Chapter 3: Processes
- 1] - 1]

Operating System Concepts — 10th Edition Silberschatz, Galvin and Gagne ©2018

STUDENTS-HUB.com Uploaded By: Malak Obaid

g
5 Process Concept

W\
= Nss

= An operating system executes a variety of programs that run as a
process.

= Process — a program in execution; process execution must progress

in sequential fashion. No parallel execution of instructions of a single
process

= Multiple parts
* The program code, also called text section

* Current activity including program counter, processor registers
» Stack containing temporary data

» Function parameters, return addresses, local variables
* Data section containing global variables

* Heap containing memory dynamically allocated during run time

Operating System Concepts — 10t Edition 3.2 Silberschatz, Galvin and Gagne ©2018

STUDENTS-HUB.com Uploaded By: Malak Obaid

=

P
S i Process Concept (Cont.)

B\
L SN

= Program is passive entity stored on disk (executable file);
process is active

* Program becomes process when an executable file is
loaded into memory

= Execution of program started via GUI mouse clicks, command
line entry of its name, etc.

= One program can be several processes
* Consider multiple users executing the same program

Operating System Concepts — 10" Edition 3.3 Silberschatz, Galvin and Gagne ©2018

STUDENTS-HUB.com Uploaded By: Malak Obaid

Process in Memory

Operating System Concepts — 10t Edition

STUDENTS-HUB.com

max

stack

heap

data

text

3.4

Silberschatz, Galvin and Gagne ©2018

Uploaded By: Malak Obaid

<$%7 Memory Layout of a C Program

) #include <stdio.h>
high #include <stdlib.h>
argc, agrv

memory

stack int x;
___l____ ((inty=15;

int main(int argc, char *argvl[])
{
L T_ - — 4 L I:int *values;
heap < } int i;
—
uninitialized I |
data values = (int *)malloc (sizeof (int) *5) ;
initialized for(i = 0; 1 < 5; 1i++)
data values[i] = 1i;
low
return 0O;
memory B

Operating System Concepts — 10" Edition

STUDENTS-HUB.com

3.5 Silberschatz, Galvin and Gagne ©2018

Uploaded By: Malak Obaid

=

) amf
4«%»—-/ Process State

= As a process executes, it changes state
* New: The process is being created
* Running: Instructions are being executed
* Waiting: The process is waiting for some event to occur
* Ready: The process is waiting to be assigned to a processor
* Terminated: The process has finished execution

Operating System Concepts — 10" Edition 3.6 Silberschatz, Galvin and Gagne ©2018

STUDENTS-HUB.com Uploaded By: Malak Obaid

=R

o)

~

§F7 Diagram of Process State

A\

admitted interrupt terminated

scheduler dispatch

I/O or event completion I/O or event wait

Operating System Concepts — 10" Edition 3.7 Silberschatz, Galvin and Gagne ©2018

STUDENTS-HUB.com Uploaded By: Malak Obaid

7 Am%.&
'@

Process Control Block (PCB)

Information associated with each process(also called task
control block)

Process state — running, waiting, etc.

Program counter — location of instruction to next
execute

CPU registers — contents of all process-centric
registers

CPU scheduling information- priorities, scheduling
gueue pointers

Memory-management information — memory
allocated to the process

Accounting information — CPU used, clock time
elapsed since start, time limits

I/O status information — I/O devices allocated to
process, list of open files

Operating System Concepts — 10" Edition 3.8

STUDENTS-HUB.com

process state

process number

program counter

registers

memory limits

list of open files

Silberschatz, Galvin and Gagne ©2018

Uploaded By: Malak Obaid

)
g5 Threads

= So far, process has a single thread of execution
= Consider having multiple program counters per process
* Multiple locations can execute at once
» Multiple threads of control -> threads

= Must then have storage for thread details, multiple program
counters in PCB

= Explore in detail in Chapter 4

Operating System Concepts — 10" Edition 3.9 Silberschatz, Galvin and Gagne ©2018

STUDENTS-HUB.com Uploaded By: Malak Obaid

fq.ﬂ*»-k m m =
“4%7 Process Representation in Linux

Represented by the C structure task struct

/%
/%
/%
task struct *parent;/*
list head children; /*
struct files struct *files;/*
struct mm struct *mm; /*
process */

process identifier */
state of the process */
scheduling information */
this process’ s parent */
this process’s children */
list of open files */
address space of this

pid t pid;
long state;
unsigned int time slice
struct
struct

i

NN

struct task_struct
process information

struct task_struct
process information

_“

f

current

struct task_struct
process information

S

(currently executing proccess)

w2 TR

Operating System Concepts — 10" Edition

3.10 Silberschatz, Galvin and Gagne ©2018

STUDENTS-HUB.com Uploaded By: Malak Obaid

T Process Scheduling

*= Process scheduler selects among available processes
for next execution on CPU core

= Goal -- Maximize CPU use, quickly switch processes onto
CPU core

= Maintains scheduling queues of processes

* Ready queue — set of all processes residing in main
memory, ready and waiting to execute

* Wait queues — set of processes waiting for an event
(i.e., 1/O)

* Processes migrate among the various queues

Operating System Concepts — 10t Edition 3.11 Silberschatz, Galvin and Gagne ©2018

STUDENTS-HUB.com Uploaded By: Malak Obaid

Ready and Wait Queues

Operating System Concepts — 10t Edition

STUDENTS-HUB.com

ready
queue

wait
queue

queue header

head

PCB,

tail

N

registers

PCB,,

PCB ,
T =
registers
PCB,
S

head

/

tail

3.12

Silberschatz, Galvin and Gagne ©2018

Uploaded By: Malak Obaid

!

A\

4% Representation of Process Scheduling

ready queue

Y

I/0 I/0 wait queue

A

I/0 request

> CPU)

child
termination
wait queue

time slice
expired

A

interrupt
occurs

child
terminates

interrupt

wait queue |

A

create child
process

A

Operating System Concepts — 10th Edition

STUDENTS-HUB.com

3.13

wait for an
interrupt

A

Silberschatz, Galvin and Gagne ©2018

Uploaded By: Malak Obaid

=

0y

o
Y A
S\

‘f%w CPU Switch From Process to Process

A context switch occurs when the CPU switches from

one process to another.

process P,

executing u

»
executing U¥

Operating System Concepts — 10" Edition

STUDENTS-HUB.com

N

>idle

operating system process P,

interrupt or system call

Y =
save state into PCB,
>idle
reload state from PCB; 1
interrupt or system call executing
I
save state into PCB;
>idle
reload state from PCB, J
3.14 Silberschatz, Galvin and Gagne ©2018

Uploaded By: Malak Obaid

g Context Switch

= When CPU switches to another process, the system must
save the state of the old process and load the saved state
for the new process via a context switch

= Context of a process represented in the PCB

= Context-switch time is pure overhead; the system does no
useful work while switching

* The more complex the OS and the PCB = the longer
the context switch

= Time dependent on hardware support

* Some hardware provides multiple sets of registers per
CPU = multiple contexts loaded at once

Operating System Concepts — 10" Edition 3.15 Silberschatz, Galvin and Gagne ©2018

STUDENTS-HUB.com Uploaded By: Malak Obaid

«g® Multitasking in Mobile Systems

= Some mobile systems (e.g., early version of iOS) allow only one
process to run, others suspended

= Due to screen real estate, user interface limits iOS provides for a
* Single foreground process- controlled via user interface

* Multiple background processes— in memory, running, but not
on the display, and with limits

* Limits include single, short task, receiving notification of events,
specific long-running tasks like audio playback

= Android runs foreground and background, with fewer limits
* Background process uses a service to perform tasks

* Service can keep running even if background process is
suspended

* Service has no user interface, small memory use

: /},\ y

< ‘!&4}:’/
1 ?};V 3

Operating System Concepts — 10" Edition 3.16 Silberschatz, Galvin and Gagne ©2018

STUDENTS-HUB.com Uploaded By: Malak Obaid

Operations on Processes

= System must provide mechanisms for:
* Process creation
* Process termination

Operating System Concepts — 10" Edition 3.17 Silberschatz, Galvin and Gagne ©2018

STUDENTS-HUB.com Uploaded By: Malak Obaid

=

) :
G Process Creation

s

= Parent process create children processes, which, in turn
create other processes, forming a tree of processes

= Generally, process identified and managed via a process
identifier (pid)

= Resource sharing options
* Parent and children share all resources
 Children share subset of parent’ s resources
* Parent and child share no resources

= Execution options
* Parent and children execute concurrently
* Parent waits until children terminate

ALY

™
S\
P o "
£ f«%.:‘\\x\
P
B
P .u&‘f_ 2

«

Operating System Concepts — 10" Edition 3.18 Silberschatz, Galvin and Gagne ©2018

STUDENTS-HUB.com Uploaded By: Malak Obaid

5 Process Creation (Cont.)

= Address space

* Child duplicate of parent

* Child has a program loaded into it
= UNIX examples

°* fork () system call creates new process

* exec () system call used after a £ork () to replace the process’
memory space with a new program

* Parent process calls wait () waiting for the child to terminate

parent (pid > 0)

parent resumes

parent

child (pid = 0)

Operating System Concepts — 10" Edition 3.19 Silberschatz, Galvin and Gagne ©2018

STUDENTS-HUB.com Uploaded By: Malak Obaid

A Tree of Processes in Linux

systemd

tcsh
pid = 4005

vim
pid = 9204

ps
pid = 9298

Operating System Concepts — 10" Edition 3.20 Silberschatz, Galvin and Gagne ©2018

STUDENTS-HUB.com Uploaded By: Malak Obaid

“5»/ C Program Forking Separate Process

A\

#include <sys/types.h>
#include <stdio.h>

#include <unistd.h>

int main()

{

pid -t pid;

/* fork a child process */
pid = fork();

if (pid < 0) { /* error occurred */
fprintf (stderr, "Fork Failed");
return 1;

}
else if (pid == 0) { /* child process */
execlp("/bin/1s","1s",NULL);

else { /* parent process */
/* parent will wait for the child to complete */
wait (NULL) ;
printf("Child Complete");

}

return 0O;

}

Operating System Concepts — 10 Edition 3.21 Silberschatz, Galvin and Gagne ©2018

STUDENTS-HUB.com Uploaded By: Malak Obaid

=R

ﬁ{’ Creating a Separate Process via Windows API

#include <stdio.h>
#include <windows.h>

int main(VOID)

{

STARTUPINFO si;
PROCESS_INFORMATION pi;

/* allocate memory */
ZeroMemory (&si, sizeof(si));
si.cb = sizeof(si);
ZeroMemory (kpi, sizeof(pi));

/* create child process */
if (!CreateProcess(NULL, /# use command line */
"C:\\WINDOWS\\system32\\mspaint.exe", /* command */
NULL, /* don’t inherit process handle */
NULL, /* don’t inherit thread handle */
FALSE, /* disable handle inheritance */
0, /* no creation flags */
NULL, /* use parent’s enviromment block */
NULL, /* use parent’s existing directory */

&si,
&pi))
fprintf(stderr, "Create Process Failed");
return -1;
}

/* parent will wait for the child to complete */
HaitForSingleﬂbject{pi.hProcass, INFINITE) ;
printf("Child Complete");

/#* close handles */
CloseHandle(pi.hProcess);
CloseHandle(pi.hThread) ;

Operating System Concepts — 10" Edition 3.22 Silberschatz, Galvin and Gagne ©2018

STUDENTS-HUB.com Uploaded By: Malak Obaid

4

, x"m’“'l, m m
=7 Process Termination

v

= Process executes last statement and then asks the operating
system to delete it using the exit () system call.

* Returns status data from child to parent (via wait ())

* Process’ resources are deallocated by operating system

= Parent may terminate the execution of children processes using
the abort () system call. Some reasons for doing so:

* Child has exceeded allocated resources
* Task assigned to child is no longer required

* The parent is exiting, and the operating systems does not
allow a child to continue if its parent terminates

Operating System Concepts — 10" Edition 3.23 Silberschatz, Galvin and Gagne ©2018

STUDENTS-HUB.com Uploaded By: Malak Obaid

4

P> Process Termination

P

= Some operating systems do not allow child to exists if its parent
has terminated. If a process terminates, then all its children
must also be terminated.

* cascading termination. All children, grandchildren, etc.,
are terminated.

* The termination is initiated by the operating system.

= The parent process may wait for termination of a child process
by using the wait () system call. The call returns status
information and the pid of the terminated process

pid = wait(&status);

= |f no parent waiting (did not invoke wait ()) process is a
zombie

= |f parent terminated without invoking wait (), process is an

orphan
Operating System Concepts — 10t Edition 3.24 Silberschatz, Galvin and Gagne ©2018

STUDENTS-HUB.com Uploaded By: Malak Obaid

v%;:.?“ﬁ Android Process Importance Hierarchy

= Mobile operating systems often have to terminate processes to reclaim
system resources such as memory. From most to least important:

* Foreground process
* Visible process
* Service process
* Background process
* Empty process
= Android will begin terminating processes that are least important.

Operating System Concepts — 10" Edition 3.25 Silberschatz, Galvin and Gagne ©2018

STUDENTS-HUB.com Uploaded By: Malak Obaid

.

,‘wm.k
"/%w Multiprocess Architecture — Chrome Browser

= Many web browsers ran as single process (some still do)
* If one web site causes trouble, entire browser can hang or crash

= (Google Chrome Browser is multiprocess with 3 different types of
processes:

* Browser process manages user interface, disk and network 1/0O

* Renderer process renders web pages, deals with HTML,
Javascript. A new renderer created for each website opened

» Runs in sandbox restricting disk and network I/O, minimizing
effect of security exploits

* Plug-in process for each type of plug-in

G Chrome Browser 0S-BOOK.COM X w Wiley: Operating System ¢ X mo@ BBC - Homepage b3

&) https://w! oogle.com/chrome/bro r/desktop/ TR
‘ Chrome DOWNLOAD ~ CROMEBOOKS ~ CHROMECAST ~

Each tab represents a separate process.

“"/}F"“\“
\
4

Operating System Concepts — 10" Edition 3.26 Silberschatz, Galvin and Gagne ©2018

STUDENTS-HUB.com Uploaded By: Malak Obaid

g% Interprocess Communication

= Processes within a system may be independent or cooperating

= Cooperating process can affect or be affected by other processes,
including sharing data

= Reasons for cooperating processes:

* Information sharing

* Computation speedup

* Modularity

* Convenience
= Cooperating processes need interprocess communication (IPC)
= Two models of IPC

* Shared memory

* Message passing

Operating System Concepts — 10t Edition 3.27 Silberschatz, Galvin and Gagne ©2018

STUDENTS-HUB.com Uploaded By: Malak Obaid

g7 Communications Models

(a) Shared memory.

|: process A
shared memory <
process B
kernel
(a)
Operating System Concepts — 10" Edition 3.28

STUDENTS-HUB.com

(b) Message passing.

process A

process B

message queue

Mg

my

mso Mms| ... |Mpye—

kernel

(b)

Silberschatz, Galvin and Gagne ©2018

Uploaded By: Malak Obaid

=

)
&gw Producer-Consumer Problem

= Paradigm for cooperating processes:

* producer process produces information that is consumed
by a consumer process

= Two variations:

* unbounded-buffer places no practical limit on the size of
the buffer:

» Producer never waits
» Consumer waits if there is no buffer to consume
* bounded-buffer assumes that there is a fixed buffer size
» Producer must wait if all buffers are full
» Consumer waits if there is no buffer to consume

N
‘[\ ;\\u \
PR
B
A 29%

Operating System Concepts — 10" Edition 3.29 Silberschatz, Galvin and Gagne ©2018

STUDENTS-HUB.com Uploaded By: Malak Obaid

e
@%/,,,., IPC — Shared Memory

= An area of memory shared among the processes that wish to
communicate

= The communication is under the control of the users processes
not the operating system.

= Major issues is to provide mechanism that will allow the user

processes to synchronize their actions when they access shared
memory.

= Synchronization is discussed in great details in Chapters 6 & 7.

Operating System Concepts — 10t Edition 3.30 Silberschatz, Galvin and Gagne ©2018

STUDENTS-HUB.com Uploaded By: Malak Obaid

‘ =

%w Bounded-Buffer — Shared-Memory Solution

= Shared data
#define BUFFER SIZE 10

typedef struct {

} item;

item buffer[BUFFER SIZE];
int in = O;

int out = 0;

= Solution is correct, but can only use BUFFER_SIZE-1 elements

Silberschatz, Galvin and Gagne ©2018

Uploaded By: Malak Obaid

Operating System Concepts — 10" Edition 3.31

STUDENTS-HUB.com

‘ AR

o
Y A
S\

%7/ Producer Process — Shared Memory

item next_produced;

while (true) {

Operating System Concepts — 10" Edition 3.32

STUDENTS-HUB.com

/* produce an item in next produced */

while (((in + 1) % BUFFER SIZE) == out)
; /* do nothing */

buffer[in] = next produced;

in = (in + 1) % BUFFER_SIZE;

Silberschatz, Galvin and Gagne ©2018

Uploaded By: Malak Obaid

)
S Consumer Process — Shared Memory

item next_consumed;

while (true) {
while (in == out)

; /* do nothing */
next_consumed = buffer|[out];

out = (out + 1) % BUFFER SIZE;

/* consume the item in next consumed */

Operating System Concepts — 10t Edition 3.33 Silberschatz, Galvin and Gagne ©2018

STUDENTS-HUB.com Uploaded By: Malak Obaid

- KAW""'S

‘*%v’ What about Filling all the Buffers?

= Suppose that we wanted to provide a solution to the consumer-
producer problem that fills all the buffers.

= We can do so by having an integer counter that keeps track
of the number of full buffers.

= |nitially, counter is setto 0.

= The integer counter is incremented by the producer after it
produces a new buffer.

= The integer counter is and is decremented by the consumer
after it consumes a buffer.

> <
A ﬁ"’ 3
Operating System Concepts — 10" Edition 3.34 Silberschatz, Galvin and Gagne ©2018

STUDENTS-HUB.com Uploaded By: Malak Obaid

Sy Producer

Ly ”

while (true) {
/* produce an item in next produced */

while (counter == BUFFER SIZE)
; /* do nothing */

buffer[in] = next produced;

in = (in + 1) % BUFFER SIZE;

counter++;

Operating System Concepts — 10 Edition 3.35 Silberschatz, Galvin and Gagne ©2018

STUDENTS-HUB.com Uploaded By: Malak Obaid

ﬂniﬁﬁ

P
s

s Consumer

44

4%

while (true) {

while (counter == 0)
; /* do nothing */

next consumed = buffer[out];
out = (out + 1) % BUFFER SIZE;
counter—--;
/* consume the item in next consumed */

}

Operating System Concepts — 10 Edition 3.36 Silberschatz, Galvin and Gagne ©2018

STUDENTS-HUB.com Uploaded By: Malak Obaid

~$57 Race Condition

" counter++ could be implemented as

registerl = counter
registerl = registerl + 1
counter = registerl

" counter-- could be implemented as

register2 = counter
register2 = register2 -1
counter = register2

= Consider this execution interleaving with “count = 57 initially:

S0: producer execute registerl = counter {reqgister1 = 5}
S1: producer execute registerl = registerl + 1 {reqgister1 = 6}
S2: consumer execute register2 counter {reqgister2 = 5}

S3: consumer execute register?2 register2 - 1 {register2 =4}
S4: producer execute counter = registerl {counter =6}
S5: consumer execute counter = register?2 {counter = 4}

Operating System Concepts — 10" Edition 3.37 Silberschatz, Galvin and Gagne ©2018

STUDENTS-HUB.com Uploaded By: Malak Obaid

§F Race Condition (Cont.)

" Question - why was there no race condition
in the first solution (where at most N - 1)
buffers can be filled?

" More in Chapter 6.

Operating System Concepts — 10t Edition 3.38 Silberschatz, Galvin and Gagne ©2018

STUDENTS-HUB.com Uploaded By: Malak Obaid

G IPC — Message Passing

= Processes communicate with each other without
resorting to shared variables

= |PC facility provides two operations:
* send(message)
* receive(message)

= The message size is either fixed or variable

Operating System Concepts — 10t Edition 3.39 Silberschatz, Galvin and Gagne ©2018

STUDENTS-HUB.com Uploaded By: Malak Obaid

(™ :
55 Message Passing (Cont.)

v

©®\
= Nss

= |f processes P and Q wish to communicate, they need to:
* Establish a communication link between them
* Exchange messages via send/receive
= |mplementation issues:
* How are links established?
* Can a link be associated with more than two processes?

* How many links can there be between every pair of
communicating processes?

* What is the capacity of a link?

* s the size of a message that the link can accommodate
fixed or variable?

* |s a link unidirectional or bi-directional?

Operating System Concepts — 10" Edition 3.40 Silberschatz, Galvin and Gagne ©2018

STUDENTS-HUB.com Uploaded By: Malak Obaid

. =
g’/ﬂq«ml
“L‘%;} "
L\

J

/ Implementation of Communication Link

= Physical:
* Shared memory
* Hardware bus
* Network
= Logical:
* Direct or indirect
* Synchronous or asynchronous
* Automatic or explicit buffering

Operating System Concepts — 10" Edition 3.41

STUDENTS-HUB.com

\
St
V<
A«

Silberschatz, Galvin and Gagne ©2018

Uploaded By: Malak Obaid

) ,mw»-g - = -
g5 Direct Communication

= Processes must name each other explicitly:
* send (P, message) — send a message to process P
* receive(Q, message) — receive a message from process Q

= Properties of communication link
* Links are established automatically

* Alink is associated with exactly one pair of communicating
processes

* Between each pair there exists exactly one link
* The link may be unidirectional, but is usually bi-directional

Operating System Concepts — 10t Edition 3.42 Silberschatz, Galvin and Gagne ©2018

STUDENTS-HUB.com Uploaded By: Malak Obaid

P Indirect Communication

= Messages are directed and received from mailboxes (also referred
to as ports)

* Each mailbox has a unique id
* Processes can communicate only if they share a mailbox
= Properties of communication link
* Link established only if processes share a common mailbox
* Alink may be associated with many processes
* Each pair of processes may share several communication links
* Link may be unidirectional or bi-directional

Operating System Concepts — 10" Edition 3.43 Silberschatz, Galvin and Gagne ©2018

STUDENTS-HUB.com Uploaded By: Malak Obaid

@%‘;:‘i Indirect Communication (Cont.)

= Qperations
* Create a new mailbox (port)
* Send and receive messages through mailbox
* Delete a mailbox
= Primitives are defined as:
* send(A, message) — send a message to mailbox A
* receive(A, message) — receive a message from mailbox A

Operating System Concepts — 10t Edition 3.44 Silberschatz, Galvin and Gagne ©2018

STUDENTS-HUB.com Uploaded By: Malak Obaid

G Indirect Communication (Cont.)

= Mailbox sharing
* P,, P, and P4 share mailbox A
* P, sends; P, and P, receive
* Who gets the message?
= Solutions
* Allow a link to be associated with at most two processes

* Allow only one process at a time to execute a receive
operation

* Allow the system to select arbitrarily the receiver.
Sender is notified who the receiver was.

Operating System Concepts — 10" Edition 3.45 Silberschatz, Galvin and Gagne ©2018

STUDENTS-HUB.com Uploaded By: Malak Obaid

(™
55

W
R\
L SN

Synchronization

|
LA &S

Message passing may be either blocking or non-blocking

= Blocking is considered synchronous

* Blocking send -- the sender is blocked until the message is
received

* Blocking receive -- the receiver is blocked until a message is
available

= Non-blocking is considered asynchronous

* Non-blocking send -- the sender sends the message and
continue

* Non-blocking receive -- the receiver receives:
» A valid message, or
» Null message
= Different combinations possible
* If both send and receive are blocking, we have a rendezvous

-
4 <

A }‘;f 3
Operating System Concepts — 10" Edition 3.46 Silberschatz, Galvin and Gagne ©2018

STUDENTS-HUB.com Uploaded By: Malak Obaid

|

%‘:fﬁ Producer-Consumer: Message Passing

= Producer
message next produced;
while (true) {
/* produce an item in next produced * /

send (next produced) ;
}

= Consumer
message next consumed;
while (true) {
receive (next consumed)

/* consume the item in next consumed */

\“
_,4%;\ |

Operating System Concepts — 10t Edition 3.47 Silberschatz, Galvin and Gagne ©2018

STUDENTS-HUB.com Uploaded By: Malak Obaid

P Buffering

= Queue of messages attached to the link.
= |mplemented in one of three ways

1. Zero capacity — no messages are queued on a link.
Sender must wait for receiver (rendezvous)

2. Bounded capacity — finite length of n messages
Sender must wait if link full

3. Unbounded capacity — infinite length
Sender never waits

Operating System Concepts — 10" Edition 3.48 Silberschatz, Galvin and Gagne ©2018

STUDENTS-HUB.com Uploaded By: Malak Obaid

(N

%~/ Examples of IPC Systems - POSIX

4

|

©
S

= POSIX Shared Memory

* Process first creates shared memory segment
shm fd = shm open(name, O CREAT | O RDWR, 0666) ;

* Also used to open an existing segment
* Set the size of the object
ftruncate (shm fd, 4096);

* Usemmap () to memory-map a file pointer to the shared memory
object

* Reading and writing to shared memory is done by using the
pointer returned by mmap () .

> <
A ﬁ"’ 3
Operating System Concepts — 10" Edition 3.49 Silberschatz, Galvin and Gagne ©2018

STUDENTS-HUB.com Uploaded By: Malak Obaid

IPC POSIX Producer

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <fcntl.h>
#include <sys/shm.h>
#include <sys/stat.h>

int main()

/* the size (in bytes) of shared memory object */
const int SIZE = 4096;

/* name of the shared memory object */

const char *name = "0S";

/* strings written to shared memory */

const char *message Q0 = "Hello";

const char *message 1 = "World!";
/* shared memory file descriptor */
int shm fd;

/* pointer to shared memory obect */
void *ptr;

/* create the shared memory object */
shm fd = shm open(name, O_CREAT | O_RDWR, 0666);

/* configure the size of the shared memory object */
ftruncate (shm fd, SIZE);

/* memory map the shared memory object */
ptr = mmap(0, SIZE, PROT WRITE, MAP_SHARED, shm fd, 0);

/* write to the shared memory object */
sprintf (ptr,"s" ,message 0);

ptr += strlen(message 0);

sprintf (ptr,"%s" ,message 1);

ptr += strlen(message 1);

return 0;

}
Operating System Concepts — 10" Edition 3.50 Silberschatz, Galvin and Gagne ©2018

STUDENTS-HUB.com Uploaded By: Malak Obaid

IPC POSIX Consumer

#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <sys/shm.h>
#include <sys/stat.h>

int main()

{

/* the size (in bytes) of shared memory object */
const int SIZE = 4096;

/* name of the shared memory object */

const char *name = "Q0S";

/* shared memory file descriptor */

int shm fd;

/* pointer to shared memory obect */

void *ptr;

/* open the shared memory object */
shm fd = shm open(name, O0.RDONLY, 0666);

/* memory map the shared memory object */
ptr = mmap(0, SIZE, PROT READ, MAP SHARED, shm fd, 0);

/* read from the shared memory object */
printf("%s", (char *)ptr);

/* remove the shared memory object */
shm unlink(name) ;

return 0;

}

Operating System Concepts — 10" Edition 3.51 Silberschatz, Galvin and Gagne ©2018

STUDENTS-HUB.com Uploaded By: Malak Obaid

A
4%’ Examples of IPC Systems - Mach

= Mach communication is message based
* Even system calls are messages
* Each task gets two ports at creation - Kernel and Notify
* Messages are sent and received using the mach _msg () function
* Ports needed for communication, created via
mach port allocate()

* Send and receive are flexible; for example four options if mailbox
full:

» Wait indefinitely

» Wait at most n milliseconds

» Return immediately

» Temporarily cache a message

Operating System Concepts — 10" Edition 3.52 Silberschatz, Galvin and Gagne ©2018

STUDENTS-HUB.com Uploaded By: Malak Obaid

v o Mach Messages
L\,
#include<mach/mach.h>
struct message {
mach msg header t header;
int data;
};
mach port t client;
mach port t server;
Operating System Concepts — 10*" Edition 3.53 Silberschatz, Galvin and Gagne ©2018

STUDENTS-HUB.com

Uploaded By: Malak Obaid

=R

%»/ Mach Message Passing - Client

A\

/* Client Code */
struct message message;

// construct the header
message.header.msgh size = sizeof (message) ;
message.header.msgh remote port = server;
message.header.msgh local port = client;

// send the message

mach msg(&message.header, // message header
MACH_SEND_MSG, // sending a message
sizeof (message), // size of message sent
0, // maximum size of received message - unnecessary
MACH PORT NULL, // name of receive port - unnecessary
MACH_MSG_TIMEOUT_NONE, // no time outs
MACH_PORT NULL // no notify port

Operating System Concepts — 10" Edition 3.54 Silberschatz, Galvin and Gagne ©2018

STUDENTS-HUB.com Uploaded By: Malak Obaid

%»/ Mach Message Passing - Server

A\

/* Server Code */
struct message message,;

// receive the message

mach msg(&message.header, // message header
MACH RCV_MSG, // sending a message
0, // size of message sent
sizeof (message), // maximum size of received message
server, // name of receive port
MACH_MSG_TIMEQUT_NONE, // no time outs
MACH PORT NULL // no notify port

Operating System Concepts — 10" Edition 3.55 Silberschatz, Galvin and Gagne ©2018

STUDENTS-HUB.com Uploaded By: Malak Obaid

g ‘J Examples of IPC Systems — Windows

= Message-passing centric via advanced local procedure call
(LPC) facility

* Only works between processes on the same system

* Uses ports (like mailboxes) to establish and maintain
communication channels

* Communication works as follows:

» The client opens a handle to the subsystem’s
connection port object.

» The client sends a connection request.

» The server creates two private communication ports
and returns the handle to one of them to the client.

» The client and server use the corresponding port handle
to send messages or callbacks and to listen for replies.

Operating System Concepts — 10t Edition 3.56 Silberschatz, Galvin and Gagne ©2018

STUDENTS-HUB.com Uploaded By: Malak Obaid

4%’ Local Procedure Calls in Windows

Client

Handle

Server

Connection
request Connection
Port
Handle Client

Communication Port

!

Server
Communication Port

Handle

Operating System Concepts — 10" Edition

STUDENTS-HUB.com

<«—— Section Object |«

Shared

(> 256 bytes)

3.57

Silberschatz, Galvin and Gagne ©2018

Uploaded By: Malak Obaid

4

g Pipes
= Acts as a conduit allowing two processes to communicate
= [ssues:
* |s communication unidirectional or bidirectional?
* In the case of two-way communication, is it half or full-duplex?
* Must there exist a relationship (i.e., parent-child) between the
communicating processes?
* Can the pipes be used over a network?
= Ordinary pipes — cannot be accessed from outside the process that
created it. Typically, a parent process creates a pipe and uses it to
communicate with a child process that it created.
= Named pipes — can be accessed without a parent-child relationship.
::1:, }\‘ﬁ’
Operating System Concepts — 10*" Edition 3.58 Silberschatz, Galvin and Gagne ©2018

STUDENTS-HUB.com Uploaded By: Malak Obaid

T Ordinary Pipes

= QOrdinary Pipes allow communication in standard producer-consumer
style

= Producer writes to one end (the write-end of the pipe)

= Consumer reads from the other end (the read-end of the pipe)

= Ordinary pipes are therefore unidirectional

= Require parent-child relationship between communicating processes

Parent Child

= Windows calls these anonymous pipes

Operating System Concepts — 10t Edition 3.59 Silberschatz, Galvin and Gagne ©2018

STUDENTS-HUB.com Uploaded By: Malak Obaid

%w Named Pipes

= Named Pipes are more powerful than ordinary pipes
= Communication is bidirectional

= No parent-child relationship is necessary between the communicating
processes

= Several processes can use the named pipe for communication
= Provided on both UNIX and Windows systems

Operating System Concepts — 10t Edition 3.60 Silberschatz, Galvin and Gagne ©2018

STUDENTS-HUB.com Uploaded By: Malak Obaid

