

Index

Relaxation time, 45, 214
medium, 214
oscillator, 45

Resolving Power
Bandwidth Theorem, 376
diffraction grating, 374
Fabry—Perot interferometer, 343
Rayleigh’s Criterion (optical

resolution), 375

Scattering
elastic, 447, 451
inelastic, 451
Schrodinger’s wave equation, 417
Separation of variables (method of),
245
Shock waves, 506
Simple harmonic motion, 1
Skin depth, 211
Snell’s Law, 256, 309
Solitons, 513
instantons, 521
KdV equation, 515, 517, 518
Kerr optical effect, 522
Miura’s transformation, 520
multiplexing, 526
non-linear waves, 514
optical, 521
Raman effect, 524
Rayleigh’s solution, 513
Schrédinger’s equation, 520
shallow water waves, 513
transparency in collisions, 518
Sound waves, 151
Spatial coherence criterion for
interference, 360
Standing wave,
energy in harmonic mode, 127
equation, 124
on a string, 124
ratio, 128
Statistical Physics, 533
black body radiation, 536
boson, 533
chemical potential, 539
distributions,
Bose—Einstein, 533, 536, 545
classical, 537
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degenerate, 538
Fermi—Dirac, 533, 536, 544
Maxwell-Boltzmann, 533, 536, 542

entropy, 535

equipartition of energy, 537

Fermi energy level, 540

fermion, 533

Helmholtz free energy, 535, 539

macrostate, 535

microstate, 535

phase space, 533, 534

Planck’s radiation law, 536

statistical weight, 535

Structure of spectral lines, 340
Superposition

many simple harmonic motions, 20

two perpendicular simple harmonic
motions, 15

two simple harmonic motions (one
dimension), 12

Telescope, problem 329
Telescope resolution of double star, 385
Thick lens, 320, 322
Thin lens, 318
Total internal reflection, 256
Transient effect in a forced oscillator, 58, 74
Transmission line, 171
as a Filter, 179
lossless, 173
real, 183

Umklapp process, 452
Uncertainty Principle, 414

Vector operator i, 53
Velocity
group, 109, 130
particle, 109
wave, 109, 114
Vibration insulator, 64
Visibility of interference fringes, 360

Wave, 108
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electron in solids, 441
energy density in, 126, 157
equation, 97, 110
evanescent, 256
function, 418
group
many components, 132
two components, 128
guide, 242, 353
in a periodic structure, 135, 162
intensity, 120, 157, 208
length, 113
longitudinal, 151, 159
mechanics, 411
non-linear, 505, 513, 514
plane, 109
progressive, 108
reflection at a boundary, 117, 163, 177, 217,
254, 546
standing, 124, 348
three-dimensional, 247
transmission at a boundary, 117, 163, 217,
254, 546
transverse, 108
two-dimensional, 240
velocity, 109, 113
voltage, 174, 175

‘Wave mechanics,

atomic clock, 431

electron waves in solids, 441

Fermi energy level, 426

harmonic oscillator, 438

one-dimensional potential well, 419

penetration of potential barrier, 430

potential step, 426

reflection and transmission of
quantum particles, 420, 427

Schrodinger’s wave equation, 417

square potential well, 434

three-dimensional box, 424

wave function, 418

zero point energy, 422, 438

Young’s modulus, 159
current, 172, 174
dispersion of, 131
electromagnetic, 199

Zero point energy, 422, 438
Zone plate, 403
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