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CHAPTER 1

The Integers

1.1. Numbers, Sequences, and Sums

1.1.1. a. The set of integers greater than 3 is well-ordered. Every subset of this set is also a subset of the set
of positive integers, and hence must have a least element.

b. The set of even positive integers is well-ordered. Every subset of this set is also a subset of the set
of positive integers, and hence must have a least element.

c. The set of positive rational numbers is not well-ordered. This set does not have a least element.
If a/b were the least positive rational number then a/(b + a) would be a smaller positive rational
number, which is a contradiction.

d. The set of positive rational numbers of the form a/2 is well-ordered. Consider a subset of numbers
of this form. The set of numerators of the numbers in this subset is a subset of the set of positive
integers, so it must have a least element b. Then b/2 is the least element of the subset.

e. The set of nonnegative rational numbers is not well-ordered. The set of positive rational numbers
is a subset with no least element, as shown in part c.

1.1.2. Let S be the set of all positive integers of the form a — bk. S is not empty since a — b(—1) = a+bisa
positive integer. Then the well-ordering principle implies that S has a least element, which is the num-
ber we’re looking for.

1.1.3. Suppose that z and y are rational numbers. Then z = a/band y = ¢/d, where q, b, ¢, and d are integers
with b # 0 and d # 0. Then zy = (a/b) - (¢/d) = ac/bd and z + y = a/b + ¢/d = (ad + bc) /bd where bd #
0. Since both = + y and zy are ratios of integers, they are both rational.

1.1.4.a. Suppose that x is rational and y is irrational. Then there exist integers a and b such that = § where
a and b are integers with b # 0. Suppose that = + y is rational. Then there exist integers c and d with
d # 0 such that z +y = §. This implies that y = (z +y) — 2 = (a/b) — (¢/d) = (ad — bc)/bd, which
means that y is rational, a contradiction. Hence x + y is irrational.

b. Thisis false. A counterexample is given by v/2 + (—v/2) = 0.
c. This s false. A counterexample is given by 0 - v/2 = 0.
d. Thisis false. A counterexample is given by v/2 - /2 = 2.

1.1.5. Suppose that v/3 were rational. Then there would exist positive integers a and b with v/3 = a/b. Con-
sequently, the set S = {k+/3 | k and k+/3 are positive integers} is nonempty since a = bv/3. Therefore, by
the well-ordering property, S has a smallest element, say s = t/3. We have sv/3 —s = sv/3—t/3 = (s —
t)\/§ Since sv/3 = 3t and s are both integers, svV3—s= (s — t)\/g must also be an integer. Furthermore,
it is positive, since sv/3 — s = s(v/3 — 1) and v/3 > 1. It is less than s since s = t/3, sv/3 = 3t, and V/3 <
3. This contradicts the choice of s as the smallest positive integer in S. It follows that /3 is irrational.

1.1.6. Let S be a set of negative integers. Then the set T = {—s : s € S} is a set of positive integers. By the
well-ordering principle, T has a least element ¢;. We prove that —ty is a greatest element of S. First note
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2 1. THE INTEGERS

that since ty € S, then ¢y = —s( for some sg € S. Then —ty = sg € S. Second, if s € S, then —s € T, so
to < —s. Multiplying by —1 yields s < —#,. Since the choice of s was arbitrary, we see that —t is greater
than or equal to every element of S.

1.1.7.a. Since 0 < 1/4 < 1, we have [1/4] = 0.
b. Since —1 < —3/4 < 0, we have [-3/4] = —1.
c. Since 3 < 22/7 < 4, we have [22/7] = 3.
d. Since -2 < -2 < —1, we have [-2] = —2.
e. Wecompute [1/2+[1/2]] =[1/2+0] =[1/2] =0.
f. We compute [-3 +[-1/2]] = [-3 —1] = [-4] = —4.

1.1.8.a. Since —1 < —1/4 < 0, we have [-1/4] = —1.
b. Since —4 < —22/7 < —3, we have [-22/7] = —4.
c¢. Sincel <5/4 < 2,wehave [5/4] = 1.
d. We compute [[1/2]] = [0] = 0.
e. Wecompute [3/2] + [-3/2]] = [1+ (—2)] = [-1] = —1.
f. We compute [3 —[1/2]] = [3 - 0] = [3] = 3.

1.1.9. a. Since [8/5] =1, we have {8/5} =8/5 —[8/5] =8/5—1=3/5.
b. Since [1/7] =0, wehave {1/7} =1/7—[1/7]=1/7-0=1/7.
c. Since [-11/4] = —3, we have {—11/4} = —-11/4 — [-11/4] = —11/4 — (-3) = 1/4.
d. Since[7]=7,wehave{7} =7—-[7]=7-7=0.

1.1.10. a. Since [-8/5] = —2, we have {—8/5} = —8/5 — [-8/5] = —8/5 — (—2) = 2/5.

b. Since [22/7] = 3, we have {22/7} = 22/7 —[22/7] =22/7 -3 =1/7.
c¢. Since[-1]=-1,wehave {-1}=—-1—-[-1]=-1-1=0.
d. Since [-1/3] = —1, wehave {—1/3} = —-1/3 —[-1/3] = —-1/3 —(—1) =2/3.

1.1.11. If z is an integer, then [z] + [-z] = © — = 0. Otherwise, © = z + r, where z is an integer and r is a
real number with 0 < r < 1. Inthis case, [z] + [-z] = [z + ]|+ [~z —7] =2+ (-2 — 1) = —1.

1.1.12. Letz = [z] +r where 0 < r < 1. We consider two cases. First suppose that 7 < 1. Thenz + § =
[z] + (r + 3) < [z] + 1since r + § < 1. It follows that [z + 1] = [z]. Also 2z = 2[z] + 2r < 2[z] + 1
since 2r < 1. Hence [22] = 2[z]. It follows that [z] + [z + %] = [22]. Next suppose that + < r < 1. Then
[@]+1<z+ (r+3) <[z]+2sothat [z + 1] = [2] + 1. Also 2[z] + 1 < 2[z] + 2r = 2([z] + 1) = 2z <
2[z] + 2 so that [2z] = 2[z] + 1. It follows that [z] + [z + 3] = [z] + [2] + 1 = 2[z] + 1 = [2a].

1.1.13. We have [z] < z and [y] < y. Adding these two inequalities gives [z] + [y] < = + y. Hence [z + y] >
(2] + [y]] = [2] + [y].
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1.1. NUMBERS, SEQUENCES, AND SUMS 3

1.1.14. Letz = a+randy = b+s, where a and b are integers and r and s are real numbers such that 0 < r, s <
1. By Exercise 14, [2z] + [2y] = [z] + [z + 1] + [y] + [y + 1]. We now need to show that [z + 3] + [y + 1] >
[ +y]. Suppose 0 < 1, s < 2. Then [z + ]+ [y+ 3] =a+b+[r+3]+[s+3]=a+band [z +y] =
a+b+[r+s] = a+b, as desired. Suppose that 3 < r,s < 1. Then [z+ 3]+ [y+3] = a+b+[r+3]+[s+3] =
a+b+2,and [z +yl =a+b+[r+s] =a+b+1,as desired. Suppose that 0 < r < £ < s < 1. Then
z+3+y+il=a+b+land[z+y]<a+b+1

1.1.15. Letz = a +rand y = b+ s, where a and b are integers and r and s are real numbers such that 0 <
r,s < 1. Then [zy] = [ab+ as + br + sr] = ab + [as + br + sr], whereas [z][y] = ab. Thus we have [zy] >
[z][y]. If x and y are both negative, then [zy] < [z][y]. If one of x and y is positive and the other negative,
then the inequality could go either direction. For examples take x = —1.5,y =5and v = -1,y = 5.5. In

the first case we have [-1.5 - 5] = [-7.5] = =8 > [-1.5][5] = —2 - 5 = —10. In the second case we have
[~1-5.5] = [~5.5] = —6 < [~1][5.5] = —1-5 = —5.

1.1.16. If x is an integer then —[—xz] = —(—x) = =z, which certainly is the least integer greater than or equal
toz. Let = a + r, where ¢ is an integer and 0 < < 1. Then —[-2] = —[-a — 7] = —(—a + [-7]) =
a—[-r] =a+1,as desired.

1.117. Letz = [z] + 7. Since0 <7 <1,z + 3 = [z] + 7+ 1. If r < 1, then [z] is the integer nearest to  and
[x+1] = [2] since [z] < x+1 = [z]+r+3 < [z]+1.If r > §, then [2]+1 is the integer nearest to = (choos-
ing this integer if x is midway between [z] and [z+1]) and [z+ 3] = [z]+1since [z]+1 < +r+3 < [2]42.

1.1.18. Lety = z + n. Then [y| = [z] + n, since n is an integer. Therefore the problem is equivalent to proving
that [y/m] = [[y]/m] which was done in Example 1.34.

1.1.19. Letz = k+ e where k is an integer and 0 < € < 1. Further, let k = a® + b, where a is the largest integer
such thata? < k. Thena? <k =a?+b <z =a? +b+e < (a+ 1)% Then [/z] = aand [/[z]] = [Vk] =
a also, proving the theorem.

1.1.20. Letx = k + e where k is an integer and 0 < € < 1. Choose w from 0, 1,2, ..., m — 1 such that w/m <
€ < (w+1)/m. Then w < me < w+ 1. Then [mz] = [mk + me] = mk + [me] = mk + w. On the
other hand, the same inequality gives us (w + j)/m < e+ j/m < (w + 1 + j)/m, for any integer j =
0,1,2,...,m — 1. Note that this implies [e + j/m] = [(w + j)/m] which is either 0 or 1 for j in this range.
Indeed, it equals 1 precisely when w+j > m, which happens for exactly w values of j in this range. Now
we compute 337" [+ j/m] = S5 [k + e+ fm] = S5 ko [e+ j/m] = mk 4+ 5275 (w + ) fm] =
mk + Y7 1 = mk + w which is the same as the value above.

1.1.21. a. Since the difference between any two consecutive terms of this sequence is 8, we may compute the

nth term by adding 8 to the first term n — 1 times. That is, a, =3+ (n — 1)8 = 8n — 5.

b. For each n, we have a,, —a,—1 = 2", so we may compute the nth term of this sequence by adding
all the powers of 2, up to the (n — 1)th, to the first term. Hence a, =5+2+22 +23 +... 4 2771 =
542" —2=2"+3.

c. The nth term of this sequence appears to be zero, unless n is a perfect square, in which case the term
is 1. If n is not a perfect square, then [\/n] < \/n, where [z] represents the greatest integer function.
If n is a perfect square, then [/n] = \/n. Therefore, [[\/n]/\/n] equals 1 if n is a perfect square and 0
otherwise, as desired.

d. This is a Fibonacci-like sequence, with a,, = a,,—1 + an—2, forn > 3,and a; = 1, and ay = 3.

1.1.22. a. Each term given is 3 times the preceding term, so we conjecture that the nth term is the first term
multiplied by 3, n — 1 times. So a,, = 2- 3"~ L.
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4 1. THE INTEGERS

b. In this sequence, a,, = 0 if n is a multiple of 3, and equals 1 otherwise. Let [z] represent the greatest
integer function. Since [n/3] < n/3 when n is not a multiple of 3 and [n/3] = n/3 when n is a mul-
tiple of 3, we have thata,, =1 — [[n/3]/(n/3)].

c. If we look at the difference of successive terms, we have the sequence 1,1,2,2,3,3,.... So if n is
odd, say n = 2k + 1, then a,, is obtained by adding 1 +14+2+2+3+3+--- +k+ k = 2¢;, to the first
term, which is 1. (Here ¢;, stands for the kth triangular number.) So if n is odd, then a,, = 1 + 2t
where k = (n — 1)/2. If n is even, say n = 2k, then a,, = agp11 — k =1 — k + 2t;.

d. This is a Fibonacci-like sequence, with a,, = a,,—1 + 2a,—2, forn > 3,and a; = 3, and as = 5.
1.1.23. Three possible answers are a,, = 2", a,, = (n> —n +2)/2,and a,, = a,,—1 + 205, _2.

1.1.24. Three possible answers are a,, = ap—10n—2, Ap = ap—1 + 2n — 3, and a,, = the number of letters in the
nth word of the sentence “If our answer is correct we will join the Antidisestablishmentarianism Society
and boldly state that ‘If our answer is correct we will join the Antidisestablishmentarianism Society and
boldly state....” ”

1.1.25. This set is exactly the sequence a,, = n — 100, and hence is countable.

1.1.26. The function f(n) = 5n is a one-to-one correspondence between this set and the set of integers, which
is known to be countable.

1.1.27. One way to show this is to imitate the proof that the set of rational numbers is countable, replacing
a/bwith a + bv/2. Another way is to consider the function f(a + bv/2) = 223” which is a one-to-one map
of this set into the rational numbers, which is known to be countable.

1.1.28. Let A and B be two countable sets. If one or both of the sets are finite, say A is finite, then the listing
ai,az,...,an,b1,bs, ..., where any b; which is also in A is deleted from the list, demonstrates the count-
ability of A U B. If both sets are infinite, then each can be represented as a sequence: A = {ay,as,...},
and B = {b1, bs, ...}. Consider the listing a1, b1, as, b2, as, bs, ... and form a new sequence ¢; as follows.
Let ¢; = a;. Given that ¢, is determined, let ¢,,+1 be the next element in the listing which is different
from each ¢; with i = 1,2, ..., n. Then this sequence is exactly the elements of A U B, which is therefore
countable.

1.1.29. Suppose {4;} is a countable collection of countable sets. Then each A; can be represented by a se-
quence, as follows:

Ay = a1 a2 a3
Ay = a1 az as
A3 = az a3 asz
Consider the listing ai1, a12, a21, @13, @22, asi, . . . , in which we first list the elements with subscripts

adding to 2, then the elements with subscripts adding to 3 and so on. Further, we order the elements
with subscripts adding to k in order of the first subscript. Form a new sequence ¢; as follows. Let ¢; =

ay. Given that ¢,, is determined, let ¢, be the next element in the listing which is different from each
o0

c; withi =1,2,...,n. Then this sequence is exactly the elements of U A;, which is therefore countable.
i=1
1.1.30. a. Note that v/2 =~ 1.4 = 7/5, so we might guess that v/2 — 7/5 ~ 0. If we multiply through by 5 we
expect that 5v/2 — 7 should be small, and its value is approximately 0.071 which is much less than
1/8 =0.125. So we may takea =5 <8and b= 7.

b. Asin part a., note that ¥2=1.2599...~125 = 5/4, so we investigate 4¥2-5=10.039... < 1/8.
So we may take a = 4 < 8and b = 5.
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1.1. NUMBERS, SEQUENCES, AND SUMS 5

c. Since we know that 7 ~ 22/7 we investigate |77 — 22| = 0.0088... < 1/8. So we may takea =7 <
8and b = 22.

d. Since e = 2.75 = 11/4 we investigate |[4e — 11| = 0.126.. .., which is too large. A closer approxima-
tion to e is 2.718. We consider the decimal expansions of the multiples of 1/7 and find that 5/7 =
.714...,s0 e = 19/7. Therefore we investigate |7e — 19| = 0.027 < 1/8. So we may takea =7 < 8
and b = 19.

1.1.31. a. Note that v/3 = 1.73 =~ 7/4, so we might guess that v/3 — 7/4 = 0. If we multiply through by 4 we
find that [4v/3 — 7| = 0.07... < 1/10. So we may take a = 4 < 10and b = 7.

b. Itishelpful to keep the decimal expansions of the multiples of 1/7 in mind in these exercises. Here
V3 = 1.442...and 3/7 = 0.428... so that we have /3 ~ 10/7. Then as in part a., we investigate
|7/3 — 10| = 0.095... < 1/10. So we may take a = 7 < 10 and b = 10.

c. Since m? = 9.869... and 6/7 = 0.857..., we have that 7% =~ 69/7, so we compute |77% — 69| =
0.087... < 1/10. So we may take a = 7 < 10 and b = 69.

d. Since e® =20.0855... we may take a = 1 and b = 20 to get |1e? — 20| = 0.855... < 1/10.

1.1.32. Forj = 0,1,2,...,n + 1, consider the n 4+ 2 numbers {ja}, which all lie in the interval 0 < {ja} <
1. We can partition this interval into the n + 1 subintervals (k —1)/(n+ 1) < z < k/(n+ 1) for k =
1,...,n + 1. Since we have n + 2 numbers and only n + 1 intervals, by the pigeonhole principle, some
interval must contain at least two of the numbers. So there exist integers r and s such that 0 < r < s <
n+1and [{ra} — {sa}| <1/(n+1). Leta=s—rand b= [sa] — [ra]. Since 0 < r < s < n+ 1, we have
1 <a<n Also, jaa — b = |(s —r)a — ([sa] — [ra])| = |(sa — [sa]) — (ra — [ra]a)| = [{sa} — {ra}| <
1/(n + 1). Therefore, a and b have the desired properties.

1.1.33. The number o must lie in some interval of the form r/k < a < (r + 1)/k. If we divide this interval
into equal halves, then o must lie in one of the halves, so either r/k < o < (2r +1)/2k or (2r +1)/2k <
a < (r +1)/k. In the first case we have | — r/k| < 1/2k, so we take u = r. In the second case we have
oo — (r+1)/k| < 1/2k, so we take u = 7 + 1.

1.1.34. Suppose that there are only finitely many positive integers q1, g2, - . ., ¢, With corresponding integers
P1,D2,- -, Pn such that o — p;/q;| < 1/q¢?. Since « is irrational, | — p;/g;| is positive for every i, and so
is |g;oc — pi| so we may choose an integer N so large that |¢;ae — p;| > 1/N for all i. By Dirichlet’s Ap-
proximation Theorem, there exist integers r and s with 1 < s < N such that [sa — r| < 1/N < 1/s, so
that |« — r/s| < 1/s%, and s is not one of the g;. Therefore, we have another solution to the inequality.
So no finite list of solutions can be complete, and we conclude that there must be an infinite number of
solutions.

1.1.35. First we have |[v/2 —1/1| = 0.414... < 1/12. Second, Exercise 30, part a., gives us V2 —17/5] < 1/50 <
1/5%. Third, observing that 3/7 = 0.428. .. leads us to try [v/2 — 10/7| = 0.014... < 1/7% = 0.0204......
Fourth, observing that 5/12 = 0.4166 . .. leads us to try |v/2—17/12| = 0.00245 ... < 1/122 = 0.00694 .. ..

1.1.36. First we have |v/5 — 1/1| = 0.7099... < 1/12. Second, |V/5 — 5/3| = 0.04... < 1/32. Third, since V/5 =
1.7099..., we try |/5 — 17/10] = 0.0099... < 1/102. Likewise, we get a fourth rational number with
|¥/5 — 171/100] = 0.000024 ... < 1/100. Fifth, consideration of multiples of 1/7 leads to |v/5 — 12/7| =
0.0043... < 1/72.

1.1.37. We may assume that b and ¢ are positive. Note that if ¢ > b, we have |p/q — a/b| = |pb — aq|/qb >
1/gb > 1/¢*. Therefore, solutions to the inequality must have 1 < ¢ < b. For a given g, there can be
only finitely many p such that the distance between the rational numbers a/b and p/q is less than 1/¢>
(indeed there is at most one.) Therefore there are only finitely many p/q satisfying the inequality.
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6 1. THE INTEGERS

1.1.38. a. Since n2 is an integer for all n, so is [n2], so the first ten terms of the spectrum sequence are 2, 4, 6,
8,10, 12, 14, 16, 18, 20.

b. The sequence for nv/2, rounded, is 1.414, 2.828, 4.242, 5.656, 7.071, 8.485, 9.899, 11.314, 12.728,
14.142. When we apply the floor function to these numbers we get 1, 2, 4, 5, 7, 8, 9, 11, 12, 14 for
the spectrum sequence.

¢. The sequence for n(2 + \/5), rounded, is 3.414, 6.828, 10.24, 13.66, 17.07, 20.48, 23.90, 27.31, 30.73,
34.14. When we apply the floor function to these numbers we get 3, 6, 10, 13, 17, 20, 23, 27, 30, 34,
for the spectrum sequence.

d. The sequence for ne, rounded is 2.718, 5.436, 8.155, 10.87, 13.59, 16.31, 19.03, 21.75, 24.46, 27.18.
When we apply the floor function to these numbers we get 2, 5, 8, 10, 13, 16, 19, 21, 24, 27, for the
spectrum sequence.

e. The sequence for n(1+ \/5)/2, rounded, is 1.618, 3.236, 4.854, 6.472, 8.090, 9.708, 11.33, 12.94, 14.56,
16.18. When we apply the floor function to these numbers we get 1, 3,4, 6, 8, 9, 11, 12, 14, 16 for the
spectrum sequence.

1.1.39. a. Since n3 is an integer for all n, so is [n3], so the first ten terms of the spectrum sequence are 3, 6, 9,
12,15, 18, 21, 24, 27, 30.

b. The sequence for n\/§, rounded, is 1.732, 3.464, 5.196, 6.928, 8.660, 10.39, 12.12, 13.86, 15.59, 17.32.
When we apply the floor function to these numbers we get 1, 3, 5, 6, 8, 10, 12, 13, 15, 17 for the spec-
trum sequence.

c. The sequence for n(3 + +/3)/2, rounded, is 2.366, 4.732, 7.098, 9.464, 11.83, 14.20, 16.56, 18.93, 21.29,
23.66. When we apply the floor function to these numbers we get 2, 4, 7, 9, 11, 14, 16, 18, 21, 23 for
the spectrum sequence.

d. The sequence for nm, rounded is 3.142, 6.283, 9.425, 12.57, 15.71, 18.85, 21.99, 25.13, 28.27, 31.42.
When we apply the floor function to these numbers we get 3, 6, 9, 12, 15, 18, 21, 25, 28, 31, for the
spectrum sequence.

1.1.40. Since o # (3, their decimal expansions must be different. If they differ in digits that are to the left of
the decimal point, then [a] # [§], so certainly the spectrum sequences are different. Otherwise, suppose
that they differ in the kth position to the right of the decimal. Then [10*a] # [10*3], and so the spectrum
sequences will again differ.

1.1.41. Assume that 1/a+ 1/8 = 1. Note first that for all integers n and m, ma # nf3, for otherwise, we
solve the equations ma = nf and 1/« + 1/ = 1 and get rational solutions for « and (3, a contradiction.
Therefore the sequences mo and n/3 are disjoint.

For an integer k, define N (k) to be the number of elements of the sequences ma and ng which are
less than k. Now ma < k if and only if m < k/c, so there are exactly [k/a] members of the sequence
ma less than k. Likewise, there are exactly [k/] members of the sequence n( less than k. So we have
N(k) = [k/a] + [k/0]. By definition of the greatest integer function, we have k/a — 1 < [k/a] < k/a and
k/B —1 < [k/B] < k/B, where the inequalities are strict because the numbers are irrational. If we add
these inequalities we get k/a+ &/ —2 < N(k) < k/a+k/§ which simplifies to k —2 < N (k) < k. Since
N (k) is an integer, we conclude that N (k) = k — 1. This shows that there is exactly one member of the
union of the sequences ma and nf in each interval of the form k£ — 1 < z < k, and therefore, when we
apply the floor function to each member, exactly one will take on the value k.

Conversely, suppose that « and § are irrational numbers such that 1/a+1/0 # 1. If 1/a+1/y =1
then we know from the first part of the theorem that the spectrum sequences for a and v partition the
positive integers. By Exercise 40., we know that the spectrum sequences for 5 and « are different, so the
sequences for o and 3 can not partition the positive integers.
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1.2. SUMS AND PRODUCTS 7

1.1.42. The first two Ulam numbers are 1 and 2. Since 3 = 1 + 2, it is the third Ulam number and since 4 =
1+ 3, it is the fourth Ulam number. Note that 5 is not an Ulam number since 5 = 1+ 4 = 2 + 3. The fifth
Ulam number is 6 since 6 = 4 + 2 and no other two Ulam numbers have 6 as their sum. We have 7 =
443 =6+ 1,s07isnot an Ulam number. The sixth Ulam numberis 8 = 6 + 2. Notethat9 =8 + 1 =
6+3and 10 = 8 +2 = 4+ 6 so neither 9 nor 10 is an Ulam number. The seventh Ulam number is 11 since
11 = 8 + 3 is the unique way to write 11 as the sum of two distinct Ulam numbers. Next note that 12 =
8 +4 =1+ 11 so that 12 is not an Ulam number. Note that 13 = 11 + 2 is the unique way to write 13 as
the eighth Ulam number. We see that 14 = 13+ 1 = 11+ 3 and 15 = 2413 = 4411, so that neither 14 nor
15 are Ulam numbers. We note that 16 = 3 + 13 is the unique way to write 16 as the sum of two Ulam
numbers, so that the ninth Ulam number is 16. Note that 17 = 1 + 16 = 4 + 13 so that 17 is not an Ulam
number. Note that 18 = 2 4- 16 is the unique way to write 18 as the sum of two Ulam numbers so that 18
is the tenth Ulam number. In summary, the first ten Ulam numbers are: 1, 2, 3, 4, 6, 8, 11, 13, 16, 18.

1.1.43. Assume that there are only finitely many Ulam numbers. Let the two largest Ulam numbers be u,,_;
and u,. Then the integer u,, + u,,—1 is an Ulam number larger than w,,. It is the unique sum of two Ulam
numbers since u; + u; < up +up—1if j <norj=nandi<n—1.

1.1.44. Suppose that e is rational so that e = a/b where a and b are integers and b # 0. Let £ > b be an inte-
gerand setc = kl(e —1—-1/1! —1/2 = 1/3! — --- — 1/k!). Since every denominator in the expression
divides evenly into k!, we see that c is an integer. Sincee = 1+ 1/11+1/2! +---, wehave 0 < ¢ =
RA/(k+1)+1/(k+2!+-)=1/(k+ 1)+ 1/(k+D)k+2)+ - < 1/(k+1)+1/(k+1)2+---.
This last geometric series is equal to 1/k, so we have that 0 < ¢ < 1/k, which is impossible since c is an
integer. Therefore e must be irrational.

1.2. Sums and Products

5
1.21.a. Wehave » j*=17+2° 4 3%+ 4>+ 5% =55,
j=1

5
b. Wehave ) (=3)=(=3)+(=3) +(=3) + (-3) + (-3) = ~15.

Jj=1

5

c. Wehave» 1/(j+1)=1/2+1/3+1/4+1/5+1/6 =29/20.
j=1
4

1.22.a. Wehave 3=3+3+3+3+3=15.

j=0
4

b. Wehave » (j—3)=(-3)+(-2)+ (1) +0+1=—5.

Jj=0

4
c. Wehave ) (j+1)/(j+2)=1/2+2/3+3/4+4/5+5/6 = 71/20.
=0
1.2.3.a. We use the formula from Example 1.15 as follows. We evaluate the sum Z =27 —1=5llasin
j=082i
Example 1.17. Then we have Z = Z —2% = 510.

j=1827 j=0823

8 7
b. We could proceed as in part (a), or we may do the following: Z5(—3)j = 22‘5(—(’:’.)3]rl
j=1 =0

7
= Z —15(—3)7. We may apply the formula in Example 1.15 to this last sum, with a = —15,n =
=0

—15(—3)8 — (~15)

= 24600.
] 600

7 and r = —3, to get the sum equal to
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8 1. THE INTEGERS

8
¢. We manipulate the sum as in partb., so we can apply the formula from Example 1.15. 3(=1/2) =
p p PPy P

j=1
7 7 8
i _(=3/2)(—1/2)° = (=3/2) _ 255
23 —1/2)7T =3 "(=3/2)(-1/2) 21 556
Jj= 7=0
N . 8-31-8
1.2.4.a. We have Z 8.3 = —5-1 = 708584, using the formula from Example 1.15 with ¢ = 8,n = 10
j=0
and r = 3.
(ot _ (D (9" - (-2)
b. We have jzz(:)(—Z)j'|r1 = ;(—2)(—2)7 = —2)=1 = —1366, using the formula from Ex-

ample 1.15witha = —2,n = 10 and r = —2.

10

o (1/3)' -1 88573

. h 1 J = =

¢. Wehave ]ZZ:O( =073 =1 = 59019
10 and r = (1/3).

using the formula from Example 1.15 witha = 1,n =

1.2.5. The sum Y_;_,[V%] counts 1 for every value of k with vk > 1. There are n such values of & in the
range k = 1,2,3,...,n. It counts another 1 for every value of k with Vk > 2. There are n — 3 such values
in the range. The sum counts another 1 for each value of k with Vk > 3. There are n — 8 such values in
the range. In general, form = 1,2,3,..., [v/n] the sum counts a 1 for each value of k with vk > m, and
there are n — (m? — 1) values in the range. Therefore 37, [vk] = SV n — (m2 — 1) = [Val(n+ 1) —

SV m? = [yal(n+ 1) — ([Val([va] + 1)(2[va] + 1))/6.

1.2.6. Weseethatt, =3 7, j,andt, 1 = Z?;llj = Z;le(n—j) Now, t,_1+t, = Z?;ll(n—j +j)+n=
n(n —1) +n = n?.

1.2.7. Weseethatt, =37 j=>7_j(n—j+1).Thus,2t, =37 j+3 7 _(n—j+1) =37 (n+1) =
n(n+1).

1.2.8. It is clear that p; = 1. Suppose we know pj_1. To compute p; we consider k nested pentagons as in
the figure. Note that p; — pr_1 counts the number of dots on three sides of the outer pentagon. Each
side consists of k dots, but two of the dots belong to two sides. Therefore p;, — pr—1 = 3k — 2, which is
the formula desired. Thenp, =3n—2+p,—1 =3n—-24+3n—-1)—-2+4+p,2=3n—-2+3(n—-1)—2+
3n—2)=2+pyg=---=3n—-2+3n—-1)—2+---+3(1)—2=>,_,(3k—2).

1.2.9. From Exercise 8, wehavep, =3 ;_,(3k—2)=3>,_, k-2, _,1=3n(n+1)/2—2n = (3n?—n)/2.
On the other hand, t,,_1 +n? = (n — 1)n/2 + n? = (3n% — n)/2, which is the same as above.

1.2.10. a. Consider a regular hexagon which we border successively by hexagons with 3,4, 5, ... on each side.
Define the hexagonal number hy, to be the number of dots contained in the k nested hexagons.

b. First note that h; = 1. To get a recursive relationship we consider hj, — hy—1, which counts the dots
added to the (k — 1)st hexagon to obtain the kth hexagon. To do this, we must add 4 sides of & dots
each, but 3 of the dots belong to two sides. Therefore h;, — hy_1 = 4k — 3. A closed formula is then
given by adding these differences together: hj = Zle(éli —3) =4t — 3k =4k(k+1)/2 -3k =
2k% — k.

1.2.11. a. Consider a regular heptagon which we border successively by heptagons with 3,4,5,... on each

side. Define the heptagonal numbers s1, s, S3, . . ., Sk, . . . to be the number of dots contained in the &
nested heptagons.
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1.2. SUMS AND PRODUCTS 9

b. First note that s; = 1. To get a recursive relationship we consider s, — s;_1, which counts the dots
added to the (k — 1)st heptagon to obtain the kth heptagon. To do this, we must add 5 sides of k
dots each, but 4 of the dots belong to two sides. Therefore s;, — s;_1 = 5k — 4. A closed formula is
then given by adding these differences together: s;, = Zle (5 —4) = bty, — 4k = 5k(k+1)/2— 4k =
(5k* — 3k)/2.

1.2.12. First consider the difference T}, — T;_1. This counts the number of dots on one face of the kth tetra-
hedron. But this is simply the kth nested triangle used to define the triangular numbers. Therefore,
Ty — Ti_1 = ti. Hence, since T, = t; = 1, it follows that T}, = ZZ=1 ty

1.2.13. We continue with the formula from Exercise 12. T,, = >7_, tx = >_r_, k(k + 1)/2. Exploiting the
same technique as in Example 1.19, we consider (k + 1)3 — k% = 3k? + 3k + 1 = 3(k? + k) + 1 and solve
fork? + ktoget k> + k= (k+1)>—%k%/3 —(1/3). Then T,, = (1/2) >} _ k(k+1) = (1/6) > ;_, ((k +
1)* — k%) — (1/6) >, 1. The first sum is telescoping and the second sum is trivial, so we have T}, =
(1/6)((n+1)% —13) — (1/6) = (n® + 3n? + 2n)/6.

1.2.14. Using the factn! =n-(n—1)!, we find that 1! = 1, 2! = 2, 3! = 6, 4! = 24, 5! = 120, 6! = 720, 7! = 5040,
8! = 40320, 9! = 362880, and 10! = 3628800.

1.2.15. Each of these four quantities are products of 100 integers. The largest product is 1001, since it is the
product of 100 factors of 100. The second largest is 100! which is the product of the integers 1,2, ..., 100,
and each of these terms is less or equal to 100. The third largest is (50!)? which is the product of
12,22 ...,50%, and each of these factors j? is less than j(50 + j), whose product is 100!. The smallest
is 2190 which is the product of 100 2’s.

n n
1.2.16. a. H ka; = k" H a.
=1 i=1
n

b. l_ImZ = (a1)(2a2) - (nap) = (1-2---n)(araz - - an) :n!Hai.

. ﬁafz(HaZ)k.

" /1 1

1.2.17. Z (k F ) ; (k - k+1) .Leta; = 1/(j + 1). Notice that this is a telescoping sum, and

using the notation in the text preceding Example 1.15, we have Z ( S > Z aj_1 — aj)

—(an —ap)=1-1/(n+1)=n/(n+1).

1 1 — 1 1 1 — 1 1 1 1
12.18. Zk2—1_2z(kz—l_k+l>_22(<k—1_k>+<k_k+1>>_

k=2 k=2 k=2
1~ 1 1, 1,1 1 1 1, 1,1 1 3 2n+1
— _— = — - Y= —(1 — = - - )= - ——
2k=2(k71 k)+2kz_2(k e R LGt i1 R Pl el oy ey
1.2.19. We sum both sides of the identity (k+1)*—k? = 3k*4+3k+1fromk =1tok =n. Y ,_, ((k+1)3—k3) =
(n + 1) — 1, since the sum is telescoping. > ,_,(3k* + 3k + 1) = 3> ,_, k) +

30 k) + >0 1 =30"1_1 k%) 4+ 3n(n+1)/2 + n. As these two expressions are equal, solving for
Sor_, k?, wefind that Y ;_, k% = (n/6)(2n+ 1)(n + 1).

1.2.20. We sum both sides of the identity (k + 1)4 — k* = 4k® 4+ 6k* + 4k + 1 from k = 1 to k = n. Using
Exercise 19 we find that >, _, k* = n?(n + 1)?/4.

12.21.a. 10! = (7))(8-9-10) = (7!)(720) = (7)(6!).
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10 1. THE INTEGERS
b. 10! = (71)(6!) = (7)(5!) - 6 = (T)(5!)(3").
. 160 = (141)(15 - 16) = (141)(240) = (141)(5!)(2)).
d. 9= (7)(8-9) = (T1)(6-6-2) = (T)(3))(3)(2))
1.2.22. Sincec = a;lay! - ay'and b = (a1laz! - - an!)— 1, it follows that ¢l = c-(c—1)! = c-b! = ayla! - - - @, ! bl.

1.2.23. Assume that z < y. Then 2! = 2! + y! < y! + y! = 2(y!). Since z > y we have 2! > (y + 1)y!. This
implies that y + 1 < 2. Hence the only solution with z, y, and z positive integersisz = y = 1 and z = 2.

3

1.2.24. a. Hl—f (1—1/2)(1=1/3)--- (1 —1/n) = %%Z : ”;1=%.
- - - 345 n4+1\ n+tl
UQ“* e ( ><234“' n ): o

1.3. Mathematical Induction

1.3.1. Forn = 1 we have 1 < 2! = 2. This is the basis case. Now assume n < 2". We then have n + 1 <
2" +1 < 2™ 4 2" = 27F1 This completes the inductive step and the proof by mathematical induction.

132. Wehave2 =2,2+4=6,24+4+6 =12,2+4+6+8 =20, and 2+ 4+ 6+ 8+ 10 = 30.
We conjecture that Z"_l 2j = n(n + 1) since this formula holds for small values of n. To prove this
by mathematical induction we have Z 2j =2 = 2-(1+1) so the result is true for 1. Now as-
sume that the formula holds for n. Then Z"H 2j = (Xj=12) +2(n+1) =nn+1)+2n+1) =
(n+1)(n + 2). This completes the proof.

1
1
1.3.3. For the basis step we have Z =i =1<2-— 1= = 1. For the inductive step, we assume that Z 2 <

= k=1
n+1 n
2 . Then Z 2 5 + ! <2+ ! by the induction hypothesis. This is less than
n T k? =k (n+1)2 T (n+1)2 y yp .
1 1 1 1 1
- =2- 570 <2 —— as desired.
n+1+(n+1)2 n—i—l( n—l—l)— n—i—l’as esire
1 ] ) 1
1.3.4. For the basis step, we have Z m =3 For the inductive step, we assume that Z m -

k+1
n+1

1 n 1 n+1
Th = = desired.
I enzkk+1 Zkk—i—l (n+ Dn+2) n+1+(n+1)(n+2) g g s desire

1.3.5. We see that A = ( (1) 1 ) JA% = ( (1) ? ) LA = A%A = < é i’ ) and so on. We conjecture that

A" = ( (1) 711 > . To prove this by mathematical induction we first note that the basis step follows since

1 n

1 no_
A= 0 ) Next, we assume that A" = ( 0 1

(G-,

1.3.6. The basis step holds since 1 = 1 - (1 + 1)/2. For the inductive step assume that 2?21 j=n(n+1)/2.

) . Then AL = ATA =

It follows that
n+1
n(n+1) n (n+1)(n+2)
= 1) 1) = HNz+1)=—"7F77——7-.
Z] Zg+ n+ 5 T+ =+ 1)(5+1) 5
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1.3. MATHEMATICAL INDUCTION 11
This finishes the inductive proof.

1.3.7. For the basis step, we have Ejl-:1 j2=1=1(1+1)(2-1+1)/6. For the inductive step, we assume that
Yo d = nn+1)(2n+1)/6. Then, 3701 j2 = 37 2+ (n+1)? = n(n+1)(2n +1)/6 + (n+ 1)? =
(n+1)(n2n+1)/6+n+1)=(n+1)(2n* +7Tn+6)/6 = (n+ 1)(n + 2)[2(n + 1) + 1]/6, as desired.

1.3.8. For the basis step, we have Z;zl 4% =1,and (1(1+1)/2)? = 1 also. For the inductive step, we assume
that 327, 5% = (n(n+1)/2)*. Then, Z;”ll 7= (n+1)? = (n(n+1)/2)* +n° +3n* +3n+1 =
((n+1)(n+2)/2)?, as desired.

1.3.9. For the basis step, we have Z}zl Jj(G+1) =2=1(2)(3)/3. Assume it is true for n. Then Z;’;l i+
D=nn+1)(n+2)/3+(n+1)(n+2)=mn+1)(n+2)(n/3+1)=(n+1)(n+2)(n+3)/3.

1.3.10. For the basis step, we have Z;Zl(— )12 =1=(-1)1711(1 4 1) /2. For the inductive step, we as-

sume that Z}l:1(—1)j_1j2:(—1)"_1 ( 1)/2. Then, Y JH/(-1)7'2= ¥J_ (-1 1%+
(-D)*(n+1)*=(-)"""nn+1)/24+ (-1)"(n+1)*= (-1)"i(n + D2(n + 1) — n =
(=)D~ (n + 1)(n + 2)/2, as desired.

n n
, n o . ) +1)
1.3.11. Wehave [ [ 27 = 227=17 = 2n(n+t1)/2 gince E = n(nf
jI;[1 =1 ’ 2

1.3.12. We use mathematical induction. For n = 1 we have Zl 1Joil=1-11=1=(1+1)!-1=1. Now
assume that 37, j - j! = (n +1)! — 1. Then Z"Hj =+ =14+Mn+1)-n+)!'=m+D(1+
n+1) —1 = (n+2)! — 1. This completes the proof.

1.3.13. We will prove this using mathematical induction. We see that 12 = 4 - 3. Now assume that postage of
n cents can be formed, with n = 4a + 5b, where a and b are nonnegative integers. To form n + 1 cents
postage, if a > 0 we can replace a 4-cent stamp with a 5-cent stamp; thatis, n + 1 = 4(a — 1) + 5(b + 1).
If no 4-cent stamps are present, then all 5-cent stamps were used. It follows that there must be at least
three 5-cent stamps and these can be replaced by four 4-cent stamps; thatis, n + 1 = 4(a +4) + 5(b — 3).

1.3.14. We prove this using mathematical induction. We see that 54 = 4-10 + 2 - 7. Now assume that postage
of n cents can be formed, with n = 10a + 7b, where a and b are positive integers. To form n + 1 cents
postage, if @ > 1 we can replace 2 ten-cent stamps with 3 seven-cent stamps, thatis, n+ 1 = 10(a — 2) +
7(b+3). If a < 2, then notice that b > 7. We can replace 7 seven-cent stamps with 5 ten-cent stamps, that
is,n+1=10(a+5)+7(b—T7).

1.3.15. We use mathematical induction. The inequality is true for n = 0 since Hyo = H; =1 >1 =1+

0/2. Now assume that the inequality is true for n, that is, Hon > 1 + n/2. Then Hon+1 = Z? 1 1/7+
21L+1 21L+1

dimong 1 1/ > Hon + 375 0n 1/2"7 2 14 m/2 427 1/2"% = 14+ n/2 +1/2 = 1+ (n 4 1)/2. This
completes the inductive proof.

1.3.16. For the basis step, we have Hyo = H; =1 < 1+ 0 = 1. For the inductive step, we assume that Hy» <

1+ n. Then,
2n+1 1 1
Hyni1r = Hon + | Z S<l4n42' o =1+(n+1),
J=2"+1
as desired.

1.3.17. For the basis step, we have (2 - 1)! = 2 < 221(1!)2 = 4. For the inductive step, we assume that (2n)! <
227 (p1)2. Then [2(n + 1)]! = (2n)!(2n + 1)(2n + 2) < 227 (n))2(2n + 1)(2n + 2) < 227(n))?(2n + 2)? =
22(n+1)[(n 4 1)1]2, as desired.
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12 1. THE INTEGERS

1.3.18. We will use the second principle of mathematical induction to prove this. For the basis step, we have
x — y is a factor of ' — y!. For the inductive step, we assume that  — y is a factor of 2" — y" and
2"t —y"~ 1 Then, 2" — ¢y = (2" — y™)(z + y) + 2y(2" ! — y"~1). Since x — y is a factor of both
(" — y™)(x + y) and xy(z" ! — y 1), itis a factor of "1 — ¢yl

1.3.19. Let Abesuchaset. Define Bas B={z—k+ 1|z € Aand x > k}. Since x > k, B is a set of positive
integers. Since k € Aand k > k, k —k+ 1 = 1isin B. Since n 4+ 1isin A whenevernis,n+1—k+1
is in B whenever n — k + 1 is. Thus B satisfies the hypothesis for mathematical induction, i.e. B is the
set of positive integers. Mapping B back to A in the natural manner, we find that A contains the set of
integers greater than or equal to k.

1.3.20. The basis step holds since 2* = 16 < 4! = 24. Now assume that 2" < n!. Then 2"T! =2.2" < 2.n! <
(n+1)-nl=m+1).

1.3.21. For the basis step, we have 4% = 16 < 24 = 4!. For the inductive step, we assume that n* < n!. Then,
m+1)?2=n?2+2n+1<n!+2n+1<n+3n<n!+n!=2n!<(n+1)n!=(n+1),as desired.

1.3.22. The basis step is clear when n = 0. For the inductive step, we assume that 1 + An < (1 + h)™. Then,
(14+hr)" = (1+h)"(1+h) > (1+hn)(1+h)=1+nh+h+nh®>1+ h(n+ 1) since nh? is positive.
This last inequality proves the induction hypothesis.

1.3.23.  We use the second principle of mathematical induction. For the basis step, if the puzzle has only one
piece, then it is assembled with exactly 0 moves. For the induction step, assume that all puzzles with
k < n pieces require £ — 1 moves to assemble. Suppose it takes m moves to assemble a puzzle with
n + 1 pieces. Then the m move consists of joining two blocks of size a and b, respectively, with a + b =
n + 1. But by the induction hypothesis, it requires exactly a — 1 and b — 1 moves to assemble each of
these blocks. Thus, m = (a — 1)+ (b—1) +1 =a+ b+ 1 = n + 1. This completes the induction.

1.3.24. The n = 2 case does not follow from the n = 1 case, since, when n = 2, the set of horses labelled 1
to n — 1 (which is just the set containing horse 1) does not have any common elements with the set of
horses labelled from 2 to n (which is just the set containing horse 2.)

1.3.25. Suppose that f(n) is defined recursively by specifying the value of f(1) and a rule for finding f(n+1)
from f(n). We will prove by mathematical induction that such a function is well-defined. First, note that
f(1) is well-defined since this value is explicitly stated. Now assume that f(n) is well-defined. Then
f(n+ 1) also is well-defined since a rule is given for determining this value from f(n).

1.3.26. The function is f(n) = 2". For the basis step, we have f(1) = 2 = 2. For the inductive step, we as-
sume that f(n) = 2" Then, f(n + 1) = 2f(n) = 2- 2" = 2", as desired.

1.3.27. Wehave g(1) = 2,¢(2) = 29() =4, ¢(3) = 29) = 2% = 16, and g(4) = 29(3) = 216 = 65536.

1.3.28. The basis step is given. For the inductive step, we assume that the value of f at the first n positive
integers are uniquely determined. Then f(n + 1) is uniquely determined from the rule. Therefore, by
mathematical induction, f(n) is determined for every positive integer n.

1.3.29. We use the second principle of mathematical induction. The basis step consists of verifying the for-
mula forn = 1 and n = 2. For n = 1 we have f(1) = 1 = 2! 4+ (=1)! and for n = 2 we have f(2) =
5 =22 + (—1)2. Now assume that f(k) = 2* + (—1)* for all positive integers k with k < n where n > 2.
By the induction hypothesis it follows that f(n) = f(n — 1) + 2f(n —2) = (2" + (=1)"" 1) 4 2(2" "2 +
(-1)n=2) = (21 4277 1) 4+ (—1)""2(—1 + 2) = 2" + (—1)". This finishes the proof.

1.3.30. Since 2° = 32 > 25 = 52, the basis step holds. Assume that 2" > n?. Note that for n > 4, 2n? =

n?+n?>n?+3n=n>+2n+n>n?+2n+1= (n+1)% Then we have (n+1)? < 2n? < 2.2" = 2n*1,
which completes the induction.
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1.3. MATHEMATICAL INDUCTION 13

1.3.31. We use the second principle of mathematical induction. We see that ag = 1 < 30 =1,a,=3<3 =
3, and as = 9 < 32 = 9. These are the basis cases. Now assume that a;, < 3* for all integers k with 0 <
k < n. It follows that a, = ap_1 + Gn_o 4 ap_g < 371 43772 4 373 — 3n=3(1 4 34 9) = 13.373 <
27 - 3773 = 3". The induction argument is complete.

1.3.32.a. For the basis step notice that for 1 ring only, 1 = 2! — 1 moves are needed. For the inductive step
we assume that it takes 2" — 1 steps to transfer n rings. To make the inductive step, first transfer n
of n + 1 rings to the third peg. This takes 2" — 1 steps. Now transfer the bottom ring to the second
peg. This is one step. Then transfer the n rings on the third peg to the second peg. This is 2" — 1
more steps. Altogether, this takes 2" — 14 1+ 2" — 1 = 2"+1 — 1 steps.

b. The world will last, according to this legend, 264 — 1 = 18,446, 744, 073,709, 551,615 seconds =
3.07445 - 10'™ minutes = 5.12409 - 10'5 hours = 2.13503 - 10'* days = 5.84942 - 10'! years, that is
more than 580 billion years.

1.3.33. Let P, be the statement for n. Then P, is true, since we have (a;+a2)/2)?—ajas = (a1 —as/2)? > 0. As-
sume P, is true. Then by P, for 2n positive real numbers a1, . .., az, we have a; +- - - +az, > 2(\/a1az +
Vazag + -+ - + /a2, _102,). Apply P, to this last expression to get a; + - - - + a2, > 2n(ajay - - - agp )/
which establishes P,, for n = 2 for all k. Again, assume P, is true. Let g = (a1az - - an_l)l/ (n=1), Ap-
plying P,, we have a; +az + --- + an_1 + g > n(araz---a,_19)"'" = n(g" 'g)"/" = ng. Therefore,
ai +ag + -+ + ap—1 > (n — 1)g which establishes P,,_;. Thus Py« is true and P, implies P,,_;. This
establishes P, for all n.

1.3.34. There are four 2 x 2 chess boards with one square missing. Each can be covered with exactly one
L-shaped piece. This is the basis step. Now assume that any 2" x 2" chess board can be covered with L-
shaped pieces. Consider a 2" "1 x 271 chess board with one square missing. Split this into four 2" x 2"
chess boards three of which contain every square and the fourth has one square missing. By the induc-
tive hypothesis we can cover the fourth 2" x 2" chess board because it is missing one square. Now use
one L-shaped piece to cover the three squares in the other three chess boards that touch at the center of
the larger 2" 1 x 271 chess board. What is left to cover is all the rest of the squares in each of the three
2" x 2" chess boards. The inductive hypothesis says that we can cover all the remaining squares in each
of these chess boards. This completes the proof.

1.3.35. Note that since 0 < p < ¢ we have 0 < p/¢q < 1. The proposition is trivially true if p = 1. We proceed
by strong induction on p. Let p and ¢ be given and assume the proposition is true for all rational num-
bers between 0 and 1 with numerators less than p. To apply the algorithm, we find the unit fraction 1/s
such that 1/(s — 1) > p/q > 1/s. When we subtract, the remaining fraction is p/q — 1/s = (ps — ¢)/gs.
On the other hand, if we multiply the first inequality by ¢(s — 1) we have ¢ > p(s — 1) which leads to p >
ps — ¢, which shows that the numerator of p/q is strictly greater than the numerator of the remainder
(ps — q)/gs after one step of the algorithm. By the induction hypothesis, this remainder is expressible as
a sum of unit fractions, 1/uj + - - - + 1/uy. Therefore p/q = 1/s + 1/us + - - - + 1/uy, which completes the
induction step.

1.3.36. a. Since 1/2 < 2/3, we subtract to get2/3 =1/2 + 1/6.
b. Since 1/2 < 5/8, we subtractto get5/8 =1/2 +1/8.

c¢. Since 1/2 < 11/17 we subtract to get 11/17 = 1/2 + 5/34. The largest unit fraction less than 5/34 is
1/7 so we subtract to get 11/17 =1/2+1/7 4+ 1/238.

d. The largest unit fraction less than 44/101 is 1/3 so we subtract and get 44/101 = 1/3 + 31/303. The
largest unit fraction less than 31/303 is 1/10, so we subtract to get 44/101 = 1/3 + 1/10 + 7/3030.
The largest unit fraction less than 7/3030 is 1/433, so we subtract to get 44/101 = 1/3 + 1/10 +
1/433+1/1311990. (Note that this is the result of the “greedy algorithm.” Other representations are
possible, such as 44/101 = 1/3 4 1/10 + 1/440 + 1/26664.)
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14 1. THE INTEGERS

1.4. The Fibonacci Numbers

14.1.a. Wehave fi =1, fo=1,and f, = fno1+ fn—aforn > 3. Hence fs = fo+ fi=1+1=2, f, =
fat+fo=24+1=3,fs=3+2=05,fs=5+3=8, fr=8+5=13,fs=134+8=21, fy =21+13 =
34, and fio = 34 + 21 = 55.

b. We continue beyond part (a) finding that fi1 = fio + fo = 55+ 34 = 89, f12 = 89 + 55 = 144, and
f13 = 144 + 89 = 233.

c¢. We continue beyond part (b) finding that fi4 = fiz + fi2 =233+ 144 = 377, and fi5 =377+ 233 =
610.

d. We continue beyond part (c) finding that fig = 610 + 377 = 987, f17 = 987 + 610 = 1597, and fi5 =
1597 + 987 = 2584.

e. We continue beyond part (d) finding that fi9 = 2584 + 1597 = 4181, fao = 4181 4 2584 = 6765.

f. We continue beyond part (e) finding that fo; = 6765 + 4181 = 10946, foo = 10946 + 6765 = 17711,
foz = 17711 4 10946 = 28657, foy = 28657 + 17711 = 46368, and fo5 = 46368 + 28657 = 75025.

1.4.2.a. We continue from Exercise 1 part (a), finding that fi; = 55+ 34 = 89 and fi2 = 89 + 55 = 144.
b. We continue from Exercise 1 part (c), finding that fi = 610 + 377 = 987.
c¢. We computed fo4 = 46368 in Exercise 1 part (f).

d. We continue from Exercise 1 part (f), finding that fos = 75025 + 46368 = 121393, for = 121393 +
75025 = 196418, fog = 196418 + 121393 = 317811, fog = 317811 + 196418 = 514229, and f37 =
514229 + 317811 = 832040.

e. We continue from part (d), finding f3; = 832040+ 514229 = 1346269, and f32 = 1346269+ 832040 =
2178309.

f. We continue from part (e), finding f33 = 2178309 + 1346269 = 3524578, f34 = 3524578 + 2178309 =
5702887, f35 = 5702887 + 3524578 = 9227465 and f35 = 9227465 + 5702887 = 14930352.

1.4.3. Note that from the Fibonacci identity, whenever n is a positive integer, f,,+2 — fn = fnt1. Then we
have 2f, 19 — fr = foy2 + (fas2 — fn) = fot2 + fut1 = foys. f weadd f, to both sides of this equation,
we have the desired identity.

1.4.4. Assuming n is a positive integer, we have compute 2f, 11 + fr, = fot1 + (fot1 + fo) = fot1 + frr2 =
frn+s. If we subtract f,, from both sides of this equation, we have the desired identity.

1.4.5. Forn =1wehave fo.; =1=12+2-1-0= f2+2fof1,and forn = 2, wehave foo =3 =12+2-1-1=
f2+2f1 fa. So the basis step holds for strong induction. Assume, then that fo,—4 = f2_5+2f,_3fn—2 and
Jon—2 = f2_1+2fn—2fn—1. Now compute fo, = fon—1+ fon—2 = 2fan—2+ fon—3 = 3fon—2 — fon—a. Now
we may substitute in our induction hypotheses to set this last expression equal to 3f2_; + 6 f,—2fn—1 —

2—2 - 2fn73fn72 = 3f3,—1 + G(fn - fnfl)fnfl - (fn - fnfl)2 - 2(fnfl - fn72)(fn - fnfl) = _2.}(3,—1 +
6 fnfn-1—f2+2fn(frn— foo1) = 2fn-1(fn — fu-1) = f>+ 2fn_1fn which completes the induction step.

1.4.6. For n a positive integer greater than 1, we have f, 12 = fri1 + fo = (fa + foo1) + fo = (fo + (fn —
frn—2)) + fn =3fn — fn—2. Adding f,,_» to both sides yields the desired identity.

1.4.7. Notethat fi =1 = fa, fi + fs =3 = fs,and f1 + f3 + f5 = 8 = fs so we conjecture that f; + f5 +

fs+ -+ fon—1 = fon. We prove this by induction. The basis step is checked above. Assume that our
formula is true for n, and consider f1 + f3 + f5 + -+ + fon—1 + fon+1 = fon + fon+1 = fant2, which is
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1.4. THE FIBONACCI NUMBERS 15
the induction step. Therefore the formula is correct.

1.48. Notethat fo=1=fs—1, fo+ fa=4=fs—1,and fo + f1 + fs = 12 = fr — 1, so we conjecture that
fo+ fa+ fo+- - -+ fon = font1 — 1. We prove this by induction. The basis step is checked above. Assume
that our formula is true for n, and consider fa+ fa+ f6 +- - -+ fon + font2 = font1 — 1+ font2 = fonts —
1, which is the induction step. Therefore the formula is correct. Another solution is to subtract the for-
mula in Exercise 7 from the formula in Example 1.27, as follows: Y .| fo; = 2321 fi—= i f2ic1 =

(font2 — 1) = fon = fong1 — 1.

1.4.9. First supposen = 2kiseven. Then f,, — fo_1+ -+ (=1)" T fi = (for + for—1+ -+ f1) — 2(for—1 +
for—s+ -+ f1) = (fok+2 — 1) — 2(for) by the formulas in Example 1.23 and Exercise 3. This last equals
(fokt+2 — for) — for — 1 = fopt1 — far — 1 = fox—1 —1 = fr,_1 — 1. Now suppose n = 2k + 1 is odd. Then
fo—foo14 -+ (=0 = foppr — (for — o1+ = (=1)" T f1) = fogg1 — (faw—1 — 1) by the formula
just proved for the even case. This last equals (fox+1 — for—1) + 1 = for +1 = fn—1 + 1. We can unite
the formulas for the odd and even cases by writing the formula as f,,—; — (—1)".

1.4.10. Forn = 1wehave f3 =2 = f7+ f2 =12+12. And whenn = 2wehave f5 =5 =22 +12 = f2 + f7,s0
the basis steps hold for mathematical induction. Now assume, for the strong form of induction, that the
identity holds for all values of n up ton = k. Then for_3 = f7_; + ff_o and for—1 = fZ + f7_;. Now we
calculate fort1 = for + for—1 = for—1+ for—2+ for—1 = 2fox—1+ (far—1 — far—3) = 3fox—1 — for—3. Now
substituting in the induction hypothesis, makes this last expression equal to 3(fZ+ f2_,)—f2_ | —f2 o =
3fe+2fi s — (fo = fom1)? =202 + fisy + 2fkfem1 = 207 4+ (frr — f1)? + 2fu(frgr — fr) = fRa + 17,
which completes the induction step.

1.4.11. We can construct an induction proof similar to the ones in Exercises 5 and 10, or we may proceed as
follows. From Exercise 5, we have fo, = f2 4+ 2fn_1fn = fa(fn + fac1 + foo1) = (fas1 — foo1)(Fas1 +
fn-1) = f21 — f?_,, which is the desired identity.

14.12. LetS, = fo+ foc1+ fa—2+2fn_3+---+2""*fo+2"73 f;. We proceed by induction. If n = 3 we have
S3 = fa+fotfi=2+1+1=4=2%"1 andwhenn = 4wehave Sy = fy+ f3+fo+2f1 = 3+2+14+2-1 =
8 = 271, 50 the basis steps hold. Now assume the identity holds for all values less or equal to n and
consider S, 11 = foi1+ fat+ fa1+2fno+dfn g+ +20 " f3 42773 £, 42772 f, . We use the Fibonacci
identity to expand every term except the last two to get Sp+1 = (fn + fr—1) + (fu—1 + fr—2) + (fn—2 +
Frn-3)+2(fas+ foa) +4(faa+ faos) +- - +272(fa+ f1) + 2773 fo + 2772 f1. Next we regroup, taking
the first term from each set of parentheses, plus the second last term together in one group, the last term
from each set of parentheses together in another group, and leaving the last term by itself to get S, ;1 =
(fn + fnfl + fn72 + anfd + 4fn74 +e 2n—4f2 + 2n—3f2) + (fnfl + fn72 + fn73 + 2fn74 + 4fn75 +
oo 4 2n74 1) 4 2772 £ The first group is seen to be equal to S,, when we realize that the last fo = fi.
The second group is equal to S,,_1, so we have S, 11 = S,, + Sp—1 + 2771 =272 4 on=2 4 9n=1 = on by
the induction hypothesis. Therefore, by mathematical induction, the proposition is proved.

1.4.13. We proceed by mathematical induction. For the basis step, 231:1 f? = f = fifs. To make the in-

ductive step we assume that 3", f7 = f,, fuy1. Then Z;L;rll =00+ = fafani + foin =
fn+1fn+2'

1.4.14. We use mathematical induction. We will use the recursive definition f, = f,_1 + fn_2, with fy =
0and f; = 1. Forn = 1 we have fofy — f£ = 1-0— 1% = —1 = (—1)'. Hence the basis step holds.

Now assume that f,, 11 fn_1 — f2 = (—1)". Then f,iofn — f72L+1 = (foa1+ fo)fn — fos1(fn + foo1) =
2 = fos1fn-1 = —(=1)" = (=1)"*1. This completes the proof.

1.4.15. From Exercise 13, we have foy1fn — fo-1fu2 = (ff +--+ f3) = (fT +--- fi2) = 2+ fr_1. The
identity in Exercise 10 shows that this is equal to f2,—1 when n is a positive integer, and in particular

when n is greater than 2.

1.4.16. Since f1f> = 1-1= 12 = fZ, the basis step holds. By the induction hypothesis we have f fa + --- +
fon—1fon+ fonfont1+ font1.fotmi1) = fon+ fonfont1 + font1.foma1) = fon(fon+ font1) + fontti fonsn) =
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16 1. THE INTEGERS

f2nf2(n+1) + f2n+1f2(n+1) = (f2n + f2n+1)f2(n+l) = f22(n+1)

1.4.17. For fixed m, we proceed by induction on n. The basis step is fr,+1 = fmfo+ fn—1f1 = fn - 1+ fi—1-1
which is true. Assume the identity holds for 1,2, ..., k. Then f,1r = fimfro+1 + fm—1fr and fr1x—1 =
fmfr+ fm—1fk—1. Adding these equations gives us f ik + fmtk—1 = fn(frr1 + fr) + fm—1(fr + fr—1)-
Applying the recursive definition yields f,+x+1 = fmfr+2 + fm—1fk+1, which is precisely the identity.

1.4.18. We're given that L; = 1 and Ly = 3. Adding each consecutive pair to generate the next Lucas number
yields the sequence 1, 3,4, 7,11, 18,29,47,76,123,199, 322, .. ..

1.4.19. A few trial cases lead us to conjecture that Z?zl L; = L, 12 — 3. We prove that this formula is correct
by induction. The basis step is Ly = 1 and L3 — 3 = 4 — 3 = 1, which checks. Assume that the formula
holds for n and compute ZZ’:ll L;=>",Li+ Lyt1 = Lpyo — 3+ L, 41 by the induction hypothesis.
This last equals (Ly4+2 + Ln41) — 3 = Ly 43 — 3, which completes the induction step.

1.4.20. A few trial cases lead us to conjecture that Y Lo;_1 = Lo, — 2. We prove that this formula is
correct by induction. The basis step is L1 = 1 = Ly — 2. Assume that the formula holds for n and
compute Z;fll Loi—1 =311 Loj—1 + Lapy1 = Loy, — 24 Lony1 = Lanyo — 2, which completes the in-
duction step.

1.4.21. A few trial cases lead us to conjecture that E:L:l Ly; = Lopt1 — 1. We prove that this formula is cor-
rect by induction. The basis step is Ly = 3 = L3 — 1. Assume that the formula holds for n and compute

Z?:Jrll Lo; =>""  Loj+ Lapyo = Lont1 — 1+ Laypyo = Loyts — 1, which completes the induction step.

1.4.22. We proceed by induction. The basis step is when n = 2, and we have L3 — L3L; = 3> —4 -1
5 = 5(—1)%. Now assume the identity holds for n. Then for n + 1 we have L%H — LpyoLy, = (L
Lnfl)LnJrl - (Ln+1 +Ln)Ln = LnLnJrl +Ln71Ln+1 _Ln+1Ln _L% = _(L% _LnfanJrl) = _(5(_1)71
5(—1)"*!, where we apply the induction hypothesis at the penultimate step.

=+ 1l

1.4.23. We proceed by induction. The basis stepis L = 1 = L1 Lo —2 = 1-3—2. Assume the formula holds for
nand consider "' L2 =S L2 4 L2 = LyLny1 — 24+ L2 = Ly (L + Loyt — 2= L1 Lpyo—

2, which completes the induction step.

1.4.24. Forn=2,wehavely =3=1+2= f;+ f3. Forn = 3,wehave L3 =4 = 1+3 = f5 + f4. This serves
as the basis step. Now assume that the statement is true for k = 2,3,4,...,n. Then L,,y; = L, + L,_1 =
(Ffrnt1+ fne1) + (Fn + fne2) = (fag1 + fo) + (fa—1 + fr—2) = fato + frn, which completes the induction.

1.4.25. For the basis step, we check that L1 fi =1-1=1= fyand Ly fo =3 -1 =3 = f4. Assume the identity
is true for all positive integers up to n. Then we have f,, 1L, 1 = (fnt2 — fn)(frt2 — fn) from Exercise
16. This equals 2,5 — f2 = (fa41+ [n)? = (fac1 + fae2)? = fRir + 2 nsifu+ f2 = F2_1 = 2fn—1fn—2 —
oy = (o — o)+ (F2 = 7o) + 2(fasifa = faifa2) = (fav1 = fa1)(farr 4+ fao1) + (fu —
fn—2)(fn + fn=2) + 2(fan—1), where the last parenthetical expression is obtained from Exercise 8. This
equals f,L, + fn—1Ln—1 + 2fon—1. Applying the induction hypothesis yields fo, + fon—2 + 2fon—1 =

(fon + fon—1) + (fan—1 + fan—2) = fan+1 + fon = font2, which completes the induction.

1.4.26. For the basis step, we check that whenn =1,5f;, =5-1=14+4=L; + Ly and whenn =2,5f3 =
10 = 3+ 7 = Ly + Ls. Now assume the identity holds for integers less than n, and compute 5f,11 =
5fn +5fn-1=(Ln-1+ Lnt1) + (Ln—2+Ly) = (Lpn—1 + Lp_2) + (Lnt1 + Ln) = Lyp + Ly41, which com-
pletes the induction step.

1.4.27. We prove this by induction on n. Fix m a positive integer. If n = 2, then for the basis step we need to
show that L, 12 = fine1L2 + fml1 = 3fma1 + fm, for which we will use induction on m. For m = 1 we
have Ly =4 =3 fo + fi and for m = 2 we have Ly = 7 = 3 - f3 + f5, so the basis step for m holds.
Now assume that the basis step for n holds for all values of m less than and equal to m. Then L3 =
Lyt + Lypt1 = 3fms1 + fon + 3fm + fn—1 = 3fm+2 + fm+1, which completes the induction step on
m and proves the basis step for n. To prove the induction step on n, we compute L., 1n+1 = Limyn +
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1.4. THE FIBONACCI NUMBERS 17

Lm+n71 - (fm+1Ln + menfl) + (feranfl + men72) - fm+1(Ln + Lnfl) + fm(Lnfl + Ln72) -
fm+1Lnt1 + fmLn, which completes the induction on n and proves the identity.

1.4.28. First check that o? = o+ 1 and 3* = 8 + 1. We proceed by induction. The basis steps are o + 3 =
(1+v5)/2+(1—-V5)/2=1=Lianda®+ 3 = (1+a)+(1+B) =2+ L; =3 = Ly. Assume the
identity is true for all positive integers up to n. Then L, .1 = L, + L1 = a" + " + a1 + g1 =
a" Ha+1)+ 8" 1B +1) =a" 1 a?) + " 1(B?) = o™ + B"T! which completes the induction.

1.4.29. Wefind that 50 =34+ 13+3 = fo+ fr+ f14,85 =55+214+8+1= fio+ fs + fo + f2, 110 =894 21 =
fi1 + fsand 200 = 144 + 55+ 1 = fi2 + fi0 + f2. In each case, we used the “greedy” algorithm, always
subtracting the largest possible Fibonacci number from the remainder.

1.4.30. Suppose there is a positive integer that has no Zeckendorf representation. Then by the well-ordering
property, there is a smallest such integer, n. Let f; be the largest Fibonacci number less than or equal to
n. Note that if n = fj, then n has a Zeckendorf representation, contrary to our assumption. Then n — f;
is a positive integer less than n, so it has a Zeckendorf representation n — f, = >, f,,. Since n has no
Zeckendorf representation, it must be that one of the f,,’s is equal to or consecutive to f;. That is, one
of fy—1, fk, Or fr4+1 appears in the summation for n — fi. Thenn = 31" fo, + f& > foc1 + fr = fot1.
But this contradicts the choice of f; as the largest Fibonacci number less than n. This establishes exis-
tence. To establish uniqueness of the Zeckendorf representation, suppose that there is a positive integer
that has two distinct representations. Then the well-ordering property gives us a smallest such integer,
n. Suppose n = Y i fo, = 2221 fv, are two distinct representations for n. Then no f,, = fs,, else
we could cancel this term from each side and have a smaller integer with two distinct representations.
Without loss of generality, assume that f,, > fo, > -+ > fo,, and fo, > fo, > -+ > fy, and that f,, >
fv,- If by is even, we compute n = Zizl foi < for + foo—2+ fo,—a+ -+ fo = fo,+1 — 1 by Exercise 4.
But this last is less than or equal to f,, — 1 < n, a contradiction. If b; is odd, we compute, now using
Exercise 3, n = 22:1 foo < foo + foo—2+ fo,—a+ -+ f3 = fou+1 — f1 < fao, —1 < n, which is also a
contradiction. This proves uniqueness.

1.4.31. We proceed by mathematical induction. The basis steps (n = 2 and 3) are easily seen to hold. For the
inductive step, we assume that f,, < o" land f,,_1 < ap_2. Now, fry1 = fo + foo1 < a1 +a" "2 =

a™, since « satisfies o™ = o™~ + o™ 2.

1.4.32. We proceed by the second principle of mathematical induction on n. For the basis step, we observe

that (8) = fo+1 = 1. For the inductive step, we assume that () + ("7 + (”52) + -+ = fuy1, and that
(50 (59 (759 5 = fu Now (%51 = ()4 (5) 5= () + (07 + (5015 1057 +
R R G T A Gy AT MR AN

1.4.33. Using Theorem 1.3 and the notation therein, we have a? = o + 1 and 3 = 3 + 1, since they are
roots of 2 — x — 1 = 0. Then we have fy, = (a®® — 3*")/V/5 = (1/V5)((a + 1) — (B + 1)) =

(1/4/5) (Z?:o (?)aﬁ -3 (?) B) = (1/VB) X7, (?) (0f — 7)) =31, (;?) f; since the first term is

zero in the penultimate sum.

1.4.34. We prove this using mathematical induction. For n = 1 we have

1 (1 1N _ ([ fo fi
F‘(lO)‘(ﬁ fo>

where fy = 0. Now assume that this formula is true for n. Then
Fn+1:FnF: ( fn+1 fn ) < 11 > — < fn+1+fn fn+1 > _ < fn+2 fn+1 >
fn fn—l 10 fn+fn—1 fn fn+l fn
1.4.35. On one hand, det(F™) = det(F)™ = (—1)". On the other hand,

det < fr};rl fv{r—Ll > = fn—i—lfn—l - f727,
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1.4.36. We proceed by induction. Clearly the basis step holds. For the inductive step, we assume that g, =
afn—2+bfn_1. Then, go11 =gn +9gn-1=afn2+bfn1+afn3+bfn2=afn1+bfn.

1.4.37. We use the relationship f,, = fn42 — fnt1 to extend the definition to include negative indices. Thus,

0 :Oaffl = 17f72 = _17f73 :27.]874: _37f75 :57f76 :_87.](.*7: 137.](‘78 = _217]{79 :347][710 =
—55.

1.4.38. We conjecture that f_,, = (—1)""! f,,. The basis step is given in Exercise 55. Assume the conjecture is
true for n. Then f—(n+1) = f—(n—l) - ffn = (71)nfn71 - (*1)n+1fn = (71)n(fn71 + fn) = (71)n+2fn+1/
which completes the induction step.

1.4.39. The square has area 64 square units, while the rectangle has area 65 square units. This corresponds to
the identity in Exercise 7, which tells us that f;f5 — f¢ = 1. Notice that the slope of the hypotenuse of
the triangular piece is 3/8, while the slope of the top of the trapezoidal piece is 2/5. We have 2/5—3/8 =
1/40. Thus, the “diagonal” of the rectangle is really a very skinny parallelogram of area 1, hidden visu-
ally by the fact that the two slopes are nearly equal.

1.4.40. First check that a® = o+ 1 and 3? = 3 + 1 as in the solution to Exercise 18. We compute a; =
1/V5) (= B) = (1/V5) (1 +v5/2 = (1 = V5/2) = (1/V5) (2v/5/2) = 1 and a2 = (1/V5)(a® - 3%) =
1/V5)(a+1—-B-1) = (1/v5)(a—B) = 1. Finally, we check that a,, 1 +a,—2 = (1/v5)(a" "t - "~ 1)+
1/V5) (@2 = 5772) = (1/VB)(a" ! + o™ = "1 = 77%) = (1/VE)(a" P(a+1) = B2 (B+ 1)) =
1/v5)(a""2a2 — 3723%) = (1//5)(a™ — B") = a,. Since these a,, satisfy the defining relationships of
the Fibonacci numbers, we can conclude that a,, = f,, forn =1,2,....

S~~~ o~

1.4.41. We solve the equation 72 — r — 1 = 0 to discover the roots 7; = (1 ++/5)/2 and ro = (1 — V/5)/2.
Then according to the theory in the paragraph above, f, = Cir? + Cory. For n = 0 we have 0 =
C17) + Cyr§ = Oy + Cy. Forn = 1 we have 1 = Cyry + Cory = C1(1 ++/5)/2 4+ Cy(1 — v/5)/2. Solving
these two equations simultaneously yields Cy =1/ Vhand Cy = —1 / V5. So the explicit formula is f,, =

(1/VB)rt = (1/V5)rg = (rf —15)/V5.

1.4.42. First note that G(z) — 2G(z) — 2°G(x) = > pe g fux® — Do froa T = 300 fra®t2 = Y02 fra® —
Yooy frm1a® =300 feoa® = for + fiz — for + 3 peo(fk — fum1 — fr—2)z® =042 —0+> 10, 0zF =
z. Solving this for G(z) yields G(z) = z/(1 — x — 2?). Let a and 3 be defined as in Exercise 30.
Then the denominator of G(z) factors as —(z + §)(z + «). Expand G(z) into partial fractions to get
G(z) = (1/V5) (B/(x + B) — a/(x + «)). Since 1/a = —f3 we can write the above as G(z) = (1/v/5)
(1/(1 — za) = 1/(1 — z0)) . But these last two fractions represent the sums of geometric series, so we
have G(z) = (1/V5) (14 az + (az)? +--+) — (1 + B+ (B2)> +--+)) = (1/VE)(0 + (a — B)z + (a® —
3?)x? + - --). Thus the coefficient on the nth power of z is given by (1/v/5)(a™ — ") = f,,, for all n > 0.

1.4.43. We seek to solve the recurrence relation L,, = L,,_1 + L,,—1 subject to the initial conditions L; = 1 and
Ly = 3. We solve the equation 72 — 7 — 1 = 0 to discover the roots & = (1 + v/5)/2 and 3 = (1 — v/5)/2.
Then according to the theory in the paragraph above Exercise 31, L,, = C1a™ + C25". For n = 1 we have
L =1=Cia+ Cy8.Forn = 2wehave 3 = Cia? + Cy52. Solving these two equations simultaneously
yields C; =1 and C5 = 1. So the explicit formula is L,, = o™ + ™.

1.4.44. Let H(z) = Y ,-, Lra" be the generating function for the Lucas numbers. Note that we define Ly = 2
sothat Ly+L; = 3 = Ly. Consider H (z)—zH () —2*H () = Y peo La® =Y pe o La® Tt =Y 72 ) Lyaht?
=3 o Lt =300 Ly—qah =Y 0, Ly—oa® = Loa® + Lyx — Loz + Y oo (Lg — Li—1 — Lig—o)zF =2+
r—22+) o, 02" = 2— 2. We solve for H(z) and find its partial fraction expansion H(z) = (2—z)/(1—
z—2?) = (1/(2V5)) (6+V5)/(x+a) — (5—V5)/(z + 3)) , where a and j3 are defined as in Exercise
30. We multiply the top and bottom of the first fraction by 5 and use the fact that a5 = 1, and similarly
treat the second fraction to get the above equal to 1/(1 — az) + 1/(1 — Bx). But these are the representa-
tions for the sums of geometric series, so we have H(z) = (1+az+ (az)?+- -+ )+ (1+ Bz +(Bz)?+---) =
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1.5. DIVISIBILITY 19

2+ (a+ B)z + (o + )22 + - - - . Therefore, L,, = a™ + 3" the coefficient on the nth power of x.
1.4.45. First check that a? = a + 1 and 32 = 3 + 1. We proceed by induction. The basis steps are (1/v/5)(a —
B8) = (1/v5)(v5) = 1 = frand (1/v5)(e® — 5%) = (1/VE)(1 + @) = (1+8)) = (1/V5)(a = p) =1 =
f2. Assume the identity is true for all positive integers up to n. Then f, 11 = fn + fa_1 = (1/V5)(a" —

A"+ (1/VB) ("t = 1) = (1/VB)(a"Ha +1) = g1 (B + 1)) = (1/VB)(a" " (a?) — B"71(8%)) =

(1/v/5)(a™*+t — pnt1) which completes the induction.

1.5. Divisibility
1.5.1. We find that 3 | 99 since 99 = 3 - 33, 5 | 145 since 145 = 5-29,7 | 343 since 343 = 7 - 49, and 888 | 0
since 0 = 888 - 0.
1.5.2. We see that 1001 is divisible by 7, 11, and 13.
1.5.3.a. Yes, 0=7-0.

b. Yes, 707 = 7 -101.

c. By the division algorithm, we have 1717 = 245 - 7 + 2. Since the remainder is nonzero, we know
that 71 1717.

d. By the division algorithm, we have 123321 = 17617 -7+ 2. Since the remainder is nonzero, we know
that 7 1 123321.

e. By the division algorithm, we have —285714 = —40817 - 7 + 5. Since the remainder is nonzero, we
know that 7 1 —285714.

f. By the division algorithm, we have —430597 = —61514 - 7 + 1. Since the remainder is nonzero, we
know that 7 1 —430597.

1.54.a. Yes,0=22-0.

b. By the division algorithm, we have 444 = 20 - 22 + 4. Since the remainder is nonzero, we know that
22t 444.

c. Yes, 1716 =22 -78.
d. Yes, 192544 = 22 - 8752.
e. Yes, —32516 = 22 - —1478.

f. By the division algorithm, we have —195518 = —8888 - 22 4- 18. Since the remainder is nonzero, we
know that 22 4 —195518.

1.5.5.a. Wehave 100 = 5 - 17 + 15, so the quotient is 5 and the remainder is 15.
b. We have 289 = 17 - 17, so the quotient is 17 and the remainder is 0.
c¢. Wehave —44 = —3- 17 + 7, so the quotient is —3 and the remainder is 7.
d. Wehave —100 = —6 - 17 + 2, so the quotient is —6 and the remainder is 2.

1.5.6. Suppose that a | band b | a. Then there are integers k and [ such that b = ka and a = {b. This implies
that b = klb, so that kl = 1. Hence either k =l =1 or k = | = —1. It follows that either a = b or a = —b.
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20 1. THE INTEGERS

1.5.7. By hypothesis we know b = ra and d = sc, for some r and s. Thus bd = rs(ac) and ac | bd.
1.5.8. Wehave 6 | 2 - 3, but 6 divides neither 2 nor 3.

1.59. Ifa|b, then b= naand bc = n(ca),ie. ac| bc. Now, suppose ac | bc. Thus bc = nacand, asc # 0, b =
na,ie. a|b.

1.5.10. Suppose a | b. Then b = na, and b — a = na — a = (n — 1)a. Since a and b are positive (n — 1)a is
positive and a < b.

1.5.11. By definition, a | b if and only if b = na for some integer n. Then raising both sides of this equation to
the kth power yields b¥ = n*a* whence o” | b.

1.5.12. Suppose that « and y are even. Then x = 2k and y = 2/ where k and [ are integers. Hence z +y =
2k + 2l = 2(k +1) so that = +y is also even. Suppose that z and y are odd. Thenx = 2k+1landy = 21 +1
where k and [ are integers. Hence z +y = (2k+1)+ (214+1) =2k +21+2=2(k+1+1),so thatz + y is
even. Suppose that z is even and y is odd. Then x = 2k and y = 2l + 1 where k and [ are integers. Hence
r+y=2k+ (20 +1)=2(k+1)+ 1. It follows x + y is odd.

1.5.13. Letaand bbeodd, and ceven. Thenab= (20 4+ 1)2y+ 1) =4day+2x+2y+1=22zy+z+y)+ 1,
so ab is odd. On the other hand, for any integer n, we have cn = (2z)n = 2(zn) which is even.

1.5.14. By the division algorithm, there exist integers s, ¢ such that a = bs 4+ ¢,0 <t < bsince b { a. If ¢ is odd,
then we are done. If t is even, then b — tisodd, |t — b| < b,and a = b(s + 1) + (t — b).

1.5.15. By the division algorithm, ¢ = bg +r, with0 <r < b. Thus —a = —bg—r = —(¢+ 1)b+b—r. If 0 <
b —r < b then we are done. Otherwise b —r =b,orr =0and —a = —qb + 0.

1.5.16. Wehavea =gb+r = (tc+ s)b+r =tcb+ bs + 1.

1.5.17. a. The division algorithm covers the case when b is positive. If b is negative, then we may apply the
division algorithm to a and || to get a quotient ¢ and remainder r such that a = ¢|b| + 7 and 0 <
r < |b|. But since b is negative, we have a = g(—b) + r = (—q)b + 7, as desired.

b. Wehave 17 = —7(—2) + 3. Here r = 3.

1.5.18. This is called the least remainder algorithm. Suppose that a and b are positive integers. By the divi-
sion algorithm there are integers s and t witha = bs+tand 0 <¢ < b. If 0 <t < % setr =t,e=1,and
q=s,sothata = bg+erwith0 <r < % If% <t<bsetr=b—t,e=—1,and g = s+ 1sothatbg+er =
b(s+1)+ (t—b) =bs+t=aand 0 < r =t—b < & Hence there are integers ¢, e and r such that a =
bg+ er wheree=+land 0 < r < g

1.5.19. By the division algorithm, let m = gn + r, with 0 < r < n — 1 and ¢ = [m/n]. Then [(m + 1)/n] =
[(gn+r+1)/n] = [g+ (r+1)/n] = ¢+ [(r+1)/n] as in Example 1.31. If » = 0,1,2,...,n — 2, then
m # kn — 1 for any integer k and 1/n < (r +1)/n < 1 and so [(r + 1)/n] = 0. In this case, we have
[(m+1)/n] = g+ 0 = [m/n]. On the other hand, if r =n — 1, thenm =gn+n—-1=n(g+1) -1 =
nk —1,and [(r + 1)/n] = 1. In this case, we have [(m + 1)/n]| = ¢+ 1 = [m/n] + 1.

1.5.20. Suppose n = 2k. Then n — 2[n/2] = 2k — 2[2k/2] = 0. On the other hand, suppose n — 2[n/2] = 0.
Then n/2 = [n/2] and n/2 is an integer. In other words, n is even.

1.5.21. The positive integers divisible by the positive integer d are those integers of the form kd where k is a

positive integer. The number of these that are less than z is the number of positive integers k with kd <
z, or equivalently with k < z/d . There are [z/d] such integers.
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1.5. DIVISIBILITY 21

1.5.22. There are [1000/5] = 200 positive integers not exceeding 1000 that are divisible by 5, [1000/25] =
40 such integers that are divisible by 25, [1000/125] = 8 such integers that are divisible by 125, and
[1000/625] = 1 such integer that is divisible by 625.

1.5.23. There are [1000/7] — [100/7] = 142 — 14 = 128 integers between 100 and 1000 that are divisible by 7.
There are [1000/49] — [100/49] = 20 — 2 = 18 integers between 100 and 1000 that are divisible by 49.

1.5.24. The number of integers not exceeding 1000 that are not divisible by either 3 or 5 equals 1000 —
([1000/3] 4 [1000/5]) + [1000/15] = 533.

1.5.25. Using the Principle of Inclusion-Exclusion, the answer is 1000 — ([1000/3] + [1000/5] + [1000/7]) +
([1000/15] + [1000,/21] + [1000/35]) — ([L000/105) = 1000 — (333 + 200 + 142) + (66 + 47 + 28) — 9 = 462.

1.5.26. For an integer to be divisible by 3, but not by 4, an integer must be divisible by 3, but not by 12. There
are [1000/3] = 333 positive integers not exceeding 1000 that are divisible by 3. Of these [1000/12] = 82
are divisible by 12 (since anything that is divisible by 12 is automatically divisible by 3). Hence there are
333 — 83 = 250 possible integers not exceeding 1000 that are divisible by 3, but not by 4.

1.5.27. Letw be the weight of a letter in ounces. Note that the function —[—x] rounds z up to the least integer
less than or equal to x. (That is, it’s the equivalent of the ceiling function.) The cost of mailing a letter
weighing w ounces is, then, 33 cents plus 22 cents for each ounce or part thereof more than 1, so we need
to round w — 1 up to the next integer. So the cost is c(w) = 33 — [1 — w]23 cents. Suppose that 33 — [1 —
w]22 = 145. then —[1 — w]22 = 145 — 33 = 112 which is not a multiple of 22, so no letter can cost $1.45.
Suppose that 33 — [1 —w]22 = 231. then —[1 —w]22 = 231 —-33 = 198 = 9-22. Then [1 —w] = —9, 50 —9 <
1-—w< =8 0r9 <w < 10. So a letter weight at least 9 ounces but less than 10 ounces would cost $2.31.

1.5.28. Note that a® — a = a(a? — 1) = (a — 1)a(a + 1). By the division algorithm a = 3k,a = 3k + 1, 0ra =
3k + 2, where k is an integer. If a = 3k, 3 divides a, if a = 3k + 1 then a — 1 = 3k, so that 3 divides a — 1,
and ifa = 3k +2,thena+1 = 3k+3 = 3(k+1), so that 3 divides a + 1. Hence 3 divides (a —1)a(a+1) =

a® — a for every nonnegative integer a. (Note: This can also be proved using mathematical induction.)

1.5.29. Multiplying two integers of this form gives us (4n + 1)(4m + 1) = 16mn + 4m + 4n + 1 = 4(4mn +
m +n) + 1. Similarly, (4n + 3)(4m + 3) = 16mn + 12m + 12n + 9 = 4(4dmn + 3m + 3n + 2) + 1.

1.5.30. Suppose that n is odd. Then n = 2¢ + 1 where ¢ is an integer. It follows that n? = (2t + 1)? = 4¢* +
4t +1 = 4t(t + 1) + 1. Now if ¢ is even, then ¢t = 2u where u is an integer. Hence n? = 8u(2u+1) +1 =
8k + 1, where k = u(2u + 1) is an integer. If ¢ is odd, then ¢ = 2u + 1 where u is an integer. Hence n? =
Bu+4)2u+2)+1=82u+1)(u+1)+1=8k+1, wherek = (2u+1)(u+1).

1.5.31. Every odd integer may be written in the form 4k + 1 or 4k + 3. Observe that (4k + 1)* = 162k* +
4(4k)3 + 6(4k)? + 4(4k) + 1 = 16(16k* + 16k> + 6k* + k) + 1. Proceeding further, (4k + 3)* = (4k)* +
12(4k)3 + 54(4K)2 + 108(4k) + 3% = 16(16k* + 48K® + 54K2 + 27k + 5) + 1.

1.5.32. The product of the integers 6k + 5 and 6 + 5 is (6k + 5)(6] + 5) = 36kl 4+ 30(k + 1) + 25 = 6[6kl + 5(k +
1) +4]+1=6N +1where N = 6kl + 5(k + ) + 4. Hence this product is of the form 6N + 1.

1.5.33. Of any consecutive three integers, one is a multiple of three. Also, at least one is even. Therefore, the
product is a multiple of 2 - 3 = 6.

1.5.34. The basis step is completed by noting that 1° — 1 = 0 is divisible by 5. For the inductive hypothesis, as-
sume that n® — n is divisible by 5. This implies that there is an integer k such that n® —n = 5k. It follows
that (n+1)° — (n+1) = (n® +5n* + 100> + 1002 +5n+1) — (n+1) = (n® —n) +5(n* +2n> +2n% +n) =
5k 4+ 51 = 5(k +1). Hence (n + 1)® — (n + 1) is also divisible by 5.

1.5.35. For the basis step note that 0° + 13 + 23 = 9 is a multiple of 9. Suppose that n® + (n + 1)® + (n +2)® =
9k for some integer k. Then (n +1)> + (n +2)3 + (n+3* =n*+ (n+ 13+ (n+2)3 + (n +3)3 —n3 =
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22 1. THE INTEGERS
9k + n® +9n? +27n 4 27 — n3 = 9k + 9n? + 27n + 27 = 9(k + n? + 3n + 3) which is a multiple of 9.

1.5.36. We prove this by mathematical induction. We will prove that f3,_2 is odd, fs,—1 is odd, and f3,, is
even whenever n is a positive integer. For n = 1 we see that f3.1._2 = fi = lisodd, fs.1-1 = fo =1
is odd, and f3.; = f3 = 2 is even. Now assume that f3,,_s is odd, f3,_1 is odd, and f3,, is even where
n is a positive integer. Then f3,41)-2 = f3nt1 = f3n + f3n—1 is 0dd since f3,, is even and f3, 1 is
odd, f3(n+1)—1 = f3nt+2 = fant1 + f3n is odd since f3,, 11 is odd and f3, is even, and f3(,,41) = f3n43 =
fan+2 + fant1 is even since fs, 12 and f3,,41 are odd. This completes the proof.

1.5.37. We proceed by mathematical induction. The basis step is clear. Assume that only f4,’s are divisible
by 3 for f;,i < 4k. Then, as fax+1 = fax + far—1,3 | far and 3 | fax41 gives us the contradiction 3 | far—1.
Thus 3 t fax+1. Continuing on, if 3 | fu, and 3 | fart2, then 3 | faxt+1, which contradicts the statement
just proved. If 3 | far and 3 | fa+s, then since fyrys = 2fan+1 + far, we again have a contradiction. But,
as fagt+a = 3fak+1 + 2far, and 3| far and 3 | 3+ fapy1, we see that 3 | fapia.

1.5.38. We proceed by induction. The basis step is clear. Suppose f,, is divisible by 4. By Exercise 34,
fn+1, fn+2, fata, fnys are all odd. Suppose f, 43 is divisible by 4. Now, f,,+3 = 2f,, 11 + f». Since f,, and
fn+s are divisible by 4, so must by 2,,11. This is a contradiction. On the other hand, f,,+6 = 8fn+1 + fn.
Since both terms are multiples of 4, so is fi,+6.

1.5.39. Firstnote thatforn > 5,5f,—4+3fn—5 =2fn—a+3(fr-a+ fn-s5) = 2fn—a+3fn-3 =2(fn-a+ fr-3)+
o3 =2fn-o+ fn-3 = fo—o+ fo—2+ fa—3 = fa—2 + fa_1 = fn, which proves the first identity. Now
note that f5 = 5 is divisible by 5. Suppose that f,, is divisible by 5. From the identity above f5,15 =
5fsn+5—4 + 3fon+5-5 = 5 fon+1 + 3fsn, which is divisible by 5 since 5 f5,,+1 is a multiple of 5 and, by the
induction hypothesis, so is fs,. This completes the induction.

1.5.40. We use mathematical induction on the integer m. For m = 1wehave f,11 = fo_1fi+fufo = fa—i1+fa
which is true from the definition of the Fibonacci numbers. For m = 2 we have f,10 = fo_1fo + fufs =
fno1+2fn = fac1+ fu+t fn = fas1+ fn which is true from the definition of the Fibonacci numbers. This
finishes the basis step of the proof. Now assume that f,,m = fim fnt1 + fm—1/fn holds for all integers m
with m < k. We will show that it must also hold for m = k. We have f,1x—2 = fi—2fn+1 + fr—3fn and
fnik—1 = fr—1fat1+ fr—2fn. Adding these two equations gives fyix—2 — fork—1 = fat1(fe—2+ fe—1)+
fu(fe—s + fr—2). Hence foir = fot1fe + fufr—1. Hence the identity is also true for m = k. We now
show that f,, | f, if m | n. Since m | n we have n = km. We prove this using mathematical induction
on k. For k =1 we have n = m so fy, | fn since f,,, = f,. Now assume f,, is divisible by f,,,. Note that
Jm+1) = fmk+m = fmk—1fm + fomk frms1. The first product is divisible by f,, since f,, is a factor in this
term and the second product is divisible by f,,, by the inductive hypothesis. Hence f,, | fy(k+1). This
finishes the inductive proof.

1.5.41. Iterating the transformation T starting with 39 we find that 7'(39) = 59; T'(59) = 89; T'(89) = 134;
T(134) = 67; T(67) = 101; T(101) = 152; T(152) = 76; T(76) = 38; T(38) = 19; T(19) = 29; T(29) = 44;
T(44) = 22; T(22) = 11; T(11) = 17; T(17) = 26; T(26) = 13; T(13) = 20; T(20) = 10; T(10) = 5; T'(5) =
8 T(8) =4, T(4)=2,T(2) = 1.

1.5.42. If 3n is odd, then so is n. So, T'((n) = (3n + 1)/2 = 22#/2 = 22k~ Because T'(n) is a power of 2, the
exponent will decrease down to one with repeated applications of 7.

1.5.43. We prove this using the second principle of mathematical induction. Since T'(2) = 1, the Collatz con-
jecture is true for n = 2. Now assume that the conjecture holds for all integers less that n. By assumption
there is an integer k such that k iterations of the transformation T, starting at n, produces an integer m
less than n. By the inductive hypothesis there is an integer [ such that iterating 7' [ times starting at m
produces the integer 1. Hence iterating T" k + [ times starting with n leads to 1. This finishes the proof.

1.5.44. Suppose n = 2k for some k. Then T'(n) = k < 2k = n. Suppose that n = 4k + 1 for some k.

Then T'(T'(n)) = T(6k + 2) = 3k +1 < 4k + 1 = n. Now suppose that n = 8k + 3, where k is an
even number. T(T(T(T'(n)))) = 9k/2+ 1 < 8k + 3 = n. This leaves 17 numbers to be considered,
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7,11,15,23,27,31, 39, 43,47,55,59, 63,71, 75,79, 87,91, 95. These can be methodically tested. The worst
of them is 27, which requires over 70 applications of T" to reach 1.

1.5.45. We first show that (2 + v/3)" + (2 — v/3)" is an even integer. By the binomial theorem it follows
fhat (2-+ VB)" + (2 — VA" = Ty (D2VE"7 + X, ()21 IV = 2 + ()3 2024
(1)3%-27=% 4 ...) = 2l where [ is an integer. Next, note that (2 — v/3)" < 1. We see that [(2 + V/3)%] =
(2 +v3)" + (2 — V/3)™ — 1. Tt follows that [(2 4 v/3)?] is odd.
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CHAPTER 2

Integer Representations and Operations

2.1. Representations of Integers

2.1.1. Wehave 1999 = 7-285+4,285 = 7-40+5,and 40 = 7-5+45,and 5 = 7-0+ 5. The sequence of remain-
ders gives the base 7 digits. Hence (1999)10 = (5554)7. We have (6105)7 = 6-73+1-7240-7+5 = (2112)1,.

2.1.2. Wehave 89156 =8-11144 +4,11144 =8-1393+ 10,1393 =8-174+1,174=8-2146,21 =8-2+35,
and 2 = 8 - 0 + 2. The sequence of remainders gives us (89156)19 = (256104)s. We have (706113)s =
7854685 + 8%+ 8+ 3=(232523)0.

2.1.3. We have (10101111)y = (175)10, and (999)10 = (1111100111),.
2.1.4. We have (101001000)5 = 23 4 26 + 28 = (328)1,.

2.1.5. We group together blocks of four binary digits starting from the right. We have (0101); = (5)1g,
(1111)2 = (F)lg, (1000)2 = (8)16. Hence (100011110101)2 = (8F5)16. Likewise, (1110)2 = (E)]_G,
(0100)2 = (4)16/ and (0111)2 = (7)16- Therefore, (11101001110)2 = (74E)16

2.1.6. Each hexadecimal digit corresponds to a block of four binary digits. Translating each hexadecimal
digit into the corresponding block of four binary digits gives (ABCDEF)s =
(101010111100110111101111)2, (DEFACED)16 = (1101111011111010110011101101)5, and (9A0B)6 =
(1001101000001011)5.

2.1.7. This is because we are using the blocks of three digits as one “digit,” which has 1000 possible values.

2.1.8. The proof of Theorem 1.10 goes through exactly, with the inequality 0 < a; < b — 1 replaced by 0 <
a; <| b| at each step.

21.9. We find that (101001) 5 = 1(=2)° + 0(—2)4 + 1 - (—2)3 + 0(=2)2 + 0(=2)! + 1(~2)° — —39 and
(12012)_5 = 1(=3)* +2(=3)3 + 0(—3)2 + 1(—3)! + 2(-3)° = 26.

2110, —7=(-2)-4+1,4=(=2)-(=2)+0,-2=(=2) - 1+0,1 = (=2)-0+ 1,50 (=7)10 = (1001) _5. —17 =
(=2)-941,9=(-2)-—4+1,-4=(-2)-2+0,2=(=2) - —1+0,-1=(=2) - 1+1,1 = (=2)-0+1, 50
(=17)10 = (110011)_5. 61 = (—2)- —30+1,-30 = (=2) - 15+0,15 = (=2) - —7T+1 -7 = (-2) -4+ 1,4 =
(=2)-240,2=(-2)-1+1,1=(=2)-0+1, 50 (61)10 = (1001101)_5.

2.1.11. If m is any integer weight less than 2¥, then by Theorem 1.10, m has a base two expansion m =
arp—128 "1 tap_ 22824+ +a;2! +ap2°, where each a; is 0 or 1. The 2! weight is used if and only if a; = 1.

2.1.12. To show existence, mimic the proof of Theorem 2.1 using Exercise 18 of Section 1.5. To show unique-
ness, assume that a given number has two representations and look at the difference of these represen-
tations. Observe that a number is equal to 0 if and only if e; is O for all j. The result follows.

2.1.13. Letw be the weight to be measured. By Exercise 10, w has a unique balanced ternary expansion. Place
the object in pan 1. If ; = 1 then place a weight of 3’ into pan 2. If e; = —1 then place a weight of 3 in
pan 1. If e; = 0 then do not use the weight of 3'. Now the pans will be balanced.

25
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26 2. INTEGER REPRESENTATIONS AND OPERATIONS

2.1.14. Each base 9 digit corresponds to two base 3 digits and vice versa. The correspondence is (0)9 =
(00)3, (1)9 = (01)3, (2)9 = (02)3, (3)9 = (10)3, (4)9 = (11)3, (5)9 = (12)3, (6)9 = (20)3, ()9 = (21)3, (8)9 =
(22)3. To convert a base 9 expansion to a base 3 expansion we simply replace each base 9 digit with the
corresponding two base 3 digits. To convert a base 3 expansion to a base 9 expansion, we start at the
right of the expansion and replace blocks of two base 3 digits to the corresponding base 9 digit, putting
an initial 0 in the last block from the left if it consists only of 1 digit.

2.1.15. To convert a number from base r to base 7, take the number in blocks of size n. To go the other way,
convert each digit of a base " number to base r, and concatenate the results.

2.1.16. If n = (agak—_1...a1a0)p, then n = apb® + a1~ + - -+ + a1 + ag. Now it follows directly that n =
(arbt =7 + ap_1bF 771 o @)V + a1 BT+ -+ ag.

2.1.17. Multiplying n by b™ gives bn = b™(apb® + ap_1b¥ "1 + -+ + a1b + ag) = (apb*+t™ + a1 4
coab™T 4+ agh™ 4+ 0 0™ + - 4+ 0) = (agag—1 - .. a1a000. .. 00),, where we have placed m zeroes
at the end of the base b expansion of n.

2.1.18.a. 22 =(10110)2, and since 22 > 0, the one’s complement representation is 22 is 010110.

b. 31 = (11111),, and since 31 > 0, the one’s complement representation of 31 is 011111.

c¢. 7 =(00111)3, and since —7 < 0, the one’s complement of —7 is a 1 followed by the complement of
the binary representation of 7, to wit, 111000.

d. 19 = (10011),, and since —19 < 0, the one’s complement of —19 is a 1 followed by the complement
of the binary representation of 19, to wit, 101100.

2.1.19. a. The lead digit is a one, so the number is negative. Its absolute value has a binary representation of
the complement of 1001, i.e. 0110. Thus 11001 is the one’s complement representation of —6.

b. 01101 is the one’s complement representation of 13.

c. 10001 is the one’s complement representation of —14.

d. 11111is a one’s complement representation of 0. Note that 00000 also represents 0.
2.1.20. Take the complement of each and every digit.

2.1.21. If m is positive, then a,—1 = 0 and an—_2a,—3...4ao is the binary expansion of m. Hence, m =
S 2 a;2" as desired. If m is negative, then the one’s complement expansion for m has its leading bit
equal to 1. If we view the bit string a,,_2a,,_3 . . . ag as a a binary number, then it represents (27~ — 1) —
(—m), since finding the one’s complement is equivalent to subtracting the binary number from 111 - - - 1.

n—2

Thatis (2"~! — 1) — (—m) = Y., a;2". Solving for m gives us the desired identity.

2.1.22.a. 22 = (10110),. Since 22 is positive, we append a leading 0 to this expansion to obtain 010110 as the
two’s complement representation of 22.

b. 31 = (11111),. Since 31 is positive, we append a leading 0 to this expansion to obtain 011111 as the
two’s complement representation of 31.

c. Since —7 is negative, we consider the binary expansion of 25 — 7 = 25 = (11001)3, and then append
a leading 1 to obtain 111001 as the two’s complement representation of —7.

d. Since —19 is negative, we consider the binary expansion of 2° — 19 = 13 = (01101), and then ap-
pend a leading 1 to obtain 101101 as the two’s complement representation of —19.
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2.1. REPRESENTATIONS OF INTEGERS 27

2.1.23.a. Since the first digit is a 1, we know that the integer is negative and that (1001); = 9 is the binary
expansion of 2* — |z|. So |z| = 16 —9 = 7, and thus z = —7.

b. Since the first digit is a 0, we know that the integer is positive and hence = = (1101), = 13.

c. Since the first digit is a 1, we know that the integer is negative and that (0001); = 1 is the binary
expansion of 2¢ — |z|. So |z| = 16 — 1 = 15, and thus z = —15.

d. Since the first digit is a 1, we know that the integer is negative and that (1111), = 15 is the binary
expansion of 2* — |z|. So |z| = 16 — 15 = 1, and thus x = —1.

2.1.24. If mis positive, then a,,_; = 0 and Z?;(f a;2" is the binary expansion of m. Hence m = —ap_ 12"+
S 2 a; 2% Tf m is negative, then a,_; = 1 and Y7~ a;2" is the binary expansion of 2*~! + m. Hence,

_ n—2 1
m=—a,_12" ' + Do @i2"

2.1.25. 1If each of the digits in the two’s complement representation for m is complemented and then 1 is
added to the resulting binary number, the result is the two’s complement representation for —m. To see
this note that m + (—m) + (—1) = (binary expansion of m) + (2"~ !+binary expansion for 2"~! — m) +
(-1)=2""1427"1_1=2"—1 = (111...1)s. Therefore the two’s complement representation of —m — 1
is the complement of m.

2.1.26. If m is positive, the representations are identical. If m is negative, then we compare the solutions to
Exercises 25 and 20 to see that we need only add 1 to the one’s complement representation of m to ob-
tain the two’s complement.

2.1.27. Since 4 bits are required for every decimal digit, 4n bits are required to store the number in this man-
ner.

2.1.28. We see that 3! is the largest factorial less than 14. We have 14 = 2 - 3! + 2. Next, we find that 2 =
1-2'40. It follows that 14 = 2- 3! +1-2! 4+ 0 - 1! = (210);. We see that 4! is the largest factorial less
than 56. We have 56 = 2 - 4! 4+ 8. Next, we find that 8 = 1- 3! +2,and 2 = 1 - 2! + 0. It follows that 56 =
2-4141-3141-2140- 1! = (2110),. We see that 5! is the largest factorial less than 384. We have 384 =
35!+ 24. Next we see that 384 =1-4!. Hence 384 =3-5!+1-4!+0-3!+0- 2!+ 0- 1! = (31000),.

2.1.29. We first show that every positive integer has a Cantor expansion. To find a Cantor expansion of the
positive integer n, let m be the unique positive integer such that m! < n < (n + 1)!. By the division
algorithm there is an integer a,, such that n = m! - a,, + r,,, where 0 < a,, < mand 0 < r,,, < m!. We
iterate, finding that r,,, = (m — 1)! - ay—1 + rpp—1 where 0 < a1 <m—1land 0 < 7,1 < (M — 1)L
We iterate m — 2 more times, where we have r; = (i — 1)! - a;—1 + 1,1 where 0 < a;_; <i—1land 0 <
rio1 < (i—1lfori=m+1,m,m—1,...,2with r,,11 = n. At the last stage we have r, = 1!-a; +0
whererya = 0or1andrs = a;.

Now that we have shown that every integer has a Cantor expansion, we must show that this expan-
sion is unique. So suppose that n has two different Cantor expansions n = a,,m! + apm_1(m — 1) +-- -+
a2+ a11! = byym! + b1 (m — 1)1 4 - - 4 b22! + b1 1!, where a; and b; are integers, and 0 < a; < j and
0<b; <jforj=1,2,...,m. Suppose that k is the largest integer such that a; # by, and without loss
of generality, assume aj > by, which implies that ax, > by + 1. Then agk! + ap—1(k — 1)1+ - + a1l =
brk! +br_1(k —1)! + - - - 4+ b1 1!. Using the identity Z?le -jl'= (k+1)! -1, proved in Exercise 16 of Sec-
tion 1.3, we see that bik! + b1 (K — 1)1+ -+ b1 1 < bkl + (B —1)- (E—=D)!4+---+1- 1 < bkl + k!l -1 =
(b, + 1)k! — 1 < ayk!. This is a contradiction, so the expansion is unique.

2.1.30. If the first player takes 2 matches then they must be from the same stack. The second player may then
win by taking the other two. If player one only takes one match, then player 2 can take one match from

the other stack, which is a winning position as discussed in the description of nim.

2.1.31. Call a position good if the number of ones in each column is even, and bad otherwise. Since a player
can only affect one row, he or she must affect some column sums. Thus any move from a good position
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produces a bad position. To find a move from a bad position to a good one, construct a binary number
by putting a 1 in the place of each column with odd sum, and a 0 in the place of each column with even
sum. Subtracting this number of matches from the largest pile will produce a good position.

2.1.32. Let (w,z,y, z) represent the number wxyz, where w, z,y, z are single digits. Let a, b, ¢, d be the digits
of a fixed point n of T' (a number such that T'(n) = n). We first show that all four digits of n are differ-
ent. Suppose, to the contrary, that b = ¢. Then (a, b,b,d) — (d,b,b,a) = (a — 1 —d,9,9,10 + d — a). Since
n is a fixed point, we can now see that it must have two 9s, and as b = ¢, in fact it must have three 9s.
Soa =b=c¢=9. From this, since d # 10+ d —a = d + 1, we know that d = 8 — d, and d = 4. But
(9,9,9,4) — (4,9,9,9) = (4,9,9,5), so there is not a fixed point with b = c. Therefore, b # c. Suppose,
now, thata > b > ¢ =d. Then (a,b,c,c) — (¢,¢,b,a) = (a—¢c,b—1—¢c,c+9—b,10+c—a). As,b—c—1 <
a—c,a—c>b—c—1<bandc+9—b> 10+ c—a, we know that a and b are a — cand c+9 — b, perhaps
not respectively. If a = a — ¢, then ¢ = 0. But then b = 9 — b, which is impossible. If a = ¢+ 9 —b, then b =
a—cand a = ¢+ 9 — a — ¢, from which it follows that 9 is even. So we conclude that ¢ # d. Suppose that
a=>b>c>d Then (a,a,¢,d)—(d,c,a,a) = (a—d,a—c—1,c—a+9,10 +d — a). From the inequalities
a>a—d>a—c>a—c—landc—a+9>d+1—-a+9 =10+ d— a we may conclude that c and d are
a—c—1and 10+ d — a, perhaps not respectively. If ¢ = a — ¢ — 1, then we see that ¢ must be odd. But in
this case d = 10 + d — a also, which tells us that ¢ must be even. If, on the other hand, ¢ = 10 +d — a and
d=a—c—1,thenc=104+a—c—1—a =9 — ¢, which is impossible. We conclude here that a # b. Sup-
pose thata = b > ¢ = d. Then (a,a,c,¢) — (¢,¢,a,a) = (a—c,a—c—1,c—a+9,104+c—a). Sincea —c >
a—c—1l,a—c=aandc=0.Nowa—c—1=¢ssoa =1 But(1,1,0,0)—(0,0,1,1) = (1,0,8,9), so clearly
this does not give a fixed point. So we now know that a > b > ¢ > d. Now, (a,b,c,d) — (d,¢,b,a) =
(a—d,—1+b—¢,9—b+¢,10—a+d). Notethata—d > -1+b—¢c,and9+c—b>104+d—a > d.
So, d is either —1 +b—cor 10 +d — a. If d = 10 + d — @, then a = 10, which is not a single digit. Thus,
d = —14+0b—c. Now, we see that cis eithera —dor10+d—a. Ifc=a—d,thend = -1+b—c =
—1+4+b—a+d. From this, we arrive at a+1 = b, a contradiction. Thus ¢ = 10+d—1.Ifa = a—d, thend =
0. Proceeding along with thought, b = ¢+ 1 = 9 + ¢ — b now, which tells us that b = 8,c = 7and a = 4.
This is a contradiction. Thus a = 9+ c—band b = a — d. We now have four equations in four unknowns.
Solving this system, we find that a = 7,b = 6,¢ = 4, and d = 1. This gives a fixed point, namely 6174.

2.1.33. a. First show that the result of the operation must yield a multiple of 9. Then, it suffices to check only
multiples of 9 with decreasing digits. There are only 79 of these. If we perform the operation on
each of these 79 numbers and reorder the digits, we will have one of the following 23 numbers:
7551, 9954, 5553, 9990, 9981, 8820, 9810, 9620, 8532, 8550, 9720, 9972, 7731, 6543, 8730, 8640, 8721,
7443, 9963, 7632, 6552, 6642, or 6174. It will suffice to check only 9810, 7551, 9990, 8550, 9720, 8640,
and 7632.

b. From the solution in part (a), construct a tree from the last seven numbers. The longest branch is six
steps. Every number will reach the tree in two steps. The maximum is given by 8500 (for instance)
which takes eight steps.

2.1.34. Let ag = (a,b,c,d) be a base 5 fixed point of T5. Then T5(ap) = (a,b,c,d) — (d,c,b,a) =
(a—d,b—1—c,c+4—bd+5—a),for all ag, with b # c. Note that the center two digits of T'(ag)
sum to (3)s5, and the outer two to (10)s. Since the order of the digits is irrelevant, we need only ex-
amine four cases: (1034)s, (1124)5,(2033)5, and (2124)5. By checking these cases one at a time, we
find that they all go to (3032)5, which is a fixed point of T5. Similarly, if b # ¢, then T5(ao) is one of
(0444)5, (1443)5, (2442)5, (3441)5, and (4440)5. By symmetry, we need only check (0444)s, (1443)5, and
(2442)5. All of these do, in fact, go to (3032)5, the Kaprekar’s constant for the base 5.

2.1.35. Consider ay = (3043)s. Then T5((3043)g) = (3552)¢, Ts((3552)¢) = (3133), T5((3133)s) = (1554)g,
T6((1554)6) = (4042)6, T5((4042)6) = (4132)6, and T5((4132)) = (3043)s = ao. So Tg repeats with pe-
riod 6. Therefore, it never goes to a Kaprekar’s constant for the base 6. Hence, there is no Kaprekar’s
constant for the base 6.

2.1.36. Let (abc)1o, be the digits of an integer with a < b < ¢, and a, b, and ¢ not all the same. Then (abc)19 —
(cba)10 = ((a — ¢)(9)(10 + ¢ — @))10, so the form of the next integer is 9bc. Then (9b¢)19 — (¢b9)10 = ((9 —
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¢ —1)(9)(1 + ¢))10. After re-ordering, we see that after two iterations we must have one of the numbers
891,792,693, or 594. Then T'(981) = 792, T(792) = 693, T'(693) = 594, and T'(594) = 495, up to order of
the digits. Therefore 495 is a Kaprekar’s constant for three-digit base 10 integers.

2.2. Computer Operations with Integers

2.2.1. To add (101111011), and (1100111011), we first add 1 and 1, obtaining the rightmost bit 0 and the
carry 1. Then we add the bits 1 and 1 and the carry 1, obtaining the second bit from the right in the sum
1 and the carry 1. Then we add the bits 0 and 0, and the carry 1, obtaining the third bit from the right in
the sum, 1. Then we add the bits 1 and 1, obtaining the fourth bit from the right in the sum, 0, and the
carry 1. Then we add the bits 1 and 1 and the carry 1, obtaining the fifth bit from the right in the sum 1,
and the carry 1. Then we add the bits 1 and 1 and the carry obtaining the sixth bit from the right in the
sum 1, and the carry 1. Then we add the bits 1 and 0 and the carry 1 obtaining the seventh bit from the
right in the sum, 0, and the carry, 1. Then we add the bits 0 and 0 and the carry 1, obtaining the eighth
bit from the right in the sum 1. Then we add the bits 1 and 1, obtaining the ninth bit from the right, 0,
and the carry 1. Then we add the (leading) bit 0 and the bit 1 and the carry 1, obtaining the tenth bit in
the sum, 0, and the carry, 1, which is the leading bit from the left. Hence the sum is (10010110110)s.

2.2.2.  We have (10001000111101), + (11111101011111)5 = (110000110011100),
2.2.3. We have (1111000011); — (11010111)5 = (1011101100),
2.2.4. We have (1101101100)5 — (101110101)y = (111110111),

2.2.5. Tomultiply (11101); and (110001)5 we need to add 2°(110001)5 = (110001)s, 22(110001), = (11000100)s,
23(110001)3 = (110001000)s, and 24(110001); = (1100010000)s. The first bit and carry are computed
from 1+ 0+ 0+ 0 = 1. The second bit and carry are computed from 0+ 0 + 0 + 0 = 0. The third bit and
carry are computed from 0+ 1+ 040 = 1. The fourth bit and carry are computed from 0 +0+1+0 = 1.
The fifth bit and carry are computed from 1+ 040 + 1 = 10. The sixth bit and carry are computed from
(with the carry 1) 1 + 1+ 0+ 0+ 0 = 10. The seventh bit and carry are computed from (with the carry 1)
14+0+1+0+0 = 10. The eighth bit and carry are computed from (with the carry 1) 1+0+1+1+0=11. The
ninth bit and carry are computed from (with the carry 1) 1+0+0+1+1= 11. The tenth bit and eleventh bit
are computed from (with the carry 1) 1+0+0+0+1=10. Hence (11101), - (110001)3 = (10110001101)s.

2.2.6. We have (1110111) - (10011011)5 = (100100000001101),

2.2.7. Wehave (110011111)y = (11111) - (1101)5 + (1100),

2.2.8. We see that, because of the length of the words (11101), and (110100111),, that our quotient has
four digits. We begin with (110100111)s = 23(11101)3 + (10111111)5. We continue with (10111111)y =
22(11101)5 4 (1001011)5 and (1001011)5 = 2(11101) + (10001). Thus, when (110100111), is divided by
(11101)2, we get a quotient of (1110)2 and a remainder of (10001)s.

2.2.9. We have (1234321)5 + (2030104)5 = (3314430)5

2.2.10. We have (4434201)5 — (434421); = (3444230)5

2.211. We have (1234)5 - (3002)5 = (3023)5 + (4312000)5 = (4320023)5

2.2.12. We have (14321); = (22)5 - (334)5 + (313)5

2.213. To add (ABAB);6 and (BABA)1¢ we first add the rightmost hexadecimal digits B and A obtaining
the rightmost digit of the sum, 5, and carry, 1. Then we add the hexadecimal digits in the second po-
sition from the right and the carry, namely A, B and 1, obtaining the second digit from the right in the

sum, 6, and the carry, 1. Then we add the hexadecimal digits in the third position from the right, namely
B, A, and 1, obtaining the digit in the third position from the right, 6, and the carry, 1. Finally, we add
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the hexadecimal digits in the leftmost position and the carry, namely A, B, and 1, obtaining the second
hexadecimal digit from the left in the sum, 6, and the leftmost hexadecimal digit in the sum 1. Hence
the sum is (16665)16.

2.2.14. We have (FEED)16 — (CAFE)16 = (33EF)16
2.2.15. We have (FACE)M; . (BAD)lG = (B705736)16
2.2.16. We have (BEADED)16 = (110)16 . (ABBA)16 + (2395)16

2.2.17. Werepresent the integer (18235187)1( using three words: ((018)(235)(187))1000 and the integer (22135674)1
using three words: ((022)(135)(674))1000, Wwhere each base 1000 digit is represented by three base 10 dig-
its in parentheses. To find the sum, difference, and product of these integers from their base 1000 repre-
sentations we carry out the algorithms for such computations for base 1000. The details are omitted.

2.2.18. The algorithms for addition, subtraction, multiplication, and integer division for numbers written in
a negative base are identical to those written in a positive base.

2.2.19. To add numbers using the one’s complement representation, first decide whether the answer will be
negative or positive. To do this is easy if both numbers have the same lead (sign) bit; otherwise conduct
a bit-by-bit comparison of a positive summand’s digits and the complement of the negative’s. Now, add
the other digits (all but the initial (sign) bit) as an ordinary binary number. If the sum is greater than 2"
we have an overflow error. If not, consider the three quantities of the two summands and the sum. If
exactly zero or two of these are negative, we're done. Otherwise, we need to add (1) to this answer.
Also, add an appropriate sign bit to the front of the number.

2.2.20. To subtract b from a, obtain —b as in Exercise 20, Section 2.1. Then add a and —b as in Exercise 19.

2.2.21. Leta = (am@m—1-..aza1)rand b = (by,by—1 ... b2b1)1. Then a+0bis obtained by adding the digits from
right to left with the following rule for producing carries. If a; + b; 4+ ¢;_1, where ¢;_; is the carry from
adding a;_; and b;_1, is greater than j, then ¢; = 1, and the resulting jth digitis a; + b; + ¢;_1 —j — 1.
Otherwise, ¢; = 0. To subtract b from a, assuming a > b, we let d; = a; — b; + ¢;—1 and set ¢; = 0 if
a; — b; + ¢;_1 is between 0 and j. Otherwise, d; = a; — b; + ¢;_1 + j + 1 and set ¢; = —1. In this manner,
a—b= (dmdm,1 N dgdl)!.

2.2.22.a. We have (374):2 eggs removed from (B03),2 eggs (Where B is the base 12 digit that represents the
decimal integer 11). Since (B30)12 — (374)12 = (778)12 there are 7 gross, 7 dozen, and 8 eggs left.

b. Wehave (5)13 times (237);2 eggs in the delivery. Since (5)12-(237)12 = (B5B)12 there were 11 gross,
5 dozen, and 11 eggs in the delivery.

¢.  We have three groups of eggs each containing (BA6)12/(3)12 eggs. Since (BA6)12/(3)12 = (3B6)12,
each group contains 3 gross, 11 dozen, and 6 eggs.

2.2.23. We have (a,...a15)7y = (10(an...a1)10 + 5)> = 100(an...a1)iy + 100(an...a1)10 + 25 =
100(ay, - .- a1)10((@n - - - a1)10 + 1) + 25. The decimal digits of this number consist of the decimal digits of
(@n ...a1)10((an - . .a1)10 + 1) followed by 25 since this first product is multiplied by 100 which shifts its
decimal expansion two digits.

2.2.24. We have (a,...a1B)35 = (2B(an...a1)10 + B)? = (2B)*(an...a1)3y + 4B%(an ...a1)2 + B? =
(2B)*(an - ..a1)25((an . ..a1)25 + 1) +25. The base 2B digits of this number consist of the base 2B digits
of (an ...a1)2(an ... a1)25+1 followed by B2 since this first product is multiplied by (2B)? which shifts
its base 2B expansion two digits. To finish the proof, note that B®* = (B/20)2p5 =
(2B)(B/2) + 0 is valid when B is even. Furthermore, when B is odd, B> = ((B — 1)/2B)2p =
(2B)((B—-1)/2) + B.
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2.3. Complexity and Integer Operations
2.3.1.a. Wehave 2n + 7is O(n) since 2n + 7 < 9n for every positive integer n.

b. Note that n?/3 is not O(n) for if C is a real number it follows n?/3 > Cn whenever n > 3C.
c¢. Wehave 10is O(n) since 10 < 10n whenever n is a positive integer.

d. We have n? + 1 < 2n? whenever n is a positive integer. Hence log(n? + 1) < log(2n?) = 2logn +
log 2 < 3n whenever n is a positive integer. It follows that log(n? + 1) is O(n).

e. Note that vn2 + 1 < v2n2 < v/2 - n whenever n is a positive integer. Hence vn? + 1is O(n).

f. Wehave (n? +1)/(n+ 1) < (2n?/n = 2n whenever n is a positive integer. Hence (n? + 1)/(n + 1)
is O(n).

2.3.2. Note that forn > 1, 2n* + 3n% + 17 < 2n* + 3n* + 17n* = 22n*. So we take K = 22, in the definition.

2.3.3. First note that (n® + 4n?logn + 101n?) is O(n?®) and that (14nlogn + 8n) is O(nlogn) as in Example
1.36. Now applying Theorem 1.12 yields the result.

2.3.4. Note that n! = [T}_, j < [[j_, n = n" whenever n is a positive integer. Hence n! = O(n").

2.3.5. Use Exercise 4 and follow Example 1.34, noting that (logn)® < n® whenever n is a positive integer.

2.3.6. Notethatn! =" ;™ <> n™ =n""" Hence >, j™ = O(n™*).

2.3.7. Let k be an integer with 1 < k < n. Consider the function f(k) = (n + 1 — k)k, whose graph is a
concave-down parabola with k-intercepts at k = 0 and k£ = n + 1. Since f(1) = f(n) = n, itis clear that
f(k) > nfork =1,2,3,...,n. Now consider the product (n!)? Hk Lk(n+1—k) > [[,_,n, by the
inequality above. This last is equal to n™. Thus we have n" < (n!)?. Taking logarithms of both sides

yields nlog(n) < 2log(n!), which shows that nlog(n) is O(log(n!)).

2.3.8. There exist by hypothesis ky and k such that f; < k10(g1) and fa < k2O(g2). Let k = max{c1 k1, coka}.
Then ¢y f1 + cafa < c1k10(g1) + c2k20(g2) < k(O(g1) + O(g2)) = kO(g1 + g2)-

2.3.9. Suppose that f is O(g) where f(n) and g(n) are positive integers for every integer n. Then there is an
integer C' such that f(n) < Cg(n) for all € S. Then f*(n) < C*g*(n) for all z € S. Hence f* is O(g*).

2.3.10. Suppose f(n) = O(logyn). Then f(n) < klog,n = klog,rlog,.n = k'log, n. Conversely, if f(n) <
klog, n = k(logyn)/(log, ) = k' log, n, and so f(n) = O(logy n).

2.3.11. The number of digits in the base b expansion of n is 1 + k where k is the largest integer such that b* <

n < b1 since there is a digit for each of the powers of 8°, b!, .. . b¥. Note that this inequality is equiva-
lent to k < log,n < k + 1, so that k = [log, n]. Hence there are [log, n] + 1 digits in the base b expansion
of n.

2.3.12. For addition, three numbers (two operations) must be added for each digit. Thus it takes less than or
equal to 2n operations to add two numbers. Subtraction follows in a similar manner.

2.3.13. To multiply an n-digit integer by an m-digit integer in the conventional manner, one must multiply
every digit of the first number by every digit of the second number. There are nm such pairs.

2.3.14. a. There are n — 1 addition signsin 142+ - - - n, so there are n — 1 additions total. Each addition takes

at most 2[log, n] + 2 bit operations (see solution to Exercise 12 and Exercise 11). So, the total number
of bit operations is at most 2(n — 1)([log, n] + 1).
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b. Here we have one multiplication, which will require at most ([log, n + 1] + 1)? operations. Shifting
is one bit operation, so the total number of bit operations is at most ([logy n + 1] +1)? — 1.

2.3.15.a. We use the result of Theorem 2.6. Let m = [log,n + 1]. If we first multiply consecutive pairs of
integers in the the product, we have O(n/2) multiplications of integers with at most m bits. By
Theorem 2.6, there is an algorithm for doing this using O(m log, mlog, log, m) operations. Now
we have [n/2] integers of at most 2m bits. If we multiply pairs of these integers together, then
by Theorem 2.6 again, this results in O((n/4)(2m)log, mlog, log, m), where we use the fact that
log, km log, log, km = O(log, mlog, log, m) for any constant k. Continuing in this manner we find
that computing n! takes O(3°7", n/(27)2/~ ! log, mlog, logy m) = O((n/2)m?* log, mlog, log, m) =
O(nlogs nlog, log, nlog, log, log, n) operations.

b. We need to find three factorials, which will have the same big-O value as in part (a). We will also
need to perform one subtraction (which will not affect the big-O value), one multiplication and one
division. The factorials have at most nlog n bits, so by Theorem 2.5, the multiplication will take at
most O((nlogn)'™¢) bit operations. By Theorem 2.7, the division will take O((nlogn)'*¢), so in to-
tal the number of bit operations is O((nlogn)!*<).

2.3.16. Letm be aninteger. Then m has n = [log,(m)+ 1] bits, from Exercise 11. Using the method of Example
2.1, we need to perform the division algorithm n times. Each division takes O(n?) = O([log,(m) +1]?) =
O(log® m). Therefore, the binary expansion can be found in O(log® m) bit operations.

2.3.17. (1001)3-(1011)g = (24+22)(10)2(10)3 +22(10—01)5(11 — 10))a + (22 +1)(01)5(11)3 = (10100)2(100)5 +
(100)2(01)2(01)5 + (101)2(01)5(11)5 = (1010000)5 4 (100) + (1111)y = (1100011),

2.3.18. (10010011)y - (11001001)2 = (2% + 2%)(1001)2(1100)2 + 2*(1001 — 0011)2(1001 — 1100))> +
(2* + 1)(0011)2(1001); = (100010000)2(1101100)2 — (10000)2(0110)2(0011)s + (10001)5(11011)y =
(110110000000000)2 + (11011000000)2 — (100100000)2 + (111001011); = (111001101101011)2, where we
have used identity (1.9) with n = 2 to do the smaller multiplications.

23.19.a. ab= (10>" + 10")A; By + 10"(A; — Ao)(Bo — B1) + (10" + 1) Ag By where A; and B; are defined as
in identity (1.9).

b. 7387 = (102 +10)7- 8+ 10(7 — 3)(7 — 8) + (11)3 - 7 = 5600 + 560 — 40 + 210 + 21 = 6351.

. 4216-2733 = (10100)42 - 27 + (100)(42 — 16)(33 — 27) + (101)16 - 33. Then, 42 - 27 = (102 + 10)4 - 2 +
10(4 — 2)(7 — 2) + (11)2- 7 = 1134, and, 26 - 06 = (10% + 10)2- 0 + 10(2 — 6)(6 — 0) + (11)6 - 6 = 156,
and 16 - 33 = (102 4+ 10)1- 3+ 10(1 — 6)(3 — 3) + (11)6 - 3 = 528. Then 4216 - 2733 = (10100)1134 +
(100)156 + (101)528 = 11522328.

2.3.20. Note that an element of the kth column of A will be multiplied with each element of the kth row of
B. Thus, each of the n? entries of A will be multiplied n entries of B. In other words, n® multiplications
will be performed.

2.3.21. That the given equation is an identity may be seen by direct calculation. The seven multiplications
necessary to use this 1dent1ty are: a11b11, alzbgl, (CL11 — Q21 — a22)(b11 — b12 — bzz), (021 + 022)(b12 — bll)/
(a11 + a12 — az1 — a22)baz, (a11 — az1)(ba2 — bi2), az2(b11 — bar — b1z + ba2).

2.3.22. We proceed by mathematical induction. Exercise 21 serves to complete the basis step. For the induc-
tive hypothesis, assume that it requires 7¥ multiplications to multiply two 2% x 2% matrices, and fewer
than 7*+1 additions. Note that the identity from Exercise 21 holds when the entries of the 2 x 2 matrices
are themselves square matrices, all the same size. Thus we may view a 28! x 2¢*! matrix as a 2 x 2
matrix whose entries are 2* x 2* matrices. Thus we will need to multiply 2% x 2% matrices seven times,
requiring 7 - 7% = 71 multiplications. Similarly, we will need to add 2* x 2* matrices 18 times, requit-
ing exactly 18 - 2% additions. But 18 - 28 < 7.3.2.2k-1 < 72.2k=1 < 7k+1 35 desired.
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2.3. COMPLEXITY AND INTEGER OPERATIONS 33
2.3.23. Let k = [logyn] + 1. Then the number of multiplications for 2¥ x 2¥ matrices is O(7%). But, 7% =

2(logs M([logz nl+1) — (210821082 T9l082 ) — O(nle27). The other bit operations are absorbed into this
term.
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CHAPTER 3
Primes and Greatest Common Divisors

3.1. Prime Numbers

3.1.1.a. We see that 101 is prime since it is not divisible by any positive integers other than 1 or 101. To ver-
ify this it is sufficient to check that 101 is not divisible by any prime not exceeding +/101. The only
such primes are 2, 3, 5, and 7 and none of these divide 101.

b. We see that 103 is prime since it is not divisible by any positive integers other than 1 or 103. To ver-
ify this it is sufficient to check that 103 is not divisible by any prime not exceeding +/103. The only
such primes are 2, 3, 5, and 7 and none of these divide 103.

c¢. We see that 107 is prime since it is not divisible by any positive integers other than 1 or 107. To ver-
ify this it is sufficient to check that 107 is not divisible by any prime not exceeding +/107. The only
such primes are 2, 3, 5, and 7 and none of these divide 107.

d. We see that 111 is not prime since it is divisible by 3.

e. We see that 113 is prime since it is not divisible by any positive integers other than 1 or 113. To ver-
ify this it is sufficient to check that 113 is not divisible by any prime not exceeding +/113. The only
such primes are 2, 3, 5, and 7 and none of these divide 113.

f.  We see that 121 is not prime since it is divisible by 11.

3.1.2.a. Wehave 201 = 3 - 67, so 201 is not prime.

b. We have 203 = 7 - 29, so 203 is not prime.

c¢. Wehave 207 =9 - 23, so 207 is not prime.

d. 211 is prime.

e. Wehave 213 = 3 71, so 213 is not prime.

f. Wehave 221 = 13 - 17, so 221 is not prime.

3.1.3. The primes less than 150 are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67,71, 73, 79,
83, 89, 97,101, 103, 107, 109, 113, 127, 131, 137, 139, 149

3.1.4. In addition to the primes in Exercise 3, we have 151, 157, 163, 167, 173, 179, 181, 191, 193, 197 and 199.

3.1.5. Suppose thatn = z* —y* = (z —y)(z +y)(2* + y?), where z > y. The integer n can not be prime since
it divisible by = + y which can not be 1 or n.

3.1.6. We note that n must be positive. Otherwise n® + 1 is less than or equal to 1 and no such integers are
prime. Since n® + 1 = (n + 1)(n* — n+ 1), n® + 1 is not prime unless one of the two factors on the right
hand side of this equation is 1 and the other is n® + 1. But n + 1 is greater than 1 for every positive in-
teger n, and the only way for n + 1 = n3 + 1 is when n = 1 as is easily verified. It is this case we have

35
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36 3. PRIMES AND GREATEST COMMON DIVISORS
13 +1=(1+1)(12 — 1+ 1) = 2. Hence 2 is the only prime of this form.

3.1.7. Using the identity given in the hint with k such that 1 < k < n and k | n, then a* — 1 | @ — 1. Since
a™ — 1 is prime by hypothesis, a* — 1 = 1. From this, we see that @ = 2 and k = 1, contradicting the fact
that £ > 1. Thus we must have ¢ = 2 and n is prime.

3.1.8. Since @, is a positive integer greater than 1, by Lemma 3.1 it has a prime divisor p. If p < n, then p|n!,
so then p|Q,, — n! = 1, a contradiction. Therefore, we must have p > n. So we can construct an infinite
sequence of primes as follows. Choose p; to be a prime divisor of ();. Then choose p; to be a prime di-
visor of @),, and in general choose pj+1 to be a prime divisor of @)p,. Thenp; < ps < -+ < pp < -+,
which proves that there are infinitely many primes.

3.1.9. We need to assume n > 3 to assure that S,, > 1. Then by Lemma 3.1, S,, has a prime divisor p. If p <
n then p|n!, and so p|n! — S,, = 1, a contradiction. Therefore we must have p > n. Since we can find
arbitrarily large primes, there must be infinitely many.

3.1.10. a. We proceed by induction. When n = 1 we have p; = 2 < 22" — 2. Now assume that pr < 22" for
k=1,2,...,n—1. Then by Euclid’s proof, a prime g other than pi, ps, . . ., p, divides Q,,. Then p,, <
q<Qn=pip2---pp+1< 92°92" [ 92" 7T _ 92%42 442" _ 92”711 | 1 Gince the inequality is
strict and we are dealing with integers we have p,, < 92" -1 < 22"71, which completes the induc-
tion step.

b. By part a., the (n + 1)st prime is less than or equal to 22", and since a power of 2 can not be prime
itself when n > 0, we must have at least n + 1 primes strictly less than 22".

3111. Q1 =3,Q2 =7,Q3 = 31,Q4 = 211,Q5 = 2311, Qs = 30031. The smallest prime factors are 3, 7, 31,
211, 2311, and 59, respectively.

3.1.12. Let @ = pip2---pn—1 + 1, where p; is the ith prime. Then by Euclid’s proof, some prime ¢ different
from p1,pa,...,pn_1 divides Q. Then p,, < ¢ < Q.

3.1.13. If n is prime, we are done. Otherwise n/p < (/n)2. If n/p is prime, then we are done. Otherwise, by
Theorem 3.2, n/p has a prime factor less than \/n/p < ¥/n, a contradiction.

3.1.14. Suppose p = 3k + 1 for some positive integer k. If k is odd, then k = 2n + 1 for some integer n and so
p=302n+1)+1=6n+4 = 2(3n+ 2) which is clearly not prime, a contradiction. Therefore, £ must be
even, say k = 2n for some integer n. Then p = 3(2n) + 1 = 6n + 1 as desired.

3.1.15. a. The arithmetic progression is 3n + 1 and the first values are 4, 7, 10, . . .. The first prime is 7.

b. We list the first few numbers of the shape 5n + 4 until we find a prime: 9, 14, 19, which is prime.

c.  We list the first few numbers of the shape 11n + 16 until we find a prime: 27, 38,49, 60, 71, which is
prime.

3.1.16. a. We list the first few numbers of the shape 5n + 1 until we find a prime: 6, 11, which is prime.

b. We list the first few numbers of the shape 7n + 2 until we find a prime: 9,16,23, which is prime.
(But if we begin with n = 0, the first term is 2, which is prime.)

c. We list the first few numbers of the shape 23n + 13 until we find a prime: 36,59, which is prime.
(But if we begin with n = 0, the first term is 13 which is prime.)

3.1.17. If n is prime the statement is true for n. Otherwise, n is composite, so n is the product of two integers
a and b such that 1 < a < b < n. Since n = ab and by the inductive hypothesis both a and b are the
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3.1. PRIME NUMBERS 37
product of primes, we conclude that n is also the product of primes.

3.1.18. The number of integers not exceeding n that are prime are the integers other than 1 that are either
primes less than /n or integers greater than /n not exceeding n that are not divisible by any of these
primes. We can use the principle of inclusion-exclusion to find the number of positive integers not ex-
ceeding +/n that are not divisible by any of the primes p1, ps, ..., p, not exceeding /n. Then we can
add 7(y/n) to count the number of primes not exceeding /n, and subtract 1 since the integer 1 is not
divisible by any of these primes, but is not itself prime. Since the number of integers not exceeding n
that are divisible by the primes p;,, pi,, - - -, i, is [n/(pi, i, - - - Pi,.)], the principle of inclusion-exclusion
tells us that the number of integers not exceeding n that are not divisible by any of these primes is n —
Yican/pil + X cic i/ Pipg)] = i cicjaner 0/ (Pipjpr)] + -+ (=1)"[n/ TT;_, pi]. We see that 7(n)
is obtained by adding 7(y/n) — 1 to this quantity.

3.1.19. Using Exercise 18, we have, 7(250) = (7(1/250) — 1) + 250 — ([250/2] + [250/3] + [250/5] + [250/7] +
[250,/11] 4 [250/13]) + ([250/6] + [250,/10] + [250,/14] 4 [250,/22] + [250/26] + [250,/15] + [250,/21] 4 [250/33] +
[250/39]+[250/35] +[250/55] + [250/65] +[250,/77] +[250/91] +[250,/143]) — ([250/30] + [250,/42] + [250,/66] +
[250/70] + [250/78] -+ [250/105] + [250/110] + [250,/130] + [250/132] + [250,/154] + [250/165] + [250/195] +
[250,/231]) + ([250/210]) = 5 + 250 — (125 + 83 + 50 + 35 + 22+ 19) + (41 + 25+ 17+ 11 + 9+ 16 + 11 +
7T+6+74+4+34+3+24+1)—-84+5+3+3+3+2+24+1+14+1+14+1)+1=053.

3.1.20. Let f(z) = 22 — x + 41. Then f(0) = 41, f(1) = 41, f(2) = 43, f(3) = 47, f(4) = 53, f(5) 7f(6) =
71, £(7) = 83, f(8) = 97, f(9) = 113, £(10) = 131, f(11) = 151, f(12) = 173, f(13) = 197, f(14
293, f(15) = 251, f(16) = 281, f(17) = 313, £(18) = 347, £(19) — 383, £(20) = 421, f(21) = 461, f(2 )
503, £(23) = 547, £(24) = 593, £(25) = 641, f(26) = 691, f(27) = 743, f(28) = 797, f(29) = 853, £(30) =
011, F(31) = 971, £(32) — 1033, £(33) — 1097, £(34) — 1163, (35) — 1231, £(36) — 1301, f(37) —
1373, £(38) = 1447, £(39) = 1523, and f(40) = 1601 are all primes, but f(41) = 412 — 41 + 41 = 412
is composite.

3.1.21. Forn = 1,2,...10, the values of the function are 13,19, 29,43,61, 83,109, 139,173, 211, each of which
is prime. But 2- 112 + 11 = 11(2- 11+ 1) = 11 - 23, so it is not prime.

3.1.22. Forn = 1,2,...28, the values of the function are 31, 37,47,61,79,101, 127,157,191, 229, 271, 317, 367,
421,479, 541,607, 677, 751,829, 911,997, 1087, 1181, 1279, 1381, 1487, 1597, each of which is prime. But 2 -
292 +29 =29(2-29 + 1) = 29 - 59, so it is not prime.

3.1.23. Assume not. Let z( be a positive integer. It follows that f(z¢) = p where p is prime. Let k be an inte-
ger. We have f(zo + kp) = an(xo + kp)” + - - - + a1(zo + kp) + ap. Note that by the binomial theorem,
(w0 + kp)? = S0, (9)ap " (kp)'. It follows that f(zo + kp) = o a;jzl + Np = f(zo) + Np, for some
integer N. Since p | f(zo) it follows that p | (f(zo) + Np) = f(xo + kp). Since f(zo + kp) is supposed to
be prime, it follows that f(xzo + kp) = p for all integers k. This contradicts the fact that a polynomial of
degree n takes on each value no more than n times. Hence f(y) is composite for at least one integer y.

3.1.24. The sequence of lucky numbers less than 100 is: 1, 3,7, 9, 13, 15, 21, 25, 31, 33, 37, 43, 49, 51, 63, 67, 69,
73,75,79, 87,93, 99.

3.1.25. At each stage of the procedure for generating the lucky numbers the smallest number left, say &, is
designated to be a lucky number and infinitely many numbers are left after the deletion of every kth in-
teger left. It follows that there are infinitely many steps, and at each step a new lucky number is added
to the sequence. Hence there are infinitely many lucky numbers.

3.1.26.a. Suppose pjlty — Qr +1 =1t — (p1---px +1)+1 =ty —p1---pk. Since p;|p1 - - - pr + 1, then p;|tx
which is impossible by Euclid’s proof.

b. Fork=1wehave@; =2+1=3,s0t; =5andt; —Q1+1=5—-3+1=3isprime. For k =2, we

have Q2 =2-3+1=7,s0ty = 1land ts—Q2+1 = 11—-7+1 = 5 which is prime. For kK = 3 we have
Q3=2-3-5+1=31,s0t3 =37and t3— Q3 +1 = 37—31+1 = 7 which is prime. For £ = 4 we have
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Q=235T7+1=211s0ty =223and t4 —Qs+1 = 223—-211+1 = 13 which is prime. For k = 5 we
have ()5 = 2-3-5-7-11+1 = 2311,s0 t5 = 2333 and t5 — Q5 +1 = 2333 —-2311+1 = 23 which is prime.

3.2. The Distribution of Primes

3.2.1. The smallest 5 consecutive composite integers can be found by locating the first pair of consecutive
composite odd integers, 25 and 27. Hence the smallest 5 consecutive composite integers are 24, 25, 26, 27,
and 28. (These are considerably smaller than the integers (5+1)!+j = 6!+ = 720+ for j = 2,3,4,5,6.)

3.2.2. 1000001! + j, is divisible by j for all j = 2,3, ...,1000001, which gives one million consecutive com-
posite integers.

3.2.3. Suppose that p,p + 2, and p + 4 were all prime. We consider three cases. First, suppose that p is of the
form 3k. Then p cannot be prime unless k£ = 1, and the prime triplet is 3, 5, and 7. Next, suppose that p
is of the form 3k + 1. Then p + 2 = 3k + 3 = 3(k + 1) is not prime. We obtain no prime triplets in this
case. Finally, suppose that p is of the form 3k + 2. Then p +4 = 3k + 6 = 3(k +2) is not prime. We obtain
no prime triplet in this case either. Since the three cases are exhaustive, we have only one prime triplet
of this kind, 3, 5, and 7.

3.2.4. By searching through a table we find these triples: (5,7,11), (11,13,17), (17,19, 23), and (41, 43,47).

3.2.5. By searching through a table we find these triples: (7,11, 13), (13,17,19), (37,41, 43), and (67,71, 73).

3.2.6. a. The smallest prime between 3 and 6 is 5.

b. The smallest prime between 5 and 10 is 7.

¢. The smallest prime between 19 and 38 is 23.

d. The smallest prime between 31 and 62 is 37.
3.2.7.a. The smallest prime between 4 and 8 is 5.

b. The smallest prime between 6 and 12 is 7.

c. The smallest prime between 23 and 46 is 29.

d. The smallest prime between 47 and 94 is 53.

3.2.8. To see that the primes are indeed in the range, we print them as triples (n?, smallest prime, (n + 1)?).
Forn = 1,2,...,10 we have (1,2,4), (4,5,9), (9,11,16), (16,17,25), (25,29, 36), (36, 37,49), (49,53, 64),
(64, 67,81), (81,83,100), and (100, 101,121).

3.2.9. To see that the primes are indeed in the range, we print them as triples (n?, smallest prime, (n + 1)?).
Forn = 11,12,...,20 we have (121,127, 144), (144, 149, 169), (169, 173, 196), (196, 197, 225), (225, 227, 256),
(256, 257, 289), (289, 293, 324), (324, 331, 361), (361, 367,400), and (400, 401, 441).

3.2.10. a. We have 50 = 47 + 3.
b. Wehave 98 = 87 + 11.
c. Wehave 102 =97+ 5.

d. Wehave 144 = 139 + 5.
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e. We have 200 = 197 + 3.

f. Wehave 222 =211 + 11

3.211.a. Wehave7=3+42+2.

b. Wehave17=11+3+3.

c¢. Wehave27=23+2+2.

d. Wehave 97 =89+ 5+ 3.

e. Wehave 101 =97+42+ 2.

f. Wehave199 =191+5+3

3.2.12. Letn be aninteger greater than 11. Suppose, first, that n is even. Then n = 4 + (n —4) exhibits n as the
sum of two composite integers, since 4 is composite and n — 4 is composite since it is even and greater
than two. Now suppose that n is odd. Then n = (n — 9) + 9 exhibits n as the sum of two composite
integers since 9 is composite and n — 9 is an even integer greater than two.

3.2.13. Suppose Goldbach’s conjecture is true and let n > 5 be an integer. If n is even, then n — 2 is an even
integer greater than 2 and so is the sum of two primes, p and ¢q. Then n = p + ¢ + 2, the sum of three
primes. If n is odd, then n — 3 is an even integer greater than 2 and so is the sum of two primes p and g¢.
Then n = p + ¢ + 3, the sum of three primes.

Conversely, suppose every integer greater than 5 is the sum of three primes. Let n > 2 be an even
integer. Then n + 2 is also even and is greater than 5. (It is not equal to 5 since it is even.) By hypothesis,
n+ 2 is the sum of 3 primes. If all three primes were odd, then n+ 2 would be odd, a contradiction, so at
least one of the primes is even, that is, one of the primes must be 2, so n + 2 = p + ¢ + 2 for some primes
p and ¢. Therefore n = p + ¢, the sum of two primes.

3.2.14.a. Forn =4,wehaved =2+ 2s0G(4) = 1. Forn = 6, we have 6 = 3 + 3, s0 G(6) = 1. Since 8 =
5+3,G(8) =1.Since 10 = 5+5 = 7+3, G(10) = 2. Since 12 = 7+5, G(12) = 1. Since 14 = 7+ 7 =
11+ 3, G(14) = 2. Since 16 = 13+ 3 = 11 + 5, G(16) = 2. Since 18 = 13 + 5 = 11 + 7, G(18) = 2.
Since 20 =174+ 3=13+7,G(20) = 2. Since 22 =19+ 3 =17+ 5 =11 + 11, G(22) = 3. Since 24 =
19+5=17+7=13+411,G(24) = 3. Since 26 = 23+ 3 =19+ 7 = 13 + 13, G(26) = 3. Since 28 =
23 +5=17+11, G(28) = 2. Since 30 = 23 + 7 = 19 + 11 = 17 + 13, G(30) = 3.

b. The primes less than 158 are 2,3, 5,7, 11, 13,17, 19,23, 29, 31, 37, 41, 43, 47, 53,59, 61, 67, 71,73, 79, 83,
89,97, 101,103, 107,109, 113,127,131, 137,139, 149, 151, and 157. If we subtract each of these from
158 we get the following list of numbers: 156, 155,153, 151,147, 145,141, 139,135, 129, 127,121, 117,
115,111, 105, 99, 97,91, 87, 85,79, 75,69, 61, 57, 55,51, 49,45, 31,27, 21,19,9, 7, 1, of which only 151,
139, 127,97, 79, 61, 31, 19, and 7 are primes, so G(158) = 9.

c¢. The primes less than 188 are 2,3, 5,7,11, 13,17,19, 23,29, 31,37, 41, 43,47, 53,59, 61,67, 71,73,
79,83, 89,97, 101,103, 107,109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, and 181 If we
subtract each of these from 188 we get the following list of numbers: 186, 185, 183, 181, 177, 175,
171, 169, 165, 159, 157, 151, 147, 145, 141, 135, 129, 127, 121, 117, 115, 109, 105, 99, 91, 87, 85, 81, 79,
75,61, 57,51, 49, 39, 37, 31, 25, 21, 15, 9, 7, of which only 181, 157, 151, 127, 109, 79, 61, 37, 31, and 7
are prime, so G(188) = 10.

3.2.15. Letp < n be prime. Using the division algorithm, we divide each of the first p + 1 integers in the se-
quence by pto geta = qop+ro,a+k=qp+ri,...,a+pk =gy + 1, with0 <r; < pfor each i. By the
pigeonhole principle, at least two of the remainders must be equal, say r; = ;. We subtract the corre-
sponding equations to get a + ik — a — jk = ¢;p + r; — ¢;p + r;, which reduces to (i — j)k = (¢; — ¢;)p-
Therefore p|(i — j)k, and since p is prime, it must divide one of the factors. But since (i — j) < p we must

STUDENTS-HUB.com Uploaded By: anonymous



40 3. PRIMES AND GREATEST COMMON DIVISORS
have plk.

3.2.16. Exercise 15 tells us that every prime less than six will have to divide the common difference, so we
will try a difference of 30 = 2 - 3 - 5, which generates the sequence 7,37, 67, 97,127, 157, all of which are
prime.

3.2.17. From Exercise 15, we know that every prime less than four must must divide the difference, so 6 must
divide the difference. Therefore the smallest possible difference is 6. This minimum is achieved with
5,11,17,23.

3.2.18. From Exercise 15, we know that every prime less than five must must divide the difference, so 6 must
divide the difference. Therefore the smallest possible difference is 6. This minimum is Achieved with
the sequence 5, 11,17, 23, 29.

3.2.19. From Exercise 15, we know that every prime less than six must must divide the difference, so 30 must
divide the difference. Therefore the smallest possible difference is 30. This minimum is achieved by the
example given in Exercise 16.

3.2.20. a. Since 509 is less than 2°, we consider the numbers 509 — 2* for k = 0,1,2,...,8. This gives us the
sequence 508, 507, 505, 501, 493, 477, 445, 381, 253. It is easy to check that none of these are prime,
and so the conjecture is false.

b. One way to search for likely candidates is to make a sieve. We can write out the odd numbers in a
range, say from 509 to 651. Then we can list the prime numbers in a small range, say from 450 to
650. From the list of odd numbers, we strike out every value that 2 more than a prime in our list.
Then we strike out every value that is 4 more than a prime in our list. Then we strike out every
value that is 2% more than a prime in our list, and continue in this fashion, until we have reduced
the size of our list sufficiently. Then each number crossed off will have a representation as a power
of two plus a prime so we shouldn’t consider it. Only a short sequence should be left over: 533, 547,
569, 583, 599. .., which can be tested more thoroughly. And 599 turns out to be the next smallest
counterexample.

3.2.21. If p® — ¢® = 1, with p, ¢ primes, then p or ¢ is even, so p or g is 2. If p = 2, there are several cases: we
have 2% — ¢” = 1. If ais even, say a = 2k, (22 — 1) = (2¥ — 1)(2¥ + 1) = ¢®. So ¢|(2¥ — 1) and ¢|(2* + 1),
hence ¢ = 1, a contradiction. If a is odd and Sisodd, 2 = 1+ ¢% = (1 + ¢)(¢® ' —¢® 2 + .-+ 1).
So 1+ ¢q = 2" for some n. Then 2% = (2" — 1) + 1 = 2"(odd number), since 3 is odd. So 2°~" = odd
number and so @ = n. Therefore 2% = 1 + (2% — 1)” and so 3 = 1 which is not allowed. If o = 2k + 1
and 3 = 2n we have 22**1 = 1 + ¢". Since ¢ is 0dd, ¢ is of the form 4m + 1, and by the binomial theo-
rem, so is ¢?*. Thus the right hand side of the last equation is of the form 4m + 2, but this forces k = 0, a
contradiction. If ¢ = 2, we have p® — 27 = 1. Whence 2° = (p — 1)(p®~ ! +p*~2 +--- 4+ p+ 1), where the
last factor is the sum of o odd terms but must be a power of 2, therefore, a = 2k for some k. Then 28 =
(p* — 1)(p* + 1). These last two factors are powers of 2 which differ by 2 which forces k = 1,a = 2,3 =
3,p = 3,and ¢ = 2 as the only solution: 3% — 23 = 1.

3.2.22. The conjecture is true for n = 1,2, and 3. Let n be an odd integer greater than 3, and assume the con-
jecture is true for all odd integers less than n. Let & = (n & 1)/2 where the sign is chosen so that & is odd.
Then k > 3and n — kiseven and > 1. If p is a prime such that k < p < n, thenpisoddand p | nl,pt k!,
and p { (n—k)!. Therefore, p divides (};). Hence, [T, ., p | (1) andso [T,_p<,,p» < (i) But (i) = (,"4)
and both these binomial coefficients appear in the expansion of (1 +1)" = 2 - 2"~!. Using the induction
hypothesis wehave [, p = [1,<, P - [Tjcpcn p < 4% - 2771 = 2742671 <221 — 47 S0 the conjecture is

true for all odd positive integers. If n is even, we have Hpgn p= Hpg(nq) p < 4nTl < 4n,
3.2.23. Since 3p > 2n,p, and 2p are the only multiples of p that appear as factors in (2n)!. So p divides (2n)!

exactly twice. Since 2p > n,p is the only multiple of p that appears as a factor in n!. So p | n! exactly
once. Then since (*") = 2n!/(n!n!), the two factors of p in the numerator are cancelled by the two in the
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denominator.

3.2.24. The theorem holds for n = 2,3,...,127, as can be seen by (tedious) inspection. Let n > 128 and
suppose there is no prime between n and 2n. Let (*") = [[,<2,p" be the prime factorization for

(®"). But there are no primes between n and 2n, so (%') = [[,,p". If p is a prime in the range
2n/3 < p < n then p divides n! exactly once and (2n)! exactly twice. Thus p { (*"). Therefore (*") =
Hpgmpr Hm@g%/gp"“ < Hpg\/% 2n Hp§2n/3p since if p is in the range v2n < p < 2n/3, then p
divides (*") exactly once. The number of primes less than /2n is less than the number of odd integers

less than v/2n, i.e. less than v2n/2 —1 = /n/2 — 1. Therefore [[ . 5, 2n < (2n) n/2-1 Using Exercise
26, we have[[,<,, /5 p < 42"/3. Thus (%') < (2n)V"/>71427/3 Now (%) is the largest of 2n + 1 terms
in the binomial expansion of (1 + 1)?", so we have (2n + 1)(*") > (2n)(*") > 22", hence (2n)~!22" <

(*") < (2n)V"/27142n/3 which implies 22"/3 < (2n)V"/2. Take logarithms and divide by v/2n/6 and get
V8nlog2 — 2log(2n) < 0. Denote the left side by f(n), and take its derivative to get f'(n) = (v2nlog2 —
3)/n. Note that f(128) = 8log 2, which is positive, and f’(n) is positive for n > 128, so f(n) is increasing
and therefore positive for n > 128. This contradicts the last inequality.

3.2.25. By Bertrand’s conjecture, there must be a prime in each interval of the form (2F~1 2%), for k =
2,3,4,.... Thus, there are at least k — 1 primes less than 2% Since the prime 2 isn’t counted here, we have
at least k primes less than 2*.

3.2.26. First check that the statement is true for n = 7,8, ...,16. Let n > 17. By Bertrand’s conjecture, there is
a prime p such that [(n—7)/2] < p < 2[(n—7)/2], or equivalently, [(n—5)/2] <p < 2[(n—7)/2]. Letn; =
n, and for each n;, let p; be a prime between [(n; — 5)/2] and 2[(n; — 7)/2], inclusive. Then set n;1; =
n; —p;,and if n; 1 > 17, repeat the procedure. The sequence will terminate with some value n;41 < 16.
Since [(n; —5)/2] < p; < 2[(n; —7)/2], we will have 7 < njy1 < [(n; + 6)/2]. Thus the final value nj4
will lie between 7 and 16 inclusive. We will also have p;11 < 2[(n;4+1 — 7)/2] < 2[([n; +6)/2] — 7)/2] <
[(n; —8)/2] < [(n; —5)/2] < p;. Hence the sequence p,; will be descending with no duplicates. Note also
that n; < 2p; + 6. Thus, since n; > 16 for j < k, p; > 5, i.e. pi, the smallest of the p;, will be at least 7.
We also have the following: If p; = 7, then n; < 20 and n;j41 < 13;if p; = 11, then n; < 28 and nj41 <
17;if p; = 13, thenn; < 32 and n;; < 19.

Now suppose that n;+1 = 16. We know from the above that p;, > 11. Since 16 = 13+ 3 = 11+ 5,
we need only be concerned with the case that p;, = 11 and pi_; = 13. But then, ny_; < 32 and ngy1 =
Ng—1 — Pr—1 — pr < 32 — 13 — 11 = 8. Thus if ng+; = 16, we cannot have both p;_; = 13 and p;, = 11.
Thus by using either 16 = 13 + 3 or 16 = 11 + 5, we have a partition of n into distinct primes. Suppose
next that ny41 = 15. We have again p;, > 11, and since 15 = 7 + 5 + 3, we have a partition of n into
distinct primes. Suppose next that n;4+1 = 14. We have again p;, > 11, and since 14 = 7+ 5 + 2, we have
a partition of n into distinct primes. Suppose next that ny,; = 13. As in the case njy; = 16, we cannot
have both p;_1 = 13 and p, = 11, since that implies that n;; < 8, thus using either 13 = 13 or 13 =
11 4 2, we have a partition of n into distinct primes. Suppose next that ny, = 12. If p;, > 7, then since
12 = 74 5, we have a partition of n into distinct primes. If p; = 7, then n;, = 19. We cannot also have
pr—1 = 11, since then nx_; < 28 and ngy1 < 28 — 11 — 7 = 10. Thus since 19 = 11 + 5 + 3, we have
a partition of n into distinct primes. Suppose next that ny; = 11. As in the previous case, we cannot
have both p;, = 7 and py_1 = 11, thus if p;, = 7 or p;, > 11, we have a partition of n into distinct primes.
If p, = 11, then n; = 22. As before, we cannot also have p,_; = 13, thus with 22 = 13 + 7 + 2 we have a
partition of n into distinct primes.

Suppose next that ;41 = 10. Since p;, > 7 and 10 = 5 + 3 + 2, we have a partition of n into distinct
primes. Finally, suppose that n;+1 < 9. If p;, = 7, then n;, < 16, but by the construction of the sequence
we must have n, > 17, thus p, > 7. Then with9 =7+ 2,8 =5+ 3 or 7 = 7, we have a partition of n
into distinct primes.

3.2.27. Since 1/1 is an integer, we may assume n > 1. First suppose thatm < n. Then1/n+1/(n+1)+---+
1/(n+m)<1/n+1/(n+1)+---+1/2n—-1) < 1/n+1/n+---4+1/n <n(1/n) =1, so the sum can not
be an integer. Now suppose m > n. Then by Bertrand’s postulate, there is a prime p such that n < p <
n 4+ m. Let p be the largest such prime. Then n + m < 2p, otherwise there would be a prime ¢ with p <
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q < 2p < n+m contradicting the choice of p. Suppose that1/n+1/(n+1)+---+1/p+---+1/(n+m) =
a where ¢ is an integer. Note that p occurs as a factor in only one denominator, since 2p > n + m. Let
Q= H;Li;”j, and let Q; = Q/i, fori = n,n +1,...,n + m. If we multiply the equation by Q we get
Qn+Qni1+--+Qp+- -+ Qnim = Qa. Note that every term on both sides of the equation is divisible
by p except for Q,. If we solve the equation for ), and factor a p out of the other side we have an equa-
tion of the form @), = pN where N is some integer. But this implies that p divides @),, a contradiction.
Therefore a can not be an integer.

3.2.28.a. (Proof by Ed Hook) With the given notation, suppose that p; divided p1p> - - - px—1% — 1 for some ¢ =
1,2,...,pr and some j = 1,2,...,k — 1. Then, as in Euclid’s proof, p; would also have to divide
1, a contradiction, so none of the first k — 1 primes can divide any of these p;, numbers. Further,
suppose some larger prime p divided two of these numbers. Then it would have to divide the dif-
ference and we would have p|((p1p2 - - pe—1i—1) = (p1p2 - - - pr—1j —1)) = (1 = j)(p1p2 - - - pr—1). But
since ¢ — j < py, the larger prime can not divide it, so it must divide the product pips - - - pr—1, but
these are all smaller primes, another contradiction. Therefore, a prime larger than p; can divide at
most one of these numbers.

b. Since there are n— k+ 1 primes from p;, up to p,,, and each one can divide at most one of the p;, num-
bers p1ps - - - pr—17 — 1, there must be at least one of the numbers which is not divisible by any prime
from py, up to p,. (There are more numbers than primes.) From part (a), the primes less than py, also
do not divide any of the the numbers, in particular, the one whose existence we have just shown.

c¢. From part (b), there is a number of the form pips - - - px—1% — 1 whose least prime divisor is at least
Dn+1, since none of the primes py, ..., p, can divide it. Therefore, pp+1 < pip2 -+ pr—1pr if n — k +

1 < pg. So let k be the smallest positive integer for which this inequality holds. Thenn — (k — 1) +

1 > pr—1 which reduces to n — k > pr_; — 2. Now since the sequence of primes grows by at least 2

at each step after 3 and py_1 — 2 =7 — 2 = 5 = k when k = 5, we have the left-hand side growing
faster than the right. So py—1 —2 > k for k > 5. So if n > 10, then n — k + 1 has to be less than p;, and

a quick check shows that this forces k > 5 (sinceif n > 10 and k < 4thenn —-k+1>10—-4+1=

7 = p4, which fails the condition.) Therefore, if n > 10, the condition n — k& + 1 < py, is satisfied and

SO Pnt1 < p1p2 - - - Pr—1Pk for some k such that n — k > pr_; — 2 > k. Note that this implies 2k < n.
Then assuming n > 10 we can derive Bonse’s inequality as follows. For the k found above we

have p2 ., < (p1p2---pr)(P1p2 -+ pr) < (D1P2 D) (Pkt1Pk+2 -+ - P2k) < P1p2 - - - Pn, which is the de-
sired inequality.

d. Whenn =4, wehavep? =121 <210 =2-3-5-7 = p; - pa - p3 - ps. When n = 5, we have p2 =
169 < 2310 =2-3-5-7-11 = p; - --ps. When n = 6, we have p2 = 172 = 289 < 30030 = p; - - - pe.
When n = 7, we have p2 = 192 = 361 < 510510 = p; - - - p;. When n = 8, we have p2 = 232 = 529 <
9699690 = p; - - - ps. When n — 9, we have p3, = 292 = 841 < 223092870 = p; - - - pg, which verifies
all remaining cases.

3.2.29. Suppose n has the stated property and n > p? for some prime p. Since p? is not prime, there must a
prime dividing both p? and n, and the only possibility for this is p itself, that is, p|n. Now if n > 72, then
it is greater than 22,32, and 5 and hence divisible by 2, 3,5, and 7. This is the basis step for induction.
Now assume n is divisible by p1,ps,...,ps. By Bonse’s inequality pi+1 < p1p1pe < M, SO Pry1|n
also. This induction implies that every prime divides n, which is absurd. Therefore if n has the stated
property, it must be less than 7% = 49.

Now we note that the integers less that 30 sharing no common prime factor with 30 are 1, 7, 11, 13,
17,19, 23 and 29, all of which are prime or 1. So 30 has the property. It remains to show that the numbers
from 31 to 48 do not have the property. We exhibit a counterexample in each case. For n = 31, 33, 35,
37, 39, 41, 43, 45 and 47 we note that £ = 8 shares no prime factor with n, and yet is not prime. For n =
32, 34, 38,40, 44 and 46, we note that £ = 9 shares no prime factor with n and yet is not prime. For the re-
maining cases n = 36, 42, and 48, we note that & = 25 shares no prime factor with n and yet is not prime.

3.2.30. From part (c) in Exercise 28, we have that when n > 10 then p,4+1 < pip2 - pr—1pk for some k > 5
such that n — k > k. By Bertrand’s postulate, we have p,+1 < pri2 < 2pn41,50 we have ppi1pny2 <
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Prnt120n+1 < (P1p2 -+ Pr)(2p1p2 - - Pi). Since 2p; = 4 < 5 < piy1 and since p; < pi4; for i > 1 we have
the last expression less than p1ps - - - PePr+1PE+2 - - - P2k < P1- - Pn, Since n — k > k implies 2k < n. It re-
mains to check the cases for 4 < n < 10. Whenn = 9, we have p1gp11 =29-31 =899 < 2-3-5-7-11-13-
17-19-23 = 223092870. When n = 8, we have pgpig = 23-29 = 677 < 2-3-5-7-11-13-17-19 = 9699690.
When n = 7, we have pgpg = 1923 =437 < 2-3-5-7-11-13-17 = 510510. When n = 6, we have
prpg = 17-19 =232 <2-3-5-7-11-13 = 30030. When n = 5, we have pgps = 13 - 17 = 221 < 2310 =
2-3-5-7-11. And whenn = 4 we have psps = 11-13 = 143 < 2-3-5-7 = 210, which completes all the cases.

3.2.31. Firstsupposen > 8. Note that by Bertrand’s postulate we have p,,_1 < p, < 2p,—1and pp—2 < pp_1 <
2pn—2- Therefore, p?l < (2pn—1)(2pn—1) < (2pn—1)(4pn—2) = 8pn—1pn—2 = Pn—1Pn—2P5 < Pn—1Pn—2Pn—-3,
since n > 8. All that remains is to check that the inequality it true for n = 6 and 7. When n = 7 we have
p2 =17% = 289 < 1001 = 13-11-7 = pgpsps, and when n = 6 we have pZ = 132 = 169 < 385 = 11-7-5 =
pspaps. This completes the proof. To see that the inequality does not hold for smaller n, we check that
forn =5, wehave p? = 112 =121 > 7-5-3 = 105 and whenn = 4, we have p? = 72 =49 > 5-3-2 = 30.

3.2.32. Letn be a sufficiently large integer and consider the sequence of primes 3 = p, < p3 < --- < p,,. Let §
be the set {p;11 — pi|i = 2,...,n — 1} of n — 2 differences between successive primes up to p,,. Note that
some differences may be repeated, and since each of the primes is odd, every difference is even. Suppose
there are at least [(n — 2)/N] elements in S, then there is one difference of at least 2, another difference
of at least 4, and so on up to [(n — 2)/N]. Thus, p, —p2 = (Pr —Pn—1) + Pr—-1 —Pn-2) + -+ (p3 —p2) >
244+ ---2[(n—-2)/N] =2([(n — 2)/N]([(n — 2)/N] + 1)/2. Now the right hand side is asymptotic to
n?/M?, but by the prime number theorem, the left hand side is asymptotic to nlogn, which is impos-
sible. Therefore, there are less than [(n — 2)/N] elements in S. Since we must assign n — 2 differences
among less than [(n — 2)/N] values, at least one value, say K is assigned to more than N differences.
Otherwise we would have less than [(n — 2)/N]N < n — 2 differences.

3.3. Greatest Common Divisors

3.3.1. a. The positive divisors of 15 are 1, 3, 5, and 15 and the positive divisors of 25 are 1, 5, and 25. Hence
the greatest common divisor of 15 and 25 is 5.

b. Every positive integer is a divisor of 0. Hence the greatest common divisor of 0 and 111 is 111.

c. The positive divisor of —12 are 1, 2, 3, 4, 6, and 12 and the positive divisors of 18 are 1, 2, 3, 6,9, and
18. Hence the greatest common divisor of —12 and 18 is 6.

d. No positive integer greater than 1 can divide 99 and 100 since any common divisor of 99 and 100
divides 100 — 99 = 1. Hence the greatest common divisor of 99 and 100 is 1.

e. The positive divisors of 11 are 1 and 11 and the positive divisors of 121 are 1, 11, and 121. Hence
the greatest common divisor of 11 and 121 is 11.

f. A common divisor of 100 and 102 is also a divisor of 102 — 100 = 2. Since 2 is a common divisor of
100 and 102, 2 is the greatest common divisor of these integers.

3.3.2.a. The positive divisors of 5 are 1 and 5 and the positive divisors of 15 are 1, 5, and 15. Therefore, the
greatest common divisor of 5 and 15 is 5.

b. Every positive integer is a divisor of 0. Hence the greatest common divisor of 0 and 100 is 100.

c. The positive divisors of —27 are 1, 3,9, and 27. The positive divisors of —45 are 1, 3, 5, 9, 15, and 45.
It follows that the greatest positive divisor of —27 and —45 is 3.

d. The greatest common divisor of —90 and 100 will also divide their sum, 10. As 10 divides —90 and
100, the greatest common divisor of —90 and 100 is 10.
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e. The positive divisors of 121 are 1, 11, and 121. Of these, 11 and 121 do not divide 100. Hence the
greatest common divisor of 100 and 121 is 1.

f. The positive divisors of 289 are 1, 17, and 289. As neither 17 nor 289 divide 1001, the greatest com-
mon divisor of 289 and 1001 is 1.

3.3.3. The greatest common divisor of a and 2a is also a divisor of their difference, 2a — a = a. As a divides
both @ and 2a, the greatest common divisor of a and 2a is a.

3.3.4. Since a is a common divisor of a and a? and a can have no divisor larger than itself, we have (a, a?) =
a.

3.3.5. As(a+1,a)is theleast positive linear combination of « and a+1, itis clear that (a+1,a) < (a+1)—a =
1. It follows that (¢ + 1, a) = 1.

3.3.6. A common divisor of a and a + 2 is also a divisor of (a + 2) — 2 = 2. Hence if a is even, the greatest
common divisor of a and @ + 2 is 2, since 2 does divide both of these integers, while if a is odd, then the
greatest common divisor of a and a + 2is 1.

3.3.7. By Theorem 3.8, (ca, cb) = cma + cnb = |c| - |ma + nb|, where cma + cnb is as small as possible. There-
fore, |ma + nb| is as small a positive integer as possible, i.e. equal to (a, b).

3.3.8. Suppose thatd | (a +b) and d | (a —b). Thend | ((a +b) + (a — b)) = 2a and d | ((a + b) —
(a — b)) = 2b. Note that by Exercise 5 (2a,2b) = 2(a,b) = 2. Since d is a common divisor of 2a and 2b it
follows that d | 2. Hence either d = 1 or d = 2. Moreover, if one of a and b is even and the other odd,
then both a + b and a — b are odd, so that (a + b,a — b) = 1. If both a and b are odd then both a + b and
a — b are even, so that (a + b,a — b) = 2.

3.3.9. Let pbe a prime dividing (a® + b%,a + b). Then p | (a + b)* — (a® + b?) = 2ab. Now if p | a, then p | b
since p | a + b. But (a,b) = 1, so p { a. Similarly, p { b. Thereforep | 2andsop =1lorp=2. Ifaand b
have the same parity, then 2|a + b and 2|a? + b?, and so (a® + b?,a + b) = 2. But if a and b have opposite
parity, then a + b and (a? + b%,a + b) = 1.

3.3.10. Let the least positive linear combination of a and b be (a,b) = an + bm. Now, an + bm = (a/2)(2n) +
(b/2)(2m) = 2((a/2)n+(b/2)m) > 2(a/2,b/2). To see the reverse inequality, expand (a/2,b/2) as a small-
est positive linear combination and proceed similarly. As (a,b) < 2(a/2,b/2) and (a,b) > 2(a/2,b/2), we
see that (a,b) = 2(a/2,b/2).

3.3.11. Leta = 2k. Since (a,b) | b, and b is odd, (a,b) is odd. But (a,b) | a = 2k. Thus (a,b) | k. So (a,b) =
(k,b) = (5,b).

3.312. Asc| (a+b),a+ b= cn for some n. It can be seen from this that any common divisor of ¢ and c is
also a divisor of b, hence of (a, b). Similarly, (b, c) = 1.

3.3.13. Letd = (a,b). Then (a/d,b/d) = 1, s0if g|la/d, then (g,b/d) = 1. In particular, if we let e = (a/d, bc/d),
then ela/d, so (e,b/d) = 1, so we must have e|c. Since e|a/d, then ela, so e|(a,c). Conversely, if f =
(a,c), then (f,b) = 1,0 (d, f) = 1, so fla/d and trivially, f|bc/d. Therefore f|e, whence e = f. Then
(a,b)(a,c) =de =d(a/d,be/d) = (a,bc).

3.3.14. a. By Theorem 3.8 there are integers u,v,r, and s such that 1 = ua + vb = ra + sc. Multiplication of
ua + vb and ra + sc shows that 1 = (wva + usc + vbr)a + (vs)be. Hence by Theorem 2.2 it follows
that (a,bc) = 1.

b. Suppose that (a;,b) = 1fori=1,2,...,n. Let 4, = H;'=1 a;. We wish to prove that (4,,,b) = 1. We

use mathematical induction. The basis case, n = 2 was shown in part (a). For the inductive step,
assume that (A4;,b) = 1. Then since (a;+1,b) = 1, part (a) implies that (4,11,b) = 1 since A;11 =
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3.3.15. Let p, q,r be prime numbers. The set {pg, gr, pr} is a set of three integers that are mutually relatively
prime, but no two of which are relatively prime.

3.3.16. We can take 30,42, 70, and 105. We find these by taking all products of three different primes in the
set {2,3,5,7}. We have (30,42,70,105) = 1, but (30,42,70) = 2, (30,70,105) = 5, (30,42, 105) = 3,
(42,70,105) = 7.

3.3.17.a. Wehave (8,10,12) = 2.

b. We have (5,25,75) = 5.
c¢. We have (99,9999,0) = 99.
d. Wehave (6,15,21) = 3.
e. Wehave (—7,28,—-35) =T.
f. We have (0,0,1001) = 1001

3.3.18. We have (66,105,42) = 3, (66,105,70) = 1, (66,105,165) = 3, (66,42,70) = 2, (66,42,165) = 3, (66,70,165) =
1, (105,42,70) = 7, (105,70,165) = 5, and (42,70,165) = 1. Hence there are three sets of mutually relatively
prime integers in this set, namely {66, 105, 70} , {66, 70, 105},and {42, 70, 165}.

3.3.19. Letd|a;,1<i<n.Thenclearly dc | ca;,1 <i<n.Sodc| (cai,cas,...,ca,). To see the other direc-

tion, note that ¢ | ca; for all 4, so ¢ | (caq,cas, ..., ca,) = d. Express d as d = cd’, where d' is as great as
possible. But since cd’ | ca;, d' | a; and d'|(a1, a9, ..., ay,), say d'k = (a1, a9, ...,a,). If k > 1, this contra-
dicts the maximality of d’, so we must have d’ = (a1, ag, ..., ay).

3.3.20. We use induction on n. The basis step is done by Theorem 3.8. For the inductive step, we use Lemma
2.1. Thus (a1,...a,) = (@1,...,(@n-1,0n)) = mia1 + -+ + Mp_1(an-1, an), by the inductive hypoth-
esis. Now mia; + -+ + mp_1(an-1,a,) = mya; + -+ + mn_l(m;_lan_l + m'nan) = mia; + - +
mn_lm;_lan_l + mn_lm;Lan. This completes the proof.

3.3.21. Suppose that (6k + a,6k +b) = d. Thend | b — a. We have a,b € {—1,1,2,3,5} , so if a < b it follows
thatb—a € {1,2,3,4,6}. Hence d € {1,2,3,4,6}. To show that d = 1 it is sufficient to show that neither
2 nor 3 divides (6k + a,6k +b). If p=2orp = 3 and p | (6k + a,6k + b) then p | a and p | b. However,
there are no such pairs a, b in the set {—1,1,2,3,5}.

3.3.22. Wehave 5(3k + 2) — 3(5k + 3) = 1, so that by Theorem 3.8,3k + 2 and 5k + 3 are relatively prime.

3.3.23. We proceed with the Euclidean algorithm. 8a +3 = 1(5a +2) + (3a+1). ba+2 = 1(3a+ 1) + (2a + 1).
3a+1=1(2a+1)+ (a). 2a +1 = 2(a) + (1). Therefore (8a + 3,5a + 2) = 1.

3.3.24. Letd = (a+ 2b,2a + b). Then d | 2(a + 2b) — (2a + b) = 3b. Likewise, d | 3a. Hence, d | (3a,3b) =
3(a,b) = 3. Therefore, d = 1 or 3.

3.3.25. From Exercise 21, we know that 6k — 1,6k + 1,6k + 2,6k + 3, and 6k + 5 are pairwise relatively

prime. To represent n as the sum of two relatively prime integers greater than one, let n = 12k + h,0 <
h < 12. We now examine the twelve cases, one for each possible value of h, in the following chart:
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h n

0 (6k—1)+ (6k+1)
1 (6k—1)+ (6k+2)
2 (6k—1)+ (6k+3)
3 (6k+1)+ (6k+2)
4 (6k+1)+ (6k+3)
5 (6k+2)+ (6k+3)
6 (6k+1)+ (6k+5)
7 (6k+2)+ (6k+5)
8 (6k+3)+ (6k+5)

Nej

(12k +7) +2
10 (12 +7)+3
11 (12k +9) + 2

: ;c0 11112 1231342534561

3.3.26. The Farey series of order 7is 7, =, 5,5, 7> 5,5, 52 5: 50525250 5> 12 5260 %> 1+

3.3.27. Let S be the set of all fractions P/Q = (za+ye)/(xb+yf) where z, y are relatively prime positive inte-
gers. Then every element of S lies between a/b and e/ f and is in lowest terms. The first element of S to
appear in a Farey series will have the smallest ), i.e. = y = 1. This fraction must be ¢/d by hypothesis.

3.3.28. Let zg, yo be a solution to the Diophantine equation bx — ay = 1. Thenz = zo + at,y = yo + btisa
solution for any integer ¢. Choose ¢y so that n — b < yo + bty < n. Then x = zg + ato,y = yo + bty is
a solution such that (z,y) = 1and 0 < n — b < y < n. Since z/y is in lowest terms, and y < n, itis a
fraction of the nth Farey series. Also

T a 1 a

>
y b by b
so that 2:/y comes later than a/b in the series. If it is not ¢/d, then it comes later in the series than ¢/d, and

T c_dm—cy>1

y d  dy T dy
and
E_g_bc—ad>i
d b bd T bd
Hence 1 b 1 1 b 1
- m_“y:§_9>7+7:ﬂ>L>i’
by by y b dy bd bdy bdy — by

which is a contradiction. Therefore, z/y must be ¢/d and bc — ad = 1.

3.3.29. Sincea/b < (a+¢)/(b+d) < ¢/d, we must have b + d > n, or a/b and ¢/d would not be consecutive,
since otherwise, (a + ¢)/(b + d) would have appeared in the Farey series of order n.

3.3.30.a. Letc = a—b. We may then write (a” —b")/(a—b) as ((b+¢)™ —b"™)/c. The binomial theorem shows
that this is nb" ! + k- c. Thus (((b+¢)™ —b")/c, ¢) divides (nb" !, c). Rewriting (a™ — b™)/(a —b) as
(@™ — (a — ¢)™)/c shows that (((b+ ¢)™ — b™) /¢, c) divides (na™~!, ¢). Therefore (((b+ )™ —b")/c, c)
divides (n(a,b)" ™!, c). These expansions also make it clear that (n(a,b)" "', ¢) is a divisor of (a™ —

b")/(a —b).
b. If a and b are relatively prime then (a,b) = 1. Apply part (a).

3.3.31. Since (a/b) + (c/d) = (ad + bc)/bd is an integer, bd | ad + be. Certainly, then, bd | d(ad + bc) = ad? + cbd.
Now since bd | cbd, it must be that bd | ad®. From this, bdn = ad? for some integer n, and it follows that
bn = ad, or b | ad. Since (a,b) = 1, we must have b | d. Similarly, we can find that d | b hence, b = d.

3.3.32. We can conclude that b = 1, and @ = ¢ = 1 or 2. To see this, note that as (1/a) + (1/b) + (1/¢) =
(bc + ac + ab)/abc is an integer, abc | be + ac + ab. Continuing as in Exercise 29, abc | ¢(bc + ac + ab) =
abc + (bc? + ac?). Now, we have that abe | bc? + ac? = ¢(be + ac), or equivalently (as ¢ # 0) ab | be + ac.
But, b | aband ab | bc + ac, from which it follows that b | ac. Using Exercise 11, we can now see that b |
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(a,b)(c,b) =1-1=1,and so b = 1. Now, if (1/a) + (1/b) + (1/c) is an integer, then so is (1/a) + (1/c).
We now have the situation of Exercise 29, and so ¢ = ¢. And (1/a) + (1/¢) = 2/a is an integer only if a |
2,i.e. whena = 1or 2.

3.3.33. Consider the lattice points inside or on the triangle with vertices (0, 0), (a,0), and (a, b). Note that a
lattice point lies on the diagonal from (0, 0) to (a,b) if and only if [bz/a] is an integer. Let d = (a,b) and
a = cd, so that (¢,b) = 1. Then [bx/a] will be an integer exactly when x is a multiple of ¢, since then d|b
and c|z so then a = cd|bz. But there are exactly d multiples of c less than or equal to a since c¢d = a, so
there are exactly d + 1 lattice points on the diagonal when we count (0, 0) also. So one way to count the
lattice points in the triangle is to consider the rectangle which has (a + 1)(b + 1) points and divide by 2.
But we need to add back in half the points on the diagonal, which gives us (a+1)(b+1)/2+ ((a,b)+1)/2
total points in or on the triangle. Another way to count all the points is to count each column above the
horizontal axis, starting withi = 1,2,...,a—1. The equation of the diagonal is y = (b/a)z, so for a given
i, the number of points on or below the diagonal is [bi/a]. So the total number of interior points in the
triangle plus the points on the diagonal is Z?;ll [bi/a]. Then the right-hand boundary has b points (not
counting (a,0)) and the lower boundary has a+ 1 points, counting (0, 0). So in all, we have Z;:ll [bi/a]+
a + b+ 1 points in or on the triangle. If we equate our two expressions and multiply through by 2 we

have (a+1)(b+ 1)+ (a,b) +1=2 Z;:ll [bi/a] + 2a + 2b + 2 which simplifies to our expression.

33.34. Letk=j—ithen(nli+1,nlj+1)=(nli+1nlii+k)+1)=(nli+1,nli+1+nlk)=(nli+1,nlk)
by Theorem 3.7. But none of the divisors of n!k can divide n!i 4 1, so this last greatest common divisor
is equal to 1, as desired.

3.3.35. Assume there are exactly r primes and consider the r + 1 numbers (r + 1)! + 1. From Lemma 3.1,
each of these numbers has a prime divisor, but from Exercise 34, these numbers are pairwise relatively
prime, so these prime divisors must be unique, so we must have at least r + 1 different prime divisors,
a contradiction.

3.3.36. First we prove by induction that (a;,d) = 1 for all i. Since ap = ¢ and (¢,d) = 1 by hypothe-
sis, the basis step holds. Now suppose that (a;,d) = 1 fori = 0,1,...,k. Then by Theorem 3.7, we
have (ag4+1,d) = (apar---ar + d,d) = (agay - - - ax,d), and since d is relatively prime to every factor in
apay - - - ag, we have that (axy1,d) = 1, which completes the induction. Now let i < j, and consider
(ai,a;) = (a;,a0a1 -+ - a; - - - aj—1 +d) = (a;,d) since we can subtract the multiple of a; from the right side
by Theorem 3.7. This last is equal to 1 from our work above, which proves the proposition.

3.4. The Euclidean Algorithm
34.1.a. Wehave75=1-45+30,45=1-30+15,30=2-15+0,s0 (45,75) = 15.

b. Wehave222=2-102+18,102=5-18+12,18=1-12+6,12=2-6 1+ 0, so (222,102) = 6.
c¢. Wehave 1414 = 2 - 666 + 82,666 = 8- 82+ 10,82 =8-10+2,10=5-2+ 0, so (1414,666) = 2.

d. We have 44350 = 2 - 20785 + 2780, 20785 = 7 - 2780 + 1325,2780 = 2 - 1325 + 130, 1325 = 10 - 130 +
25,130 =5-25+5,25 =5-5+ 0, so (44350, 2780) = 5.

342.a. Wehave87 =1-51+36,51=1-36+15,36=2-15+6,15=2-6+3,6=2-3,s0 (51,87) = 3.
b. Wehave 300 = 2105 + 90,105 = 1- 90 + 15,90 = 6 - 15 so (105, 300) = 15.

c. Wehave 1234 = 1-981 + 253,981 = 3- 253 + 222,253 = 1-222 + 31,222 =7-31 +5,31 =6-5+ 1,
so (981,1234) = 1.

d. Wehave 100313 = 234709 4 30895, 34709 = 1- 30895 + 3814, 30895 = 8- 3814 + 383,3814 = 9-383 +
367,383 =1-367+ 16,367 =22-16+ 15,16 =1- 15+ 1, so (34709, 100313) = 1.
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3.4.3.a. We have q1 = 1,(]2 = 1,(]3 = 2, SO S = 1,81 = 0782 =S890 —(q181 = ].,83 = 81 — (@282 = —1 and to =
O,tl = l,tg = to — Q1t1 = —1,t3 = tl — q2t2 = 2. Thus, (75,45) = (—1)75 + (2)45

b. We have q1 = 2,(]2 = 5,6]3 = 1, SO Sg = 1,81 = 0,82 = 1,83 = —5,84 = 6 and to = O,tl = 1,t2 =
—2,t3 = 11,14 = —13. Thus (222, 102) = (6)222 + (—13)102.

c. We have, from Exercise 1(c), that 2 = 82 — 8 - 10 == (1414 — 2 - 666) — 8(666 — 8 - 82) = 1414 — 10 -
666 -+ 64(1414 — 2 - 666) = —138(666) + (65)1414.

d. We have, from Exercise 1(d), that 5 = 130 — 5- 25 = (2780 — 2 1325) — 5(1325 — 10 - 130) = (44350 —
2-20785) — 7(20785 — 7 - 2780) + 50(2780 — 2 - 1325) = 44350 — 9 - 20785 + 99(44350 — 2 - 20785) —
100(20785 — 7-2780) = 100 - 44350 — 307 - 20785 — 7(44350 — 2- 20785) = —1707(20785) 4 800(44350).

3.44.a. Wehave, from Exercise 2(a), that3 =15—-2-6 = (51 —36) — 2(36 —2-15) = 51 — 3(87 —51) +4(51 —
36) = 8(51) — 3(87) — 4(87 — 51) = 12(51) — 7(87).

b. We have, from Exercise 2(b), that 15 = 105 — 90 = 105 — (300 — 2 - 105) = 3(105) — 1(300) = 15.
c¢. We have, from Exercise 2(c), that 1 = 31 — 6 -5 = (253 — 222) — 6(222 — 7 - 31) = (1234 — 981) —
7(981 — 3 - 253) + 42(253 — 222) = 1234 — 8(981) + 63(1234 — 981) — 42(981 — 3 - 235) = 64(1234) —
113(981) + 126(1234 — 981) = —239(981) + 190(1234).
d. We have, from Exercise 2(d), that 1 = 16 — 15 = (383 — 367) — (367 — 22 - 16) = (30895 — 8 - 3814) —
2(3814 —9-383) +22(383 — 367) = (100313 — 2-34709) — 10(34709 — 30895) + 40(30895 — 8 - 3814) —
22(3814 — 9-383) = 100313 — 12(34709) + 50(100313 — 2 - 34709) — 342(34709 — 30895) + 198(30895 —
8-3814) = 51(100313) —454(34709) + 540(100313 — 2 -34709) — 1584(34709 — 30895) = 591(100313) —
3118(34709) + 1584(100313 — 2 - 34709) = —6286(34709) + 2175(100313).
3.4.5.a. Wehave (6,10, 15)((6,10),15) = (2,15) = 1.
b. We have (70,98, 105) = (70, (98, 105)) = (70, (98,105 — 98)) = (70, (98,7)) = (70,7) = 7.
c.  We have (280, 330, 405, 490) = (10(28, 33), 5(81,98)) = (10,5) = 5.
3.4.6.a. We have (15,35,90) = ((15,35),90) = (5,90) = 5.
b. We have (300, 2160, 5040) = 20(15, 108, 252) = 20((15, 108), 252) = 20(3,252) = 20 - 3 = 60.
c. We have (1240, 6660, 15540, 19980) = 20((62, 333), (777,999)) = 20(1, 111) = 20.

3.4.7.a. Since (6,10) =2 =2-6 — 10, we have 1 = (6,10,15) = (2,15) =8-2 — 15 = 8(2- 6 — 10) — 15 =
16-6 — 8- 10 — 15.

b. Since (70,98) = 14 = 3- 70 — 2 - 98, we have 7 = (70,98,105) = (14,105) = 105 — 7 - (14) = 105 —
7(3-70 — 2 98) = 105 — 21 - 70 + 14 - 98.

c. Since (280,330) = 10 = 17 - 330 — 20 - 280, and (405,490) = 5 = —75 - 405 + 62 - 490, we have
(280, 330,405,490) =5 =10-280+ 0-330 — 75 - 405 + 62 - 490.

3.4.8.a. Since (15,35) =5 = —2-15+ 35, we have (15,35,90) =5=—-2-15+1-35+0-90.
b. Since (300,2160) = 60 = —7-300+2160, we have (300, 2160, 5040) = 60 = —7-30041-2160+0-5040.

c¢. We can write 20 = 188-1240 — 35 - 6660 + 0 - 15540 + 0 - 19980, since (1240, 6660) = 20 = 188 - 1240 —
35 - 6660.
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3.4.9. Applying the reductions in the algorithm we find that (2106, 8318) = 2(1053,4159) = 2(3106, 1053) =
2(1553,1053) = 2(500, 1053) = 2(250, 1053) = 2(125 1053) = 2(125,928) = 2(125,464) = 2(125,232) =
2(125,116) = 2(125,58) = 2(125,29) = 2(96,29) = 2(48,29) = 2(24,29) = 2(12,29) = 2(6,29) =

2(3,29) =2(3,26) = 2(3,13) = 2(3,10) = 2(3,5) = 2(3,2) = 2(3,1) = 2(2,1) =2(1,1) = 2.

3.4.10. Since (a,b) = (+a,=+b), we assume a and b to be always positive. The exercise then follows from
Exercises 8 and 9 from Section 3.3, and Theorem 3.7 with ¢ = —1. The algorithm terminates since the
magnitude of the two arguments’ sum is always decreasing and positive.

3.411. The algorithm stops after 2n — 2 steps. To prove this we use mathematical induction. When n = 2,
a = 1 and b = 2. The first step leaves ¢ = 1 and b = 1, and the second step will find the g.c.d.. Thus, the
basis step holds. For the inductive hypothesis, we assume that the algorithm uses 2n — 2 steps to find
the g.c.d.. of (2" — (—=1)")/3 and (2(2"~! — (=1)""1)/3. To find the g.c.d. of (2" — (-1)"*1)/3 and
(2(2" — (=1)™))/3, the first step reduces this to the g.c.d. of (2" ™! — (=1)"*1)/3 and (2" — (—1)")/3. The
next step, as neither of these numbers is even, gives us (2" — (—1)")/3 and (1/3)(2"*! — (—1)"*1 —2" +
(—1)™) = (1/3)(2™ + 2(—1)™) = (2/3)(2"~! — (—=1)"'). By the inductive hypothesis, the algorithm will
take 2n — 2 more steps, for a total of 2n = 2(n — 1) — 2 steps.

3.412. Let S(a,b) be the number of subtractions needed to find (a, b) using this algorithm. Then S(a,b) =
S(b,a), and if a is even, S(a,b) = S(a/2,b), so we may assume that both « and b are odd, and a > b.
We proceed by induction on a. Note that S(b,b) = 1 < 1 + [log, max(b, b)]. Now suppose that S(c,b) <
1 + [log, max(c,b)] forall ¢ = b,b+1,b+2,...,a — 1. Since a and b are odd, the first step of the algo-
rithm will be (a,b) = (a — b,b), then since b is odd and @ — b is even, the next step will be (a — b,b) =
((a —b)/2,b). So S(a,b) =1+ S((a —b)/2,b) < 1+ [logymax((a — b)/2,b)] < 1+ [logy(a/2+b/2)] =
1+ [logy(a + b)/2] < 1+ [log, max(a,b)], which completes the induction step.

3.4.13. Suppose we have the balanced ternary expansions for integers a > b. If both expansions end in zero,
then both are divisible by 3, and we can divide this factor of 3 out by deleting the trailing zeros (a shift)
in which case (a, b) = 3(a/3,b/3). If exactly one expansion ends in zero, then we can divide the factor of
3 out by shifting, and we have (a,b) = (a/3,b), say. If both expansions end in 1 or in —1, we can subtract
the larger from the smaller to get (a,b) = (a — b, b), say, and then the expansion for a — b ends in zero.
Finally, if one expansion ends in 1 and the other in —1, then we can add the two to get (a + b, b), where
the expansion of a + b now ends in zero. Since a + b is no larger than 2a and since we can now divide
a + b by three, the larger term is reduced by a factor of at least 2/3 after two steps. Therefore this algo-
rithm will terminate in a finite number of steps, when we finally havea = b = 1.

3.4.14. Wehave 384 =2-226 — 68,226 =3-68 + 14,68 = 5-14 — 2,14 = 7 - 2. Hence (384, 226) = 2.

3.4.15. Lemma: If ¢ and d are integers and ¢ = dg + r where ¢ and r are integers, then (¢, d) = (d,r).

Proof of Lemma: If an integer e divides both ¢ and d, then since r = £(¢ — dg), Theorem 1.8 shows
thate | r. If e | d and e | r, then since ¢ = dq + r, from Theorem 1.8 we see that e | ¢. Since the common
divisors of ¢ and d are the same as the common divisors of d and r, we see that (¢, d) = (d,r).

Proof of proposition: Let 7y = a and 1 = b be positive integers with a > b. By successively applying
the least-remainder division algorithm, we find that

1 T1
ro =T1q1 + eara, N < egry < )

—Tn-1 Tn—1

Thn—2 = Tn—1Qn—1 T+ €nTn, B

T'n—1 = Tnqn-

We eventually obtain a remainder of zero since the sequence of remainders a = 19 > 71 > 19 > - -

0 cannot contain more than a terms. By the Lemma we see that (a,b) = (ro,71) = (r1,72) = -+
(rn—2,mn—1) = (rn—1,7n) = (1, 0) = r,. Hence (a, b) = r,, the last nonzero remainder.

<eprn <

v
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3.4.16. Let E(a,b) be the number of steps to find (a, b) with the Euclidean algorithm, and L(a, b) the number
of steps to find (a,b) with the least-remainder algorithm. Note that if the first step of the Euclidean al-
gorithm produces ro (with 7o = a and r; = b), then E(a,b) = 1 + E(b, r2). For this to work with ro = 0,
we define E(a,0) = 0. Similarly, for the least-remainder algorithm, L(a,b) = 1 + L(b, r2) with L(a,0) =
0. Following the hint, we prove that L(a,b) < L(a,a — b) if a and b are positive integers with 2b < a. We
use mathematical induction on b. Clearly it is true for b = 1, since L(a,1) = 1 < L(a,a — 1). So we can
assume L(a’, V') < L(a’,a’ — V') for all positive integers a’, b’ with 20’ < o’ and b’ < b. Consider the first
step of the least-remainder algorithm for (a,a — b). We can write a = (a — b) + b, giving ro = bif b <
(a—b)/2,ie.a>3b,ora=2(a—0b)— (a—2b),giving ro = a —2bifa —2b < (a — b)/2,i.e. a < 3b. Thus
if a > 3b, we get L(a,a —b) = 1+ L(a — b,b). But L(a — b,b) = L(a,b) (the remainders after division by
b are the same), so in this case L(a,b) < L(a,a — b). Now suppose 2b < a < 3b. We have L(a,a — b) =
1+ L(a — b,a — 2b). Consider the first step of the least-remainder algorithm for (a, b). We can write a =
2b+ (a — 2b), giving ro = a — 2bifa — 2b < b/2,1.e. a < 5b/2, 0r a = 3b — (3b — a), giving ro = 3b — a if
3b—a < b/2,ie. a>5b/2. If 2b < a < 5b/2 we have L(a,b) = 1+ L(b,a — 2b). But L(a — b,a — 2b) =
L(b,a — 2b) since a — b = b+ (a — 2b). So in this case L(a,b) = L(a,a — b). Finally, if 5b/2 < a < 3b we
have L(a,b) =1+ L(b,3b — a). We need to show that L(b,3b — a) < L(a — b,a — 2b) = L(b,a — 2b). But
thisis L(a/,b") < L(a/,a’ — V') with o’ = band ¥’ = 3b — a. Note that o’ > 2’ (i.e. @ > 5b/2) and V' < b
(i.e. @ > 2b), so this is true by the induction hypothesis. This completes the proof of the hint. Now, to
prove that L(a,b) < E(a,b), we will again use induction on b. For b = 1 we have L(a,1) = 1 = E(a, 1).
So we can assume L(a’,b") < E(d’,b") for all positive integers a', b’ with b’ < b. Consider the first step
of the Euclidean algorithm for (a,b): a = gb+ r where 0 < r < b, and E(a,b) =1+ E(b,r). Now if r <
b/2, this is also the first step of the least-remainder algorithm, i.e. L(a,b) = 1+ L(b,r) < 1+ E(b,r) =
E(a,b) by the induction hypothesis. On the other hand, if > b/2, the first step of the least-remainder
algorithmisa = (¢+ 1)b — (b —r) withb —r < b/2, and L(a,b) = 1+ L(b,b — r). Butsince 2(b —r) < b,
the result of the hint says that L(b,b — r) < L(b,r). So, again using the induction hypothesis, L(a,b) <
1+ L(b,r) <1+ E(b,r) = E(a,b), as desired.

3.4.17. Letws = v3 = 2, and for ¢ > 4,v; = 2v;_1 + v;_2. Thus the least remainder algorithm will proceed
with e; = 1 and ¢; = 2 for all 4. To prove this we use induction. It clearly requires one division in the
least-remainder division algorithm to find the g.c.d. of v; and v3. This completes the basis step. For the
induction hypothesis, we assume that it takes n steps to find the g.c.d. of v,4+1 and v, 2. To find the
g.c.d. of v, 42 and v, 13, the first step will be: v,43 = 2v,42 + v, 41 by the definition of our v;’s. From
this point, the algorithm will look identical to that for v,,+1 and v, 2. By our induction hypothesis, this
will require n more steps. Hence, the total number of steps is n + 1.

3.4.18. In the algorithm, starting with a = r9 and b = 71, we have, if ro # 0, 11 = gora + e313 > 2r9 + 13,
(since r1 > 2rg and 19 > 2r3, 80 g2 = 1r1/r9 — esrs/ro > 3/2, and hence g2 > 2, and if g2 = 2 then e3
must be +1 and if g» > 2 then ry > 3ry — r3 > 2ry + 13). Iterating this, induction shows, if r; # 0, then
r1 > ¢;rj + ¢j_11j41 Where ¢1 = 1,¢o = 2 and ¢j 42 = 2¢j41 + ¢;. In particular, if (a,b) takes at least n
steps then r,, > 150 b > ¢,. We claim that ¢,, > 10(3"=4/8) Thus if b has d digits, b < 10, then (a, b)
must take fewer than n steps if d < (3n —4)/8, i.e. if n > (8d + 4)/3. To prove the claim, note first
thatc; = 1 > 100-1/8) and ¢; = 2 > 10/, If it is true for ¢;_» and ¢;_; then ¢; = 2¢j_1 + ¢j_o >
210((37=7)/8) 4 10((35-10)/8) > 10((B5=9/8) since 210(—3/8) + 10(-6/8) = 1.021221 ... > 1, as desired.

3.4.19. Performing the Euclidean algorithm with ry = m and r = n, we find that rp = r1¢1 + 72,0 <73 <
r1,71 = Toq2 + 73,0 <13 <79, 7R3 = Th_2Gr—2 +Tk—1,0 <11 < 7o, and 1o = 1_1qx—1. We
have (m,n) = r,_1. We will use these steps to find the greatest common divisor a™ —1 and a™ — 1. First,
we show that if u and v are positive integers, then the least positive residue of a* — 1 modulo a¥ — 11is
a” — 1 where r is the least positive residue of ©v modulo v. To see this, note that u = vg + r where r is the
least positive residue of u modulo v. It follows that a¥ — 1 = a¥4*" —1 = (a¥ —1)(a?( @D+ 4. .. 4 q"+7 +
a”) 4 (a” — 1). This shows that the remainder is " — 1 when a* — 1 is divided by a” — 1. Now let Ry =
a™ —land R; = a” — 1. When we perform the Euclidean algorithm starting with Ry and R; we obtain
Ry = R1Q1+ Ry, where Ry = a™ —1, R = Ro@Qo+Rswhere R3 =a™ —1,...,Rp_3 = Rrp_2Qr_2+Rp_1
where Rj,_1 = a"+-1~1. Hence the last nonzero remainder, Rj_1 = a’** — 1 = a(™™) — 1 is the greatest
common divisor of ¢™ — 1 and a™ — 1.
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3.4.20. Suppose that m > n. Performing the Euclidean algorithm with ry = m and r = n, we find that ry =
riqr + 12,0 <ro < 11,71 =7roqe + 13, With 0 < r3 <ro,...,7 o0 =14 1q_1 + 714, With0 < r; < ry_1,and
ri—1 = rq. We have (m,n) = r,.. We have (f, fn) = (friqi4rs» fn). Using the result of Exercise 38 of
Section 1.5 we have f, ¢, —1friqi fro41- Since fr, | friq, it follows that (fo, frn) = (frigi—1frs, fr, ). Hence
(fms fn) = (Friqu—1s fri)(fras fri) = (fray fry) sinee fr | friq, and (friq,-1, friq,) = 1. Similarly, we can
show that (fr,_,, fr,_») = (fr;, fr,_,) for alli. It follows that ( fp,, fn) = (fr,, fr._, ). Since r; is a divisor of
r¢_1 it follows that f,, | f,,_,. Hence (f,,, f,_,) = fr,. Since r; = (m,n) it follows that (fpn, fn) = f(m.n)-

3.4.21. Note that (z,y) = (z — ty,y), as any divisor of z and y is also a divisor of x — ty. So, every move in
the game of Euclid preserves the g.c.d. of the two numbers. Since (a,0) = a, if the game beginning with
{a, b} terminates, then it must do so at {(a, b),0)}. Since the sum of the two numbers is always decreas-
ing and positive, the game must terminate.

3.4.22. First, we show the hint. For convenience, let g = (1 + v/5)/2. If y < = < yg, then the move {z,y} to
x —y,y is alegal move. But z — 2y < = — gy < 0, so there is only one legal move. In this case, we have,
since g2 = g + 1, that, 2 < yg, so zg < y(g + 1) and hence zg = (z — y)g < v, as desired. Now if a = b,
then the first player wins immediately. Suppose a > bg. Then let k be defined by kb < a < (k + 1)b. If
a — kb < b < (a— kb)g, then the first player makes the move {a — kb, b}, which leaves the second player
in the situation of the hint. Therefore, the second player has only one move, which puts the first player
back into the situation with a > bg again. If, on the other hand, (a — kb)g < b, then the first player makes
the move {a— (k—1)b, b}, in which case, we have bg > (a—kb)g?> = (a—kb)(g+1) = (a—kb)g+ (a—kb) >
b+ (a — kb) = a — (k —1)b. Therefore, the second player is again put into the situation of the hint. Hence,
a player in the position a > bg can always force the other player to be in the situation in the hint.

3.4.23. Choose the integer m so that d has no more than m bits and that ¢ has 2m bits, appending extra ze-
ros to the front of ¢ if necessary. Then m = O(log, ¢) = O(log, d). Then from Theorems 2.7 and 2.5 we
know that there is an algorithm for dividing ¢ by d in O(m?) = O(log, qlog, d) bit operations. Now let
n be the number of steps needed in the Euclidean algorithm to find the greatest common divisor of a
and b. Then by Theorem 3.12, n = O(log, a). Let ¢; and r; be as in the proof of Theorem 3.12. Then
the total number of bit operations for divisions in the Euclidean algorithm is )" ; O(log, ¢; log, r;) =
> O(logy gilogyb) = O (log,bY 7 log, qi) = O (logyblog, [, ¢;) . By dropping the remainder
in each step of the Euclidean algorithm, we have the system of inequalities 7; > ;11¢;41, for i =
0,1,...,n — 1. Multiplying these inequalities together yields HZZOI r; > [1i—, rig;. Cancelling common
factors reduces this to a = ry > r,, [[\-; ¢;. Therefore, from above we have that the total number of bit
operations is O (log, blog, [T}, ¢;) = O(log, blog, a) = O((log, a)?).

3.4.24.a. From the recursion relation, we have r;q; = 71 — ;41 for 1 < j <m,s0 337 rjq; = (ro —r2) +
(ri—mrg)+- -+ (rn_2—7n) + (Frne1 —Trnt1) =ro+71 —rn — Tny1 = a+b— (a,b), where we notice
that the second sum is telescoping.

b. From the recursion relation, we have r3q; = 7;(rj—1 — 7j41) = 7j-175 — 74741, 80 > ;_, 15¢; =
(ror1 —rire) + -+ (Th—1"n — MTnt+1) = o1 — TnTnt1 = ab, where we notice that the second sum
is telescoping.

Tn n
component is the last equation in the series of equations in the proof of Lemma 3.3. When we multi-

ply this result on the left by the next matrix we get O I e I e A I ,
1 0 n Tn—1 Tn—1

which is the matrix version of the last two equations the proof of Lemma 3.3. In general, at the ith step
. 1 i Y O . i . .
we have (q” ' ) (T" ! 1) = (q” Tn—ie1 T Z) = (T” ’ 2) , so that we inductively work our

10 Tr—i—1 Trn—i—1

3.4.25. We apply the @Q;’s one at a time. When we multiply <q1” é) (r(;‘) = (ann) = (T’;l), the top

T'n—i

way up the equations in the proof of Lemma 3.3, until finally we have (:(1)) = (Z) .
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3.5. The Fundamental Theorem of Arithmetic

3.5.1.a. Wehave 36 = 6% = 22 - 32,
b. Wehave39 =3-13.
c. Wehave 100 = 10? = 22 - 5%,
d. We have 289 = 172,
e. Wehave222=2-111=2-3-3T7.
f. We have 256 = 28,
g. Wehave 515 =5-103.
h. We have 989 = 23 - 43.
i. Wehave5040 =10-504 =2-5-4-126=2%-32.5.7.
j.  We have 8000 = 8 - 103 = 26 . 53.
k. Wehave 9555 =3-5-72-13.
1. Wehave 9999 =9-1111 = 3%-11-101.
3.5.2. Wehave 111111 =111-1001 =3-37-7-11-13.
3.5.3. Wehave 4849845 =3-5-7-11-13-17-19.
3.5.4.a. We have 100000 = 10°, so the only prime factors are 2 and 5.
b. We have 10500000 = 105 - 10°, so the only prime factors are 2, 3,5 and 7.

c. If a prime divides 10!, then it must divide one of the factors from 1 to 10. Thus the only prime fac-
tors are those less than or equal to 10, namely 2, 3,5 and 7.

d. Wehave (%)) = (21-22-23-24.25-26-27-28-29-30)/(2-3-4-5-6-7-8-9-10) = 32-5-7-11-13-23-29.
3.5.5.a. We have 196608 = 2163,
b. We have 7290000 = 729 - 10* = 2*305%.

c. If a prime divides 20!, then it must divide one of the factors from 1 to 20. Thus the prime factors are
exactly those less than or equal to 20.

d. Wehave (30) = (26-27-28-29-30-31-32-33-34-35-36-37-38-39-40-41-42-43-44-45-46-47-48-49-50) / (2-

3:4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20-21-22-23-24-25) = 23327213-29-31-37-41-43-47.

3.5.6. If n = p>*ps® ... p2% then (p§'ps2---p%)? = n, so n is a perfect square. Conversely, if n = d? for

some integer d with prime factorization d = pS'p3? - - - p@, then n = d? = p3*' p3°2 - . . p2ar.

3.5.7. The integers with exactly three positive divisors are those of the form p? where p is prime. The inte-
gers with exactly four positive divisors are those of the form pq or p* where p and q are distinct primes.
These results can be proved considering the cases where the integer is a power of a prime, the product
of powers of two primes, and the product of powers of more that two primes.
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3.5.8. Suppose that the primes in the factorization of n that occur to an even power are pi,...,p; and let
the power of p; in the factorization be 2b; and suppose that the primes that occur to an odd power are
q1,---,q and let the power of ¢; in the factorization be 2¢; + 1. Thenn = (plilpg2 . ~p2k a7 a5 grt)?
(¢192 - - - qi). This is a factorization of n into a perfect square and a square-free integer.

3.5.9. Letn = pi*p3* .. -pi““'quﬁgqglmJr3 e q?b”?’ be the factorization of a powerful number. Then n =

(p1'ps® - i qlflqu e qlbl)2(Q1qQ -+ q)? is a product of a square and a cube.

3.5.10. Let pbe a prime divisor of a, and let p” be the highest power of p dividing a. Then p*" | a?, and hence
3" | b. Let p® be the highest power of p dividing b. Then 3r < 2s. Therefore, r < (2/3)s < s, and so p" |
b. Since this is true for all primes dividing a, we have a | b.

3.5.11. Suppose that p® || m and p® || n. Then m = p®Q and n = p*R where both Q and R are products of
primes other than p. Hence mn = (p?Q)(p°R) = p*T*QR. It follows that p®*® || mn since p does not
divide QR.

3.5.12. If p® || m then m = p®n where p { n. Then p { n* and we have m* = p¥?n* and we see that p*@ || mF*.

3.5.13. Suppose that p® || m and p® || n with @ # b. Then m = p*Q and n = p’R where both Q and R are
products of primes other than p. Suppose, without loss of generality, that ¢ = min(a, b). Then m +n =
p°Q + p’R = p™in(eb)(Q + p*=2R). Then p { (Q + p*~“R) because p 1 Q but p | p*~*R. It follows that
pmin(a,b) || (m+n)

3.5.14. To determine the power of p in the prime factorization of n! we can add the number of positive in-
tegers not exceeding n that are divisible by p, the number of positive integers not exceeding n that are
divisible by p?, the number of positive integers not exceeding n that are divisible by p?, and so on. This
will count the total number of factors of p in n! because it will count exactly once each factor of p in each
integer not exceeding n. Since there are [n/p’] positive integers not exceeding n that are divisible by p?,
it follows that the power of p in the prime factorization of n is [n/p] + [n/p?] + [n/p3] + - - - .

3.5.15. We know that in the prime power factorization of 20! the number 2 occurs [20/2] + [20/4] + [20/8] +
[20/16] = 10+ 5+ 2+ 1 = 18 times, 3 occurs [20/3] + [20/9] = 6 4+ 2 = 8 times, 5 occurs [20/5] = 4 times,
7 occurs [20/7] = 2 times, 11 occurs [20/11] = 1 time, 13 occurs [20/13] = 1 time, 17 occurs [20/17] = 1
time, and 19 occurs [20/19] = 1 time. Hence 20! = 28 .38 . 5. 72.11 .13 - 17 - 19.

3.5.16. The number of 0’s at the end of 1000! in decimal notation is the minimum of the powers of 2 and 5
in the prime factorization of 1000!. This is the number of 5’s in the factorization since there are clearly
more 2’s than 5’s in the prime factorization of 1000!. Since the power of 5 in the prime factorization of
1000! in ijl [1000/57] = 200 + 40 + 8 + 1 = 249, there are 249 0’s at the end of 1000!.

The number of 0’s at the end of 1000! in base eight notation is the highest power of 8 that divides
1000! evenly. This is the quotient obtained when 3 is divided into the power of 2 in the prime factoriza-
tion of 1000!. Since the power of 2 in the prime factorization of 1000! is Z?zl [1000/27] = 500 + 250 +
1254+62+31+15+ 7+ 3+ 1 =994 and since 994 = 331 - 3 + 1, there are 331 zeros at the end of the base
eight expansion of 1000!.

3.5.17. Suppose n! ends with exactly 74 zeroes. Then 57 - 27 = 10™ | nl. Since there are more multiples of
2than5in 1,2,...,n, we need only concern ourselves with the fact that 54 | n!. Thus, via Exercise 12,
we need to find an n such that 74 = [n/5] + [n/25] + - - - . By direct calculation, 74 = [300/5] 4 [300/25] +
[300/125]. It follows that 300!, 301!, 302!, 303!, and 304! end with exactly 74 zeroes.

3.5.18. The number of zeros at the end of n! equals the number of 5’s in the prime factorization of n!. This
is clearly an increasing function of n. There are Z?:I [624/57] = 124 + 24 4+ 4 = 152 zeros at the end of
decimal expansion of 624!. However since 5% divides 625, we see that there are 152+4=156 zeros at the
end of the decimal expansion of 625!. It follows that there cannot be 153,154, or 155 zeros at the end of
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the decimal expansion of n!.

3.5.19. We compute a8 = (ac—5bd)+ (ad+bc)y/—5. Thus N(afB) = (ac—>5bd)*+5(ad+bc)?* = a?c® —10achd +
25b%d% + 5a%d? + 10adbe + 5b%c? = a?(c? + 5d?) + 5b%(5d? + ¢?) = (a? + 5b2)(c? + 5d?) = N(a)N(B).

3.5.20. Suppose 2 = af. Then by Exercise 19, 4 = N(2) = N(a)N(3). Then N(a) = 1,2 or 4. Let o =
a 4 by/=5. Then we must have a® 4+ 5b? = 1,2, or 4. Thus b = 0 and a = £1 or +2 are the only possibili-
ties. Since o = +1 is excluded, we must have o = +2, which forces 8 = +1.

3.5.21. Suppose 3 = af. Then by Exercise 19, 9 = N(3) = N(a)N(8). Then N(a) = 1,3 0r 9. Let a =
a + bv/—5. Then we must have a2 +5b%> = 1,3, 0r 9. So eitherb =0and a = £l or+3,orb=+land a =
+2. Since a = +1,b = 0 is excluded, and since a = +3 forces = +1, we must have b = +1. Thatis, o =
+2 + 1/—5. But then N(a) = 9, and hence N(3) = 1, which forces 8 = +1.

3.5.22. Note that N(1++/—5) = 6. If 1 £ /-5 = «f is a nontrivial factorization, then N(«) = 2, say. But
N(a) = a® + 5b? = 2 has no solution in the integers. Hence, no nontrivial factorization exists.

3.5.23. Note that21 =3 -7 = (1 + 2¢/=5)(1 — 2y/=5). We know 3 is prime from Exercise 21. Similarly if we
seek @ = a + by/=5 such that N(a) = a* + 5b® = 7, we find there are no solutions. For |b] = 0 implies
a? =7,|b] = 1 implies a® = 2 and |b| > 1 implies a® < 0, and in each case there is no such a. Hence if
af =7, then N(af) = N(a)N(5) = N(7) = 49. So one of N(«) and N(B) must be equal to 49 and the
other equal to 1. Hence 7 is also prime. We have shown that there are no numbers of the form a + bv/—5
with norm 3 or 7. So in a similar fashion to the argument above, if a3 = 1 & 2y/=5, then N(a3) =
N(a)N(B) = N(1 4 2y/=5) = 21. And there are no numbers with norm 3 or 7, so one of a and /3 has
norm 21 and the other has norm 1. Hence 1 + 2/=5 is also prime.

3.5.24. Note that, for instance, 25 = 5-5 = (1 + 2/—6)(1 — 2y/—6). By arguments identical to those in the
solutions to Exercises 21 and 22, we see that 5 and 1 & 21/—6 are prime.

3.5.25. The productof 4k +1and 4l +1is (4k+1)(4l+1) = 16kl +4k+4l+1=4(4kl+k+1)+1=4m+1
where m = 4kl + k + [. Hence the product of two integers of the form 4k + 1 is also of this form.

3.5.26. The twenty smallest Hilbert primes are: 5,9, 13, 17, 21, 29, 33, 37, 43, 49, 53, 57, 61, 69, 73, 77, 89, 93,
97,101, 105.

3.5.27. We proceed by mathematical induction on the elements of H. The first Hilbert number greater than 1,
5, is a Hilbert prime because it is an integer prime. This completes the basis step. For the inductive step,
we assume that all numbers in H less than or equal to n can be factored into Hilbert primes. The next
greatest number in H is n + 4. If n + 4 is a Hilbert prime, then we are done. Otherwise, n = hk, where h
and k are less than n and in H. By the inductive hypothesis, h and k can be factored into Hilbert primes.
Thus, n + 4 can be written as the product of Hilbert primes.

3.5.28. Wehave 693 =9 .77 =21-33. All of 9, 21, 33, and 77 are Hilbert primes since none of these integers
are divisible by any smaller integers of the form 4k + 1.

3.5.29. Suppose that n is divisible by all primes not exceeding \/n. Let M be the least common multiple of
the integers m with 1 < m < y/n. Then for every prime p with p < \/n,p* | M but p*™! does not divide
M where pF is the largest power of p not exceeding /. Then M = pi* - .- p}* where the powers of the
prime p; is the largest power of this prime not exceeding /n. Since v/n < p ™ fori = 1,2,...t we have
(Vn)t < p’le > ~pft+1. But note that p’le . ~pft+1 = (p’f1 o -pft) (propr) S M-pp--op < M2 Tt
follows that (y/n)* < M?. Since M | n it follows that M < n, so (y/n)! < n?. It follows that t < 4. If t is
the number of primes less than \/n and there are four or fewer primes less than \/n and 7 is the fourth
prime, it follows that \/n < 7, so n < 49. Examining the integers less than 49 shows that the only inte-
gers satisfying the conditions are n = 1,2, 3,4, 6, 8,12, and 24.
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3.5.30. a. We have [8,12] = 24.

b. We have [14,15] = 1.

c¢. We have [28, 35] = 140.

d. Wehave [111,303] = 11211.

e. We have [256,5040] = 80640.

f. We have [343,999] = 342657.
3.5.31.a. Wehave [7,11] = 77.

b. We have [12,18] = 36.

c¢. We have [25,30] = 150.

d. Wehave [101,333] = 33633.

e. We have [1331, 5005] = 605605.

f.  We have [5040, 7700] = 277200.
3.5.32.a. We have (23%5%,22337%) = 1, and [2325%,22337?] = 23253223372

b. Wehave(2-3-5-7,7-11-13)=7,and [2-3-5-7,7-11-13] =2-3-57-11-13.

c. Wehave (283°5111'3,2-3-.5-11-13) =2-3-5-11, and [28365%1113,2.3 -5 - 11 - 13] = 28365111313.

d. We have (4110147431031001 4111434783111) — 4111 and [4110147431031001 4111434783111
4110147431031001434783111.

3.5.33.a. We have (22335577, 27355372) = 22335372, [22335577 27355372] = 27355577,
b. Wehave (2:3-5:7-11-13,17-19-23-29) = 1;[2-3-5-7-11-13,17-19-23-29] = 2.3.5.7-11-13-17-19-23-29.
c. Wehave (257113,2.3.5.7-11-13) = 2-5-11;[2°5711'3,2.3.5.7-11-13] = 23.3.57.7-1113.13.

d. We have (4711791111011001,4111831111011000) _ 1011000;[4711791111011001,4111831111011000]
4111471179111831111011001.

3.5.34. Letm = [a,b] an suppose M is a common multiple of a and b which is not divisible by m. Then by the
division algorithm, we have M = gm + r, with0 < r < m. Sincea | mand a | M, thena | M — gm =
r. Similarly, b | r. Therefore, r is a positive common multiple of a and b which is less than m. This is a
contradiction, so no such M exists.

3.5.35. Suppose that both 13-year and 17-year cicadas emerge in a location in 1900. The 13-year cicada will
emerge again in years 1900 4 13k where £ is a positive integer. The 17-year cicadas will emerge again
in years 1900 + 17k where £ is a positive integer. Both 13-year and 17-year cicadas will emerge again in
years 1900 + [13,17]k = 1900 + 221k where £ is a positive integer. Hence they both will emerge again in
the year 2121.

3.5.36. Each of a and b must be a multiple of 18, say ¢ = 18k and b = 18m, with (k,m) = 1. By The-

orem 2.8, ab = 18k - 18m = 18 - 540, or km = 2 -3 - 5. The possible values for the pair (k,m) are
(1,30), (2,15), (3,10), (5,6), in either order. So the possible values of ¢ and b are these pairs multiplied
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by 18.

3.5.37. Leta =pi'py*---p. and b = pi'ps5? - - - p;*, where p; is a prime and r; and s; are nonnegative. (a,b) =
p;nin(rl,sl) . .pzlin(rk’sk) and [a’ b] _ prlnax(rl’sl) . .pkmaX(Tk,Sk). So [a, b] _ (a’ b)p;nax(rhsl)*min(rhsl) o

max(rg,sk) —min(re,se) gin e max(r;, ;) — min(r;, s;) is clearly nonnegative, we now see that (a,b) | [a, b].

3.5.38. Lete = (a,b). Then (a/e,b) = 1. Let ¢ = a/e and d = b.Then cb = ab/e = [a, b] by Theorem 3.16.

3.5.39. If [a,b] | ¢, thensince a | [a, b],a | c.Similarly, b | c¢. Conversely, suppose that a = pj'p3? - pm and b =

plflpg2 ---pbn and ¢ = p§'pS? - - - pn. If a|c and blc, then max(a;, b;) < ¢; fori = 1,2,...,n. Hence, [a,b] | c.

3.5.40. Suppose that p | a® where p is prime and a is an integer. Then by Lemma 3.5 it follows that p | a.
3.5.41. Assumethatp|a” ==+ |al|-]a]|---|a]| Thenby Lemma3.5p|lalandsop|a.

3.542. Letp” || ¢,p® || a,and pt || b. Then p" | ab, so r < s+ t. Then p™*("%) | (g, ¢), and p™2*("t) | (b, ¢). Since
max(r, s) + max(r,t) > s+t >r, wehave p” | (a,c)(b,c).

3.5.43.a. Suppose that (a,b) = 1and p | (a™,b™) where p is a prime. It follows that p | a™ and p | b™. By Exer-
cise4l,p| aand p | b. But then p | (a,b) = 1, which is a contradiction.

b. Suppose that a does not divide b, but ™ | b™. Then there is some prime power, say p” that divides a
but does not divide b (else a | b by the Fundamental Theorem of Arithmetic). Thus, a = p"Q), where
Q is an integer. Now, a™ = (p" Q)" = p""Q", so p"™ | ™ | b™. Then b" = mp"™, from which it follows
that each of the n ’s must by symmetry contain r p’s. But this is a contradiction.

3.544.a. Suppose v/5 = a/b, with a and b integers and (a,b) = 1. Then 5 = a®/b%, or 56 = a*. Then 5 | a3,
s0 5 | a and we have 5 | a®. Then 52 | 563, or 52 | b3. But then 5 | b, s0 5 | (a,b), a contradiction.
Therefore /5 is irrational.

b. By Theorem 2.11, a root of 2® — 5 is either an integer or an irrational number. ¥/5 is a root, but 1° <
5 < 23,501 < /5 < 2. Since there are no integers between 1 and 2, /5 must be irrational.

3.5.45. Suppose that * = v/2 + /3. Then 22 = 2 + 2v/2/3 + 3 = 5 + 2v/6. Hence 22 — 5 = 2/6. It follows
that z* — 1022 + 25 = 24. Consequently, z* — 1022 + 1 = 0. By Theorem 3.17 it follows that v/2 + /3 is
irrational, since it is not an integer (we can see this since 3 < V2+43< 4).

3.5.46. Suppose that log, 3 is rational. Then log, 3 = a/b where a and b are integers with b # 0. This implies
that 27 = 3. Raising both sides to the bth power gives 2% = 3°. But the fundamental theorem of arith-
metic shows that this is impossible since the integer 2¢ has a unique factorization into primes, and so
cannot equal 3°.

3.5.47. Suppose that m/n = log, b. This implies that p = b, from which it follows that p™ = b". Since b is
not a power of p, there must be another prime, say g, such that ¢ | b. Buttheng | b | 0" =p™ =p-p---p.
By Lemma 2.4, ¢ | p, which is impossible since p is a prime number.

3.5.48. Suppose that 1+ § + 1 + .-+ L1 = Q where Q is an integer. Let 2° be the largest power of 2 not
exceeding n. Multiply both sides by 2¢~1 R where R is product of the largest powers of odd primes less
than n. We obtain A+ 1 = 2°~'RQ where A is an integer. This is a contradiction since the left-hand side
is not an integer but the right-hand side is an integer.

3.5.49. Let p be a prime that divides a or b. Then p divides a + b and [a, b]. Hence p divides both sides of the
equation. Define s,t by p° || a, p' || b, say that a = zp® and b = yp*. Without loss of generality, suppose
s <t Thena+b=p*(x+p~*),s0p* | a+b Also, p®*=t) | [a,b]. But max(s,t) = t,so p' || [a,D].
Therefore p™"(>*) || (a + b, [a,b]). But min(s,t) = s, so the same power of p divides both sides of the
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equation. Therefore the two sides must be equal.

3.5.50. By Exercise 41 we know that (a,b) = (a + b, [a,b]) = (798,10780) = 14. Let ¢ = % and d = . Since
ab = (a,b)[a, b] it follows that cd = 10780/14 = 770 and ¢ + d = 57. We can find ¢ and d by solving the
equation (z — ¢)(x — d) = 22 — (¢ + d)x + ed = 2? — 572 + 770 = 0. The roots are ¢ = 35 and d = 22.
Hence ¢ = 490 and b = 308.

3.5.51. Leta=pi'py®---pr,b=pi'ps*---pF,and c = phiph? . ~p1,;’°, with p; prime and r;, s;, and ¢; nonnega-
tive. Observe that min(z, max(y,z)) = max(min(z,y), min(x,z)). We also know that [a,b] =
rlnax(rl,sl)p;nax(rz,sz) . .pglax(rk,sk), and so ([a7 b} ) _ plinin(tl,max(rl,sl))pmin(tg,max(r2,82)) . .pmin(tk,max(rk,sk)).

k
We also know that (a, c) = pllnm(rhtl)pg‘m(rzat?) .. ,pkmlﬂ(rk,tk) and (b, C) — prlrun(s17t1)p12mn(32,t2) . 'pkmln(5k7tk)-

Then [( ) (b C)] _ prlnax(min(rl,tl),min(sl7t1))prznax(min(rz,t2)7min(sz,t2)) . .pmax(min(rk,tk),min(sk,tk)). There-

fore, ([a,b],c) = [(a, ¢), (b, ¢)]. In a similar manner, noting that min(max(z, z), max(y, z)) = max(min(z, y), z),
we find that [(a, ), ¢] = ([a, ], [b, ¢]).

3.5.52. We have [6,10,15] = 30 and [7, 11, 13] = 1001.

3.5.53. Letc = [a1,...,a,], d = [[a1,...,an_1],a,], and e = [a1,...,a,—1]. If ¢ | m, then all a;’s divide m,
hence e | m and a,, | m, so d | m. Conversely, if d | m, then e | m and a,, | m, so all a;’s divide m, thus ¢ |
m. Since c and d divide all the same numbers, they must be equal.

3.5.54. Leta,b, and n have prime factorizations a = py* - - - pfr, b = -o-pbr,and n = p{* - - - p¢r, where some
of the a; and b, may be 0. If n = [a, b], we have max(al, bz) = for each i. So one of each pair a;, b; must
be equal to ¢;. If a; = ¢;, there are ¢; 4 1 choices for b;. If a; # ¢;, then b; = ¢; and there are ¢; choices for
a;, giving 2¢; + 1 ways in all. Since this occurs for each i, we have (2¢; + 1) - - - (2¢, + 1) ways in all.

3.5.55. a. There are six cases, all handled the same way. So without loss of generality, suppose that a < b <
¢. Then max(a, b, c) = ¢,min(a,b) = a,min(a, ¢) = a, min(b, ¢) = b, and min(a, b, c) = a. Hence ¢ =
max(a,b,¢) = a+ b+ ¢ — min(a, b) — min(a, ¢) — min(b, ¢) + min(a,b,¢) =a+b+c—a—a—b+a.

b. The power of a prime p that occurs in the prime factorization of [a, b, ¢] is max(a, b, ¢) where a, b, and

c are the powers of this prime in the factorizations of a, b, and ¢, respectively. Also a + b + c is the

power of p in abe, min(a, b) is the power of p in (a, ), min(a, ¢) is the power of p in (a, ¢), min(b, c)

is the power of p in (b, ¢), and min(a, b, ¢) is the power of p in (a,b,c). It follows that a + b + ¢ —

min(a, b) — min(a, ¢) — min(b, ¢) is the power of p in abc(a, b, ¢)/((a,b)(a,c)(b, c)). Hence [a,b, ] =
abe(a,b,)/((a, b)(a, ¢) (b, ).

3.5.56. The formula for [a1,as,...,ay] is a rational number whose numerator is the product of the greatest

common divisors of the a;’s taken 1,3,5,... at a time, and whose denominator is the product of the

greatest common divisors of the a;’s taken 2,4, 6, ... at a time.

3.,5.57. Leta = pi'py*---pk,b = pi'p5?---p;¥, and c = pi'pk? - - pi¥, with p; prime and 7;, s;, and ¢; non-

negative. Then p Tt min(risit) (g b e) and prttETETmInCLs) iy ge ab), and
pinm(m,s“t i) p;ﬂ—i—s i+ti—min(r;,s;,t; ) p:“"s +t1
3.5.58. Leta,b, and c have prime factorizations a = p{* - - - p¥,b = ---pb,and ¢ = p{* - - - p¢, where some

of the a; and b; may be 0. Then [a, b, | (ab, ac, bc) = max(al b Cl) = -pflax(ar broer) pmin(aitbyaiterbiter)
(3
p7r§11n(a7 +brarter,brter) _ pc1t1+b1+61 cooplrtbrter — abc.

3.5.59. Leta = pi'ph>---pi*,b=pi'py’---py¥,and c = pi'p% - - pi¥, with p; prime and 7, s;, and ¢; nonnega-
tive.  Then, using that (a,bc) = pinrosvh)pmintrasete) - pmin(rosel) = ang [q,b,d =
max(rish) prax(raso.ta) | max(riosiote) e can write the prime factorization of ([a, b], [a, ], [b, ¢]) and
[(a,)),(a,c), (b,c)]. For 1nstance, con51der the case where ¥ = 1. Then ([a,b],[a,c],[b,c]) =
(prlnax(rhsl)’plinax(rhtl)’prlnax(shtl)) _ prlnm(max(rl,sl)7max(r1,tl),max(sl,tl). Slmllarly, [( ) ( ) (b C)] _
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prrextmin(r.sy) min(rto).min(si.h) - Clearly, these two are equal (examine the six orderings r1 > s >

t,.).

3.5.60. Suppose that there are only finitely many primes p1, . .., p; of the form 6k +5. Form N = 6pips - - - ps —
1. Then N is not divisible by any of the primes ps, ..., p;, since each leaves a remainder of —1 when it
is divided into N. Now N can only have prime divisors of the form 6k + 1 and 6k + 5 since (V,6) = 1.
There also must be at least one prime divisor of the form 6% + 5 since the product of primes of the form
6k + 1 is also of this form. Hence there are infinitely many primes of the form 6% + 5.

3.5.61. First note that there are arbitrarily long sequences of composites in the integers. For example, (n +
N +2,(n+2)!+3,...,(n+ 2)! + (n + 2) is a sequence of n consecutive composites. To find a se-
quence of n composites in the sequence a,a + b,a + 2b,..., look at the integers in a,a + b,a + 2b,
... with absolute values between (nb + 2)! + 2 and (nb + 2)! + (nb + 2). There are clearly n or n + 1
such integers, and all are composite.

3.5.62.a. Wehave 106 —1 = (10*+1)(10% —1). Also, we find that (103 +1) = (10+1)(102—~10+1) = 11-91 =
11-7-13. We also have (103 — 1) — (10 —1)(10> +10+1) = 9- 111 = 33 - 37. It follows that 10° — 1 =
33.7-11-13-37.

b. Wehave 3%11-73-101 - 137.

c. Wehave7-31-151.

d. Wehave3?5-7-13-17-241.

e. Wehave 327-11-31-151-331.

f. Wehave335-7-13-19-37-73-109.

3.5.63. We have 8137 = 79 - 103. Since the price of the camera is an integer and less than 99 dollars, it follows
that the discounted price of a camera is 79 dollars. Hence they sold 103 cameras at 79 dollars each.

3.5.64. Note that 375961 = 79 - 4759. So the possible prices of the book are $1, $79, $4759, and $375,961. The
most likely of these is $79, so we suspect that the number of books sold was 4759.

3.5.65. Since 139499 = 199 - 701, the price must have been $199 and so the number of electronic organizers
sold was 701.

3.5.66. Suppose that a and b are integers such that a? | b2. Then there is an integer k such that v*> = ka?. It
follows that k = (a/b)%. Suppose that vk is not an integer. Then by Theorem 2.11 we see that V% is ir-

rational. However vk = a/b. It follows that vk = [ is an integer. Hence b = [ - a where [ is an integer.
Thus a | b.

3.5.67. Leta=T[,_,pi and b= H§:1 pf The condition (a,b) = 1 is equivalent to min(c;, 3;) = 0 for all ¢
and the condition ab = ¢” is equivalent to n | (a; + ;) for all i. Hence n | o; and 5; = 0 or n | 8; and
a; = 0. Let d be the product of p/" over all i of the first kind, and let e be the product of /™ over all
i of the second kind. Then d" = a and e = b.

3.5.68. We proceed by induction. The basis step is [a1, az] = a1a2/(a1,a2) = aias, since (a1, az) = 1. Suppose
the proposition if true for n — 1. Then by Exercise 45, we have [a1,...,an_1, 0] = [[a1,...,an-1],0n] =
(a1 an-1),an] = a1 an.

3.5.69. Suppose the contrary and that a < n is in the set. Then 2a cannot be in the set. Thus, if there are &

elements in the set not exceeding n then, there are k integers between n + 1 and 2n which cannot be in
the set. So there are at most k + (n — k) = n elements in the set.
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3.5.70. The power of the prime p in the prime factorization of (m +n)!is S\._, [(m + n)/p"] where p’ is the
largest power of p not exceeding m+n. The power of this prime in the factorization of m!is 3_\._, [m/p"].
The power of this prime in the factorization of n! is Y'_, [n/p"]. By Exercise 23 of Section 1.4 it follows
that [(m + n)/p"] > [m/p"] + [n/p"]. Hence the prime p occurs to a nonnegative power, namely [(m +
n)/p"] — [m/p"] — [n/p"], in the rational number (m + n)!/(m!n!). Since this is true for every prime p,
(m + n)!/(m!n!) is an integer.

3.5.71. he fundamental theorem of arithmetic implies that m and n have the same prime divisors. So sup-
pose that m and n have prime-power factorizations m = p{'p5*---p;* and n = plil pgz e ka_ From the
equation m™ = n"™ it follows that a;n = b;m for i = 1,2,..., k. We first assume that n > m. Then a; <
b; fori =1,2,..., k. Hence n is divisible by m, so n = dm for some integer d. This implies that m?™ =
(dm)™. Taking the mth roots of both sides gives m? = dm, which implies that m?~! = d. Since n > m
we know that d > 1, so m > 1. However 227! = 2 and when d > 2 it follows that m?~! > d. When d >
2 and m > 2 we have m?~1 > 29-1 > dsince 23-! > 3 and when d = 2 and m > 2 we have m%~ 1 =m >
2 = d. Hence the only solution with n > m has m = 2and n = 2d = 2-2 = 4. Consequently all solutions
are givenbym =2andn=4,m=4andn =2,orm =n.

3.5.72. Suppose that there are only finitely many primes, say n of them: p1, ps,...,pn. Let Q be the product
of m primes, and R the product of the remaining n — m primes. Suppose p; | (Q + R). Since p; is a factor
of Q or R, it must also be a factor of the other. This is not possible, therefore no prime divides @ + R.
But @) + R is larger than p,, the largest prime. This contradiction tells us that there are infinitely many
prime numbers.

3.5.73. By Lemma 3.1, S must have a prime divisor, and by our assumption, it must be one of the p;, i
1,2,...r. For j # i, p;|@Q;, since it is one of the factors. So p, must divide S — Z#i Q; = @
D1 Pi—1Di+1 - - - Pr, but by the Fundamental Theorem of Arithmetic, p; must be equal to one of these
last factors, a contradiction, therefore S must have a prime factor different from the list we have. Since
no finite list can contain all the primes, there must be infinitely many primes.

3.5.74. Wehave (}) = p!/(k!(p — k)!). This is an integer and p divides the numerator and not the denomina-
tor. It follows that (p — 1)!/(k!(p — k)!) is an integer, so that (}) = p- (p — 1)!/(k!(p — k)!. It follows that p
divides (7).

3.5.75. Let p be the largest prime less than or equal to n. If 2p were less than or equal to n then Bertrand’s
postulate would guarantee another prime ¢ such that p < ¢ < 2p < n contradicting the choice of p.
Therefore, we know that n < 2p. Therefore, in the product n! = 1-2 -3 -.n, there appears only one
multiple of p, namely p itself, and so in the prime factorization of n, p appears with exponent 1.

3.5.76.a. Such an n has prime power factorization n = pj**T¢1pa2te ... p?aﬁej , where e¢; = 0 if p; appears
to an even power and e; = 1 if p; appears to an odd power. Note that some a;’s may be zero in this
expression. Then n = (p2*' - ~p?aj)(p§1 —epy) = (P --py? )2 (pit - - py’) which is of the desired

form.
b. Since s is of the form pj* - -- p;j , and there are two choices for each of the values e¢;, i = 1,2,...,7,

there are exactly 27 possible values for s.
c. Wehave r? < r?s = n < z, so taking square roots yields r < \/n\/z, so there are at most \/x possi-
ble values for 7, and hence for r2. Then combining this with the result in part (b), there are at most

27/ possible values for 72. That is, N (z) < 27./z.

d. Since p; is assumed to be the largest prime, then no integer can be divisible by any larger prime. So
N(z) = x for every z.
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e. From part (d) we have N(z) = z < 27,/ by part (c). Squaring both sides gives us 2 < 2%z and
dividing by x yields 2 < 227, Since j is fixed and z can be as large as we please, this leads to a con-
tradiction.

3.5.77.a. Uniqueness follows from the Fundamental Theorem. If a prime p; doesn’t appear in the prime fac-
torization, then we include it in the product with an exponent of 0. Since e; > 0, we have p{* =
pUPE Py S PUPS Pl = m.
b. Since p{* < pi* < m < Q = p’, we take logs of both sides to get e;logp; < nlogp,. Solving for e;
gives the first inequality. If 1 < m < @), then m has a prime-power factorization of the form given
in part (a), so the r-tuples of exponents count the number of integers in the range 1 < m < Q.

¢. To bound the number of r-tuples, by part (b) there are at most Cn + 1 choices for each e;, therefore
there are at most (C'n + 1)" r-tuples, which by part (b) gives us p!! < (Cn+1)" = (n(C +1/n))" <
n"(C+1)".

d. Taking logs of both sides of the inequality in part (c) and solving for n yields n < (rlogn + log(C +
1))/ log pr, but since n grows much faster than log n, the left side must be larger than the right for
large values of n. This contradiction shows there must be infinitely many primes.

3.5.78. From Exercise 80, we know the answer for primes, so S(2) = 2, S(3) = 3, S(5) = 5, S(7) = 7, and
S(11) = 11. Since 4,8 and 12 divide 4! = 24 and no lower factorial, we have S(4) = S(8) = S(12) =
4. Since 1/1!, S(1) = 1. Since 6|3!, S(6) = 3. Since 9|6! but no lower factorial, S(9) = 6, and since 105!,
S(10) = 5.

3.5.79. Since 40 has lots of small factors in its prime factorization, we expect it to have a small Smarandache
value. Since it’s divisible by 5, the smallest possible value will be 5, and since 40 does indeed divide 5!,
we have S5(40) = 5. Since 41 and 43 are primes, after Exercise 80 we have S(41)=41, S(43)=43.

3.5.80. If a prime p divides n!, then p must appear as a factor in the product. The smallest value of n for which
this happens is n = p, and p indeed divides p!. Therefore S(p) = p.

3.5.81. From Exercise 83, we have a(2) = 2, a(3) = 3, a(5) = 5, a(7) = 7, and a(11) = 11. The smallest value
of m such that S(m) = 1is m = 1, s0 a(1) = 1. S(4) = 4, but not for any smaller argument, so a(4) =
4. To find a(6) we consider the smallest number which would require two factors of 3 in the factorial,
and that number would be 9, so a(6) = 9. To find a(8), we consider the smallest number which would
require 5 factors of 2 in the factorial (one factor from 2, two factors from 4, one factor from 6 and the
additional factor from 8.) And that number would be 32, so a(8) = 32. Similarly a(9) = 27, since 27 is
the smallest number requiring the 3 factors of 3 (one from 3, one from 6 and the additional one from 9.)
Similarly a(10) = 25, since 25 is the smallest number needing both factors of 5. In sum, the sequence is
a(n) =1,2,3,4,5,9,7,32,27,25, 11.

3.5.82. If k|12! the last factor of 12 must contribute a new factor of either 2 or 3 which no number smaller than
k has. Since 2% = 256/|11! and 3* = 81||11!, we see that 3* is smaller, and so it must be that the factor of
12 is needed for 3° to divide 12!. So a(n) = 3° = 243.

3.5.83. From Exercise 80, we have S(p) = p whenever p is prime. If m < pand m|S(p)! = p! then m|(p—1)!, so
S(p) must be the first time that S(n) takes on the value p. Therefore of all the inverses of p, p is the least.

3.5.84.a. Since 300 = 22352, we have rad(300) =2 -3 - 5.
b. Since 444 = 22 -3 - 37, we have rad(444) = 2- 3 - 37.

c. Since 44004 = 22 -3-19- 193, we have rad(44004) = 2-3-19 - 193.

STUDENTS-HUB.com Uploaded By: anonymous



3.6. FACTORIZATION METHODS AND THE FERMAT NUMBERS 61
d. Since 128128 =27 .7-11 - 13, we have rad(128128) =2-7- 11 - 13.

3.5.85. Letn be a positive integer and suppose n is square-free. Then no prime can appear to a power greater
than one in the prime-power factorization of n. So n = pips - - - p, for some distinct primes p;. Then
rad(n) = pips2 - - - pr = n. Conversely, if n is not square-free, then some square d? |n and some prime fac-
tor p; of d appears to an even power in the prime-power factorization of n. So n = p?p%? - - - pb. Then
rad(n) = pip2 -+ pr # n.

3.5.86. Since every prime not exceeding n appears in the product, and no prime exceeding n appears in the
product, we have that rad(n!) equals the product of the primes not exceeding n.

3.5.87. Since every prime occurring in the prime-power factorization of mn occurs in either the factoriza-
tion of m or n, every factor in rad(mn) occurs at least once in the product rad(m)rad(n), which gives
us the inequality. If . = p%' ---p% and n = ¢ - - - ¢} are relatively prime, then we have rad(mn) =
p1-cPrq1 - gs = rad(m)rad(n).

3.5.88. By Exercise 14, p divides n! exactly > .- [n/p'] times and (2n)! exactly > _.°  [2n/p’] times. Therefore p
divides (*") = (2n)!/(n!)(n!) exactly 3232 [2n/p']—2 372 | [n/p'] times, and this is the desired expression.

n

3.5.89. First note that if p | (*"), then p < 2n. This is true because every factor of the numerator of (*) =
(2n)!

(un7 is less than or equal to 2n. Let (™) = p{*ph? - - p}* be the factorization of (*") into distinct primes.

By the definition of m, k < m(2n). By Exercise 72, p!* < 2n. It now follows that (2::) = pi'ph? - pik <
(2n)(2n) - --(2n) < (2n)7CM),

3.5.90. If pis a prime between n and 2n then n < p. Since there are 7(2n) — m(n) such primes, we have
nrn)=mn) < 7, <p<an - On the other hand, each prime in this product divides (2n)! but not n!, so

each prime in the product divides (27?) Since the primes are mutually relatively prime, their product
divides (%), and therefore we have [, _,<5, » < (%)

3.591. Note that (*") < 322" (*") = (1 +1)>" = 22", Then from Exercise 74, n™>")=7(") < (21} < 927 Tak-
ing logarithms gives (7(2n) — m(n))logn < log(2?") = nlog 4. Now divide by log n.

3.5.92. From Exercise 75, we get the following inequality: log(2n)m(2n) — log(n)n(n) = log(2)m(2n) + log(n)
(m(2n) — w(n)) < log(2)m(2n) + nlog(4). Now for n > 3, we have n(2n) < n, (since half of the num-
bers less than 2n are even.) Then we have log(2)7(2n) + nlog(4) < log(2)n + nlog(4) = 3nlog(2).
Then log(2n)m(2n) = (log(2n)m(2n) — log(n)m(n)) + (log(n)m(n) — log(n/2)m(n/2)) + -+ < 4nlog(2) +
2nlog(2)+nlog(2)+--- = nlog(2)(3+3/2+3/4+- - - = 6nlog(2). Therefore, 7(2n) < 6nlog(2)/log(2n) <
nlog(64)/log(n).

3.5.93. Notethat2" =[['_, 2 <J['_,(n+a)/a= (*"). Thenby Exercise 73, 2" < (2n)"(?"). Taking logs gives
7(2n) > nlog2/log2n. Hence, for a real number z, we have w(z) > [z/2]log2/log [x] > c12/log . For
the other half, Exercise 65 gives w(z) —7(z/2) < az/log x, where a is a constant. Then log z /2™ (x/2™)—
log z/2™ 17 (x /2™ 1) < ax/2™ for any positive integer m. Then, logz7(z) = >0 _, (logz/2™m(x/2™)—

logz/2m  r(x/2mHh)) < axd,, _,1/2™ < cox, where v is the largest integer such that 2°*! < z. Then
7(z) < cox/logz.

3.6. Factorization Methods and the Fermat Numbers

3.6.1. a. We see that 2 does not divide 33776925. Next we see that 3 does divide 33775925, with 33776925 =
3 - 11258975. Note that 3 does not divide 11258975. Next note that 5 does divide 11258975 with
11258975 = 5 - 2251795. We see that 5 also divides 2251795, with 2251795 = 5 - 450359. Next we
see that 5 does not divide 450359. Next we note that 7 does divide 450359 with 450359 = 7 - 64337.
Again dividing by 7 we see that 64337 = 7 - 9191. Dividing by 7 another time shows that 9191 =
7-1313. Next we note that 7 does not divide 1313. We see that 11 does not divide 1313. Dividing by
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13 gives 1313 = 13 - 101. Since v/101 < 13, we conclude that 101 is prime. Hence the prime factor-
ization is 33776925 = 3 - 5% - 73 - 13- 101.

b. We first note that neither 2, 3, 5, nor 7 divides 210733237. Next we see that 210733237 = 11-19157567.
Dividing by 11 again gives 19157567 = 11 - 1741597, and dividing by 11 yet again shows that
1741597 = 11 - 158327. We see that 11 does not divide 158327. Dividing by 13 shows that 158327 =
13 - 12179. Note that 12179 is not divisible by 13 nor by 17. We see that it is divisible by 19 with
12179 = 19 - 641. We see that 641 is not divisible by 19 or 23. Since 23 is the largest prime not ex-
ceeding /641 it follows that 641 is prime. It follows that the prime factorization is 210733237 =
112 - 13- 19 - 641.

c.  We first note that neither 2, 3,5, 7, nor 11 divides 1359170111. Next we see that 1359170111 = 13 -
104551547, and that 13 does not divide 104551547. Dividing by 17 gives 104551547 = 17 - 6150091,
but 17 does not divide 6150091. Next we see that 6150091 = 19 - 323689, but 19 does not divide
323689. We see that neither 23, 29, 31, 37, 41, nor 43 divides 323689, but 323689 = 47 - 6887. We see
that 47 does not divide 6887. Neither 53,59, 61, nor 67 divides 6887, but 6887 = 71 - 97. Since 97 is
prime, we conclude that 1359170111 = 13 -17-19-47- 71 - 97.

3.6.2.a. We have 33108075 = 33527311 - 13.
b. We have 7300977607 = 7511 - 17 - 23 - 101.
c. 4165073376607 =11-13-17-23-29-31-41-43 -47.

3.6.3.a. Since 11 < /143 < 12, we begin by noting that 12% — 143 = 1 is a perfect square. So, 143 = 122 —1 =
(12+1)(12—-1) =13 -11.

b. Since 47 < /2279 < 48, we begin by noting that 48% — 2279 = 25 = 5? is a perfect square. So, 2279 =
482 — 5% — (48 4 5)(48 — 5) — 53 - 43.

c. Since 6 < V43 < 7, we begin by looking for a perfect square in the sequence 72 — 43 = 6,82 — 43 =
21,9% — 43 = 38,102 — 43 = 57,11% — 43 = 78,.... The smallest such perfect square is 222 — 43 =
212. From this, it follows that 43 = (22 + 21)(22 — 21) = 43 - 1, which shows that 43 is prime.

d. Since 106 < /11413 < 107, we begin by looking for a perfect square in the sequence 1072 — 11413 =
36 = 62,.... Thus, 11413 = 1072 — 62 = (107 + 6)(107 — 6) = 113 - 101.

3.6.4.a. The smallest square greater than 8051 is 90 = 8100. We see that 90> — 8051 = 49 = 72, so that
8051 = 90% — 72 = (90 + 7)(90 — 7) = 97 - 83.

b. The smallest square greater than 73 is 81. But the smallest square a such that a* — 73 is a perfect
square is 37, for which 372 — 73 = 362. If follows that 73 = 372 — 362 = (37 + 36)(37 — 36) = 73 - 1.
This shows that 73 is prime.

c. The smallest square greater than 10897 is 1052. But the smallest square a such that a® — 10897 is a
square is a = 329. Then 10897 = (329 — 312)(329 + 312) = 17 - 641.

d. The smallest square greater than 11021 is 1052, and 1052 — 11021 = 4 = 22, therefore, 11021 =
(105 — 1)(105 + 2) = 103 - 107.

e. The smallest square greater than 3200399 is 1789%. But the smallest square a such that a® — 3200399
is a square is a = 1800. Then 3200399 = (1800 — 199)(1800 + 199) = 1601 - 1999.

f. We have 49682 — 24681023 = 1, so 24681023 = 4967 - 4969.
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3.6.5. Note that (50 +n)? = 2500+ 100n +n? and (50 —n)? = 2500 — 100n +n?. The first equation shows that
the possible final two digits of squares can be found by examining the squares of the integers 0, 1, .. ., 49,
and the second equation shows that these final two digits can be found by examining the squares of the
integers 0,1,...,25. We find that 02 = 0,1? = 1,22 = 4,3% = 9,4? = 16,5% = 25,6 = 36,7% = 49,8% =
64,92 = 81,102 = 100, 112 = 121,122 = 144,132 = 169, 142 = 196, 152 = 225,162 = 256, 172 = 289, 182 =
324,192 = 361,202 = 400, 212 = 441, 222 = 484,232 = 529,242 = 576, and 252 = 625. It follows that the
last two digits of a square are 00, el, e4, 25, 06, and €9 where e represents an even digit and o represents
an odd digit.

3.6.6. Consider only the last two digits of each number in z? — n = y?. Then y* and 2? = y? + n must end
in one of the given patterns. This will eliminate many possibilities from consideration. For example, in
part (a) of Exercise 4, we want to factor 8051. Then 2% = 8051 + 42, so if y ends in 00, e1, e4, 25, 06, or €9,
then 22 ends in 51, 02, 05, 76, 7, or €0, respectively. But only 76, and e0 are patterns for perfect squares,
so we only consider squares ending in 76 or e0 as candidates for z2.

3.6.7. Suppose that 2> — n is a perfect square with > (n + p?)/2p, say a®>. Now, a®> = 2> —n > ((n +
p?)/2p)? —n = ((n—p?)/2p)?. It follows that a > (n — p?)/2p. From these inequalities for = and a, we see
thatz+a > n/p, orn < p(z+a). Also, a®> = 2% —n tells us that (z — a)(z +a) = n. Now, (z —a)(z +a) =
n < p(z + a). Cancelling, we find that x — a < p. But since x — a is a divisor of n less than p, the smallest
prime divisor of n, ¢ — a = 1. In this case, = (n = 1)/2.

3.6.8. Certainly, my = my — 2¢1 = n1 — 2¢1, which is the basis step for induction on k. Suppose my_; =
n1—2(q1 4+ qp—2). Thenmy = my_1 —2qp—1 =1 —2(q1 +- -+ aqr—2) —2qk—1 =11 —2(q1 +- - -+ qr—1),
as desired. For the other formula, note that ng = ms + 71 = (m1 — 2¢1) + (n1 — 3q1) = 2n1 — 5¢1, which
is the basis step. Assume the formula holds for k — 1, then we have ny, = my +rg_1 =n1 —2(¢1 +--- +
Qe—1)+nk—1—2k=1)gr—1 =nm1 —2(q1 +- -+ aqp—1) +(E=Dni — k=) (1 +- - -+ qr—2) — 2k —1)qr—1 =
kni — (2k+ 1)(q1 + - - + qx—1), as desired.

3.6.9. From the identity in Exercise 8, it is clear that if n = n; is a multiple of 2k + 1, then so is ny, since it is
the sum of two multiples of 2k + 1. If (2k +1) | ny, then (2k+ 1) | ry and it follows from r, < 2k + 1 that
ri = 0. Thus, ng, = (2k + 1)gx. Continuing, we see that n = n + 2n, — 2(2k + 1)gr, = (2k + 1)n + 2(ng, —
kn) — 2(2k 4 1)q. It follows from Exercise 8 that n = (2k + 1)n — 2(2k + 1) Zi:ll g — 22k + 1)q, =
(2k+1)n —2(2k+ 1) Zle ¢;- Using Exercise 8 again, we conclude that n = (2k + 1)(n — 2 Zle qi) =
(2k + 1)mp41.

3.6.10. We compute n; = 5899 = my = 3 - 1966 + 1, m2 = 5899 — 2(1966) = 1967, n, = 1967 + 1 = 1968 =
5-393+43, m3 = 1967 —2-393 = 1181,n3 = 1181 +3 = 1184 = 7-169+1, my = 1181 —2(169) = 843,n4 =
843+1=2844=9-93+7, ms = 843 —2(93) = 657,n5 = 657+ 7 = 664 = 11 - 60 + 4, mg = 657 — 2(60) =
537,m6 =537 +4 =541 = 13- 41 4+ 8, m7 = 537 — 2(41) = 455, n7 = 455+ 8 = 463 = 15- 30 + 13, mg =
455 — 2(30) = 395, ng = 395 + 13 = 408 = 17 - 24. Therefore 17 | 5899, and we have 5899 = 17 - 347.

3.6.11. To see that u is even, note that a — ¢ is the difference of odd numbers and that b — d is the difference
of even numbers. Thus a — c and b — d are even, and u must be as well. That (r, s) = 1 follows trivially
from Theorem 2.1 (i). To continue, a® + b* = ¢ + d? implies that (a + ¢)(a — ¢) = (d — b)(d + b). Dividing
both sides of this equation by u, we find that r(a + ¢) = s(d + b). From this, it is clear that s | 7(a + ¢).
But since (r,8) = 1,s | a + ¢

3.6.12. From Exercise 11, r(a + ¢) = s(d + b) so rsv = s(b + d) and hence, rv = b + d. Now, (r,s) = 1, so we
have (a + ¢,d + b) = (sv,rv) = v(s,r) = v. Finally, since a and c are odd, 2 | (a + ¢), and since b and d
areeven, 2 | (b+ d), sowehave 2| (a + ¢,b+ d) = v, so v is even.

3.6.13. To factor n, observe that [(%)% + (2)?](r? + s%) = (1/4)(r?u® + r?v? + s?u? + s*v?). Substituting a —

¢,d—b,a+c,and d + b for ru, su, sv, and rv respectively, will allow everything to be simplified down to
n. As u and v are both even, both of the factors are integers.
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3.6.14.a. Wehaveu = (11-5,10—14) =2,r = (11 —5)/2=3,s = (14 — 10)/2 = 2,v = (11 + 5,10 + 14) =
8, then 211 = ((2/2)2 + (8/2)%)(3% + 2%) = 17 - 13.

b. Wehaveu = 8,7 =6,s = 5,v = 10, then 2501 = ((8/2)2 + (10/2)2)(62 + 52) = 41 - 61.
c. Wehaveu=4,r =58,s="T7,v =34, then 1000009 = ((4/2)? + (34/2)?)(58% + 7%) = 293 - 3413.

3.6.15. Wehave 24"2 41 = 4(27)4+1 = (2-227 2.2 4 1)(2-22" — 22" + 1). Using this identity we have the
factorization: 218 +1 = 4(24)4 41 = (2-2542-24 4 1)(2-28—2.244-1) = (294251 1)(2°—2° 1 1) = 545-481.

3.6.16. If m has an odd factor, the identity gives a factorization of a™ + 1, therefore m must be a power of 2.

3.6.17. We can prove that the last digit in the decimal expansion of F,, is 7 for n > 2 by proving that the last
digit in the decimal expansion of 22" is 6 for n > 2. This can be done using mathematical induction. We
have 22° = 16 so the result is true for n = 2. Now assume that the last decimal digit of 22" is 6, that is
22" = 6 (mod 10). It follows that 22" = (22")2""'=2" = 62"7'~2" = 6 (mod 10). This completes the
proof.

3.6.18. Note that v22* + 1 < 257, so we need only check the primes less than 257 which are of the form 64k +
1.Of644+1=65,64-24+1=129,and 64 -3+ 1 = 193, only 193 is prime. But 193 t 65537, so F is prime.

3.6.19. Since every prime factor of F5 = 92° 4 1 = 4294967297 is of the form 27k + 1 = 128k + 1, attempt to
factor Fj by trial division by primes of this form. We find that 128 -1+ 1 = 129 is not prime, 128 -2+1 =
257 is prime but does not divide 4294967297, 128 - 3+ 1 = 385 is not prime, 128 -4+ 1 = 513 is not prime,
and 128 - 5 + 1 = 641 is prime and does divide 4294967297 with 4294967297 = 641 - 6700417. Any fac-
tor of 6700417 is also a factor of 4294967297. We attempt to factor 6700417 by trial division by primes of
the form 128k + 1 beginning with 641. We first note that 641 does not divide 6700417. Among the other
integers of the form 128k + 1 less than v/6700417, namely the integers 769, 897, 1025, 1153, 1281, 1409,
1537, 1665, 1793, 1921, 2049, 2177, 2305, 2433, and 2561, only 769, 1153, and 1409 are prime, and none of
them divide 6700417. Hence 6700417 is prime and the prime factorization of Fj is 641 - 6700417.

3.6.20. We have 22° + 5 = 7. This is the only prime of the form 22" since 22" +5 = (=1)2" +5=1+45 =0
(mod 3) whenn > 1.

3.6.21. The number of decimal digits of F, is [log;, F},] + 1 = [log, F},/log, 10] + 1 by the change of base for-
mula for logarithms. But this is approximately log, 22" /log, 10 + 1 = 2"/ log, 10 + 1.

3.6.22. Suppose that a prime p divides F},. Then by Theorem 3.20, p is of the form 2"k + 1, but this number
is larger than n forall k = 1,2, ..., so p t n. Therefore, (n, F,,) = 1.

3.6.23. Suppose n® — 2™ = 1 for some integer n. Then 2™ = (n — 1)(n®"! + n®2 + ... 4+ n + 1), where the
last factor is the sum of ¢ odd terms but must be a power of 2, therefore, a = 2k for some k. Then 2™ =
(n* —1)(n* + 1). These last two factors are powers of 2 which differ by 2 which forces k = 1,a = 2, m =
3, and n = 3 as the only solution.

3.6.24. For 901, we try 31' — 901 = 60, 321 — 901 = 123,33' — 901 = 188, 34! — 901 = 255,35" — 901 = 324 =
182,50 901 = (35 — 18)(35 + 18) = 17 - 53. On the other hand, for 2703, we try only 522 — 2703 = 1, so
2703 = (52 — 1)(52 + 1) = 51 - 53 = 3- 17 - 53.

3.7. Linear Diophantine Equations

3.7.1.a. Using the Euclidean algorithm we find that 2 -3+ 5 - (—1) = 1. Multiplying both sides by 11 gives
2-33+5-(—11) = 11. Hence = 33,y = —11is a solution. All solutions are givenby « = 33 —5t,y =
—11 4 2t where t is an integer.

STUDENTS-HUB.com Uploaded By: anonymous



3.7. LINEAR DIOPHANTINE EQUATIONS 65

b. Using the Euclidean algorithm we find that 17 - (—3) + 13 - 4 = 1. Multiplying both sides by 100
gives 17 - (—300) + 13 - 400 = 100. Hence = —300, y = 400 is a solution. All solutions are given by
x = —300 + 13t,y = 400 — 17t, where ¢ is an integer.

c. Using the Euclidean algorithm we see that 21 - 1+ 14 - (—1) = 7. Multiplying both sides by 21 gives
21-21+4 14 (—21) = 147. Hence z = 21,y = —21 is a solution. All solutions are given by z =
21 — 2t,y = —21 + 3t where ¢ is an integer.

d. Since (60,18)=3 and 97 is not divisible by 3, it follows that there are no solutions in integer of 60z +
18y = 97.

e. Using the Euclidean algorithm it follows that 1402 - 889 + 1969 - (—633) = 1. Hence « = 889,y =
—633 is a solution. All solutions are given by « = 889—1969¢, y = —633+1402¢ where ¢ is an integer.

3.7.2.a. Using the Euclidean algorithm we find that3-1+4-1 = 7. Hence x = 1,y = 1 is a solution. All
solutions are given by © = 1 — 4¢,y = 1 4 3t where t is an integer.

b. Since (12,18) = 6 and 6 1 50, there are no solutions.

c. Using the Euclidean algorithm we find that 11 - 30 + 47 - (—7) = 1. Multiplying both sides by —11
gives —121-30 447 - (77) = —11. Hence v = —121,y = 77 is a solution. All solutions are given by
x = —121 — 47t,y = 77 + 30t where ¢ is an integer.

d. We divide the equation by 5 to get 52 + 19y = 194. Using the Euclidean algorithm we find that
5-4+19-(—1) = 1. Multiplying both sides by 194 gives 5- 776 4+ 19 - 194 = 194. Hence z = 776,y =
194 is a solution. All solutions are given by x = 776 — 19¢, y = 194 + 5¢ where ¢ is an integer.

e. Using the Euclidean algorithm we find that 442 - 102 + 1001 - (—43) = 1. Hence v = 442,y = —43 is
a solution. All solutions are given by = = 442 — 1001¢, y = —43 4 102t where ¢ is an integer.

3.7.3. Let x be the number of U.S. dollars and y be the number of Canadian dollars the businessman ex-
changes. Then 122z + 112y = 15286. Since (122,112) | 15286, there exist solutions with integer = and
y. Using the Euclidean algorithm we find that 112(12) — 122(11) = 2. It follows that 122(—84073) +
112(91716) = 15286. Consequently all solutions of the linear diophantine equation are given by = =
—84073 4 56t,y = 91716 — 61¢. But our situation requires that both  and y be positive. We can see that
x is positive when ¢ > 1501, and y is positive when ¢ < 1504. It follows that the only positive solutions
which occur when ¢ = 1502 and ¢ = 1503, namely z = 39,y = 94 and = = 95,y = 33, respectively.

3.7.4. Let e be the number of euros and f be the number of francs. Then 111e+ 83 f = 4626. Since (111,83) =
1, there exist solutions. Using the Euclidean algorithm we find that 111(3) 4 83(—4) = 1. It follows that
111(13878) + 83(—18504) = 4626, so all solutions to the diophantine equation are given by e = 13878 —
83t, f = —18504 + 111t, where ¢ is an integer. For e to be positive we must have 13878 > 83t which
implies that ¢ < 167. For f to be positive we must have 111¢ > 18504, which implies that ¢ > 166, so we
must have ¢ = 167, which means that e = 17 and f = 33.

3.7.5. Let e be the number of euros and p be the number of pounds. Then 11le + 169p = 11798. Since
(111,169) = 1, there exist solutions. Using the Euclidean algorithm, we find that 111(—102) 4+ 169(67) =
1, so that multiplying by 11798 gives us 111(—1203396) + 169(790466) = 11798, so all solutions are given
by e = —1203396 + 169t, p = 790466 — 111¢. Since e is positive we must have 169t > 1203396, which
implies ¢ > 7120. Since p is positive we must have 111t < 790466, which implies that ¢ < 7121, so we
must have t = 7121. Therefore ¢ = 53 and p = 35.

3.7.6. Let = be the number of plantains in each of the 63 equal piles and y be the number of plantains dis-
tributed to each traveller. Then 23y = 63z + 7, which in this context is a diophantine equation for which
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we seek positive solutions. The smallest positive solutions are x = 5 and y = 14, so each pile had 5 plan-
tains. (Mahavira’s intent being to find the smallest solution.)

3.7.7. Let z be the number of apples and y the number of oranges. We have 252 + 18y = 839. Using the
Euclidean algorithm we find that —5 - 25 + 7 - 18 = 1. It follows that 25(—5 - 839) + 18(7 - 839) =
25(—4195) + 18 - 5873 = 839. Consequently all solutions of the linear diophantine equation are given
by x = —4195 + 18t,y = 5873 — 25¢ where t is an integer. For 2 and y to both be nonnegative, we must
have 4195/18 < ¢ < 5873/25. Since ¢ must be an integer, this requires that ¢ = 234. This give the unique
nonnegative solution x = —4195 + 18 - 234 = 17,y = 5873 — 25 - 234 = 23.

3.7.8. We need to solve the diophantine equation 18z + 33y = 549. We get the general solution z = 366 —
11t,y = —183 + 6t. We seek only positive solutions, and to minimize the number of fruit, we will maxi-
mize y, the number of more expensive fruit. This gives us z = 3,y = 15 when ¢ = 33.

3.7.9.a. Suppose that x 14-cent stamps and y 21-cent stamps are combined to form $ 3.50. Then 14z + 21y =
350. Since (14,21) = 7 and 7 | 350 it follows that there are solutions in integers to this diophantine
equation. We can find these by first noting that 7 = —1-14+1-21,s0 350 = 50-7 = —50- 14+ 50 - 21.
This implies that all solutions in integers are given by x = —50 + (21/7)t = —50 + 3t and y = 50 —
(14/7)t = 50 — 2t where t is an integer. For x to be positive we must have ¢ > 17 and for y to be pos-
itive we must have ¢ < 25. This gives the solutions, for 17 <t < 25,z =1,y = 16;2 =4,y = 14;2 =
T,y=12;2 =10,y =10;2 =13,y =8;x =16,y = 6;2 =19,y = 4,0 =22,y = 2;and = = 25,y = 0.

b. Let x be the number of 14-cent stamps and y be the number of 21-cent stamps. Then 14z + 21y =
400. However, (14, 21) = 7 but 7 does not divide 400. Hence there are no solutions in integers and
it is impossible to use 14-cent and 21-cent stamps to form postage of $ 4.00.

c¢. We have 18 solutions: (0, 37), (3,35),...,(54,1).

3.7.10. a. We solve the diophantine equation 11z + 8y = 777 and get the general solution x = 2331 — 8¢,y =
—3108 + 11¢. Since we seek only positive solutions, the first equation implies that 2331 — 8¢ > 0 or
t < 291. The second equation implies that ¢ > 282. So there are 10 possible configurations for the
order.

b. We solve the diophantine equation 11z + 8y = 96 and get the general solution x = 288 — 8t,y =
—384 + 11¢. Since we seek only positive solutions, the first equation implies that 288 — 8¢ > O or ¢t <
36. The second equation implies that ¢ > 35. So either x =288 —8-35 =8,y = —384 +11-35 =1
orz=288—-8-36=0,y=—384+11-36 =12.

c¢. We solve the diophantine equation 11z + 8y = 69 and get the general solution « = 207 — 8t,y =
—276 + 11¢. Since we seek only positive solutions, the first equation implies that 207 — 8¢ > O or ¢t <

25. The second equation implies that ¢ > 26, so there are no solutions.

3.7.11.a. Since (2,3) = 1, we can take z to be any integer ¢ and solve the diophantine equation 2z 4 3y =
5 — 4t, which leads to the solution x = —5+4+3s —2t,y =5 —2s,z2 =t

b. Since (7,21, 35) = 718, there are no solutions.

c. Since (101,102) = 1, we can take z to be any integer ¢ and solve the diophantine equation 101z +
102y = 1 — 103z, which leads to the solution z = —1 + 102s + t,y = 1 — 101s — 2t,z = ¢

3.7.12.a. Since (2,3) = 1, we can choose any values for z, and 3, and solve the remaining equation for

and x4. We have 2(—1) +3(1) = 1,50 2(—1(5 — by —4x3)) + 3(5 — bxe — 4a3) = 5 — bwg — 4x3. Then
a general solution is given by x1 = —5+4 529 + 43+ 3t, 22 = v9, 23 = 3 and x4 = 5 — dxy — 4wz — 21.
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3.7. LINEAR DIOPHANTINE EQUATIONS 67

b. The general solution is given by 21 = 21,2 +2 =3 — 21 — 224 — 3t,23 = —6 + x1 + 324 + 7¢, and
Ty =x+ 4.

c. Note that (6,35) = 1, so we can choose z1, z3, and x4 freely and solve for the other variables. This
gives us a general solution of 1 = x1,x9 = 6(1 — 1521 — 1023 — 21x4) + 35¢, 23 = 3,24 = 24, and
x5 = —(1 — 1521 — 1023 — 21zy) — 6.

3.7.13. Let x be the number of pennies, y the number of dimes, and z the number of quarters. Then z + 10y +
25z = 99. Since x,y, and z are all nonnegative, it follows that z = 0, 1, 2, or 3. First suppose that z = 0.
Then z + 10y = 99. We find the nonnegative solutions to this by letting y range form 0 to 9. We see that
r=99y=9r=19y=82x=29,y="7,2 =39,y =62 =49,y = 5,2 =59,y =4, =69,y = 3;x =
79,y = 2;2 =89,y = 1; and 2 = 99,y = 0 are the solutions for z = 0. Now let z = 1. Then x + 10y = 74.
The nonnegative solutions to this are determined by letting y range from 0 to 7. We see that v = 4,y =
Tix=14y=6rx=24y=5r=34,y=4x=44,y=3;x0 =54,y =2;0 =64,y =1l;and z = 74,y =
0 are the solutions with z = 1. Now let z = 2. Then x 4 10y = 49. The nonnegative solutions to this are
determined by letting y range from 0 to 4. We see that x = 9,y = 4;2 = 19,y = 3;2 = 29,y = 2;x =
39,y = 1;and x = 49,y = 0 are the solutions with z = 2. Finally, let z = 3. Then = + 10y = 24. The
nonnegative solutions to this are determined by letting y range from 0 to 2. We see thatx =4,y = 2;z =
14,y = 1; and « = 24,y = 0 are the solutions with z = 3. We have exhausted all nonnegative solutions
of our equation.

3.7.14.a. We can use either 0, 2, or 4 quarters, and make up the difference with dimes. This gives us 3 ways:
(dimes, quarters) = (10, 0), (5, 2), or (0, 4).

b. In part (a) we can replace any dime by two nickels and any quarter by 5 nickels, this gives us the
following solutions: (nickels, dimes, quarters) = (0, 10,0), (2,9,0), (4,8,0),...(20,0,0), (0,5,2), ...
(10,0,2), (5,5,1),...,(15,0,1), (0,0,4), (5,0, 3) for 24 ways in all.

c. Each nickel listed in part (b) can be changed into 5 pennies, giving 175 ways in all.

3.7.15.a. We subtract the first equation from the second to get the diophantine equation 7y + 49y = 56, which
has solutions y = 8 — 7, z = t. Substituting these expressions into the first equation gives us z =
92 4 6t,y =8 — Tt,z = t.

b. We subtract the first equation from the second to get the diophantine equation 5y 4 20z = 21. Since
(5,20) = 5 1 21, there is no solution.

c. We subtract the first equation from the other two to get the system y + 2z + 3w = 200, and 3y + 8z +
15w = 900. We subtract 3 times this first equation from the second to get 2z 4+ 6w = 300, which has
solutions z = 150 — 3¢, w = t. Substituting these expressions into y + 2z + 3w = 200 gives us y =
—100 + 3t, and substituting all three expressions into the first equation gives us z = 50 — ¢.

3.7.16. Suppose that there x nickels, y dimes, and z quarters. Since there are 24 coins in the piggy bank we
know that x + y + z = 24. since there are two dollars in the bank, we know that 5z + 10y + 25z = 200.
Multiplying the first equation by 5 and subtracting it from the second yields 5y + 20z = 80. dividing
both sides by 5 gives y + 4z = 16. The solutions to the linear diophantine equation are y = 16 —4t,z = ¢
where t is a positive integer. There are 5 nonnegative solutions for 0 < ¢ < 4. Wehavey = 16 and z = 0,
which gives ¢ = 8,y = 12 and z = 1, which gives z = 11,y = 8 and z = 2, which gives x = 14,y = 4 and
z = 3, which gives x = 17,y = 0 and z = 4, which gives = 20. Hence the solutions are 8 nickels, 16
dimes, and 0 quarters; 11 nickels, 12 dimes, and 1 quarter; 14 nickels, 8 dimes, and 2 quarters; 17 nickels,
4 dimes, and 3 quarters; and 20 nickels, 0 dimes, and 4 quarters.

3.7.17. Let x be the number of first-class tickets sold, y be the number of second-class tickets sold, and z be
the number of stand-by tickets sold. Then we have the system of diophantine equations 140z 4 110y +
78z = 6548, v + y + z = 69. Substituting z = 69 — 2 — y into the first equation yields 62z + 32y = 1166,
which has solutions z = 9+ 16t,y = 19 — 31¢. Then z = 41 4 15¢. The only value of ¢ that leaves all three
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68 3. PRIMES AND GREATEST COMMON DIVISORS
quantities positive is t = 0, so the only solutionis x = 9,y = 19, z = 41.

3.7.18. Suppose that there are x pennies, y dimes, and z quarters. Then x + y + z = 50 and « + 10y + 25z =
300. Subtracting the first equation from the second shows that 9y + 24z = 250. This linear diophantine
equation has no solutions since (9, 24) = 3 and 3 does not divide 250. Hence there is no way to have 50
coins, all pennies, dimes, and quarters, that are worth $ 3.

3.7.19. The quadrilateral with vertices (b,0), (0,a), (b — 1,—1), and (—1,a — 1), has area a + b. Pick’s Theo-
rem, from elementary geometry, states that the area of a simple polygon whose vertices are lattice points
(points with integer coordinates) is given by 2z + y — 1, where z is the number of lattice points on the
boundary and y is the number of lattice points inside the polygon. Since (a,b) = 1, x = 4, and therefore,
by Pick’s Theorem, the quadrilateral contains a + b — 1 lattice points. Every point corresponds to a dif-
ferent value of n in the range ab — a — b < n < ab. Therefore every n in the range must get hit, so the
equation is solvable.

3.7.20. If x = —1, we can solve the equation az + by = ab—a — b for band get b = a — 1. Since (a,ab—a —b) =
(b,ab — a — b) = 1, the general solutionis ¢ = —1 + bt,y = a — 1 — at. Then for a positive solution, we
musthavez = —1+bt > 0ort > 1,butalso,y=a—1—at >0ory < (a—1)/a < 1, a contradiction, so
there are no solutions.

3.7.21. See the solution to Exercise 19. The line az + by = ab — a — b bisects the rectangle with vertices
(-1,a—1),(-1,-1),(b—1,a—1),and (b— 1, —1) but contains no lattice points. Hence, half the interior
points are below the line and half are above. The half below correspond to n < ab — a — b and there are
(a —1)(b—1)/2 of them.

3.7.22. Let a and b be the values of the stamps, with a > b. Since there are 33 postages that cannot be formed
Exercise 17 tells us that (a — 1)(b — 1)/2 = 33. Hence (a — 1)(b — 1) = 66. Since a and b are integers,
eithera =67and b =2,a =34and b =3,a =23 and b = 4, or a = 12 and b = 7. However postage of 46
cents cannot be formed, so there are no nonnegative solutions of ax + by = 46. Note that 0- 67 +23 -2 =
46,1-34+4-3 =46,and 2- 23 + 0 - 4 = 46, but there are no nonnegative solutions of 12z + 7y = 46, as
is easily shown. The values of the two stamps are 7 cents and 12 cents.

3.7.23. Let z,y and z be the number of cocks, hens and chickens respectively. The problem leads to the sys-
tem of diophantine equations = +y + z = 100, 5z + 3y + z/3 = 100. Substituting z = 100 — 2 — y into the
second equation and clearing fractions yields 14z + 8y = 200, which has solutions x = 4¢,y = 25 — 7¢. It
follows that z = 75+ 3t. The only values for ¢t which make all three of these numbers nonnegative are ¢t =
0,1,2, and 3. Thus the solutions to the problem are (z,y, z) = (0, 25, 75); (4,18, 78); (8,11, 81); (12,4, 84.)

3.7.24. Suppose that 3 + = 7. Then 14z + 14y = 2y. This implies that xy — 14z — 14y + 196 = 196 so that
(x — 14)(y — 14) = 196. It follows that = — 14 and y — 14 are divisors of 196. Consequently the values of
x— 14 and y — 14 must be 1 and 196, 2 and 98, 4 and 49, 7 and 28, 14 and 14, 28 and 7, 49 and 4, 98 and 2,
196 and 1, or the negatives of these values. Solving for z and y gives (z, y) = (15, 210), (16,112), (18, 63),
(21,42), (28,28), (42,21), (63,18), (112,16), (210, 15), (13, —182), (12, —84), (10, —35), (7, —14), (—14,7),
(—35,10), (=84, 12), or (—182, 13).
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CHAPTER 4

Congruences

4.1. Introduction to Congruences
41.1.a. Wehave2|(13—1)=12,s013=1 (mod 2).

b. Wehave5|(22—7) =15,8022=7 (mod 5).

¢. Wehavel3|(91—-0)=091,5091 =0 (mod 13).

d. Wehave 7| (69 —62) =7,s069 =62 (mod 7).

e. Wehave3|(-2—-1)=-3,s0—-1=1 (mod 3).

f. Wehave 11| (-3 —30) = —33,s0 —3 = 30 (mod 11).

g. Wehave40 | (111 — (=9)) =120,s0 111 = =9 (mod 40).

h. We have 37 | (666 — 0) = 666, so that 666 = 0 (mod 37).
41.2.a. Wehave7|(15—1)=14,s015=1 (mod 7).

b. Wehave 7| (42—0) =42,5042=0 (mod 7).

c¢. Wehave71(99—2)=0975099# 2 (mod 7).

d. Wehave74(8—(—1))=9,s08 % —1 (mod 7).

e. Wehave7|(-9—5)=-14,80 —9=5 (mod 7).

f. Wehave 7| (699 — (—1)) = 700,50 699 = —1 (mod 7).

4.1.3.a. Since the positive divisors of 27 — 5 = 22 are 1, 2, 11, and 22 it follows that 27 = 5 (mod m) if and
onlyifm=1,m =2,m =11, or m = 22.

b. Since the positive divisors of 1000—1 = 999 are 1, 3,9, 27,37, 111, 333, and 999, it follows that 1000 =
1 (mod m) if and only if m is one of these eight integers.

c. Since the only positive divisors of 1331 — 0 = 1331 are 1, 11,121, and 1331 it follows that 1331 = 0
(mod m) if and only if m is one of these four integers.

4.14. Suppose that a is an even integer. Then a = 2k for some integer k. The a? = 4k?. Consequently 4 | a?
so that a® = 0 (mod 4). Suppose that a is an odd integer. Then a = 2k + 1 for some integer k. Then a? =
4k? + 4k +1=4(k* + k) + 1,s0 that a® — 1 = 4(k? + k). It follows that a> = 1 (mod 4).

4.1.5. Suppose that a is odd. Then a = 2k + 1 for some integer k. Then a? = (2k + 1)? = 4k* + 4k + 1 =
4k(k + 1) + 1. If k is even, then k = 2/ where [ is an integer. Then a? = 8((2] + 1) + 1. Hence a*> = 1
(mod 8). If k is odd, then k = 2] + 1 when [ is an integer. Then a® = 4(2] + 1)(20 +2) + 1 =8(20 + 1)(I +

69
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70 4. CONGRUENCES
1) 4+ 1. Hence a® = 1 (mod 8). It follows that a> = 1 (mod 8) whenever a is odd.
4.1.6.a. 22 (mod 13) =9, since 22 = (1)(13) + 9.
b. 100 (mod 13) =9, since 100 = (7)(13) + 9.
c. 1001 (mod 13) = 0, since 1001 = (77)(13).
d. —1 (mod 13) = 12, since —1 = (—1)(13) + 12.
e. —100 (mod 13) =4, since —100 = (—8)(13) + 4.
f. —1000 (mod 13) = 1, since —1000 = (—77)(13) + 1.
4.1.7.a. Sincen! =0 (mod 2)ifn >2,wehave 1! +2! + 3!+ ...+ 100! =1 (mod 2).
b. Wehaven! =0 (mod 7) whenevern > 7. Since 1! =1 (mod 7),2! =2 (mod 7),3! =6 (mod 7),4! =
24 =3 (mod 7),5! =120 =1 (mod 7) and 6! = 720 = 6 (mod 7), we have 1!+ 2!+ 3!+ .-.4 100! =
W4+204314+414+514+6!=14246+3+1+6=5 (mod 7).
c¢. Sincen! =0 (mod 12) whenever n > 4, it follows that 1!4+2!4-3!4---+100! = 1+2+6 =9 (mod 12).

d. Sincen! =0 (mod 25) whenever n > 10, it follows that 1! + 2!+ 3! +--- + 100! = 1! + 2! + 3! + 4! 4+
5146l +7+8+91=14+24+64+24+20+20+15+20+5 =13 (mod 25).

4.1.8. Since a = b (mod m), there exists an integer k; such that a = b+ kym. Since n | m, there exists an
integer ks such that m = kon. Thus a = b+ (k1k2)n, soa = b (mod m).

4.1.9. Sincea =b (mod m), there exists an integer k such that a = b+km. Thus, ac = (b+km)c = bc+k(mc).
By Theorem 4.1, ac = be (mod mc).

4.1.10. Since a = b (mod c¢), there exists an integer k such that a = b+ kc. Let di = (a,c¢), so that a = din
and ¢ = dym. Thendin = a = b+ km = b+ kding, so b = di(n — km). Thus d; < dy. A symmetrical
argument establishes that dy < dy, so dy = ds.

4.1.11.a. We proceed by induction on n. It is clearly true for n = 1. For the inductive step we assume that
doi—1a; =5, bj (mod m)and thata, 1 = byy1 (mod m). Now Z;jll a; = (3j_ya) +ant1 =
(32521 bj) +bnyr = E;’;l b; (mod m) by Theorem 4.5(i). This completes the proof.

b. We use induction on n. For n = 1, the identity clearly holds. This completes the basis step. For
the inductive step we assume that []}_, a; = [[j_, b; (mod m) and a,11 = byt1 (mod m). Then

117 aj = anp1(I1)=1 a;) = bpar([Tj—1 b5) = [1}2) b; (mod m) by Theorem 4.5(iii). This com-

j=1
pletes the proof.

4112. +|o|1]|2|3|4]|5
0lo0|1]2]3|4]5
T|1]2[3|4]5]0
2234|501
3 (3|45 [0]1]2
i (4]5]0|1]2]3
5 5]0]1]2|3]4

4113. —|o|1|2|3|4]5
0054|321
T|1|0]|5]4]|3]2
2 (2(1]0]|5|4]3
3321|054
443 |2|1]0]5
5 5|43 2]1]0
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4.1.14.

[==] ko] fen] vl en] Jan)

Y[ W N = O] *
YW N = O =
BN O] | N O N
N[O | | of i
=N | x| O] O Ot

)

4.1.15.a. Since 11 +
o’clock.

3
0
3
0
3
0
3

29 = 40 = 4 (mod 12), the (12-hour) clock reads 4 o’clock 29 hours after reading 11

b. Since 2 + 100 = 102 = 6 (mod 12), the (12-hour) clock reads 6 o’clock 100 hours after it reads 2
o’clock.

c¢. Since 6 — 50 = —44 = 4 (mod 12), the (12-hour) clock reads 4 o’clock 50 hours before it reads 6
o’clock.

4.1.16. Wefind that 1* =3*=7* =9* = 1 (mod 10),2* = 4* = 6* = 8* = 6 (mod 10), 5* =5 (mod 10), and
0% =0 (mod 10). It follows that the final decimal digit of a fourth power is either 0,1,5, or 6.

4.1.17. Ifa? =b* (mod p) thenp | (a®> — b*) = (a + b)(a — b). Since p is prime, either p | (a +b) orp | (a — b).
Hence either a = b (mod p) or a = —b (mod p).

4.1.18. Suppose that a* = b* (mod m) and a**! = b¥*! (mod m). Then multiplying both sides of the con-
gruence a* = b* (mod m) by b gives b - ¥ = b¥*1 (mod m). Since a**! = b¥*! (mod m), we see that
b-a* = a1 (mod m). Hence b - a* — a**1 = (b — a)a* = 0 (mod m). Since (a,m) = 1 we see that
(a*;m) =1and m | (b— a). It follows that a = b (mod m).
This result is not necessarily true when (a,m) # 1. Takem = a = 4 and b = 2. Then a® = b? (mod m)
and a® = b3 (mod m) buta # ab (mod m).

41.19. Notethatl+2+3+---+(n+1)=(n—1)n/2. If nis odd, then (n — 1) is even, so (n — 1)n/2 is an
integer. Hencen | (1+2+3+---+(n—1))ifnisodd,and1+2+3+---+(n—1) =0 (mod n). If nis
even, then n = 2k where k is an integer. Then (n — 1)n/2 = (n — 1)k. We can easily see that n does not
divide (n — 1)k since (n,n — 1) = 1 and k < n. It follows that 1 + 2 + - - - 4+ (n — 1) is not congruent to 0
modulo n if n is even.

4.1.20. Notethat13+23+3%+...+(n—1)3 = ((n—1)n)?/4. If nis odd then (n — 1) iseven, so ((n — 1)n)?/4
is an integer. Thus the sum is a multiple of n, and is congruent to 0 modulo n. If n is a multiple of 4,
then n/4 is an integer, and the sum is again a multiple of n.
If n is even but not a multiple of 4, then n = 2k where k is odd, and (n — 1) is also odd. Thus ((n —
)n)?/4 = ((n — 1)2k)?/4 = ((n — 1)k)?, which is odd and thus not congruent to 0 modulo n (which is
even).

41.21. 12422+ ...+ (n = 1)2 = 0 (mod n) if and only if n is relatively prime to 6. If (n,6) = 1, then
124224+ (n—-1)2=n(n-1)2n-1)/6=0-(n—1)(2n —1)/6 =0 (mod n), using Exercise 7 from
Section 1.2 and Theorem 4.3(iii). This works because 1% + 2% + - - - + (n — 1)? is an integer and (n,6) = 1
implies that (n — 1)(2n — 1)/6 is an integer, and so we are dealing with integer-only arithmetic. If how-
ever,2 |nsothat2 | (n,6) andif 124+ 22+ .-+ (n—1)2 =n(n —1)(2n — 1)/6 = 0 (mod n), then nk =
n(n —1)(2n — 1)/6 for some integer k by Theorem 4.1. It follows that 6k = (n — 1)(2n — 1). But 6k is
even, and (n —1)(2n — 1) is odd since both n — 1 and 2n — 1 are odd. If 3 | n,and n(n —1)(2n —1)/6 = 0
(mod n), then nk = n(n—1)(2n—1)/6 by Theorem 4.1. Hence, 6k = (n—1)(2n—1). But if we look at this
equality modulo 3, we see that 0 = 6k = (n—1)(2n—1) = (—1)(—1) =1 (mod 3). Again, a contradiction.

4.1.22. Whenn = 1 wehave 4! =4 = 1+3-1 so the basis step holds. Now suppose that 4" = 1+3n (mod 9).

Then 4"t =4-4"=4(1+3n)=4+12n=4+3n=1+3(n+1) (mod 9). This completes the proof by
mathematical induction.

4.1.23. Ifn =1,then5 = 5" = 1+ 4(1) (mod 16), so the basis step holds. For the inductive step, we as-
sume that 5" = 1 + 4n (mod 16). Now 5"*! = 575 = (1 + 4n)5 (mod 16) by Theorem 4.3(iii). Further,
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(1+4n)5=5+20n =5+4n (mod 16). Finally 5 +4n = 1+ 4(n+1). So, 5" =1+ 4(n+1) (mod 16).
This completes the proof.

4.1.24. We can take 1,3,5,7,9,11,13,15,17,19, 21, 23, and 25 to form a complete system of residues modulo
13.

4.1.25. Note that if # = 0 (mod 4) then 22 = 0 (mod 4), if + = 1 (mod 4) then 2 = 1 (mod 4), if v = 2
(mod 4) then 22 = 4 = 0 (mod 4), and if z = 3 (mod 4) then 22 = 9 = 1 (mod 4). Hence 22 = 0 or 1
(mod 4) whenever z is an integer. It follows that 2% + y* = 0,1 or 2 (mod 4) whenever z and y are inte-
gers. We see that n is not the sum of two squares when n = 3 (mod 4).

4.1.26. If z solves 22 = z (mod p), we know that p | 2> — x = z(z — 1). Thus, since p is prime, either p | z, in
which case x =0 (mod p), or p | (x — 1), in which case =1 (mod p).

4.1.27. By Theorem 4.1, for some integer a, ap® = 22 — 2 = x(z — 1). By the Fundamental Theorem of Arith-
metic, p* is a factor of z(z — 1). Since p cannot divide both x and = — 1, we know that p* | x or p* | z — 1.
Thus, z = 0orz =1 (mod p¥).

4.1.28.a. Since 2 = 2 (mod 47), 22 = 4 (mod 47), 2* = 16 (mod 47), 28 = 256 = 21 (mod 47), and 2!¢ =
212 = 441 = 18 (mod 47), 232 = 182 = 324 = 42 (mod 47).

b. Wehave 247 = (232)(28)(2%)(22)(2'). Using the results of part (a), we have 247 = (42)(21)(16)(4)(2) =
(882)(16)(8) = (36)(128) = (36)(34) = 1224 = 2 (mod 47).

c. Continuing our powers of 2, 264 = 422 = 1764 = 25 (mod 47), and 2'*® = 252 = 625 = 14
(mod 47). Thus, since 2290 = (2128)(264)(2%), we have 2200 = (14)(25)(21) = (350)(21) = (21)(21) =
18 (mod 47).

4.1.29. First note that there are m; possibilities for a;, mo possibilities for aq, and in general m, possibilities
for a;. Thus there are myms - - - my, expressions of the form Mya; + Maag + - - - Mpa, where ai, aq, ..., ax
run through complete systems of residues modulo m;j,ma,...,my, respectively. Since this is exactly
the size of a complete system of residues modulo M, the result will follow if we can show distinctness
of each of these expressions modulo M. Suppose, by way of contradiction, that M;a, + Maas + - -+ +
Myay, = Mya) + Maah + - - - + Myaj, (mod M). Then Mya; = Mya) (mod my), since m; divides each of
My, Ms, ..., My, and further a; = o} (mod m;) since (M7, m;) = 1. Similarly a; = a} (mod m;). Thus
a; is in the same congruence class modulo m; as a; for all i. The result now follows.

4.1.30. Let r be the least positive residue of v + v, so v + v = r (mod m), or equivalently, there exists an in-
teger k such that u +v = km + r. Since v and v are both positive and less than m, we also know that
u+v < 2m so k is either 0 or 1. Following the hint, assume without loss of generality that u < v. Case 1:
r<u. Thenu+v>r,sou+v=m-+r.Case2: r >v. Then u + v = r. Note that r cannot be between u
and v since that would require one of u or v to be larger than m.

4.1.31.a. Let\/n =a+ r, where ais an integer, and 0 < r < 1. We now consider two cases, when 0 < r < %
and when 1 < r < 1. For the first case, T = [\n+ 1] = a,and so t = T? — n = —(2a + r?). Thus
|t| = 2ar+ 1% < 2a(1)+ (3)? = a+ 1. Since both T and n are integers, ¢ is also an integer. It follows
that |t| < [a + ] = a = T For the second case, when ; <7 < 1,wefindthat T = [\/n+ 1] =a+1
andt=2a(l1—r)+(1—7r?).Sincel <r<1,0<(1-7r)<3and0<1—7%< 1 Itfollows thatt <
2a(3) + (1 — r?). Because t is an integer, we can say that t < [a + (1 —7%)] =a < T.

b. By the division algorithm, we see that if we divide x by T'we get x = a1 + b, where 0 < b < T'. If a
were negative, then x = aT + b < (—1)T + b < 0; but we assumed z to be nonnegative. This shows
that 0 < a. Suppose now thata > 7. Thenz = aT+b > (T+1)T = T?°4+T > (\/n—3)*+(Vn—3%) =
n— i and, as x and n are integers, > n. This is a contradiction, which shows that ¢ < T'. Similarly,

0<c<Tand0<d<T.
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4.1. INTRODUCTION TO CONGRUENCES 73
c. ay=(aT+b)(cT +d) = acT?+ (ad+ be)T + bd = ac(T? —n) + 2T + bd = act + 2T + bd (mod n).
d. Use part (c), substituting 7" + f for ac.

e. The first half is identical to part (b); the second half follows by substituting g7" + h for z 4 et and
noting that 72 = ¢ (mod n).

f. Certainly, ft and gt can be computed since all three numbers are less than 7', which is less than
Vvn+ 1. So (f + g)t is less than 2n < w. Similarly, we can compute j + bd without exceeding the
word size. And, finally, using the same arguments, we can compute h1" + k without exceeding the

word size.
4.1.32. To compute b modulo m, first express N in ternary (base 3) notation as N = (ag,ar — 1,...,a9), and
then find the least positive residues of b*', j = 1,2, ...,k by successively cubing and reducing modulo

m. Finally, multiply together the least positive residues, repeating each term b*’ a; times, reducing mod-
ulo m after each multiplication.

4.1.33.a. Wehave 3! =(3?)°=9% = (-2)5 = —-32=1 (mod 11).

b. Wehave2!? = (24)3=16%=32=27=1 (mod 13).
c. Wehave5!6 = (528 =258 =88 = (82)*=64* = (—1)* =1 (mod 17).
d. Wehave3?? = (33)7.3=27"-3=47-3= (4%)2.4-3=64%-12=(-5)2-12=2-12=24 =1 (mod 23).

e. The theoremisthata?~! =1 (mod p) whenever p is prime and p does not divide a. This is Fermat’s
little theorem which will be proved in Chapter 5.

4.1.34.a. Since2! =2 (mod 7),3!=6 (mod 7),4! =24 =3 (mod 7),and 5! =5-3 (mod 7) =1 (mod 7), we
have 6! =6 (mod 7).

b. Since 2! =2 (mod 11), 3! =6 (mod 11), 4! =2 (mod 11),5! =52 (mod 11) = 10 (mod 11), 6! =
6-10 (mod 11) =5 (mod 11),71=7-5 (mod 11) =2 (mod 11),8!'=8-2 (mod 11) =5 (mod 11),
and 9! =95 (mod 11) =1 (mod 11), we have 10! = 10 (mod 11).

c¢. Since2! =2 (mod 13),3! =6 (mod 13),4! =24 =11 (mod 13),5! =5-11 (mod 13) =3 (mod 13),
6! =6-3 (mod 13) = 5 (mod 13), 7! = 7-5 (mod 13) = 9 (mod 13), 8! = 8-9 (mod 13) = 7
(mod 13),9!'=9-7 (mod 13) =11 (mod 13), 10! =10-11 (mod 13) =6 (mod 13),and 11! =11-6
(mod 13) =1 (mod 13), we have 12! = 12 (mod 13).

d. Since 2! =2 (mod 17),3! =6 (mod 17),4! =24 =7 (mod 17),5! =5-7 (mod 17) = 1 (mod 17),
6! = 6 (mod 17), 7! = 7 -6 (mod 17) = 8 (mod 17), 8! = 8- 8 (mod 17) = 13 (mod 17), 9! =
9-13 (mod 17) = 15 (mod 17), 10! = 10 - 15 (mod 17) = 14 (mod 17), 11! = 11 - 14 (mod 17) =
1 (mod 17), 12! = 12 (mod 17), 13! = 13- 12 (mod 17) = 3 (mod 17), 14! = 14 - 3 (mod 17) = 8
(mod 17), and 15! =15 -8 (mod 17) =1 (mod 17), we have 16! = 16 (mod 17).

e. The theorem is that whenever p is prime, (p — 1)! = —1 (mod p). This is Wilson’s Theorem which
will be proven in Chapter 5.

4.1.35. Since f,—2 + fn—1 = fn (mod m), if two consecutive numbers recur in the same order, then the se-
quence must be repeating both as n increases and as it decreases. But there are only m residues, and so
m? ordered sequence of two residues. As the sequence is infinite, some two elements of the sequence
must recur by the pigeonhole principle. Thus the sequence of least positive residues of the Fibonacci
numbers repeats. It follows that if m divides some Fibonacci number, that is, if f, = 0 (mod m), then
m divides infinitely many Fibonacci numbers. To see that m does divide some Fibonacci number, note
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that the sequence must contain a 0, namely fy =0 (mod m).

4.1.36. We proceed by induction on the exponent k. We are given that m | a* — b* is true when k = 1. We as-
sume it is true for k = n > 1 and show it must be true for n + 1. So a"*! —v"*! = ¢"(a) — V" (b—a+a) =
a’a—b"a—b"(b—a)=a(a™ —b") +b"(a—b). Since m | (a” — b"™) by the induction hypothesis, and we
are given that m | (a — b), we know that m | (a"*! — b"*1), s0 a”*! = b"*! (mod m).

4.1.37. Let a and b be positive integers less than m. Then they have O(logm) digits (bits). Therefore by The-
orem 2.4, we can multiply them using O(log® m) operations. Division by m takes O(log” m) operations
by Theorem 2.7. Then, in all we have O(log” m) operations.

4.1.38. Let N be the number of coconuts. From the division of the coconuts by the first man, giving one to
the monkey, we see that N =1 (mod 5), so that N = 5k, + 1 for some positive integer k.
From the division of the coconuts by the second man, giving one to the monkey, we see that N; =
(3)(N — 1) = 4k = 1 (mod 5), so that kg = 4 (mod 5), or equivalently, that N = 5(5k; +4) + 1 =
25k1 + 21, and Ny = 20k, + 16, for some positive integer ;.

The division of the coconuts by the third man, giving one to the monkey, shows that N, = (2)(N; —
1) = (#)(20k; +15) = 16k; + 12 =1 (mod 5), so that ky =4 (mod 5), or equivalently N = 25(5k; +4) +
21 = 125ky + 121, and N, = (£)(100k2 4 95) = 80k; + 76.

The division of the coconuts by the fourth man, giving one to the monkey, shows that N3 = (£) (N, —
1) = (3)(80ky + 75) = 64kz + 60 = 1 (mod 5), so that ky = 4 (mod 5), or equivalently N = 125(5k3 +
4) 4 121 = 625k; + 621, and N3 = 64(5ks + 4) + 60 = 320k; + 316.

The division of the coconuts by the fifth man, giving one to the monkey, shows that Ny = (£)(N; —
1) = (3)(320k3+315) = 256k3+252 = 1 (mod 5), so that k3 = 4 (mod 5), or equivalently N' = 625(5k, +
4) + 621 = 3125k4 + 3121, and Ny = 256(5ks + 4) + 252 = 1280k, + 1276.

The last division of the coconuts into five equal piles, giving one to the monkey, shows that N5 =
(2)(Ny—1) = (£)(1280ky + 1275) = 1024ks + 1020 = 1 (mod 5), so that ky = 4 (mod 5), or equivalently,
that N = 3125(5k5 + 4) + 3121 = 15625k5 + 15621, for some integer k.

The least number of coconuts is given by the smallest positive integer of the form 15625k5 + 15621,
which is 15621 with k5 = 0.

4.1.39. Let N; be the number of coconuts the ith man leaves for the next man and Ny = N. At each stage, the
ith man finds V;_; coconuts, gives k coconuts to the monkeys, takes (1/n)(IN;_1 — k) coconuts for him-
self and leaves the rest for the next man. This yields the recursive formula N, = (N;_1 — k)(n — 1)/n.
For convenience, let w = (n — 1)/n. If we iterate this formula a few times we get N1 = (Ny — k)w, Ny =
(N1 —k)w = ((No—k)w—k)w = Now? —kw? — kw, N3 = Now® — kw? — kw? —kw, . . .. The general pattern
N; = Now' — kw' — kw'™t — -+ — kw = Now’ — kw(w" — 1) /(w — 1) may be proved by induction. When
the men rise in the morning they find N,, = Now™ — kw(w™ — 1)/(w — 1) coconuts, and we must have
N,, =k (mod n), thatis, N,, = Now™ —kw(w" —1)/(w —1) = k+tn for some integer ¢. Substituting w =
(n —1)/n back in for w, solving for Ny, and simplifying yields N = Ny = n" " (t +k)/(n —1)" — kn+ k.
For N to be an integer, since (n,n — 1) = 1, we must have (¢t + k)/(n — 1)™ an integer. Since we seek the
smallest positive value for N, we take t + k = (n — 1)", so t = (n — 1)" — k. Substituting this value back
into the formula for N yields N = n"*! — kn + k.

4.140.a. Let f(z) = Y" ¢z’ and g(z) = Y-, b;x’, where the leading coefficients may be zero to keep
the limits of summation equal. Since f(z) = g(x) (mod n), we have that ¢; = b; (mod n) for i =
0,1,...,m. If a is any integer, by Theorem 4.3 part (iii), c;a’ = b;a’ (mod n) fori = 0,1,...,m and
so by Theorem 4.4, part (i), f(z) = >_1" c;a’ =3 ba’ = g(z) (mod n).

b. One counterexample is 2 = z (mod 3), which is true for z = 0,1 and 2, but not true as a poly-
nomial congruences, since the coefficient on x3 on the left side is 1 but on the right side, it is 0.
This example was constructed by taking a complete set of residues modulo 3, that is, {0,1, -1} and
forming the product (z —0)(z —1)(z — (—1)) = 2® — 2. By construction, the value of this polynomial
must be congruent to 0 when ever we substitute any residue in for x.
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4141 a. Let fi(z) =30 a:x’, fo(z) = D10 bzt gi(z) = Doit ¢;x,and go(z) = D i | diz* where the lead-
ing coefficients may be zero to keep the limits of summation the same for all polynomials. Then
a; = ¢; (mod n) and b; = d; (mod n), fori = 0,1,...,m. Therefore by Theorem 4.5 part (i), a; +
b; = ¢; +d; (mod n) fori = 0,1,...,m. Since (f1 + f2)(z) = Y1~ (a; + b;)x" and (g1 + g2)(x) =
S (e + d;)x?, this shows the sums of the polynomials are congruent modulo n.
b. With the same set up as in part (a), the coefficient on 2% in (fifo)(x) is given by apby, +a1bg—1+- -+
arbo, and the corresponding coefficient in (g1 g2)(z) is given by cody +c1di—1+- - - +cdp. Since each
a; = ¢; (mod n) and b; = d; (mod n), by Theorem 4.5, the two expressions are congruent modulo
n, and so, therefore, are the polynomials.

4.1.42. Note that for i a positive integer, we have (z' —a')/(z —a) = 2" + 2" %a+--- + za'"* + a'~". Let
f(x) = XLy bia'. Then (f(x) — f(a)/(w—a) = Y7L, bi(a' —a') (x—a) = 372, b g ala’ 1 = g(x)
where g(z) is clearly a polynomial with integer coefficients, and f(x) — f(a) = (x — a)g(z), so the coeffi-
cients on both sides must be equal. Since we have f(a) = 0 (mod n) as polynomials and f(z) — f(a) =
(x —a)g(x) (mod n), by Exercise 41, we may add these congruences to get f(z) = (z — a)g(z) (mod n).

4.1.43. The basis step for induction on k is Exercise 42. Assume that f(z) = h(z) (mod p) and f(x) = (v —
ai) -+ (z — ag—1)h(z), where h(z) is a polynomial with integer coefficients. Substituting a;, for z in this
congruence gives us 0 = (ax — a1) - -- (ax — a1)h(ag) (mod p). None of the factors a, — a; can be con-
gruent to zero modulo p, so we must have h(ax) = 0 (mod p). Applying Exercise 42 to h(x) and ay,
gives us h(z) = (z — ax)g(zr) (mod p) and substituting this in the congruence for f(x) yields f(z) =
(x —a1) - (z —ag)g(r) (mod p), which completes the induction step.

4.1.44. We use induction on n. If n = 1, then f(x) = byjz + by = 0 (mod p). If f(z) has no roots, we're done.
If a is a root, from Exercise 43, there exists a polynomial g(x) with integer coefficients such that f(z) =
biz + by = (z — a)g(xz) (mod p). Then every coefficient of g(z) other than the constant term, must be
divisible by p. If the constant term of g(z) is also divisible by p, then we would have g(z) = 0 (mod p)
and so f(z) =0 (mod p) as polynomials, which implies that every coefficient of f(x) is also divisible by
p, a contradiction. Therefore, the constant term g(0) of g(z) is not divisible by p. Then since ¢g(0) = g(x)
(mod p) as polynomials, we have f(z) = (x —a)g(0) (mod p). Since the right side has only one root, the
left side can have only one root.

Now assume the proposition is true for polynomials of degree n — 1 and smaller, and suppose 2" is
the largest power of = with coefficient not divisible by p. If f(z) has no roots, we are done. If ¢ is a root,
then (f(z) - f(a)/(z —a) = S0, bila’ —a')/(z —a) = 27, b ) —g o' ~! = g(x), where g(z) is
a polynomial of degree at most n — 1 with with integer coefficients which, by the induction hypothesis,
can have at most d— 1 roots. Then f(z) = (z—a)g(z) (mod p) and f(z) can have at most n roots, namely
the roots of g plus a.

4.2. Linear Congruences

4.2.1.a. Since (2,7) = 1|5, Theorem 4.10 tells us that there is one class of solutions. We solve the diophan-
tine equation 2z + 7y = 5, to get = 6 (mod 7).

b. Since (3,9) = 3 | 6, Theorem 4.10 tells us that there are three classes of solutions. We solve the
diophantine equation 3z + 9y = 6, to get # = 2 4 3¢. All solutions are thus congruent to 2, 5, or 8

modulo 9.

c. Since (19,40) = 1 | 30, Theorem 4.10 tells us that there is one class of solutions. We solve the dio-
phantine equation 19z + 40y = 30, to get z = 10 (mod 40).

d. All solutions are given by z = 20 (mod 25).

e. Allsolutions are given by x = 111 (mod 999).
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f. Since (980,1600) = 20 | 1500, Theorem 4.10 tells us that there are twenty classes of solutions. All
solutions are given by « = 75 + 80k (mod 1600) where k is an integer such that 0 < k < 19.

4.2.2.a. Suppose that 3z = 2 (mod 7). Since (3,2) = 1, by Theorem 4.10 there is a unique solution modulo
7 to this congruence. To solve 3z = 2 (mod 7) first translate this to the equation 3z — 7y = 2 where
y is an integer. Using the Euclidean algorithm we find that —2-3+ 1.7 = 1. Multiplying both sides
by 2 gives —4 - 3+ 2 -3 = 2. This implies that z = —4 = 3 (mod 7) is the unique solution modulo 7.

b. Suppose that 6z = 3 (mod 9). Since (6,3)=3, by Theorem 4.10 there are exactly 3 incongruent solu-
tions modulo 9. To find these solutions, we first translate this congruence into the linear diophan-
tine equation 6z — 9y = 3. Using the Euclidean algorithm we find that —1-6 +1-9 = 3. Hence all
solutions of 6z — 9y = 3are givenby z = —1+ (3)t = =1+ 3t,y = —1 — ($)t = —1 — 2¢t. We obtain
three incongruent solutions modulo 9 by taking the values of = for ¢ = 0,1, and 2. We obtain z =
—1=8 (mod 9),2=-4=5 (mod 9),and z = =7 =2 (mod 9).

c. Suppose that 172 = 14 (mod 21). since (17,14) = 1, by Theorem 4.10 there is exactly one solution
modulo 21. We find this by translating the congruence into the linear diophantine equation 17z —
21y = 14. Using the Euclidean algorithm we find that 5 - 17 — 4 - 21 = 1. Multiplying both sides
by 14 gives 70 - 17 — 56 - 21 = 14. Hence = = 70,y = 56 is a solution. This implies that the unique
solution modulo 21 is z = 70 = 7 (mod 21).

d. Suppose that 152 = 9 (mod 25). Then since (15,9)=3 but 3 does not divide 25, it follows by Theo-
rem 4.10 that there are no solutions to this congruence.

e. We check that (128,1001) = 1 | 833, so that there is exactly one solution. Solving the diophantine
equation 128z + 1001y = 833 gives us x = 812 (mod 1001).

f. We check that (987,1597) = 1 | 610. Solving the diophantine equation 987z + 1597y = 610 gives us
x = 1596 (mod 1597).

4.2.3. Since (28927591, 6789783) = 9163 | 2474010, Theorem 4.10 tells us that there are 9163 classes of solu-
tions. Reducing the congruence by dividing each side of the equation and the modulus by 9163, we look
at the congruence 741 = 270 (mod 3157). The single class of solutions of this congruence is congruent to
1074. Thus, the 9163 solutions to the original congruence are given by = = 1074+ 3157k (mod 28927591)
where £ is an integer such that 0 < k < 9162.

4.24.a. Since a; is the least positive residue of m modulo a, we have a; = m — [m/a]a. Then a1z = (m —
[m/a]la)x = — [m/alax = — [m/a]b (mod m) as desired.

b. We have a sequence of decreasing positive integers, which, by the well ordering property, must
have a least element, a,. Then we can reduce m modulo a,, and get an @, which is smaller than
an. But a, is the least positive element of the sequence, so a,,4+1 = 0, which is to say a,, | m. How-
ever, since a; = m — [m/a]a), we have that a common divisor of m and a; also divides a. Since
(a,m) = 1, then we have (a1, m) = 1. By induction, (a,, m) = 1, but we proved a,, | m, therefore,
a, = 1.

c¢. Wehavea; =23 —[23/6]6 =23 —3-6 = 5. Then the new congruence is 5z = —7-3 = 2 (mod 23).
Then a; = 23 — [23/5]5 = 23 — 4 - 5 = 3, and the next congruence is 3z = —2 -4 = 15 (mod 23).
Then a3 = 23 — [23/3]3 = 23 — 7- 3 = 2, and the next congruence is 2z = —15-7 = 10 (mod 23).
Then ay = 23 — [23/2]2 = 23 — 11 - 2 = 1, and the final congruenceis z = —10-11 =5 (mod 23).

4.2.5. This is equivalent to saying that 11z = 17 (mod 24). This has one solution modulo 24, by Theorem
4.10, z = 19 (mod 24). So the satellite orbits the Earth every 19 hours.

STUDENTS-HUB.com Uploaded By: anonymous



4.2. LINEAR CONGRUENCES 77

4.2.6. By Theorem 4.10 there is a solution of 12z = ¢ (mod 30) if and only if (12,30) = 6 divides ¢. This
holds for ¢ = 0,6,12,18, and 24 (mod 30). In each of these cases there are (12, 30) = 6 incongruent solu-
tions modulo 30.

4.2.7. We know by Theorem 4.10 that 1542 = ¢ (mod 1001) has solutions if and only if (1001, 154) = 77 | c.
Also, by Theorem 4.10, we know that when there are solutions, there are exactly 77 of them.

4.2.8.a. We need to solve 2z = 1 (mod 13). Which in turns requires us to solve the Diophantine equation
2z + 13y = 1, which we do by the Euclidean algorithm. We have 13 =6-2+1,s01 =13 — 6 - 2.
Therefore, z = —6 = 7 (mod 13) and thus 2 = 7.

b. Weneed tosolve 3z =1 (mod 13), or 3z + 13y = 1 Wehave 13 =4-3 + 1,501 = 13 — 4 - 3. There-
fore,z = —4=9 (mod 13) and thus 3 = 9.

c. Weneedtosolve 5z =1 (mod 13), or 5z + 13y =1 Wehave 13 =2-5+3,5=3+2,and3=2+1,
s01=3-2=(13-2-5—(5-3)=13-3-5+(13—2-5) =4-13 — 5-5. Therefore, z = —5 = 8
(mod 13) and thus 5 = 8.

d. Weneed tosolve 11z =1 (mod 13),or 112+ 13y =1 Wehave 13 =11+2and 11=5-2+4+1,s01 =
11-5-2=11-5(13—11) = —5-13 + 6 - 11. Therefore, z = 6 (mod 13) and thus 11 = 6.

4.29.a. To find an inverse of 4 modulo 17 we must solve the congruence 4o = 1 (mod 17). Form the Eu-
clidean algorithm we find that 1-17 —4 -4 = 1. Hence x = —4 = 13 (mod 17) is a solution, so that
13 is an inverse of 4 modulo 17.

b. To find an inverse of 5 modulo 17 we must solve the congruence 5z = 1 (mod 17). From the Eu-
clidean algorithm we find that —2-17+7-5 = 1. Hence z = 7 (mod 17) is a solution, so that 7 is an
inverse of 5 modulo 17.

c¢. To find an inverse of 7 modulo 17 we must solve the congruence 7z = 1 (mod 17). From the Eu-
clidean algorithm we find that —2-17+5-7 = 1. Hence z = 5 (mod 17) is a solution, so that 5 is an
inverse of 7 modulo 17.

d. To find an inverse of 16 modulo 17 we must solve the congruence 16z = 1 (mod 17). Since 16 = —1
(mod 17), this implies that —z = 1 (mod 17), or that z = —1 = 16 (mod 17). Hence z = 16 is an

inverse of 16 modulo 17.

4.2.10. a. The integers a with inverses modulo 14 are exactly those that are relatively prime to 14. Therefore,
only 1, 3, 5,9, 11, and 13 have inverses modulo 14.

b. For each of the integers a relatively prime to 14, we solve the congruence ax = 1 (mod 14). We have

that 1 and 13 = —1 (mod 14) are their own inverses. The solution to 3z = 1 (mod 14) is x = 5, so
3~! = 5. Note then that 5! = 3. Likewise, —3 = 11 and —5 = 9 are inverses of each other modulo
14.

4.2.11. a. The integers a with inverses modulo 30 are exactly those that are relatively prime to 30. Therefore,
only 1,7,11, 13,17, 19, 23, and 29 have inverses modulo 30.

b. Note that 1 and 29 are their own inverses. Solving the congruence 7z = 1 (mod 30) yields = 13,
so 7 and 13 are inverses of each other. And so are —7 = 23 and —13 = 17. Solving 11z = 1 (mod 30)

yields x = 11, so 11 is its own inverse, and so is —11 = 19.

4.2.12. Suppose that @ and b are inverses of a and b modulo m, respectively. Thena-a@=b-b=1 (mod m).
We see that (ab) - (ab) = (a@)(bb) =1-1=1 (mod m). It follows that @b is an inverse of ab modulo m.
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4.2.13. If ax + by = ¢ (mod m), then there exists an integer k such that ax + by — mk = c. Since d | ax + by —
mk,d | c¢. Thus there are no solutions when d 1 ¢. Now, assume that d | cand leta = da’, b = db/, ¢ =
dc’, and m = dm/, so that (a’,b',m’) = 1. Then we can divide the original congruence by d to get (*)
dz+by = (modm'),oradz = — by (mod m’), which has solutions if and only if g = (a’,m’) |
¢ — b'y, which is equivalent to b’y = ¢’ (mod g) having solutions. Since (¢,b’,m’') = 1, and (a’,m') =g,
we must have (0, g) = 1 and so the last congruence has only one incongruent solution yy modulo g. But
the m//g solutions, yo,yo + ¢, Y0 + 29, ..., y0 + (m'/g + 1)g are incongruent modulo m'. Each of these
yields g incongruent values of z in the congruence (*). Therefore, there are g(m’/g) = m’ incongruent
solutions to (*).

Now let (z1,y1) be one solution of the original congruence. Then the d values z1,z1 + m/,z1 +
2m/,... x4 + (d — 1)m’ are congruent modulo m’ but incongruent modulo m. Likewise, the d values
y1,y1+m y1+2m', ..., y1 + (d—1)m’ are congruent modulo m’ but incongruent modulo m. So for each
solution of (*), we can generate d” solutions of the original congruence. Since there are m’ solutions to
(*), we have d?m’ = dm solutions to the original congruence.

4.2.14. a. Using Exercise 13, we see that (2,3,7) = 1and 1 | 1, so there are 1 - 7 solutions. We get them by let-
ting « take on the values 0, 1, 2, 3,4, 5, and 6, and solving the congruence for y. We get, respectively,
y=5,2,6,3,0,4,and 1, modulo 7.

b. Wehave (2,4,8) = 2and 2 | 6 so there are 2-8 = 16 incongruent solutions modulo 8. If y is even, the
congruence reduces to 2z = 6 (mod 8) which has solutions z = 3 or 7 (mod 8). This gives us the 8
solutions: (3,0), (3,2),(3,4),(3,6),(7,0),(7,2),(7,4), and (7,6). If y is odd, the congruence reduces
to 22 = 2 (mod 8) which has solutions z = 1 or 5 (mod 8). This gives us the other 8 solutions:
(1,1),(1,3),(1,5),(1,7),(5,1),(5,3),(5,5), and (5, 7).

c¢. Wehave (6,3,9) = 3and 3 | 0 so there are 3 - 9 = 27 solutions. We can divide the congruence by 3
and get 2z +y = 0 (mod 3), which has solutions (0, 0), (1,1), and (2, 2). Then to get all solutions to
the original congruence, we add 0, 3, or 6 to each component of the 3 pairs. This gives all 27 solu-
tions.

d. Since (10,5,15) = 5 and 519, there are no solutions.

4.2.15. Suppose that 22 = 1 (mod p*) where p is an odd prime and k is a positive integer. Then 2% — 1 =
(r+1)(x—1) =0 (mod p*). Hence p* | (z+1)(z —1). Since (z+1) — (x — 1) = 2 and p is an odd prime,
we know that p divides at most one of (z — 1) and (z + 1). It follows that either p* | (z +1) or p* | (z —1),
so that p = 1 (mod p*).

4.2.16. Suppose that 22 = 1 (mod 2¥) where k > 2. It follows that 22 — 1 = (z + 1)(z — 1) = 0 (mod 2¥).
Hence 2% | (z + 1)(z — 1). Note that (z + 1) — (x — 1) = 2,sothat 2*~! |z +1and 2 | v — 1 or 2 — 1 |
r—1and 2 | z + 1. It follows that z = t2*=! + 1 or x = 2= — 1 where ¢ is an integer. We see that
there are four incongruent solutions modulo 2¥, taking t = 0 or t = 1, namely z = 1,2*"1 + 1, -1, or
2F=1 — 1 (mod 2*). This can also be stated as = = + or (1 + 2¥~1) (mod 2%), since z = 2F~1 — 1 =
(2F=1 —2F) — 1 = —2F=1 — 1 (mod 2F).

When k = 1 we find that there is one solution of 22 = 1 (mod 2) namely z = 1 (mod 2). When k =
2 we find that there are two solutions of 2 = 1 (mod 22) namely x = £ (mod 2?).

4.2.17. To find the inverse of a modulo m, we must solve the Diophantine equation ax + my = 1, which can
be done using the Euclidean algorithm. Using Corollary 2.5.1, we can find the greatest common divisor
in O(log® m) bit operations. The back substitution to find = and y will take no more than O(logm) mul-
tiplications, each taking O(log” m) operations. Therefore the total number of operations is O(log® m) +
O(logm)O(log® m) = O(log® m).

4.2.18. (Thisis Lemma 9.1.) From Exercise 44 in Section 4.1, we know that the congruence has no more than
two solutions, so we seek to show that it can not have exactly one solution. Let y be a solution. Then
y? = (—y)? = a (mod p), so —y is also a solution. If y = —y (mod p), then 2y = 0 (mod p), so either p|2
or p|y. But p is odd, so it can not divide 2, and if p|y, then p|y?, and we have a = y*> = 0 (mod p) so that
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pla, a contradiction. Therefore y and —y are incongruent.

4.3. The Chinese Remainder Theorem

4.3.1. The integers x that leave a remainder of one when divided by 2 or 3 are those integers « that are so-
lutions of z = 1 (mod 2) and z = 1 (mod 3). The solutions of these two simultaneous congruences are
those integers x such that = 1 (mod 6). These integers are the integers leaving a remainder of 1 when
divided by either 2 or 3.

4.3.2. Weneed an integer x =1 (mod 2),z =1 (mod 5), and x = 0 (mod 3). The integers = that satisfy this
set of simultaneous congruences are givenby z =1-15-1+1-6--1+0-10-1 =21 (mod 30), since 1 is
the inverse of 15 modulo 2, 1 is the inverse of 6 modulo 3, and 1 is the inverse of 10 modulo 3.

4.3.3. We want a solution to the congruences z = 2 (mod 3),z = 2 (mod 5), and z = 0 (mod 4). Using the
iterative method described in the text (because our moduli aren’t relatively prime!), v = 4k, and so k =
2 (mod 5). Thus k = 3+5j = 2 (mod 3). Finally, j = 1+3m. So x = 4k = 4(3+5j) = 124+20(1 +3m) =
32 + 60m. The smallest possible such number is 32.

4.3.4.a. Using the Chinese remainder theorem, we have M = 11-17 = 187, M; = 17, My = 11,y1 = 2,y2 =
14,andsox =4-17-2+3-11-14 = 598 = 37 (mod 187).

b. we have M = 30,M; = 15,My = 10,M3 = 6,31 = 1,40 = 1l,y3 = landsoz = 1-15-1+
2-10-143-6-1=>53=23 (mod 30).

c. The easiest way is to see that 6 works by, inspection.
d. Wehave M = 554268, M; = 50388, M, = 46189, M3 = 42636, M, = 32604, My = 29172, 41 = 7, y»
L,ys = 3,y4 = 8,y5 = 11, and = = 4585143 = 150999 (mod 554268).

4.3.5. We have my = 27m2 = 3,m3 = 5,m4 = 7, and ms = 11. Also M1 = 1115,M2 = 770,M3 = 462,M4
330, and Ms; = 210. By the Chinese remainder theorem, = = Mjy1 + 2May
3M3y3 + 4M4y4 + 5M5y5, where szz = (I’IlOd ml) We find that solutions are Yy = 1, Yo = 2, Ys
3,y4 = 1,and y5 = 1. So, x = 1523 (mod 2310).

=+

4.3.6. The solutions are the integers congruent to 326741466757708 (mod 1014060069938916), found with
the aid of computational software.

4.3.7. Let b be the number of bananas. Then b = 6 (mod 11) and b = 0 (mod 17). This implies that b =
6-17-240-11-14 = 204 = 17 (mod 187). We also know that b > 11 - 7 4 6 = 83 since the equal piles
contain at least 7 bananas each. It follows that the least number of bananas in the pile is 204.

4.3.8. Let x be the number of miles the car has travelled. The odometer can only tell us that z = 49335
(mod 100000). If we also know the value of ¢ where z = ¢ (mod 7) and 0 < ¢ < 7 by the Chinese re-
mainder theorem we know the congruence satisfied by  modulo 100000 - 7 = 700000. As long as the car
has been driven less that 700000 this uniquely determines the number of miles driven. In particular, we
easily see that if z = 6 (mod 7) then the car was driven 49335 miles, if z = 4 (mod 7) then the car was
driven 149335 miles, and if = 2 (mod 7) then the car was driven 249335 miles.

4.3.9. The situation we have hereis 0 < x < 1200, z = 3 (mod 5),x = 3 (mod 6),z = 1 (mod 7), and = =
(mod 11). Using the iterative method described in the text, x = 11z, 11z =1 (mod 7),zp = 2+7z1, 2 =
lzg = 22 + 772,22 + 77z;y = 3 (mod6),z7 = 1 + 6o,z = 99 + 462z,
99 4 46222 = 3 (mod 5),z2 = 2 + bz, x = 1023 4 2310x3. The only solution satisfying 0 < x < 1200 is
x = 1023. It follows that 1023 troops remained.

4.3.10. We solve the system z =9 (mod 10),z =9 (mod 11),z =0 (mod 13) and get z = 559.
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4.3.11. We solve the system 2 = 0 (mod 11),z = 1 (mod 2),2 =1 (mod 3),z =1 (mod 5),z = 1 (mod 7),
to find that « = 2101 (mod 2310).

4.3.12. We need to solve the system z = 1 (mod 2),z = 2 (mod 3),z = 3 (mod 4),z = 4 (mod 5),z =5
(mod 6),z = 0 (mod 7), but the moduli are not mutually relatively prime. Note that if z = 5 (mod 6)
then it satisfies the first two congruences, so we can eliminate the 5th congruence. We solve the system
consisting of the last 4 remaining congruences and get 119. Note that this also solves the first congru-
ence, so we're done.

4.3.13. We can construct a sequence of k consecutive integers each divisible by a square as follows. Con-
sider the system of congruences = 0 (mod p?),z = —1 (mod p?),z = —4 (mod p3),...,2 = —k+1
(mod p3), where py, is the kth prime. By the Chinese remainder theorem there is a solution to this simul-
taneous system of congruence since the moduli are relatively prime. It follows that there is a positive
integer NV that satisfies each of these congruences. Each of the k integers n, N +1,..., N + k — 1 is divis-
ible by a square since p? divides N +j—1forj=1,2,..., k.

4.3.14. If every prime divisor of ¢ divides b, then (¢, a) = 1 and hence (a + b, ¢) = 1 and we have n = 1. Oth-
erwise, let n be the product of all primes dividing ¢ that do not divide b. Then if a prime p divides ¢, it
divides exactly one of an and b, therefore, p doesn’t divide an + b, and we have (an + b, ¢) = 1.

4.3.15. Suppose that z is a solution to the system of congruences. Then z = a1 (mod m;), so that x = a1 +
kmq for some integer k. We substitute this into the second congruence to get a; + km1 = a1 (mod mg)
or km; = (a2 — a1) (mod mg), which has a solution in % if and only if (my,m2) | (a1,a2). Now as-
sume such a solution kg exists. Then all incongruent solutions are given by k = ko + mat/(m1,m2),

. . t
where ¢ is an integer. Then © = a; + kmy = a1 + | ko + mQ) m1 = a1 + komy + Mt. Note
(my1,ma) (my1, ma)
that mima/(mi,ma) = [my, ma] so that if we set 1 = a; + komq1, we have © = z1 + [my, ma]t = 1

(mod [m1,m2]), and so the solution is unique modulo [m1, ma].

4.3.16.a. Since xz =4 (mod 6), we let z = 6k + 4 where k is an integer. Since x = 13 (mod 15), it follows that
6k + 4 = 13 (mod 15), so that 6k = 9 (mod 15). Dividing this congruence by 3 and since (3,15)=3
and 12 = 5, we see that 2k = 3 (mod 5), so that k = 4 (mod 5), and k = 5/ + 4, where [ is an integer.
Hence x = 6(5] + 4) + 4 = 30! + 28. This implies that all solutions satisfy « = 28 (mod 30) and it is
easy to see that all x satisfying this congruence are solutions.

b. Sincez =7 (mod 10), we let z = 10k + 7 where k is an integer. Since © = 4 (mod 15), it follows that
10k + 7 = 4 (mod 15), so that 10k = 12 (mod 15). Since (2,15)=1 it follows that 5k = 3 (mod 15).
Since (5,15)=5 and 5 does not divide 3, it follows that there are no solutions of this congruence and
consequently no solutions of the original congruence.

4.3.17. a. Using Exercise 15, there is one solution modulo [60,350]=2100 because (60,350) = 10 | (80 — 10).
Because = 10 (mod 60), we know that x = 10 + 60k, where k is an integer. Continuing onward,
x = 10 + 60k = 80 (mod 350), so 60k = 70 (mod 350) and so k = 7 (mod 350); thus k = 7 +
(350/(350, 60))7, where j is an integer. In conclusion, x = 10+ 60k = 10+ 60(7+35;) = 430+ 21005.

b. Using Exercise 15, there is one solution modulo [910,1001]=2100 because (910, 1001) = 91 | (93 —2).
Because = 2 (mod 910), we know that x = 2 + 910k, where k is an integer. Continuing onward,
x = 2+ 910k = 93 (mod 1001), so 910k = 91 (mod 1001) and so £ = 10 (mod 1001); thus k =
10 + (1001/(1001,910))j, where j is an integer. In conclusion, z = 2 4+ 910k = 2 + 910(10 + 115) =
9102 + 10010j.

4.3.18. No, the first congruence implies x is odd, while the last one implies x is even.
4.3.19. The basis step » = 2 is given by Exercise 15. Suppose that the system of the first k£ congruences

has a unique solution A modulo M = [m4,...,my] and (m;,m;)la; —a; for 1 < i < j < k. Con-
sider the system z = A (mod M),z = a,41 (mod m,41). First suppose it has a solution B modulo
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[[m1,me,...,mg],mrs1]. Thenby Exercise 15, ([m1,ma, ..., mk], Myy1)|B—akt1. Since m;|[my, ma, . .., my]
for 1 < i <k, we have (m;, my11)|B — agr4+1. That is, there exists an integer n such that (m;, my41)n =
B — aj41. If we reduce this equation modulo m;, for 1 < i < k we have (0, my11)n = M1 = a; — a1
(mod m;). If we reduce modulo my; we have (m;,0)n = m;n =0 (mod mgy1). In either case we have
that (m;, m;)|a; —a; for 1 <i < j < k+ 1. Conversely, suppose we have the conditions (m;, m;)|a; — a;
for1 <i < j < k+ 1. Then as we have just shown, ([m1,ma, ..., mi|, Mk+1)|A — agy1. Therefore, by ex-
ercise 15, there is a unique solution B to the first k£ 4- 1 congruences. This completes the induction step.

4.3.20. a. We use the iterative method of Example 3.17, as suggested in Exercises 15 and 19. We have [6, 10, 15] =
30,(10,6) =2 (3—5),(15,6) =3 | (8 —5), and (15,10) = 5 | (8 — 3), so there exists a unique so-
lution modulo 30, by Exercise 19. The first congruence gives us = 5 + 6t. Plugging this in the
second congruence gives 5 + 6t = 3 (mod 10) which has solution ¢t = 3 (mod 5). So ¢t = 3 4 5s and
x =5+ 6(3+ 5s) = 23 + 30s, which, as a congruence, is = = 23 (mod 30).

b. We have [14,21,30] = 210, and the conditions of Exercise 19 are met, so a unique solution exists
modulo 210. The first congruence gives x = 2 + 14¢, so 2 + 14¢ = 16 (mod 21) or¢ =1 (mod 3) or
t =1+ 3s and hence, z = 16 + 42s. Then 16 + 42s = 10 (mod 30) or s = 2 + 5v and we have z =
16 4+ 42(2 + 5v) = 100 + 210v = 100 (mod 210).

c. Since (25,15) = 5and 51 (10 — 8), there is no solution.
d. Wehave z = 44 (mod 840).

e. Since (9,12) = 3 and 3 { (7 — 3) there is no solution.

4.3.21. This is equivalent to the system: x = 1 (mod 2),z =1 (mod 3),z =1 (mod 5),z =1 (mod 7),z =0
(mod 11). So, using the iterative method described in the text, z = 11k; = 7 (mod 7), and we see that
k1 =2+ Tks. Now, z = 11(2 + Tk2) = 1 (mod 5) and ks = 2 + 5k3. Now, x = 176 + 385k3 = 1 (mod 3)
and k3 = 2 + 3ks. Now, z = 946 + 1155ky = 1 (mod 2) and k4 = 1 4 2ks5. So = = 2101 + 2310k5. The
smallest such number is 2101.

4.3.22. Let z be the number of coins. The problem yields the system of congruences z = 3 (mod 17),z = 10
(mod 16),z = 0 (mod 15). By the Chinese remainder theorem, = 3930.

4.3.23. Let z be the number of grams of rice each farmer took to market. The problem yields the system of
congruences z = 32 (mod 83),2 = 70 (mod 110),z = 30 (mod 135). In order to apply the Chinese re-
mainder theorem, we replace the modulus 110 by 22. The solution is then given by 2 = 24600. This
solution remains consistent modulo 110. Thus the original amount of rice was 3 - 24600 = 73800.

4.3.24. Letxz = 784 and y = 813. We choose m; = 95, my = 97, and msg = 99 for our moduli, so that M =
912285. This leads to the systems

x =24 (mod 95) y =53 (mod 95)
z =8 (mod 97) y = 37 (mod 97)
z =91 (mod 99) y =21 (mod 99).
Using the Chinese remainder theorem to solve the systems
x+y=24+53="77 (mod 95) xy =24 -53 = 37 (mod 95)
x+y=8+37=45 (mod 97) xy =8-37=5 (mod 97)
x+y=91+4+21=13 (mod 99) xy =91 -21 = 30 (mod 99).

yields x +y = 1597 and xy = 637392 respectively.

4.3.25. Suppose that z is a base 10 automorph with four digits. Then 2% = z (mod 10?) since the last four
digits of  and z? must agree. It follows that 22 — z = z(z — 1) = 0 (mod 10*). This is equivalent to the
two congruences z(z — 1) = 0 (mod 2%) and z(z — 1) = 0 (mod 5%). We can conclude that either z = 0
(mod 2%) or z = 1 (mod 2%), since 2* must divide either z or z — 1 since x and = — 1 have no common
factors. Similarly, either z = 0 (mod 2*) or x = 1 (mod 5%). It follows that z satisfies one of four simul-
taneous congruences: = 0 (mod 2%) and z = 0 (mod 5*);z = 0 (mod 2%) and z = 1 (mod 5%);z =
1 (mod 2%) and z = 0 (mod 5%); or # = 1 (mod 2%) and z = (mod 5%). Using the Chinese remainder
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theorem for each of these sets of congruences gives z = 0 (mod 10000), z = 625 (mod 10000),z = 9376
(mod 10000), and x = 1 (mod 10000). The base 10 automorphs with four digits, allowing initial digits
of 0 are 0000,0001,0625, and 9376.

4.3.26. Following the reasoning in the solution to Exercise 25, we have, for each prime dividing b, that z = 0
(mod pi*) or z = 1 (mod p{*). Thus a unique solution is given for each way of choosing a system of k
congruences, that is, for each k, we choose whether = 0, or 1 (mod p;“ ). This gives us ok automorphs.

4.3.27. We need to solve the system © = 23 + 2 (mod 4 - 23),z = 28 + 1 (mod 4 - 28),x = 33 (mod 4 - 33),
where we have added 2 and 1 to make the system solvable under the conditions of Exercise 19. The so-
lution to this system is z = 4257 (mod 85008).

4.3.28. Weneed to solve the system x = 3-23 (mod 4-23),2z =3-28—1 (mod 4-28),x = 3-33+2 (mod 4-33),
where we have added —1 and 2 to make the system solvable under the conditions of Exercise 19. The
solution to this system is x = 16997 (mod 85008).

4.3.29. We need to solve the system # = 0 (mod 4 -23),2 =0 (mod 4 -28),z =0 (mod 4 - 33). The solution
to this system is = 0 (mod 85008).Every 85008 quarter-days, starting at 0.

4.3.30. Wehavez =0 (mod 2)ifx =0,2,4,6,80r 10 (mod 12),z =0 (mod 3)ifx =0,3,6,0r9 (mod 12),x =
1 (mod 4)ifz =1,5,0r9 (mod 12),x =1 (mod 6) if x = 1 or 7 (mod 12). Since the only integers not
covered by these four congruences are those x with z = 11 (mod 12), adding this congruence modulo
12 to the other four congruences gives a covering set of congruences.

4.3.31. If the set of distinct congruences cover the integers modulo the least common multiple of the moduli,
then that set will cover all integers. Examine the integers modulo 210, the l.c.m. of the moduli in this set
of congruences. The first four congruences take care of all numbers containing a prime divisor of 2, 3,
5, or 7. The remaining numbers can be examined one at a time, and each can be seen to satisfy one (or
more) of the congruences.

4.3.32. The congruence 2 = 1 (mod m) is equivalent to the system 2% = 1 (mod 2%),z% =1 (mod p{?),...,
z? =1 (mod p?r). Each of the odd prime congruences has 2 solutions by Exercise 15 of Section 4.2. The
first congruence has e solutions by Exercise 16 of Section 4.2. Therefore, there are orte systems of the

form z = by (mod 2%),z = b; (mod pi'),...,z = b, (mod p?"), where the b;’s are the solutions to the
congruences above. Each of these systems has a unique solution modulo m, so we have a total of 2""¢
solutions.

4.3.33. Let x be the length in inches of the dining room. Then z = 3 (mod 5),z = 3 (mod 7), and z = 3
(mod 9). Since 5,7,and 9 are pairwise relatively prime, the Chinese remainder theorem tells us that there
is a unique solution to this system of congruences modulo 5-7-9 = 315. This solution is immediately seen
to be © = 3 (mod 315). Since z is a length it is positive. Hence possible values for = are 3,318,633,948,
and so on. Since z is the length of a room in inches, the possibility that = 3 is absurd, and it is most
likely that x = 318, so that the room is 26 feet and 6 inches long. This is a big dining room. Of course, it
is possible that the dining room is 633 inches, or 52 feet and 9 inches long. However, unless the house is
huge this, and larger possible answers, are extremely unlikely.

4.3.34. Trying all the integers from 0 to 8 in the congruence z? + 6z — 31 = 0 (mod 9) yields z = 3 or 8
(mod 9). Trying all the integers from 0 to 7 in the congruence z? + 6z — 31 = 0 (mod 8) yieldsz =1 or5
(mod 8). The various combinations of congruences give us 4 systems to solve. =3 (mod 9)and z =1
(mod 8) yields z = 49 (mod 72). The other 3 solutions are 13, 17, and 53 modulo 72.

4.3.35. Examining z? + 18z — 823 = 0 (mod 1800) modulo 8, we see that 2% + 18z — 823 = 22 + 2z + 1 =
(r + 1) = 0 (mod 8) has solutions z = 3 (mod 8) and z = 7 (mod 8). Examining 2 + 18z — 823 =
0 (mod 1800) modulo 9, we see that 22 + 18z — 823 = 2% + 5 = 0 has solutions z = 2 (mod 9) and
r =7 (mod 9). Examining 2% + 18z — 823 = 0 (mod 1800) modulo 25, we see that z2 + 18z — 823 =
224182477 = (z+11)(z+7) =0 (mod 25). This has solutions z = 18 (mod 25), and z = 14 (mod 14).
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Thus there are 23 = 8 systems to examine. We may find, by the iterative method discussed in the text,
that the solutions are given by = = 225a; + 1000ay + 576a3 + 1800k, where k is an integer and a, is 3 or
7,a91is 2 or 7, and a3 is 14 or 18.

4.3.36. Let pj, represent the kth prime. Then the set {p1, p2,...,Pr,PrR+1, - - -, P2r} of numbers is mutually rel-
atively prime, since all members are prime. Let P be the product of the elements in the set. Then by the
Chinese remainder theorem, there is a unique solution  modulo P to the system of congruences = = 1
(mod p1),z =2 (mod p2),...,z = R (mod Pg),z = —1 (mod pgy1),z = —2 (mod pri2),...,z = —R
(mod por). Then for j =1,2,..., R, we have p;j|x — j and pr4,|x + j, so if z is larger than pyr, then all
of the integers from « — R to « + R are composite, except perhaps for z itself. Now consider the arith-
metic progression = 4+ Pn. All of these integers satisfy the system of congruences above. For each j =
1,2,..., R, wehave (z, P) = 1, since for each of the primes p; dividing P, we have x = j (mod p;) and
1<j<pjsopjfrandz =—j (mod pry;)and —pri; < —j < —1,50 pry; 1 2, and hence x and P can
have no common factors. Therefore, by Dirichlet’s theorem on primes in arithmetic progression, there
are infinitely many primes in the progression « 4+ Pn, each of which satisfy the system of congruences,
and hence are R-reclusive primes.

4.4. Solving Polynomial Congruences

44.1.a. By testing each of the integers 0,1,...,6, we see that 12 + 4(1) + 2= 0 (mod 7) and 22 +4(2) + 2 =
0 (mod 7). So the solutions are the integers x = 1 or 2 (mod 7).

b. Let f(z) = 2? + 4z + 2. Then f'(z) = 2z + 4. Since f'(1) = 6 # 0 (mod 7), we can apply case (i)
of Hensel’s lemma. The solutions z = 1 (mod 7) lift uniquely to solutions z = 1 + 7¢ (mod 49),
wheret = —f/'(1)f(1)/7=—6-7/7=1 (mod 7). So z = 8 (mod 49). Similarly, since f'(2) =1 # 0
(mod 7), the solutions z = 2 (mod 7) lift uniquely to z = 2+ 7t (mod 49), where t = —8f(2)/7 =5
(mod 7).So z =2+ 7(5) = 37 (mod 49). The solutions are the integers =z = 8 or 37 (mod 39).

c. Since f/(8) =6 (mod 7), the solutions = 8 (mod 49) lift uniquely to solutions z = 8 + 49t where

= —6/(8)/49 =2 (mod 7).Soz = 8+49(2) = 106 (mod 343). Similarly, since f'(37) =1 (mod 7),

the solutions z = 37 (mod 49) lift uniquely to solutions « = 37 + 49t where t = — f/(37) f(37)/49 =

4 (mod 7). So z = 37+ 49(4) = 233 (mod 343). The solutions are the integers x = 106 or 233
(mod 343).

44.2.a. Let f(x) = 2® + 8z — z — 1. By inspection, we find that the only solutions to f(z) =0 (mod 11) are
the integers « = 4 or 5 (mod 11).

b. From part (a), f/(z) = 32% + 16z — 1, s0 f/(4) = 111 = 1 (mod 11). Then z = 4 (mod 11) lifts
uniquely to a solution 7y = 4 — f(4)f'(4) = 59 (mod 121). On the other hand, f'(5) = 154 = 0
(mod 11). Since f(5) = 319 # 0 (mod 121), we know, by part (iii) of Hensel’s lemma, that 5 does
not lift to any solution modulo 121. Thus, the only solution is z = 59 (mod 121).

c¢. From partb, f/(4) = 111 = 1 (mod 11) and 4 lifted to the solution 59 modulo 121. This solution
lifts to 73 = 59 — f(59) f/(59) = 59 — 233167 - 1 = 1148 (mod 1331). This is the only solution.

443. Let f(z) = 2 + x + 47. By inspection, the solutions to f(z) = 2> + x +5 =0 (mod 7) arer = 1l or 5
(mod 7). Since f’(1) = 3 (mod 7), we know, by Corollary 4.14.1, that r = 1 lifts successively to unique
solutions modulo each power of 7. Note that /(1) = 3 =5 (mod 7). Then, with notation as in Corollary
4141, 7o =1—-f(1)-5=1-49-5=1 (mod 49),and r3 =1 —49 -5 =99 (mod 343), and finally, 74 =
99 — £(99) - 5 = 785 (mod 2401). Similarly, since f'(5) = 4 (mod 7), we know, by Corollary 4.14.1, that
r = 5 lifts successively to unique solutions modulo each power of 7. Note that f/(5) = 4 = 2 (mod 7).
Then, with notation as in Corollary 4.14.1, 7o = 5 — f(5) - 2 = 47 (mod 49), and r3 = 47 — f(47) -2 = 243
(mod 343), and finally, ry = 243 — f(243) - 2 = 1615 (mod 2401). Therefore the solutions are = = 785 or
1615 (mod 2401).
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4.44. Let f(z) = 2% + z + 34. By inspection, the only solution of f(z) = 0 (mod 3)isr = 1 (mod 3). Since
f'(1) =3 =0 (mod 3), we check that f(1) = 36 # 0 (mod 81), so by part (iii) of Hensel’s lemma, there
are no solutions to f(z) =0 (mod 81).

44.5. Let f(z) = 1327 — 422 — 649 and observe that 1323 = 3372. We start by solving the congruence mod-
ulo 3 and lifting to modulo 27. First f(z) = 27 — 1 = 0 (mod 3), which has only the solution r = 1
(mod 3). Since f/(1) = 13-7-1° — 42 = 1 (mod 3), this solution lifts to unique solutions modulo 9 and
27. Following Corollary 4.14.1, we have ro = 1+ f(1)f/(1) =1 — (13 — 42 — 649)(1) = 4 (mod 9), and
rg =4 — f(4)(1) = 22 (mod 27). Next we solve the congruence modulo 7 and lift to 49. Then f(z) =
—27 4+ 2 = 0 (mod 7) has only the solution 7 = 2 (mod 7). Note that f/(2) = 5782 = 0 (mod 7) and
that f(2) = 931 = 0 (mod 7), so r = 2 lifts to 7 solutions modulo 49, namely 2, 9, 16, 23, 30, 37, and
44. Finally, we pair the solution for 27 with each of the solutions for 49 to produce solutions for 1323.
Solving the system = = 22 (mod 27),z = 2 (mod 49) yields z = 1129 (mod 1323). Solving the system
x =22 (mod 27),z =9 (mod 49) yields z = 940 (mod 1323). Solving the system = = 22 (mod 27),z =
16 (mod 49) yields = 751 (mod 1323). Solving the system x = 22 (mod 27),z = 23 (mod 49) yields
x =562 (mod 1323). Solving the system z = 22 (mod 27),z = 30 (mod 49) yields z = 373 (mod 1323).
Solving the system x = 22 (mod 27),z = 37 (mod 49) yields z = 184 (mod 1323). Solving the system
z = 22 (mod 27),x = 44 (mod 49) yields = = 1318 (mod 1323). So the incongruent solutions are 184,
373,562,751, 940, 1129, and 1318.

4.4.6. Let f(z) = 2% — 2* 4+ 1001 and note that 539 = 7211. Solving f(z) = 2® — 2! = 0 (mod 7) yields r =
0,1, or —1 (mod 7). Since f/(0) =0, but f(0) = 21 (mod 49), we know that 0 doesn't lift to a solution of
f(z) =0 (mod 49). On the other hand f/(1) = 4 (mod 7),so 1liftstor, = 1 — f(1)f/(1) =1—1001-2 =
8 (mod 49). Next, note that f'(—1) =3 (mod 7),so —1liftstor, = —1— f(-1)f'(-1) = -1-1001-5 =
41 (mod 49). Now we turn to the prime 11. By inspection, the solutions to f(z) = 0 (mod 11) are x =
0,1 or —1 (mod 11). We now pair each solution modulo 49 with each solution modulo 11 to obtain 6
systems of congruences. Solving the system x = 8 (mod 49),z =0 (mod 11) yields z = 253 (mod 539).
Solving the system z = 8 (mod 49),z = 1 (mod 11) yields z = 155 (mod 539). Solving the system z =
8 (mod 49),z = —1 (mod 11) yields x = 351 (mod 539). Solving the system z = 41 (mod 49),z = 0
(mod 11) yields z = 286 (mod 539). Solving the system = = 41 (mod 49),z = 1 (mod 11) yields z =
188 (mod 539). Solving the system = = 41 (mod 49),2 = —1 (mod 11) yields z = 384 (mod 539). So
the incongruent solutions modulo 539 are 155, 188, 253, 286, 351, 384.

4.4.7. Let f(z) = 2* 4 22 + 36 and note that 4375 = 57. By inspection, the only solution to f(z) = z* + 2z +
1=0 (mod 5)is7 = —1 (mod 5). Since f'(—1) = 4(—1)3+2 =3 £ 0 (mod 5), we know that r = —1 lifts
uniquely to solutions modulo 5. Applying Corollary 4.14.1, we have r, = (—1) — f(-1)-3=—-1-35-
2 =4 (mod 25),and r3 =4 — f(4)2 = 29 (mod 125) and r4 = 29 — f(29)2 = 279 (mod 625). Again, by
inspection, we solve f(z) = z* + 22+ 1 =0 (mod 7) and obtain the two solutions z = 2 or —1 (mod 7).
Finally we solve the two systems x = 279 (mod 625),z = 2 (mod 7) and z = 279 (mod 625),z = —1
(mod 7) to get the two solutions 3404 and 279 (mod 4375), respectively.

44.8. Let f(x) = 25 — 22° — 35 and note that 6125 = 5372. By inspection we solve f(z) = 0 (mod 5) and
obtain the two solutions = 0 or 2 (mod 5). Since f/(0) = 0 (mod 7) and f(0) = —35 # 0 (mod 25)
we know that the solution z = 0 (mod 5) does not lift to solutions modulo 5. However, since f/(2) =
(mod 5), we know that x = 2 lifts to a unique solution modulo 5*. By Corollary 4.14.1, 7, = 2 — f(2) -2
2435-3 =7 (mod 25) and r3 = 7 — f(7)3 = 7 (mod 125). Again, by inspection we solve f(x)
0 (mod 7) to obtain the solutions z = 0 or 2 (mod 7). Since f/(0) = 0 (mod 7) and f(0) = —35 # 0
(mod 49), we know that the solution © = 0 (mod 7) does not lift to any solutions modulo 49. On the
other hand, since f/(2) =4 (mod 7), we know that z = 2 lifts to a unique solution modulo 49. By Corol-
lary 4.14.1, 7o = 2 — f(2) -4 = 2+ 35 -2 = 23 (mod 49). Solving the system z = 7 (mod 125),z = 23
(mod 49) yields the solution x = 3257 (mod 6125).

~

M s

44.9. Let f(z) = 523 + 2% + x + 1. By inspection, the solution of the congruence f(z) =0 (mod 2)isz =1
(mod 2). Note that f/(x) = 1522 + 2z + 1,50 f/(1) = 0 (mod 2). Since f(1) = 8 = 0 (mod 4), we know
that z = 1 lifts to two solutions z = 1 or 3 (mod 4). Since f(3) = 4 (mod 8), but f'(3) = 0 (mod 2),
we know that 3 does not lift to solutions modulo 8. However, since f/(1) = 0 (mod 2) and f(1) = 0
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(mod 8), we know that 1 lifts to the two solutions 1 and 5 (mod 8). Since f(1) = 8 # 0 (mod 16), we
know that 1 does not lift further. Since f(5) = 0 (mod 16), we know that 5 lifts to solutions 5 and 13
(mod 16). Since f(5) =16 £ 0 (mod 32), we know that 5 does not lift further. Since f(13) =0 (mod 32),
we know that 13 lifts to solutions 13 and 29 (mod 32). Since f(13) = 32 £ 0 (mod 64), we know that 13
does not lift further. Since f(29) = 0 (mod 32), we know that 29 lifts to solutions 29 and 61 (mod 64).
So there are only two incongruent solutions.
4.4.10. Let f(z) = 2° + x — 6 and note that 144 = 2%32. Both 0 and 1 are solutions to f(z) =0 (mod 2). Since
f/(0) =1 (mod 2) we know that 0 lifts to a unique solution modulo 16. Since f'(1) = 0 (mod 2) and
f(1) = —4 = 0 (mod 4), we know that 1 lifts to solutions 1 and 3 (mod 4). Since f(1) = 4 (mod 8), 1
lifts no further. Since f(3) = 0 (mod 8), 3 lifts to solutions 3 and 7 (mod 8). Since f(7) = 8 (mod 16),
we know that 7 lifts no further. Since f(3) = 0 (mod 16) we know that 3 lifts to solutions 3 and 11
(mod 16). Thus there must be a total of 3 solutions modulo 16. By inspection, there is only one solution
to f(z) =0 (mod 3), namely x = 0. Since f'(0) =1 (mod 3), we know that 0 lifts uniquely to a solution
modulo 9. Finally, since there are 3 solutions modulo 16 and 1 solution modulo 9, we must have 3 - 1 =
3 solutions modulo 16 - 9 = 144.

4.4.11. Since (a,p) = 1, we know that ¢ has an inverse b modulo p. Let f(z) = ax — 1. Then = b (mod p)
is the unique solution to f(z) = 0 (mod p). Since f'(z) = a # 0 (mod p), we know that r = b lifts
uniquely to solutions modulo p* for all natural numbers k. By Corollary 4.14.1, we have that rj, =
Th_1— f(rk,l)m =rp_1—(arg_1—1)a =rp_1— (arr—1 —1)b = rp_1(1 —ab) +b. This gives a recursive
formula for lifting b to a solution modulo p* for any k.

44.12.a. Since a = b (mod p*77), b = a + tp*~7 for some integer t. By Lemma 4.6, we have f(b) =
Fla+1p"7) = f(a) + F(@)tp" =T + (f"(a)/2)2p?*~% + .- . So we have f(b) = f(a) + f'(a)tp"~
(mod p*#~%). Since 2k — 2j > k, and p* | f(a) and p’ | f'(a), f(b) = 0 = f(a) (mod p*). Say that
f(a) = xp*, f(b) = yp*, and f'(a) = zp’, where (z,p) = 1. Then from the original congruence,
f() = f(a) + f'(a)tp*7 (mod p**+1), so that dividing through by p* yields y — z = 2t (mod p).
This last is a linear congruence with (z, p) = 1, so there is a unique solution modulo p for ¢. That is,
there is a unique value of ¢t modulo p such that f(a + tp*~7) =0 (mod p**1.) Again from the origi-
nal congruence, we have f(b) — f(a) = f'(a)tp*~7 (mod p?*~27) and from a symmetrical argument
we have f(b) — f(a) = f'(b)tp*~7 (mod p?*~27), whence f’(a)tp*=7 = f'(b)tp*~7 (mod p**!). Di-
viding through by p* gives us zt = ('(b)/p?)t (mod p). Since (x,p) = 1, we must have p’ || f'(b).

b. From part (a), for each solution a of f(x) = 0 (mod p*) There is a unique value of ¢ modulo p such
that a+tp* — jisa solution to f(z) = 0 (mod p**1). Thatis, each solution a (mod p*) lifts uniquely
to a solution b (mod p**1).

4.4.13. By inspection the only solution of f(z) = 2% + x + 223 = 0 (mod 3) is # = 1 (mod 3). Since
/1) =2-1+1 =3 =0 (mod 3) and f(1) = 225 = 0 (mod 9), we have by Theorem 4.14 that
1,4, and 7 are the only solutions modulo 9. Since f(1) = 225 = 9 (mod 27), this solutions doesn’t
lift. Since f(4) = 243 = 0 (mod 27), this solution lifts to three solutions 4,13, and 22 (mod 27). Since
f(7) = 279 = 9 (mod 7), this solution doesn’t lift. So the only solutions modulo 27 are 4, 13, and
22. Next f(4) = f(13) = f(22) = 0 (mod 81), so each of these solutions lifts to three solutions
modulo 81, namely 4, 31, 58, 13, 40, 67, 22, 49, and 76. Of these, f(13) = f(40) = f(67) = 163 #
0 (mod 3%) and so these do not lift to solutions. But f(4) = f(31) = f(58) = f(22) = f(49)
f(76) = 0 (mod 3°). Therefore, each of these 6 solutions lifts to three solutions modulo 3%, namely z =
166,112, 238,193, 85,130, 58, 103, 211, 31, 76, 157, 184, 49, 4,139, 220 or 22 (mod 3°). It is easy to check
that each of these solutions satisfies the hypotheses of Exercise 12 withp = 3, k = 5and j = 2. E.g,,
f(166) =0 (mod 3°) and 3% || f/(166) = 333 = 32 - 37. Therefore each of these solutions lifts uniquely to
solutions modulo 3™ for n > 5. So there are exactly 18 solutions modulo 3™ for n > 5.
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4.5. Systems of Linear Congruences

4.5.1. a. Multiplying the first congruence by 2 gives 2x + 4y = 2 (mod 5). Subtracting the second congru-
ence 2r + y = 1 (mod 5) from this gives 3y = 1 (mod 5). Since 2 is the inverse of 3 modulo 5 we
have y = 2 (mod 5). Inserting this into the congruence z+2y =1 (mod 5) gives z+4 =1 (mod 5).
Hence z = —3 = 2 (mod 5). The unique solution modulo 5is x = 2 (mod 5) and z = 2 (mod 5).

b. Multiplying the first congruence by 3 gives 3z + 9y = 3 (mod 5). Subtracting the second congru-
ence 3z + 4y = 2 (mod 5) from this gives 5y = 1 (mod 5) which is impossible. Hence this system
has no solutions.

¢. Multiplying the second congruence by 2 gives 4z + 6y = 2 (mod 5). Subtracting the first congru-
ence from this gives 5y = 0 (mod 5). The solutions to this are all values of y, thatis, y = 0,1, 2,3,
or 4 (mod 5). This implies that 4z = 2,1,0,4, or 3 (mod 5), respectively, or that x = 3,4,0,1 or

2 (mod 5), respectively. The solutions are z = 3 (mod 5),y = 0 (mod 5);z = 4 (mod 5),y = 1
(mod 5);x = 0 (mod 5),y = 2 (mod 5);z = 1 (mod 5),y = 3 (mod 5); and z = 2 (mod 5),y = 4
(mod 5).

4.5.2. a. Subtracting twice the second congruence from the first gives us —7y = —7 (mod 7), whichis Oy =0

(mod 7). Therefore, y can take on any residue modulo 7. When y = 0, we have z = 6 (mod 7), from
the second congruence, so the first solution is (6,0). When y = 1, the second congruence gives us
z+5=6 (mod 7),so (1,1) is another solution. Continuing in this fashion, get the seven solutions:
(6,0), (1,1), (3.2), (5.9), (0,4), (2,5), and (4,6).

b. Subtracting twice the first congruence from the second yields —7z = —6 (mod 7), which reduces to
0 =1 (mod 7), which is false. Therefore there is no solution.

4.5.3. If we use one congruence to eliminate a variable from the other congruence, we are left with linear
congruence of the form az = b (mod p). If (a,p) = 1, then this congruence has a unique solution, but if
p | a, wehave 0 = b (mod p), which has 0 solutions if b is not 0 modulo p and p solutions if b is 0 modulo
p. So there are 0, 1, or p solutions for this variable. Similarly, There are 0, 1, or p solutions for the other
variable. Multiplying all the possible combinations gives us 0, 1, p, or p? solutions for the system.

4.5.4. Multiplying the matrices in the usual fashion and reducing each entry modulo 5 gives ( (2) il)) )

4.5.5. The basis step, where k = 1, is clear by assumption. For the inductive hypothesis assume that A = B
(mod m) and A¥ = B¥ (mod m). Then, A - A¥ = A - B* (mod m) by Theorem 4.16. Further, A*+1 =
A-A¥=A.B"=B-B* =B (mod m) by simple substitution. This completes the inductive proof.

2
4 11 27 26\ _ (1 0 . L
4.5.6. Wehave( 1 929 ) = ( 2% 495 ) = ( 0 1 ) (mod 26). Hence this matrix is involutory (mod 26).
4.5.7. Note that 1 = det(I) = det(A?) = (det(A))? (mod m). So, (det(A))?—1 = (det(A)+1)(det(A)—1) =

0 (mod m). It follows that det(A) = £1.

4.5.8.a. (We use Theorem 4.17 in each part to find the inverse of a 2x2 matrix modulo 5.)
Since the determinant of this matrix is —1, and —1 is an inverse of —1 modulo 5, an inverse of

. . . 0o -1 0 1
this matrix modulo 5 is —1( 1 0 >_ < 1 0 )

b. Since the determinant of this matrix is —2, and 2 is an inverse of —2 modulo 5, an inverse of this

. . 4 =2 3 1
matrlxmodu105152(_3 1 )—<4 2).

c. Since the determinant of this matrix is 2, and 3 is an inverse of 2 modulo 5, an inverse of this matrix

. 2 =2 1 4
rnodu1051s?>(_1 9 )(2 1).
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4.5.9.a. Let A be the matrix. We have det A = —2 which has inverse 3 modulo 7. Then
B -1 -1 1 4 4 3
A=3-adjA=3| -1 1 -1 = 4 3 4

1 -1 -1 3 4 4

b. Let A be the matrix. We have det A = 3 which has inverse 5 modulo 7. Then

B -1 0 4 2 0 6
A=5adjA=5| -1 3 -2 |=(2 14
2 -2 0 340

c¢. Let A be the matrix. We have det A = 4 which has inverse 2 modulo 7. Then

-1 -1 -1 2 5 5 5 4
-~ . -1 -1 2 -1 5 5 4 5
A=2ZadiA=21 1 o 4 1 |7|5 455
2 -1 -1 -1 4 5 5 b
4 4 3 1 0
4.5.10. a. Using the inverse from Problem 9(a) we have | 4 3 4 2 =11 (mod 7).
3 4 4 3 2
2 0 6 1 1
b. Using the inverse from Problem 9(b) wehave | 2 1 4 1 ]1=10 (mod 7).
3 4 0 1 0
5 5 5 4 1 )
. . 5 5 4 5 1 1_15
c. Using the inverse from Problem 9(c) we have 5 4 5 5 1151 5 (mod 7).
4 5 5 5 1 )

4.5.11. a. Multiplying the first congruence by 2 gives 2z + 2y + 2z = 2 (mod 5). Subtracting this from the
second congruence gives 2y + z = 4 (mod 5). There are five possible values for z modulo 5, and
since (2,5) = 1, each of these leads to a unique value of y modulo 5, and substituting these val-
ues of y and z modulo 5 into the first congruence we obtain a unique value of z modulo 5. Hence
there are exactly 5 incongruent solutions modulo 5. There are z = 4 (mod 5),y = 2 (mod 5),z =
0 (mod 5);z = 1 (mod 5),y = 4 (mod 5),z = 1 (mod 5);z = 3 (mod 5),y = 1 (mod 5),z = 2
(mod 5);z = 0 (mod 5),y = 3 (mod 5),z = 3 (mod 5); and z = 2 (mod 5),y = 0 (mod 5),z = 4
(mod 5).

b. Subtracting the last congruence from the first gives 3y = 3 (mod 5), so y = 4 (mod 5). Let z take
on the values 0, 1, 2, 3, and 4 and solve the last congruence for z to get 3, 0, 2, 4, and 1, respectively.
This represents the 5 incongruent solutions.

é le , which had determinant 2 # 0 (mod 5), we
can find a unique solution in z and y for any of the 5 possible values for z. Therefore, there are 5
incongruent solutions.

c. Since the coefficient matrix for x and y is

d. Since the determinant of the coefficient matrix is 4 # 0 (mod 5) there is a unique solution to the
system.

4.5.12. Cramer’s rule will work for congruences just like for systems of equations. The determinant of the
coefficient matrix must be relatively prime to the modulus.

4.5.13. In Gaussian elimination, the chief operation is to subtract a multiple of one equation or row from an-
other, in order to put a 0 in a desirable place. Given that an entry a must be changed to 0 by subtracting
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a multiple of b, we proceed as follows: Let b be the inverse for b (mod k). Then a — (ab)b = 0, and elimi-
nation proceeds as for real numbers. If b doesn’t exist, and one cannot swap rows to get an invertible b,
then the system is underdetermined.

4.5.14. Letkand!beintegersintherange0,1,...,n?—1, and suppose that they are put into the same position
(¢,7). Then a+ck+elk/n] = a+cl+ell/n] (mod n)and b+dk+ f[k/n] = b+di+ f[l/n] (mod n). This sys-
tem reduces to ¢k — 1) + e(k/n] — [l/n]) = 0 (mod n),c(k — 1) -+
e([k/n] — [I/n]) = 0 (mod n), which we can solve for k — [ and [k/n] — [I/n]. The coefficient matrix is

2 ; , with determinant cf — de, which is relatively prime to n. Therefore the system has a unique

solution modulo n, and this solution is obviously (0,0). Thus we have k = ! (mod n) and [k/m] = [I/n]

(mod n). This last congruence, along with the fact that 0 < k,! < n? — 1, implies that | £ — [ |< n. Then,

since k = (mod n), we have that k = [, as desired.

4.5.15. Consider summing the ith row. Let k¥ = 2n + y, where 0 < y < n. Then x and y must satisfy the Dio-
phantine equation i = a + cy + ex (mod n), if k is in the ith row. Then z — ¢t and y + et is also a solution
for any integer ¢. By Exercise 14, there must be n positive solutions which yield n numbers k between 0
and n%. Lets,s +1,...,s +n — 1 be the values for ¢ that give these solutions. Then the sum of the ith

row is Zf;& (n(x—c(s+71))+y+e(s+r)) =n(n+ 1), which is independent of .

4.5.16. If an integer [ from the range 0, 1,...,n? — 1 is entered according to Exercise 14, and it is in a particu-
lar positive diagonal, then we must have ¢ + ¢l + e[l/n] + b+ dl + f[l/n] = k (mod n), or (c+d)l + (e +
Dli/n] = (a+b—k) (mod n). Let! = z,y = [l/z],and s = (a + b — k). Since (c+d,n) = (e + f,n) =
1, if we choose z from the range 0, 1, ...,n — 1, there will be a unique solution for y modulo n, namely
y=(s—(c+dz)(e+f). Thenl = yn + x. Let x run through it’s possible values, and sum to get

Sasgynta =30 o(s—(c+d)z)(e+ Nnta =375 s(e+ HHnt (- (c+d)(e+ fle=n’sle+ /) +
(1—(c+d))(e+ f)(n—2)(n—1)/2. This is the sum of one positive diagonal. Since it does not depend
on [, the sum must be the same for all diagonals. The argument for negative diagonals is identical.

4.6. Factoring Using the Pollard Rho Method

4.6.1.a. We compute r; = 22+ 1 =5and x5 = 52 + 1 = 26. Then (26 — 5,133) = (21,133) = 7, so we have
133 ="7-19.

b. r1 = 5,.1‘2 = 26,1‘3 = 677,$4 = 565,$5 = 574,3?6 = 124, Ty = 1109,588 = 456,339 = 1051,3310 =
21,$11 = 44271712 = 369, T13 = 616, and T14 = 166. Then (.TQ»L‘ — Xy, 1189) =1fori= 1, 2, ey 6, but
(z14 — 27,1189) = 41, and we have 1189 = 29 - 41.

c¢. We need to compute up to z7 = 1273 and x14 = 535. Then we have (535 — 1273,1927) = 41, and so
1927 = 41 - 47.

d. We need to compute up to z4 = 2994 and g = 6973. Then we have (6973 — 2994, 8131) = 173, and
s0 8131 =47 -173.

e. We need to compute up to z7 = 24380 and x14 = 12066. Then we have (12066 — 24380, 36287) =
131, and so 36287 = 131 - 277.

f. We need to compute up to zg = 18842 and z16 = 7329. Then we have (7329 — 18842, 48227) = 29,
and so 48227 = 29 - 1663.

4.6.2.a. Wehavery =211 =224+1=5a29=52+1=26,13 =26%+1=0677Try = 677% + 1 = 458330 =

620 (mod 1387), x5 = 202,26 = 582, and so on. Then (zs — 21, 1387) = (26 — 5,1387) = 1, (x4 —
o, 1387) = (620 — 26,1387) = 1, (z — 3, 1387) = (582 — 677, 1387) = 19, s0 19 | 1387.
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b. Wehave zg = 3,21 = 10,22 = 101,23 = 493, x4 = 325, x5 = 214,25 = 26,27 = 677,28 = 620,29 =
202,219 = 582, x11 = 297,212 = 829, and so on. Then (a2 — x1,1387) = (101 — 10,1387) = 1, (x4 —
x9,1387) = (325 — 101,1387) = 1, (z6 — x3,1387) = (26 — 493,1387) = 1, (rs — 4, 1387) = (620 —
325,1387) = 1, (x19 — x5, 1387) = (582 — 214, 1387) = 1, (12 — x, 1387) = (829 — 26, 1387) = 73,, so
73] 1387.

c¢. Wehave zg = 2,21 = 3,29 = 8,23 = 63,24 = 1194, 25 = 1186, 26 = 177, and so on. Then (zo —
21,1387) = (8 — 3,1387) = 1, (x4 — 70, 1387) = (1194 — 8,1387) = 1, (wg — x3,1387) = (177 —
63,1387) = 19, s0 19 | 1387.

d. Wehave zg = 2,21 = 11,29 = 1343, 23 = 767,24 = 978, and so on. Then (z9 — z1, 1387) = (1343 —
11,1387) = 1, (x4 — o, 1387) = (978 — 1343, 1387) = 73, s0 73 | 1387.

4.6.3. Numbers generated by linear functions where ¢ > 1 will not be random in the sense that zo;, — 2 =

axos—1 +b— (axs—1 +b) = a(xes—1 — r,—1) is a multiple of a for all s. If @ = 1, then zo5 — 5 = xo + sb.
In this case, if o # 0, then we will not notice if a factor of b that is not a factor of xg is a divisor of n.
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CHAPTER 5
Applications of Congruences

5.1. Divisibility Tests

51.1.a. Since 2| 4,4 | 84,8 | 984,16 | 1984,64 | 201984, 128 | 201984, 256 | 201984, but 512 does not divide
201984, it follows that 256 = 28 is the highest power of 2 that divides 201984.

b. Since?2 | 8,4 |8,8 408,16 | 3408, but 32 does not divide 23408, it follows that 16 = 2% is the highest
power of 2 that divides 1423408.

c. Since?2 | 4,4 | 44,8 | 744,16 | 5744,32 | T5744,64 | 375744,128 | 9375744,256 | 89375744, 512 |
89375744,1024 | 89375744, but 2048 does not divide 89375744, it follows that 1024 = 210 is the high-
est power of 2 that divides 8937544.

d. Since 2 | 6 but 4 does not divide 46, it follows that 2 = 2! is the highest power of 2 that divides
41578912246.

5.1.2.a. Since 5 | 0,25 | 50,125 | 250 but 625 does not divide 2250, it follows that 125 = 53 is the highest
power of 5 that divides 112250.

b. Since5 | 5,25 | 25,125 | 625,625 | 625, but 3125 does not divide 60625, it follows that 625 = 5 is the
highest power of 5 that divides 4860625.

c. Since 5 | 0 but 25 does not divide 90, it follows that 5 = 5! is the highest power of 5 that divides
235555790.

d. Since 5 | 5,25 | 25,125 | 125,625 | 3125,3125 | 53125,15625 | 953125,78125 | 6953125,390625 |
26953125,1953125 | 126953125, but 9765625 does not divide 8126953125 it follows that 1953125 =
59 is the highest power of 5 that divides 48126953125.

5.1.3.a. The sum of the digits of 18381 is 1 + 8 + 3 + 8 + 1 = 21. Since this sum is divisible by 3 but not by
9, 18381 is divisible by 3, but not by 9.

b. The sum of the digits of 65412351is 6+ 544+ 1+ 2+ 3 + 5+ 1 = 27. Since this sum is divisible by
3 and by 9 it follows that 65412351 is divisible by both 3 and 9.

¢. The sum of the digits of 987654321 is 9+ 8 + 7+ 6 +5+4 4342+ 1 = 45. since this sum is divisible
by 3 and by 9 it follows that 987654321 is divisible by both 3 and 9.

d. The sum of the digits of 78918239735is 7+ 8 +9+1+8+2+3+9+ 7+ 3 + 5 = 62. Since this sum
is not divisible by 3, 78918239735 is divisible by neither 3 nor 9.

51.4.a. Wehavel -0+7—-6+3-74+3—-2=—1,s011¢10763732.
b. Wehavel -0+8-6+3-2+0-0+1-5=0,s011 | 1086320015.

c¢. Wehave6—-7+4-34+1-0+9—-7+6-3+4+7—5=8,s011¢674310976375.

91
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92 5. APPLICATIONS OF CONGRUENCES
d. Wehave8-9+2-4+3-14+0-0+6—-4+5—-3+7=10,s0 1118924310064537.

5.1.5. By Theorem 5.1, the power of 2 dividing a number is equal to the number of zeros at the end of its
binary expression. a. 2! =2b.2°=1¢.20=64d.2°=1

5.1.6. a. Since3 | (2+1), we use Theorem 5.3. Wehave 1 —0+1—-1+1—-14+1—-14+0=1,s031¢(101111110)s,.
b. Wehavel —0+1—-0+0—0+0—0+1—1=(10)3, 503+ (1010000011),.
c¢. Wehavel—-1+1-04+0—-0+0—-0+0=1,503¢(111000000).
d. Wehavel -0+1-140—-1+4+1-140—-1=-1,503¢(1011011101)s.

5.1.7.a. Using Theorem 5.2, we need only examine the sum of the digits. Wehave 1+2+1+0+1+2+42 =
9. As 2 does not divide 9, 2 does not divide (1210122)s.

b. Since2 doesnotdivide2+1+1+1+0+2+140+1=29,2 does not divide (211102101)3.
c. Since2divides1+1+1+2+2404+1+1+1+2=12, then2] (1112201112).
d. Since2divides1+0+14+2+2+242+2+0+1+1+1+0+1=16,then2 | (10122222011101)s.
5.1.8.a. Since4 | (3+ 1), we use Theorem5.2. Wehave1+2+14+04+1+2+2=9,s041(1210122).
b. Wehave2+1+1+1+04+2+14+0+1=09,s041(211102101)s.
c. Wehavel+1+4+1424240+14+1+1+2=12s04 ] (1112201112)3.
d. Wehavel+0+4+14+2+2+4+2+2+2404+14+1+1+4+0+1=16,s04](10122222011101)s.
5.1.9.a. Asboth 3 and 5 divide 16 — 1, Theorem 5.2 tells us that we need only examine the sum of the base
16 digits.
3+ E4+A+2+434+5=3+14+10+ 2+ 3+ 5 = 37. As neither 3 nor 5 divides 7, neither 3 nor 5

divides (3EA235)16.

b. SinceA+B+C+D+E+F=104+114+12+13+ 14+ 15 = 75 is divisible by 3 and 5, we see that
both 3 and 5 divide (ABCDEF 6.

c. Since neither 3nor 5divides 15+ 1+1+7+9+2+ 1+ 1+ 7+ 3 = 47, neither 3 nor 5 divides
(F117921173)16.

d. Since 5 divides1 +0+10+11+9+8+ 7+ 3+ 0+ 1+ 15 = 65, but 3 does not, we have that 5
divides (10AB987301F )6, but 3 does not.

5.1.10. a. Since 17 | (16 + 1), we use Theorem 5.3. Wehave3 — F+ A —2+3 — 5= —5,s0 171 (3EA235)16.
b. Wehave A-B+C —-D+FE—F = -3,50171(ABCDEF)ss.
c. Wehave F—1+1-7+4+9-2+1—1+7—3=19,50171(f117921173)s.
d. Wehavel+0—-A+B—-9+8—-7+3—-0+1=—2,50171(104AB987301)15.

5.1.11. The sum of the digits of a repunit with n 1’s in its decimal expansion is n. This repunit is divisible by
3 if and only if n is divisible by 3 and is divisible by 9 if and only if n is divisible by 9.
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5.1. DIVISIBILITY TESTS 93

5.1.12. The alternating sum of the digits of a repunit with n digits is 0 if n is even and 1 if n is odd. Hence the
repunit with n digits is divisible by 11 if and only if n is even.

5.1.13. The alternating sum of blocks of three digits of an n-digit repunit is 0 if n = 0 (mod 6),1 if n =
1 (mod 6),11if n = 2 (mod 6),111if n =3 (mod 6),110if n = 4 (mod 6),100if n = 5 (mod 6). Hence
a repunit with n decimal digits is divisible by 1001 if and only if » = 0 (mod 6). Since 7 divides this
alternating sum if and only if » = 0 (mod 6), these are exactly the values of n for which this requnit is
divisible by 7. Exactly the same reasoning and conclusion holds for divisibility by 13.

5.1.14. The repunit with 2 digits, 11, is prime, while the repunit with 1 digit, 1, is not prime. By Exercise 11
we know that the repunits with 3,6, and 9 digits are divisible by 3. By Exercise 12 we know that the re-
punits with 4,6,and 8 digits are divisible by 11. this leaves the repunits with 5 digits and 7 digits. But we
find that 41 | 11111 and 239 | 1111111. Hence 11 is the only repunit with less that 10 digits that is prime.

5.1.15. Let d be a divisor of b — 1. By Theorem 5.2, a number is divisible by d if and only if the sum of its
digits is a multiple of d. Since the sum of the digits of a repunit is equal to the number of digits it has, a
repunit is divisible by d if and only if it has a multiple of d digits.

5.1.16. Letd | (b+ 1). by Theorem 5.3, d will divide a repunit of n digits if and only if the alternating sum of
the digits is divisible by d. But the only possible alternating sums of repunits are 0 if n is even and 1 if n
is odd. So a factor of b + 1 divides a repunit if and only if the repunit has an even number of digits.

5.1.17. A palindromic integer with 2k digits has the form (arax—1 . ..a1a1az2 ... ar)10. Using the test for divis-
ibility by 11 developed in this section, we find that a, —ax—1 +---* a1 Far£tas F---—ar, =0=0
(mod 11) and so (axag—1 . ..a1a1az . .. ag)1o is divisible by 11.

5.1.18. Leta = (aia2...anay,...a1)7 be abase 7 palindromic integer with an even number of digits. Since 8 |
(7 + 1), by Theorem 5.3, 8 will divide a if and only if 8 divides a; — az + - - + (—=1)"a,, + (—1)""ta, +
(—=1)"*2a,_1 + ... — a; = 0 which it does.

5.1.19. Let arag—1...a1a0 be the decimal representation of an integer. Then ayar—1...a160 = agaiaz +
103(136L4CL5 + 103(103a6a7a8) + - SO, apQr—1...0100 = aga1ag + azaqas + agarag + - - - (HlOd 37) Thus
axak—_1 - .. a1ag is divisible by 37 if and only if apaias + asasas + agaras + - - - is also. Hence, 443692 is
divisible by 37 if and only if 443 + 692 = 1135 is. And 1134 is divisible by 37 if and only if 1 + 135 = 136
is. But 136 is not, and so 37 does not divide 443692. Further, 11092785 is divisible by 37 if and only if
11 4+ 092 + 785 = 888 is. We know that 888 = 24 - 37, so 11092785 is a multiple of 37.

5.1.20. Group the digits of the integer into blocks of 2, starting at right. Now consider the number as a base
b? integer, with each block of 2 representing a digit. Then by Theorem 5.3, n will divide the integer if
and only if n divides the alternating sum of the blocks of 2.

5.1.21. a. Applying Exercise 20, we have (1) — (01)2 + (11)2 — (01)2 + (10)2 = (100)2 = 4, Since 4 is not di-
visible by 5 = 22 + 1, neither is (101110110)5.

b. Applying Exercise 20, we have —(12)3 + (10)3 — (01)3 + (22)3 = (12)3 = 5. Since 2 1 12 but 5 | 12,
only 5 divides (12100122)s.

c¢. Applying Exercise 20, we have (3)s — (64)s + (70)s — (12)s + (44)s = (41)s = 33 which is divisible
by neither 5 nor 13. Hence neither divides the number.

d. Applying Exercise 20, we have 5 — 83 + 70 — 41 4 32 — 02 4+ 19 = 0 which is divisible by 101, and
therefore, so is (5837041320219) .

5.1.22. We have that 88 | (z42y)10, so 8 | (z42y). Then we must have 8 | 42y, so y = 4. Also, 11 | (z424) and
so1l | (x — 44 2 —4) = z — 6. Therefore, x = 6, and the price of each chicken was $64.24/88 = $0.73.
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94 5. APPLICATIONS OF CONGRUENCES

5.1.23. First, note that 89878 =8 +9+8+7+8 =4 (mod 9), 58965 =5+8+9+6+5 =6 (mod 9), and
5299756270 = 54+24+9+ 94?7 +5+6+2+74+0="? (mod9). So, 89878 - 58965 =4-6 =6 =?
(mod 9). Thus, as the question mark represents a single decimal digit congruent to 6, the question mark
represents the digit 6.

51.24.a. Wehave8+7+5+94+6+1=33,2+74+5+3=17,and2+4+14+0+54+2+04+6+3+3 =
26, but 37 # 26 (mod 9), so there is an error in the multiplication.

b. Wehavel+4+474+9+8 =2 (mod 9),24+3+4+5+6+7 =5 (mod 9), and 3+4+8+5+3+24+3+6+7 =
5 (mod 9),but2-5# 5 (mod 9), so there is an error.

c¢. Wehave2+4+7+84+9=3 (mod9),44+3+7+14+7=4 (mod9),and1+0+9+2+74+0+0+
7T+1+30=3 (mod 9),and 3-4 =12 = 3 (mod 9) so the multiplication may be correct. (Actually
it’s not! See Exercises 25 and 26.)

5.1.25. Casting out nines is not infallible. To see this, note that 19 = 2 -5 (mod 9), but 19 # 2 - 5. The cause
of this problem is that 0 = 9 (mod 9), and so any 0 may be replace by a 9, or vice versa, and the congru-
ence ¢ = ab (mod 9) will still hold, whereas in general, the equality ¢ = ab will not hold.

5.1.26. a. The sum of blocks of two digits, starting at the right, are congruent to the integer modulo 99. Then
wehave 87+59+61 =9 (mod 99),27+53 = 80 (mod 99), and 24+10+52+06+33 = 26 (mod 99),
but 9 - 80 = 27 # 26 (mod 99), so the error is detected.

b. Wehave 01 + 47 + 89 = 38 (mod 99),02 + 35+ 67 =5 (mod 99), and 03 + 48 + 53 + 23 + 67 = 95
(mod 99) but 38 -5 =91 # 95 (mod 99), so the error is detected.

c¢. Wehave 2+ 47+ 89 =39 (mod 99),04 4+ 37+ 17 = 58 (mod 99), and 10 + 92 + 70 + 07 + 13 = 93
(mod 99), but 39 - 58 = 84 # 93 (mod 99), so the error is detected.

5.2. The Perpetual Calendar
5.2.1. Happy Birthday!

5.2.2.a. October 12, 1492 would be October 2, 1492 in the Gregorian Calendar. So k =2,m =8,C = 14,Y =
92. Then W =2+ [2.6-8+0.2] —2-14 + 92+ [92/4] + [14/4] = 0 (mod 7). Hence October 12, 1492
was a Sunday.

b. May 6, 1692 would be April 26, 1692 in the Gregorian Calendar. So k = 26,m = 2,C = 16,Y = 92.
Then W =26 + (2.6 -2 —0.2] —2-16 4+ 92+ [92/4] + [16/4] = 6 (mod 7). Hence May 6, 1692 was a
Saturday:.

c. June 15,1752 would be June 5,1752 in the Gregorian Calendar. So k = 15,m = 2,C = 17,Y = 52.
Then W =154 [2.6-4 —0.2] —2-17+ 52 4 [52/4] + [17/4] = 4 (mod 7). Hence June 15,1752 was a
Thursday.

d. ForJuly 4, 1776 we have k = 4,m = 5,C = 17, and Y = 76. This implies that W = 4 + [2.6 - 5 —
0.2] = 217476 + [76/4] + [19/4] = 4+ 12— 34+ 76 + 19+ 4 = 81 = 4 (mod 7). Hence July 4, 1776
was a Thursday.

e. For March 30, 1867 we have k = 30,m = 1,C = 18, and Y = 67. This implies that W = 30 + [2.6 -
1-0.2]—2-18467+[18/4] +[67/4] =30+2—36+67+4+ 16 =83 =6 (mod 7). Hence March
30, 1867 was a Saturday.

f. For March 17, 1888 we have k = 17,m = 1,C = 18, and Y = 88. This implies that W = 17 + [2.6 -
1-02]—2-18+88+[18/4]+[88/4] =17+2—36+ 88 +4+22 =97 =6 (mod 7). Hence March
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17, 1888 was a Saturday.

g. For February 15, 1898 we have k = 15,m = 12,C = 18, and Y = 97. This implies that W = 15 +
26-12—-0.2] —2-18 497+ [18/4] +[98/4] = 15+ 31— 36 + 97+ 4+ 24 = 135 = 2 (mod 7). Hence
February 15, 1898 was a Tuesday.

h. For July 2, 1925 we have k = 2,m = 5,C = 19, and Y = 25. This implies that W =2+ [2.6 -5 —
0.2] —2-19 425+ [19/4] + [25/4] = 2+ 12 — 38 + 25+ 4+ 6 = 11 = 4 (mod 7). Hence July 2, 1925
was a Thursday.

i. For July 16, 1945 we have k = 16, m = 5,C = 19, and Y = 45. This implies that W = 16 + [2.6 - 5 —
0.2] —2-19+45+ [19/4] + [45/4] = 16 + 12 — 38 +45 + 4+ 11 = 50 = 1 (mod 7). Hence July 16,
1945 was a Monday.

j- For July 20, 1969 we have k = 20,m = 5,C =19, and Y = 69. this implies that W =20+ [2.6 - 5 —
02] —2-19+69+[19/4] +[69/4] =20+ 12 —-38+69+4+ 17 =84 =0 (mod 7). Hence July 20,
1969 was a Sunday.

k. For August9,1974 wehave k = 9,m = 6,C = 19, and Y = 74. This implies that W =9+ [2.6 - 6 —
02] —2-194+ 74+ [19/4] + [74/4] =9+ 15 —-38+ 74+ 4+ 18 =82 =5 (mod 7). Hence August 9,
1974 was a Friday.

1. For March 28, 1979 we have k = 28, m = 1,C' = 19, and Y = 79. This implies that W = 28 + [2.6 -
1-02]—2-19+79+[19/4] +[79/4] =28 +2 —38+ 79+ 4+ 19 = 94 = 3 (mod 7). Hence March
28,1979 was a Wednesday.

m. For June 5, 2013 we have k = 5,m = 4,C = 20, and Y = 13. this implies that W =5+ [2.6 - 4 —
0.2] —2-20+13+[20/4] +[13/4] =5+10—40+ 134+ 5+ 3 = —4 = 3 (mod 7). Hence June 5, 2013
will be a Wednesday.

n. For December 25, 1991, we have k = 25,m = 10,C = 19,Y = 91. Then W = 25 + [2.6 - 10 — 0.2] —
2-19+91+4[91/4] 4+ [19/4] = 3 (mod 7). So December 25, 1991 was a Wednesday.

o. ForJune5,2013 wehavek =5,m =4,C = 20,and Y = 27. this implies that W = 5+[2.6-4—0.2] —
2-204-27+[27/4]4[20/4] = 5+10—40+1346+5 = 6 (mod 7). Hence June 5, 2027 will be a Saturday.

5.2.3. For this problem, we let £ = 13,C = 20,Y = 20, and W = 5. Now, [2.6m — 0.2] = W — k + 2C —
Y — [¥] - [¢] =2 (mod 7). And since [2.6m — 0.2] = 2 (mod 7) with 0 < m < 10 only for m = 1 and
9, we see that March and November have Friday the 13th. But we have only checked the months after
(and including March). To check January and February, let W = 5,k = 13,C = 20, and Y = 19. Now,
[2.6m—0.2] =W —k+2C-Y —[¥]—-[$] =4 (mod 7). But[2.6-11—0.2] =0 (mod 7) and [2.6-12—0.2] =
3 (mod 7), so neither January nor February have Friday the 13th. So the 13th will fall on Friday only
twice in the year 2020.

5.2.4. There are [10,000/4] = 2500 years divisible by 4, which are candidates for leap years. But there are
[10,000/100] = 100 centuries which are not leap years, except for the [10,000/400] = 25 centuries divisi-
ble by 4, which are leap years. This gives 2500 — 100 + 25 = 2425 leap years between the year 1 and the
year 10,000.

5.2.5. For each 4000 years, we need to subtract one day from the total number of days before reducing mod-
ulo 7. Therefore, we subtract [N/4000] = [C'/40] from the right hand side of the formula, giving W =
k+[2.6m—0.2] —2C +Y + [Y/4] + [C/4] — [C/40] (mod 7).

5.2.6. Let the later date be in the year 100C' + Y; and the earlier date be in the year 100C + Y5, where Y; —

Y,2 = 28,56, or 84. Then W1 — Wy = (Y1 —Ya) + [Y1/4] — [Y2/4] = [Y1/4] — [Y2/4] (mod 7) since 7 | 28, 56,
and 84. Since Y7 = Y2 (mod 4), we have Y; = 4n; + r and Y5 = 4ny + 7, for integers ny, no, 7, with 0 <
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r <4.Then 7| (Y1 —Y2) =4(n1 —na),s0 7| (n1 —n2). Then we have W; — Wy =ny —ny =0 (mod 7).
Therefore, the two days fall on the same day of the week.

5.2.7. If B is the number of the day of the week you were born, 0 < B < 7, and M is the month and K is
the day, then we need to solve the congruence B = K + [2.6M — 0.2] — 2C + Y + [Y/4] + [C/4] (mod T7)
for C' and Y. There are two cases. If C' = 19, then the congruence reduces to B = K + [2.6M — 0.2] +
Y + [Y/4] + 1 (mod 7). If C = 20 then the congruence reduces to B = K + [2.6M — 0.2] + Y + [Y/4]
(mod 7). In both cases, there are 4 subcases depending on the residue of Y modulo 4. Restrict Y to only
those years between your birth and your 100th birthday.

5.2.8. This is the sequence of years that are not divisible by 4, so the next term is 2005. These are all non-leap
years.

5.2.9. This is the sequence of years divisible by 100, but not by 400, so the next term is 2500. These are all the
century years that are not leap years.

5.2.10. In any 400 consecutive years, there will be exactly 100 multiples of 4, exactly 4 multiples of 100 and
exactly 1 multiple of 400, so there will be exactly 100 — 4 4+ 1 = 97 leap years in that time span.

5.2.11. If the 13th falls on the same day of the week on two consecutive months, then the number of days in
the first month must be congruent to 0 modulo 7, and the only such month is February during non-leap
year. If February 13th is a Friday, then January 1stis 31 + 13 — 1 = 1 (mod 7) week days earlier, that is,
Thursday.

5.2.12. 12 Years in the International Fixed Calendar match exactly with years in the Gregorian Calendar. Since
June gets the extra day for leap year, we number the months as follows: Sol = 1, July = 2, August = 3,
September = 4, October = 5, November = 6, December = 7, January = 8, February =9, March = 10, April
=11, May = 12, and June = 13. Other notation is the same as for the Gregorian Calendar. Since January
1, 1600 Gregorian = January 1, 1600 IFC, we can compute that Sol 1, 1600 was a Monday. We compute
the number of leap years since then in the same way as in the Gregorian. Each normal year shifts the
day of the week by one, and each leap year shifts the day of the week by two, just as in the Gregorian
Calendar. Thus, if dy is the day of the week of Sol 1 in year N, thendy =1 —-2C +Y + [C/4] + [Y/4]
(mod 7). Since each month has 28 days, which is divisible by 7, the first day of each of the months of
Sol through December are the same day of the week, for months January through June, (after year end
day), the first day of the month is shifted one. Then [m/8] + 1 gives the shift for the change in months.
The day of the week is givenby W =k + [m/8] +1 —-2C +Y + [Y/4] + [C/4] (mod 7).

5.2.13. In the perpetual calendar formula welet W = 5and k = 13toget 5 =13+ [2.6m — 0.2] —2C + Y +
[Y/4] + [C/4] (mod 7). Then [2.6m — 0.2] = 6+ 2C —Y — [Y/4] — [C/4] (mod 7). We note that as the
month varies from March to December, the expression [2.6m — 0.2] takes on every residue class modulo
7. So regardless of the year, there is always an m which makes the left side of the last congruence con-
gruent to the right side.

5.2.14. Note that as the month runs from March to December, the expression [2.6m — 0.2] (mod 7) runs
through the sequence 2, 5,0, 3, 5, 1, 4, 6, 2, 4, so all residue classes modulo 7 are covered and all of these
months have at least 30 days. The perpetual calendar formula givesus W = k + [2.6m —0.2] —2C +Y +
[Y/4]+[C/4] (mod 7). The only think not fixed on the right hand side is the expression [2.6m — 0.2], and
since it runs through all residue classes, so does W'.

5.2.15. The months with 31 days are March, May, July, August, October, December and January, which is
considered in the previous year. The corresponding numbers for these months are 1, 3, 5, 6, 8, 10, and
12. Given Y and C, we let £ = 31 in the perpetual calendar formula and get W = 31 + [2.6m — 0.2] —
204+Y +[Y/4 +[C/4 =3+ [2.6m —02] —2C+ Y + [Y/4] + [C/4] (mod 7). To see which days of the
week the 31st will fall on, we let m take on the values 1, 3, 5, 6, 8, 10 and reduce. Finally, we decrease
the year by one (which may require decreasing the century by one) and let m take on the value 12 and
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reduce modulo 7. The collection of values of W tells us the days of the week on which the 31st will fall.

5.2.16. For February to have 5 Sundays, we must have the 29th be a Sunday. So in the perpetual calendar
formula, welet W = 0, k = 29 and m = 12, giving us 0 = 29 + [2.6(12) — 0.2] —2C' + Y + [Y/4] + [C/4]
(mod 7). Since C is fixed, this linear congruence has a unique solution modulo 7. And since February
has 29 days only in leap years, we have Y = 0 (mod 4). By the Chinese remainder theorem, these two
congruences have a unique solution modulo 28. Therefore February has 5 Sundays every 28 years dur-
ing a given century. Therefore this could happen at most 4 times during one century. To show that this
happens at least 4 times, we seek a century in which February has 5 Sundays for a very small value of
Y. Since Y + 1 must be a multiple of 4, we set Y = 4b — 1, so that [Y/4] = b — 1. Then the perpetual
calendar formula reduces to 0 = 29 4 [2.6(12) — 0.2] —2C' + (4b— 1) + (b — 1) + [C/4] (mod 7), or 5b =
—2+42C — [C/4] (mod 7). Multiplying through by 3 givesus b = 1 — C — 3[C/4] (mod 7). We seek a
value of C' which will make b =1 (mod 7) so that Y will be small. We note that for C = 20, we have b =
1 so that y = 3 which corresponds to February of 2004, which had 5 Sundays. Then in that century the
other years with 5 Sundays will be 2032, 2060 and 2088.

5.3. Round-Robin Tournaments

5.3.1.a. Teams ¢ and j are paired in round k if and only if ¢ + j = k£ (mod 7) with team ¢ drawing a bye if
2i = k (mod 7). The result is shown in the following table.

Team

Round | 1 2 4 5 6 7
1 7 6 bye| 3h | 2h | 1h
2 bye| 7h | 6h | 5h | 4
3 2h | 1 | 7h | 6h | bye
4 3h | bye| 1 7 6 | 5h | 4h
5 4 3 | 2h | 1h | 7h |bye| 5
6 S5h | 4h | bye| 2 1 7 | 6h
7 6 5 4 | 3h | 2h | 1h | bye

b. Teams i and j are paired in round % if and only if i + j = k (mod 7). Team ¢ draws a Team 8 if 2i =
k (mod 7). The result is shown in the following table.

Team
Round (1|2 |3|4|5|6|7|8
1 716(5|18(3[2|1]|4
2 8716|543 |21
3 211|7(6(8|4|3]|5
4 3/8|1(7|6|5(4]|2
5 4131217 |8|5]|6
6 5/4|8(2|1|7|6]|3
7 654132187

c¢. Teamsiand j are paired in round k if and only if i + j = k (mod 9). Team i draws a bye if 2i = k
(mod 9). The result is shown in the following table.
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Team
Round | 1 2 3 4 5 6 7 8 9
1 9h | 8h | 7h | 6h | bye
bye | 9 8 7 6 | 5h | 4h | 3h | 2h
2 | 1Th | 9h | 8h | 7h |bye| 5 4 3
3h | bye| 1 9 8 7 | 6h | 5h | 4h
4 3 | 2h | 1h | 9h | 8h |bye| 6 5
S5h | 4h | bye| 2 1 9 8 | 7h | 6h
6 5 4 | 3h | 2h | 1Th | 9 |bye| 7h
7h | 6h | 5h |bye| 3 2 1 9 | 8h
8 7 6 5 | 4h | 3h | 2h | 1h | bye

O |0 [\ (S (Ul [k | W (|N

d. Teams i and j are paired in round % if and only if ¢ + j = k£ (mod 9). Team ¢ draws Team 10 if 2i =
k (mod 9). The result is shown in the following table.

Team

Round 23|45 |6|7|8|9]10
1 918 |7 |6 |10/4|3|2|1]5
2 10987 |6 |5|4]3|2]|1
3 211198 |7 |10]5|4]3]|6
4 311019 |8|7|6|5 4|2
5 41312119 |8|10]6]|5]|7
6 51410219 |8 |7]6|3
7 6 |54 (32|19 |10]7]|38
8 716|510/ 3|2|1|9]|8]|4
9 8|76 |5 4|32 |1]10]9

5.3.2. Letnbeanodd positive integer. First suppose that i is odd. Theni+jisevenforj =1,3,5,...,4,...,n.
Team i is the home team in its game with team j where j is odd if and only if ¢ > j, and this occurs (i —
1)/2 times. Furthermore, i+ j is odd for j = 2,4,6,...,n— 1. Team ¢ is the home team in its game with a
team j where j is even if and only if i < j, and this occurs [(n — 1) — (i — 1)]/2 = (n — i) /2 times. Hence
team 7 is the home team (i — 1)/2 + (n — 1)/2 = (n — 1)/2 times. Since this team plays n — 1 games, it is
the away team n — (n — 1)/2 = (n — 1)/2 times. Now suppose that i is even. Then i + j is even for j =
2,4,6,...,4,...,n — 1. Team ¢ is the home team in its game with team j where j is even if and only if
1 > j, and this occurs (i — 2)/2 times. Furthermore, i + j is odd for j = 1,3,5, ..., n. Team ¢ is the home
team in its game with a team j where j is odd if and only if ¢ > j, and this occurs [n — 1(i — 1)]/2 =
(n — 1+ 1)/2 times. Hence team i is the home team (i — 2)/2 + (n — i+ 1)/2 = (n — 1)/2 times. Since
this team plays n — 1 games, it is the away team n — (n — 1)/2 = (n — 1) /2 times. We conclude that each
team plays an equal number of home and away games.

5.3.3.a. For round 1, teams ¢ and j are paired if i + j = 1 (mod 5). Teams 1 and 5 are paired, and since
1+ 5 = 61is even, team 5 is the home team. Teams 2 and 4 are paired, and since 2 + 4 = 6 is even,
team 4 is the home team. Finally, in round 1 team 3 draws a bye.

For round 2, teams i and j are paired if i + j = 2 (mod 5). Team 1 draws a bye. Teams 2 and 5
are paired, and since 2+ 5 = 7 is odd, team 2 is the home team. Teams 3 and 4 are paired, and since
3+ 4 = 71is odd, team 3 is the home team.

For round 3, teams 7 and j are paired if i + j = 3 (mod 5). Teams 1 and 2 are paired, and since
1+ 2 = 31is odd, team 1 is the home team. Teams 3 and 5 are paired, and since 3 + 5 = 8 is even,
team 5 is the home team. Team 4 draws a bye.
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For round 4, teams ¢ and j are paired if i + j = 4 (mod 5). Teams 1 and 3 are paired, and since
1+ 3 = 4is even, team 3 is the home team. Team 2 draws a bye. Teams 4 and 5 are paired, and since
4+ 5 =9is odd, team 4 is the home team.

For round 5, teams i and j are paired if i + j = 5 (mod 5). Teams 1 and 4 are paired, and since
1+ 4 = 5is odd, team 1 is the home team. Teams 2 and 3 are paired, and since 2 + 3 = 5 is odd,
team 2 is the home team. Team 4 draws a bye.

We see that each team plays 2 home and 2 away games.

b. In the table in Exercise 1 part (a), the teams who play at home are marked with an “h.”

c. In the table in Exercise 1 part (c), the teams who play at home are marked with an “h.”

5.4. Hashing Functions

5.4.1. Let k be the six-digit number on the license plate of a car. We can assign this car the space numbered
h(k) = k (mod 101) where the spaces are numbered 0,1,2,...,100. When a car is assigned the same
space as another car we can assign it to the space h(k) + g(k) where g(k) = k + 1 (mod 99) and 0 <
g(k) < 98. When this space is occupied we next try h(k) +2g(k), then h(k) 4+ 3¢(k), and so on. All spaces
are examined since (g(k), 101) = 1.

5.4.2.a. For example, suppose a student was born on the 23rd of the month. Then K = 23, and h(23) =
23 =4 (mod 19). so we would assign the 4th memory location to this student if it is free. If it’s not,
then we would try h,(23) = 4+ 1 = 5 (mod 19). If this one is not free, then we would try h»(23) =
442 =6 (mod 19), and so on until we found an empty location.

b. For example, suppose K = 23. As in part (a), h(23) = 4 (mod 19). We compute ¢(23) =1+ 23 =
7 (mod 17). If there is a collision, we try h;(23) =4+ 1-7 = 11 (mod 19) In case of a collision here,
we try ho(23) =4+ 2.7 = 18 (mod 19), and so on.

5.4.3.a. Itis clear that m memory locations will be probed as j = 0,1,2,...,m — 1. To see that they are all
distinct, and hence every memory location is probed, assume that 7;(K) = h;(K) (mod m). Then
hK)+iqg = h(K) + jq (mod m). From this it follows that i¢ = jq (mod m), and as (¢,m) = 1,71 =
J (mod m) by corollary 3.4.1. And so i = j since ¢ and j are both less than m.

b. Itis clear that m memory locations will be probed as j = 0,1,2,...,m — 1. To see that they are all
distinct, and hence every memory location is probed, assume that h;(K) = h;(K) (mod m). Then
hK)+ig = h(K) + jq (mod m). From this it follows that ig = jq (mod m), and as (¢,m) = 1,7 =
j (mod m) by corollary 3.4.1. And so i = j since ¢ and j are both less than m.

5.4.4.a. Let! represent some memory location. Then we seek to solve | = h(K) + j(2h(K) + 1) (mod m), or
Il —h(K)—j=2h(K)j (mod m). Since m is prime, and 1 < 2, h(K) < m, then 2 and h(K) have in-
verses modulo m. Therefore, we can solve the congruence for j, and hence the location [ is proved
at this value for j.

b. If we the definition into the congruence h; (K1) = h — j + r(K>) (mod m), and rearrange, we get
hMEK1)(1+2(j+7)) =h(K2)(1+ (j +r)) (mod m). Since this must be true for all r, many of which
cause (1 + 2(j + r)) to be invertible, we must have h(K;) = h(K3) (mod m).

5.4.5. We have ki1 = 137612044 = 558 (mod 4969) so that the files of the student with this social security
number are assigned to location h(k11) = 558. We find that k12 = 505576452 = 578 (mod 4969), but
location h(ki2) = 578 is taken, so we continue with the probing sequence hj(k12) = h(ki2) + g(k12),
where g(k12) = 505576452 + 1 = 424 (mod 4967), so that g(k12) = 424. We have h;(k12) = 578 + 424 =
1002 (mod 4969). Since location 1002 is not occupied, we assign the files of the student with this social
security number to location 1002. We find that k13 = 157170996 = 1526 (mod 4969) but location 1526 is
taken. We find that g(k13) = 157170996 + 1 = 216. We probe locations hq(k13) = h(k13) + g(k13) = 1742
and ha(k13) = h(kis) + 2g(k13) = 1958, but they are taken. Finally, we probe once more and find that
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we can place the files of this student in location hg(k13) = h(k13) + 3g(k13) = 2174. Finally, we see that

k14 = 131220418 = 4 (mod 4969) so that we can place the files of this last student in location 4 which is
not already taken.

5.5. Check Digits
5.51.a. Sincel+1+1+1+1+1=0 (mod 2), the check bitis 0.

b. Since0+0+0+ 040+ 0= 0 (mod 2), the check bitis 0.
c. Sincel+0+1+0+140=1 (mod 2), the check bitis 1.
d. Sincel+0+4+0+4+0+0+0=1 (mod 2), the check bitis 1.
e. Sincel+14+1+1+1+4+14141=0 (mod 2), the check bit is 0.
f. Sincel+14+0+0+14+0+4+1+41=1 (mod 2), the check bitis 1.
5.5.2.a. Sincel+1+1+1+14+1+1+1+1=1(mod 2), we know there is an error.
b. Since0+1+0+14+0+14+0+140+1+0+1 =0 (mod 2), we don’t know whether there is an error.

c. Sincel+1+1+14+0+14+0+14+0+1+0+1+0+1+0+1=0 (mod 2), we don’t know whether
there is an error.

5.5.3.a. The sum of the known digits is even, so the keep the sum of all digits even, we must have ? = 0.
b. The sum of the known digits is odd, so ? = 1.
c¢. The sum of the known digits is even, so ? = 0.

5.5.4. An error changes a 0 into a 1 or a one into a 0, so one error must change the sum of the digits (includ-
ing the parity check bit) from even to odd. A second error will change the sum back to even, and so on.

5.5.5.a. Wehave7-1+3-3+2+7-94+3-949=7 (mod 10), so the check digitis 7.
b. Wehave7-8+4+3-0+5+7-2+4+3-3+4+7=1 (mod 10), so the check digit is 1.
c¢. Wehave7-6+3-4+54+7-14+3-5+3 =4 (mod 10), so the check digit is 4.

5.5.6. a. We apply the congruence to the first 6 digits and get 7-3+3-34+0+7-04+3-0+0 = 4 # 8 (mod 10),
so the number is invalid.

b. Wehave7-44+3-54+04+7-14+3-84+2=6 # 4 (mod 10), so the number is invalid.
c¢. Wehave7-14+3-8+7+7-34+3-3+3=1% 6 (mod 10), so the number is invalid.

5.5.7. Here, transposition means that adjacent digits are in the wrong order. Suppose, first, that the first two
digits, z; and x5, or equivalently, the fourth and fifth digits are exchanged, and the error is not detected.
Then z7 = Tx1 4 3wy + 3 + Txg + 35 + 26 = Tx2 + 321 + 23 + 724 + 325 + 26 (mod 10). It follows that
Tx1+3xe = Txo + 321 (mod 10) or 421 = 4x2 (mod 10). By Corollary 3.4.1, we see that x; = z3 (mod 5).
This is equivalent to | z1 — x2 |= 5, as x1 and z are single digits. Similarly, if the second and third (or
fifth and sixth) digits are transposed, we find that 2z, = 2z3 (mod 10), which again reduces to zo =
x3 (mod 5) by Corollary 3.4.1. Also, if the third and fourth digits are transposed, we find that 6z3 =
64 (mod 10) and =3 = x4 (mod 5), similarly as before. The reverse argument will complete the proof.
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5.58.a. Wehave7-0+3-0+9-14+7-84+3-54+9-4+7-0+3-3 =5 (mod 10), so the check digit is 5.

b. Suppose z; is replaced by y;. Denote the check digit of this new number by y9. Then zg — yg =
ax; — ay; (mod 10), where a is 7, 3 or 9. So if this replacement produces no change in the check
digit, we have a(z; — y;) = 0 (mod 10), or z; = y; (mod 10), since 7, 3, and 9 have inverses modulo
10. Therefore, all single errors are detected.

c. If two digits «; and x; are switched, the difference in the check digits will be a;z; + a;2; — a;z; —
a;x; = (a; — aj)(z; — z;) (mod 10), where a; and a; are 3, 7, or 9. The transposition will go unde-
tected if and only if (a; — a;)(z; — z;) = 0 (mod 10). Since a; — a, is even, if either z; = z; (mod 5),
or a; = a;, then the transposition will go undetected.

559.a. Wehavez;p=2-14+1-24+1:-343-445-5+4-64+0-74+0-8+1-9=0 (mod 11).
b. Wehavez1y=0-14+1-24+9-34+0-4+8-5+1-64+0-7+8-8+2-9=3 (mod 11).
c¢. Wehavex1p=1-142-24+1-3+2-44+3-5+9-6+9-7+4-84+0-9=4 (mod 11).

d. Wehavez;p=0-140-2+7-340-44+3-5+8:64+1-7+3-8+3-9=10(=X) (mod 11).

10 9
5.5.10. Since Zz’zi =0 (mod 11), we have Z iz; = —10z10 = —(1)710 = 710 (Mod 11), as desired.
i=1 i=1
5.5.11.a. Wehavez10=0-14+3-24+9-3+4-44+3-54+8-64+0-7+4-8+9-9=5 (mod 11), which matches
the check digit, so the ISBN is valid.

b. Wehavez1g =1-140-24+9-3+2-4+4+3-54+1-6+2-7+2-841-9 = 8 (mod 11), so the ISBN is not valid.
c¢. Wehavez1p=0-1+8-2+2-3+1-448-5+0-6+1-74+2-843-9 =6 (mod 11), so the ISBN is valid.
d. Wehavex1i=0-14+4-240-3+4-4+5-5+0-6+8-74+7-84+6-9 = 10 (mod 11), so the ISBN is valid.
e. Wehavex;p=9-140-246-3+1:449-54+1-64+7-740-8+5-9 = 0 (mod 11), so the ISBN is not valid.

5.5.12.a. Wehavel-0+2-1+3-9+4-8+524+6-34+7-84+8-04+9-4=9 (mod 11), or 5z = 2 (mod 11)
which has solution z = 7 (mod 11). So the missing digit is 7.

b. Wehavel-942-143-544-545-446-247-148-2492 =6 (mod 11), or 92 =4 (mod 11)
which has solution = 9 (mod 11). So the missing digit is 9.

c¢. Wehavelz+2-24+3-6+4-1+5-0+6-5+7-04+8-74+9-3=10 (mod 11),0or z =3 (mod 11).
So the missing digit is 7.

5.5.13. Computing the check digit for the incorrect ISBN yields 410 =0-14+0-2+7-3+2-44+8-5+9-
64+0-7+9-84+5-9 =9 (mod 11). Then using the notation in the text, we have (j — k)(zy, — ;) =
9 (mod 11). Without loss of generality, assume that j > k. There are a number of possibilities to check.
Let’s suppose first that j — k = 3 and x;, — x; = 3. We search for two digits which are three places apart
and such that the second digit is 3 more than the first. Finding none, we suppose j —k = 1 and z —; =
9. We search for two consecutive digits such that the second is 9 more than the first. We find that the
7th and 8th digits satisfy these conditions and conclude that the correct ISBN is 0-07-289905-0. Had we
been unsuccessful, we might have tried j — k = 9 or we might have replaced 9 by —2 or 20 or some other
integer congruent to 9 modulo 11.

5.5.14. Letzy,xq,..., 211 be the first eleven digits of the UPC. Then z12 = —3(z1 + 23+ 25 + 27 + 29 + 211) —
(x2 + x4 + 6 + s + 710) (mod 10), where x12 is taken to be the least non-negative residue.
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5.5.15.a. Using the congruence from Exercise 14, we compute 10 = —3(0+7+0+0+1+3) - (4+0+0+
0+8) =5 (mod 10). Since 5 is not the check digit for this UPC, the code is invalid.

b. Using the congruence from Exercise 14, we compute 10 = —3(3+1+0+0+0+8) —(1+0+0+
1+ 3) =9 (mod 10). Since 9 is the check digit for this UPC, the code is valid.

c. Using the congruence from Exercise 14, we compute 12 = —3(0+8+04+0+14+7) — (5+04+0+
0+2) =5 (mod 10). Since 5 is the check digit for this UPC, the code is valid.

d. Using the congruence from Exercise 14, we compute z12 = —3(2+6+0+0+1+9) - (2+5+0+
14+ 7) =1 (mod 10). Since 1 is not the check digit for this UPC, the code is invalid.

5.5.16. a. Using the congruence from Exercise 14, we compute 120 = —3(3+1+74+0+9+8) — (8+3+0+
2+1) =2 (mod 10). So 2 is the check digit for this UPC.

b. Using the congruence from Exercise 14, we compute 10 = —3(5+1+7+0+5+7) - (0+1+5+
0+5) =4 (mod 10). So 4 is the check digit for this UPC.

c. Using the congruence from Exercise 14, we compute 12 = —3(0+3+0+3+44+9) — (3+0+ 3+
1+ 3) =3 (mod 10). So 3 is the check digit for this UPC.

d. Using the congruence from Exercise 14, we compute 212 = —3(4+1+0+0+0+8) - (1+0+0+
142) =7 (mod 10). So 7 is the check digit for this UPC.

5.5.17. Let x1xox3z425260708T9T 10211212 be a correct UPC. Suppose that when the product is scanned, the
numbers are read as Y1Y2Y3YaYsYsYrYsYoY10Y11Y12, where Ti =Y if ¢ # k, but Tk 75 Yk, for some k. Then,
from the congruence in Exercise 14, 0 = z12 — y12 = —3(x1 + 23 + 25 + 27 + g + 211) — (T2 + 24 + x6 +
zs+210) + 31 +ys +ys +yr +yo +y11) + (v2 + ya + Ys + ys + y10) = a- (yx — 2x) (mod 10), where
a = 3 or 1 according as k is odd or even. In either case, (a,10) = 1, so we can divide the congruence by
a to obtain (y; — zx) = 0 (mod 10), which contradicts the assumption that x; # y,. We conclude that
this code will always detect a single error.

5.5.18. From the congruence in Exercise 14, we see that transposing any two digits in odd numbered places,
or any two digits in even numbered place leaves the check digit unchanged. Therefore, this code cannot
detect every transposition. However, if the transposition occurs between adjacent digits, then the check
digit is changed by 2|x; — x ;41| which will be detected if x; — 11 is not divisible by 5.

5.5.19.a. Yes. If z; is entered as y;, then for both codewords to be valid, z; = y; (mod 11). As z; and y; are
single digits (less than 11), z; = y;.

b. No. We cannot detect any transpositions, as addition is commutative.

5.5.20. a. Solving the first congruence for x¢ and substituting into the second gives 2321 ir; = Z?zl 1T +
10 (Z?:l —xi) =30 iwit (Z?:l xz) =37 (i+1)z; = 0 (mod 11). Solving this last congruence
for zg gives Zle(i +1)z; = —(9+1)z9 = x9 (mod 11), as desired. We also have x19 = — Z?zl x; =
3w = =Y m = Y (i Da = — Y (i + 2w = — Y05 (9 — i)ay, as desired.

b. By part (a), we can freely choose the digits z; through x5, and these determine zy and 1. Since
there are 10 choices for the first 8 digits, we have 108 valid codewords.

¢. Suppose xy, is changed to y, and recompute the 9th and 10 digits using the formulae from part (a).
Call the new 9th and 10th digits y9 and y1o. Then we have yg = x9 + (k + 1)(yx — x) (mod 11) and
y10 = 10 + (9 — k) (yx — xx). We can solve this linear system for k and yi — xj, and thereby correct
the error.
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d. Suppose z, and z,, are transposed, but the error goes undetected. Then from the first congruence
in part (a), we have (m + 1)z, + (n + )z, = (m + 1)z, + (n + 1)z, (mod 11). This reduces to
(T — xn)(m — n) = 0 (mod m), but since m, n, z,,, and z,, are all digits between 0 and 9, we must
have m = n or x,, = .

552l.a. x10=8-1+4-145-0410-44+3-942-1+7-246-3+9-8=9 (mod 11). 211 =6-1+7-1+8-
0+9-444-945-1+6-2+7-3+8-849-9=4 (mod 11).

b. If z; is misentered as y;, then if the congruence defining 19 holds, we see that az; = ay; (mod 11)
by setting the two definitions of x¢ congruent. From this, it follows by Corollary 3.4.1 that z; =
y; (mod 11) and so z; = y;. If the last digit, x4, is misentered as 11, then the congruence defining
x11 will hold if and only if z1; = y11.

c. Suppose that z; is misentered as y; and x; is misentered as y;, with ¢ < j < 10. Suppose both of the
congruences defining z1¢ and z1; hold. Then by setting the two versions of each congruence con-
gruent to each other we obtain ax; + bx; = ay; + by; (mod 11) and cz; + dx; = cy; + dy; (mod 11)
where a # b and ¢ # d. If it is the case that ad — bc Z 0 (mod 11), then the coefficient matrix is in-
vertible and we can multiply both sides of this system of congruences by the inverse to obtain z; =
y; and x; = y;. Indeed, after (tediously) checking each possible choice of a, b, ¢, and d, we find that
all the matrices are invertible modulo 11.

5.5.22.a. We have 4 linear congruences which may be solved for 4 of the variables, leaving 6 to be freely cho-
sen. Therefore, there are 10° valid codewords.

b. If z,, and z, are changed to y,, and y,, respectively, then we can solve the 4 congruences for
m,n, (Ym — Tm), and (yn — &), as in Exercise 14. With this information, we can correct the errors.

c¢. If z,, and z,, are changed to y,,, and y,, let d,,, = (ym — =) and d,, = (y», — ). The procedure
in part (b) gives the system d,,, + d,, = 7,md,, + ngn = 7,m?d,, + nd,, = 9, and m*d,, + n3d,, =
2 (mod 11). Solving the first congruence for d,,, and substituting into the others gives us the system
mm —md, + nd, = 7,7m?* — m2d,, + n*d, =9, and Tm® — m3d,, + n3d,, = 2 (mod 11). Solving the
first of these, substituting into the others and simplifying gives us the system n +m — mn = 6 and
n? +nm+m? —mn? —nm? =5 (mod 11). We rewrite this last one as n(n +m — mn) +m(n +m —
nm) —mn = 5 (mod 11). Then using the first congruence we have 6n + 6m — mn = 5 (mod 11).
We subtract the first congruence to get 5n + 5m = 10 (mod 11) or n = 2 — m (mod 11). Then we
may write 2 —m +m —m(2 —m) = 6 (mod 11), or (m — 1)? =5 (mod 11). Trial and error gives us
the solutions m = 5 or 8 (mod 11), which gives n = 8 or 5 (mod 11). The problem is symmetric in
m and n so we need only consider m = 5,n = 8 (mod 11). Then yg — zg = dg = 9 (mod 11), and
hence zs = 9 instead of 7. Also, y5 — x5 = ds =7 —dg = 9 (mod 11), so x5 = 0 instead of 9. The
correct codeword is 0204006910.

5.5.23.a. When we divide 00032781811224 by 7 we get a remainder of 1, so the check digit is a;5 = 1.
b. When we divide 10238544122339 by 7 we get a remainder of 1, so the check digitis a;5 = 1.
c¢. When we divide 00611133123278 by 7 we get a remainder of 6, so the check digit is a5 = 6.

5.5.24.a. When we take the first 14 digits 10228471103312 and divide by 7 we get a remainder of 0, so the
check digit should be 0 and not 2 as printed. This is not a valid ticket number.

b. When we take the first 14 digits 00411371131124 and divide by 7 we get a remainder of 2, so the
check digit should be 2 and not 0 as printed. This is not a valid ticket number.

c¢. When we take the first 14 digits 10026141300153 and divide by 7 we get a remainder of 6, so the
check digit should be 6 and not 3 as printed. This is not a valid ticket number.
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5.5.25. Suppose an undetectable error is made in the ith digit, so that the incorrect digit b is written in place of
the correct digit a;. Then we must have ajas - - - @14 = a1a2---b-- - a14 (mod 7) which reduces to a;10" =
b10° (mod 7). Since (7,10) = 1, we can divide out the power of 10 and we have a; = b (mod 7). Since
0 < b <9, the only undetectable errors are when we have one of the following substitutions: 0 for 7, 1
for 8, 2 for 9 or vice versa.

5.5.26. Suppose the digits a; and a;1; are transposed and the error is undetected. Then ajas-- a4 =
aijas---a;11a; - -ajs (mod 14), which reduces to a;10° + a;4110°! = a;4,110° + a;10°F! (mod 7). Since
(7,10) = 1, we can divide both sides by 10 to get a; + 10a;41 = a;41 + 10a; (mod 7), which reduces to
2a;41 = 2a; (mod 7). Since (2,7) = 1, we can divide by 2 and get a; = a;+1 (mod 7). So the only unde-
tectable transpositions of adjacent digits are when we have one of the following substitutions: 0 for 7, 1
for 8, 2 for 9 or vice versa.

5.527.a. Since3-0+4-3+5-146-7+7-8+8-4+9-7=210=1 (mod 11), the check digitis 1.
b. Since3-0+4-44+5-24+6-3+7-5+8-5+9-5=164=10 (mod 11), the check digitis X.
c¢. Since3-1+4-0+5-64+6-3+7-6+8-6+9-9=222=2 (mod 11), the check digit is 2.
d. Since3-1+4-34+5-6+6-3+7-8+8-34+9-7=206=8 (mod 11), the check digit is 8.

5.5.28. Suppose one digit d; is replaced by the digit b, and that this error is undetected. Then 3d; +4ds +-- -+
9d7; =3d1+---+(i+2)b+---+9d; (mod 11), which reduces to (i +2)d; = (i +2)b (mod 11). Since 3 <
i+2 <9, wehave (i + 2,11) = 1 and so we can divide through by i + 2 and get d; = b (mod 11), but
since both d; and b are digits from 0 to 9, they must be the same, so there must not have been an error.
We conclude that all single-digit errors will be detected.

5.5.29. Suppose two consecutive digits are transposed and the error is undetected. Then 3d; + 4dy + - - - +
9d; =3dy+ -+ (i +2)diy1 + (i +3)d; + - -+ 9dy (mod 11), which reduces to (i + 2)d; + (i + 3)d;41 =
(1 +2)di+1 + (i + 3)d; (mod 11), which in turn simplifies to d;41 = d; (mod 11). So no error in fact ex-
isted. We conclude that all single transpositions of consecutive digits are detectable. (In fact all single
transpositions are detectable.)
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CHAPTER 6

Some Special Congruences

6.1. Wilson’s Theorem and Fermat’s Little Theorem

6.1.1. Note that 101+1 = 1(2-6)(3-4)(5-9)(7-8)10+1=1-12-12-45-56-10+1=1-1-1-1-1-(=1)+1 =
0 (mod 11). Therefore 11 divides 10! + 1.

6.1.2. Notethat 12!+1 = (1)(2-7)(3-9)(4-10)(5-8)(6-11)(12)+1 = (1)(1)()(1)(1)(1)(—=1)+1 =0 (mod 13).
Therefore 13 divides 12! + 1.

6.1.3. By Wilson’s theorem, we have 18 = 18! = 16!(17)(18) = 16!(—2)(—1) = 16!2 (mod 19). Since (2,19) =
1, we can divide both sides by 2 and get 9 = 16! (mod 19).

1

6.1.4. We compute 5125! = 1-2-3-4-5- 25! = (—30)(—29)(—28)(—27)(—26)25! = (—1)?30! = (—1)%(—1)
(mod 31), by Wilson'’s theorem. So the remainder is 1.

6.1.5. Weseethat8-9-10-11-12-13=1-2-3-4-5-6 =6/ = —1 (mod 7), using Wilson’s theorem for the
last congruence.

6.1.6. Wecompute7-8-9-15-16-17-23-24-25-43=7-8-9-4-5-6-1-2-3-10=10!' = —1 (mod 11). So
the remainder is 10.

6.1.7. Note that 437 = 19 - 23. From Wilson's theorem we have 18! = —1 (mod 19) and 22 = 22! (mod 23).
Then 22 = 22! = 18!(—4)(—3)(—2)(—1) = 18!(1) (mod 23) Hence, 18! = 22 (mod 23). Now applying
the Chinese remainder theorem to the system « = —1 (mod 19),z = 22 (mod 23) yields z = 436 = —1
(mod 437).

6.1.8. Note that 1763 = 41 - 43. By Wilson's theorem, 40! = —1 (mod 41). Further —1 = 42! = 40!(—2)(—1)
402 (mod 43). We multiply both sides by 22, which is an inverse for 2 modulo 43. This yields 40! =
—22 = 21 (mod 43). Applying the Chinese remainder theorem to the system z = 40! = —1 (mod 41)
and z = 40! = 21 (mod 43) gives us z = 40! = 1311 (mod 1763).

6.1.9. By the Division algorithm, we have 100 = 6 - 16 + 4. Then by Fermat’s little theorem, 500 = 56-16+4 =
(5916 -5 =1'6-5* =252 =42 =16 =2 (mod 7).

6.1.10. From Fermat’s little theorem, we know that 6! = 1 (mod 11). Then 6290 = (619)200 = 1200 = 1
(mod 11). Therefore the remainder is 1.

6.1.11. Since 999999999 is an odd multiple of 3, we know it is congruent to 3 modulo 6. So by Fermat’s Little
Theorem, we have 3999999999 = 33 = 27 = —1 (mod 7).

6.1.12. We have 21000000 = (216)62500 = 162500 = 1 (mod 17).
6.1.13. Wehave (3°)2 =2432 =12 =1 (mod 112).

6.1.14. We have 3190 = (35)1634 = 116.9.9=2.2=4 (mod 7).

105
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6.1.15. a. Multiply both sides of 7z = 12 (mod 17) by 7'5 to obtain 7'z = 7'5 - 12 (mod 17). Since 716 = 1
(mod 17) this gives z = 71°-12 = (73)°-12=343°-12=3°-12=243-12=5-12=60 = 9 (mod 17).

b. Multiply both sides of 4z = 11 (mod 19) by 417 to obtain 4%z = 4!7 - 11 (mod 19). Since 4!8 = 1
(mod 19), this gives z = 417-11 = (42)% - 411 = (=3)%-4-11 = ((—3)%)2-4-11 = 81244 =52 . 44 =
6-6=17 (mod 19).

6.1.16. If n is composite, then n has a divisor d less than or equal to /n. Then 1 < n/d < n and the factors d
and n/d both appear among the factors of (n —1)! =1-2---(n—1),and soif d # n/d, thenn | (n — 1)!
If d = n/d, then 2d < n,so 2d? | (n — 1)!. In either case (n — 1)! =0 (mod n).

6.1.17. Suppose that p is an odd prime. Then Wilson’s theorem tells us that (p — 1)! = —1 (mod p). Since
p-N=p@E-3)p-1)p-2)={p-3)!(-1)(-2)=2-(p—3)! (mod p) this implies that 2- (p — 3)! =
—1 (mod p).

6.1.18. Since (3,n) = 1, we have n? = 1 (mod 3) by Fermat’s Little Theorem, so 3 | (n? — 1). Since n is odd,
n = 2k + 1 for some integer k. then n? — 1 = 4(k? + k) = 81, since k* and k have the same parity. There-
fore 8 | n? — 1. Since (3,8) =1,3-8 =24 | (n? —1),s0n? =1 (mod 24).

6.1.19. Since (a,35) = 1, we have (a,7) = (a,5) = 1, so we may apply Fermat's little theorem to get a!? — 1 =
(a%)?2—-1=12-1=0 (mod 7),and a'? —1 = (a*)> -1 =13—-1=0 (mod 5). Since both 5 and 7 divide
12 1, then 35 must also divide it.

6.1.20. Note that 168 = 8 - 3 - 7. Since (a,42) = 1, a must be odd, so a® = 1 (mod 8). By Fermat'’s Little The-
orem, a® = (a?)? = 1 (mod 3) and a® = 1 (mod 7). Therefore a® and 1 are solutions to the system of
congruences z = 1 (mod 8), z = 1 (mod 3), and = 1 (mod 7). Therefore a® = 1 (mod 168). Hence
168 divides a% — 1.

6.1.21. When n is even, so is n7, and when n is odd, so is n”. It follows that n” = n (mod 2). Furthermore,
since n® = n (mod 3), it follows that n” = (n%)%2-n =n%-n =n3 =n (mod 3). We also know by Fer-

mat’s little theorem that n” = n (mod 7). since 42 = 2 - 3 - 7, it follows that n” = n (mod 42).

6.1.22. By Theorem 6.4, wehaven’ —n = (n®)> —n=n3-n=0 (mod 3),and n’ —n=n’n*—n=n°—n=
0 (mod 5). Since n? and n have the same parity, n° —n = 0 (mod 2). By the Chinese remainder theorem,
since both n® — n and 0 are solutions to the system z = 0 (mod 2), x = 0 (mod 3), and z = 0 (mod 5),
we have 0 = n® —n (mod 2 - 3 - 5). Therefore 30 divides n® — n.

6.1.23. By Fermat’s little theorem, 71 k»~1 = 5?11 =p — 1 (mod p).

6.1.24. Fork =1,2,...,p — 1, we have, by Fermat's little theorem, that ¥ = k& (mod p). Then we have 1?7 +
Wt (p—1)P=1+2+---+(p—1)=p(p—1)/2=0 (mod p) since p — 1 is even.

6.1.25. By Fermat’s little theorem we have a = a? = b” = b (mod p), hence b = a + kp for some integer k.
Then by the binomial theorem b = (a+ kp)? = a? + ( )ap_lk:p + p>N where N is some integer. Then
b = aP + p?ak + p? N = a® (mod p?), as desired.

6.1.26. We find ro = 4,73 = 64,74 = 66 (mod 689). Then (3, 689) = 1, (63,689) = 1, but (65,689) = 13 which
is a factor of 689.

6.1.27. Using computational software, we find 7o = 4,r3 = 64,74 = 2114982 (mod 7331117),r5 = 2937380
(mod 7331117), rg = 6924877 (mod 7331117),r7 = 3828539 (mod 7331117), and rg = 4446618 (mod 7331117).
We have (r; —1,7331117) = 1, fori = 1,2,...,7, but (rg —1,7331117) = 641, so this is a factor of 7331117.

6.1.28. By Fermat’s little theorem since (p,q) = 1 we know that p?~! = (mod ¢). Hence p?~! + ¢! =1
(mod g). similarly, by Fermat’s little theorem since (¢,p) = 1 we know that ¢! = (mod p). Hence
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6.1. WILSON’S THEOREM AND FERMAT’S LITTLE THEOREM 107
p?~t +¢P~t =1 (mod p). It follows that p?~! + ¢?~! =1 (mod pq).

6.1.29. Suppose that p is prime. Then by Fermat's little theorem for every integer a,a” = a (mod p) and by
Wilson’s theorem (p — 1)! = —1 (mod p) so that a(p — 1)! = —a (mod p). It follows that a? + (p — 1)la =
a+ (—a) =0 (mod p). Consequently p | [a” + (p — 1)!a].

6.1.30. Note that 123%--- (p—4)?(p—2)2 = (=1)P=D/2.1.(=1)-2-(=2)---(p—4)-(4—p)-(p—2)-(2—p) =
(~1)P-D2.1.(p=1)-2-(p=2)---(p—4)-4-2= (=1)PV/2. (p-1) = (=1)P~D/2(—1) = (—1)P~1/2
(mod p), where we have used Wilson's theorem to replace (p — 1)! by -1 in the congruence.

6.1.31. Sincep—1=-1,p—-2=-2,...,(p—1)/2=(p—1)/2 (mod p), wehave ((p —1)/2)12 = —(p — 1)!
1 (mod p), (since p = 3 (mod 4) the minus signs work out.) If 22 = 1 (mod p), thenp | 22 — 1 = (z —
1)(x+1),s0x==£1 (mod p).

6.1.32. a. Weuse (—1)"r! = (—1) to show that (p—r—1)! = —1. Then by Wilson's theorem, we have —1 = (p—
=12 (p—(r=1)p—r)p—(r—1)---(p=2)(p—1) = (p—r—DI(=r)(=(r—1)) .- (=2)(-1) =
p—r—-1I(-1)"rl=(p—r—1)! (mod p).

—_

b. Note that (—1)77! = (—1)9! = 1 (mod 71). Then by part (a) we have (71 — 7 — 1)! = 63! = —
(mod 71),and (71 —9 —1)! = 61! = —1 (mod 71).

6.1.33. Suppose thatp =1 (mod 4). Lety = +[(p—1)/2]!. Theny? = [(p—1)/2]"* = [(p—1)/2]1*(—1)P~1/2 =
28 (- 1)/2)(1(-2)-(8) - (~(p=1)/2) = 123+ (p=1)/2-(p+1) /2 (0 -3)(p-2) (p—)

(1
p! 1 (mod p), where we have used Wilson’s theorem. Now suppose that 22 = —1 (mod p). Then
2?2 = y? (mod p) where y = [(p — 1)/2]!. Hence (22 — y?) = (z — y)(x + y) (mod p). It follows that p |
(x —y)orp| (z+y)sothatz = + (mod p).

6.1.34. We have (p — k)!(k — 1)l = (=k)(—=(k+ 1)) (=(p—1)(k =D = (=1)PF(p - 1) = (-1)pt1-F =
(—1)* (mod p), by Wilson’s theorem, and where we have used the fact that p + 1 is even.

6.1.35. If nis composite and n # 4, then Exercise 16 shows that (n — 1)!/n is an integer, so [((n — 1)! + 1) /n —
[(n—=DYn]] =[(n—1n+1/n—(n—1)/n] = [1/n] = 0 and if n = 4, then the same expression is
also equal to 0. But if n is prime, then by Wilson’s Theorem (n — 1)! = Kn — 1 for some integer K. So
[(n—=D+1)/n—[(n—1!/n]]=[(Kn—-14+1)/n—[(Kn—1)/n]] = [K — (K — 1)] = 1. Therefore, the
sum increases by 1 exactly when n is prime, so it must be equivalent to 7(x).

6.1.36. 1If n is even, n 4 4™ is even and greater than two so it is not prime. If n is odd, note that n* + 4" =
nt 4 20227 4 227 — 20227 = (n? + 27)2 — (n - 20 HD/DT=IR2 R 20T (g2 gy 9 )/2) Tt s
easy to see that both of these factors are greater than one if n > 1. Hence n* + 4" is prime if and only if
n=1,sothatn = 1* + 4! = 5.

6.1.37. Suppose that n and n + 2 are twin primes. Then since n is prime by Wilson’s theorem we know that
(n—1)!'=—-1 (mod n). Hence 4[(n — 1)! + 1]+ n=4-0+n =0 (mod n). Also, since n + 2 is prime by
Wilson’s theorem it follows that (n+1)! = —1 (mod n+2), so that (n+1)n-(n—1)! = (-1)(-2)(n—1)!
2(n—1)! = -1 (mod n+2). Hence 4[(n — D!+ 1]+n=22-n—-1)+4+n=2-(-1)+4+n
n+2 =0 (mod n + 2). Since (n,n + 2) = 1 it follows that 4[(n — 1)! + 1] + n = 0 (mod n(n + 2)).

6.1.38. Suppose n and n + k are prime. Then, by Wilson’s theorem (n — 1)! + 1 =0 (mod n) and by Exercise
34, (n—1)k! = (=1)**! (mod n+k). Then (KN)2((n—1)!+1) +n(k! —1)(k—1)! = (kK1)2-0+0- (k! — 1)
0 (mod n), and (k1)?((n — D)! + 1) + n(k! — 1)(k — 1)! = (=)L) + (k)2 + (k) (k! — 1)(k — 1)!
(=D)FFL(ED) + (K2 — K!(K!) + k! = —k! + k! = 0 (mod n+ k), where we have used the fact that k + 1 must
be odd. By the Chinese Remainder Theorem, there is a unique solution to this system modulo n(n + k),
therefore, (k!)?((n — 1)! + 1) + n(k! — 1)(k — 1)! = 0 (mod n(n + k)). The converse is false. n = 9,k = 8
provides a counterexample.
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6.1.39. Wehavel-2---(p—1)=(p+1)(p+2)---(2p — 1) (mod p). Each factor is prime to p, so 1 = ((p
%g(got?)m()217—1))/(1-2---(17—1)) (mod p). Thus 2 = ((p+1)(p+2)--- (2p—1)2p)/(1-2--- (p—1)p)
If’ mod p).

I+

6.1.40. Wehave (a+b)? =Y 1_; (2)akoP=*F = %P + 0+ 0+ -+ a?b’ = b¥ + a? since (¥) =0 (mod p) when
1<k<p-1

6.1.41. We first note that 1 = 1 (mod p). Now suppose that a? = a (mod p). then by Exercise 40 we see that
(a+1)?» =a” + 1 (mod p). But by the inductive hypothesis a? = a (mod p) we see thata? +1 =a+1
(mod p). Hence (e +1)? = a+ 1 (mod p). This completes the inductive step of the proof.

6.1.42. Let z be an integer less than and relatively prime to m. Then z has an inverse 7, which is also rela-
tively prime to m. If z # T, then both appear in the product, so we group them together and have 27 =
1 (mod m), and they contribute nothing to the product. If z = 7, then we have 2> = 1 (mod m) and
(—z)? = 1 (mod m). Then z and —x appear in the product, so we group them together and get a fac-
tor of —1 in the product for every two solutions to 2 = 1 (mod m). The numbers of such solutions are
given by Exercise 32 of Section 4.3.

6.1.43.a. If ¢ < 26 then ¢ cards are put into the deck above the card, so it ends up in the 2cth position and
2c < 52,50 b = 2c¢. If ¢ > 26 then ¢ — 1 cards are put into the deck above the card, but 26 cards are
taken away above it, so it ends up in the b = (¢—26+c—1)th place. Then b = 2¢—25 = 2¢ (mod 53).

b. 52.

6.1.44. We compute g,(ab) — q,(a) — gp(b) = ((ab)P™' —1)/p—(a?~' = 1) /p— (P~ =1)/p = (aP~' = 1)(BP~! —
1)/p=aP~! —1)-0=0 (mod p), as desired.

6.1.45. Assume withoutloss of generality thata, = b, = 0 (mod p). Then, by Wilson’s theorem, a1az - - - ap—1 =
bibg - bp—1 = —1 (mod p). Then a1b; - --ap—1b,—1 = (—1)> =1 (mod p). If the set were a complete sys-
tem, the last product would be = —1 (mod p).

6.1.46. If nis even, the proposition is clear. If n is odd and n | 2" — 1, then let p be the smallest prime dividing
n. Then (n,p — 1) = 1 and there exist integers a and b such that an + b(p — 1) = 1. Since 2" = 1 (mod n),
we have 2" = 1 (mod p). Then 2" = 1 (mod p). By Fermat's little theorem, 2°»=1) = 1°* = 1 (mod p).
Multiplying these last two congruences gives us 2 = 2°"*®~1) = 1.1 (mod p), a contradiction.

6.1.47. The basis step is omitted. Assume (p — 1)?" ' = —1 (mod p¥). Then, (p — 1)?" = ((p— 1)*" )P =
(=1 4+mp*)P = =1+ (F)mp* + -+ (mp*)? = —1 (mod p**'), where we have used the fact that p | (%
for j # 0 or p.

6.1.48. We need to show that for p > 5, (p — 1)! + 1 is not a power of a prime. Suppose (p — 1)! + 1 = ¢* for
some prime ¢ and positive integer k. By Wilson’s theorem, p | (p — 1)! + 1 = ¢*, so we must have ¢ = p,
thatis, (p — 1)! + 1 = p*. From thiswe havep* = (p — 1)! +1 < (p —1)P"L < pP~ !, s0k < p — 1. Now
since p is a prime greater than 5, p — 1 is a composite number greater than 4, so by Exercise 16, we have
0= (p—2)! (modp—1). Also,wehave (p— 1) =pF —1=(p—-1)P* 1 +p-2+---+p+1),s00=
p—20=pFt4+pF24+...4p+1=1+1+---+1=k (modp—1).Sowehavek <p—1landp—1|
k, so k = 0, which is impossible. Therefore (p — 1)! 4 1 has at least two distinct prime divisors.

6.2. Pseudoprimes

6.2.1. We find that 3% = (31)22.32 =81%-9 = (—10) - 9 = —90 = 1 (mod 91). Hence 91 is a pseudoprime
modulo 3.
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6.2.2. Note that 17* = 192 = 1 (mod 45). Then, 17% = 17%1117 = 1''17 = 17 (mod 45), and 1945 =
1922219 = 12219 = 19 (mod 45). So 45 is a pseudoprime to the bases 17 and 19.

6.2.3. Note that 2262 = 2 (mod 161038). Then 2161038 = 9262:614+170 — 9614+170 — 9 (;m0d 161038).

6.2.4. Suppose that n is an odd composite integer. Then 1" = 1 (mod n) and (—1)" = —1 (mod n). Hence
n is a pseudoprime to the bases 1 and —1.

6.2.5. From the Binomial Theorem, (n — a)"® = (—a)"

a™ = a (mod n).

= —(a") = —a = (n — a) (mod n), where we used

6.2.6. Sincen — 1 = a%(a?*72 —1)/(a®> — 1) and (a*)?~! = 1 (mod p), we getn — 1 = 0 (mod n), since p {
(a®> —1). Writingn — 1 = a?(1 +a® + -+ + (a?)P72), we get n — 1 = 0 (mod 2) since if a is odd, the sum
has an even number of odd terms. So 2p | (n — 1). Now a?” — 1 = n(a? — 1) = 0 (mod n), so a"~ ! =
a??* = 1% =1 (mod n), where k is an integer.

6.2.7. Raise the congruence 22" = —1 (mod F,,) to the 22" ~"th power.

6.2.8. Note that p | 27~ — 1 by Fermat’s Theorem. Let k = (2°~! —1)/p. Then we have 2” = 1 (mod 27 —1).
We raise both sides to the k power to get 22" =1 =1k = 1 (mod 2¥ — 1). Squaring both sides gives us
2%=2 = 1¥ =1 (mod 2P — 1), and multiplying both sides by 2 gives the result.

6.2.9. Suppose that n is a pseudoprime to the bases a and b. Then b” = b (mod n) and a,, = a (mod n). It
follows that (ab)” = a™b"™ = ab (mod n). Hence n is a pseudoprime to the base ab.

6.2.10. We have 1 = a"a" = @"a" = @"a (mod n), since n is a pseudoprime to the base a. But then @ = @"
(mod n), so n is also a pseudoprime to the base a.

6.211.a. If (ab)""' =1 (mod n), then, 1 = a"~1p"~1 =1-b" (mod n) which implies that n is a pseudoprime
to the base b.

b. Letai,aq,...,a, be the bases to which n is a pseudoprime and for which (a;,n) = 1 for each 1.
Then, by part (a), we know that, for each ¢, n is not a pseudoprime to the base ba;. Thus, we have
2r different elements relatively prime to n. Then by the definition of ¢(n), we have r < ¢(n)/2.

6.2.12. We have 25 — 1 = 23 . 3. First note that 723 = 712 = (72)6 = (—1)°® = 1 (mod 25). Next note that
723 =70 = (7%)3 = (—-1)% = —1 (mod 25). Hence 25 is a strong pseudoprime to the base 7.

6.2.13. From 2'® =1 (mod 1387) we get 213%7 = 2 (mod 1387) so 1387 is a pseudoprime. But 1387—1 = 2-693
and 2% = 512 (mod 1387), which is all that must be checked, since s = 1. Thus 1387 fails Miller’s test
and hence is not a strong pseudoprime.

6.2.14. For n = 1373653, we have n — 1 = 22343413, and we have 2343413 = 890592 (mod 1373653) but
22343413 = 1 (mod 1373653). So n passes Miller’s test to the base 2, and so n is a strong pseudoprime to
the base 2. Further we have 3343413 = —1 (mod 1373653), so n passes Miller’s test to the base 3, and so
n is a strong pseudoprime to the base 3.

6.2.15. 25326001 = 211582875 = 2°t and with this value of t, 2! = —1 (mod 25326001), 3" = —1 (mod 25326001),
and 5 = 1 (mod 25326001).

6.2.16.a. Since (7—1) =6 | (2821 — 1) = 2820, (13 — 1) = 12| (2821 — 1) = 2820, (31 — 1) = 30 | (2821 — 1) =
2820. Theorem 6.7 shows that 2821 is a Carmichael number.

b. Since (5 — 1) = 4 | (10585 — 1) = 10584, (20 — 1) = 28 | (10585 — 1) = 10584, and (73 — 1) = 72 |
(10585 — 1) = 10584. Theorem 6.7 shows that 10585 is a Carmichael number.
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c. Since (13— 1) = 12| (29341 — 1) = 29340, (37 — 1) = 36 | (29341 — 1) = 29340, and (61 — 1) = 60 |
(29341 — 1) = 29340. Theorem 6.7 shows that 29341 is a Carmichael number.

d. Since (13— 1) =12 | (314821 — 1) = 314820, (61 — 1) = 60 | (314821 — 1) = 314820, and (397 — 1) =
396 | (314821 — 1) = 314820. Theorem 6.7 shows that 314820 is a Carmichael number.

e. Since (5— 1) =4 | (278545 — 1) = 278544, (17 — 1) = 16 | (278545 — 1) = 278544, (20 — 1) = 28 |
(278545 — 1) = 278544, and (113 — 1) = 112 | (278545 — 1) = 278544 Theorem 6.7 shows that 278544
is a Carmichael number.

f. Since (7—1) =6 (172081 — 1) = 172080, (13 — 1) = 12 | (172081 — 1) = 172080, (31 — 1) = 30 |
(172081 — 1) = 172080, and (61 — 1) = 60 | (172081 — 1) = 172080, Theorem 6.7 shows that 172081
is a Carmichael number.

g. Since (43—1) =42 (564651361 — 1) = 564651360, (3361 — 1) = 3360 | (564651361 — 1) = 564651360,
and (3907—1) = 3096 | (564651361 —1) = 564651360, we see that 564651361 is a Carmichael number.

6.2.17. Suppose ¢ = 7 - 23 - ¢, with ¢ and odd prime, is a Carmichael number. Then by Theorem 6.7 we must
have (7 —1)|(c—1),s0c ==7-23-¢ = 1 (mod 6). Solving this yields ¢ = 5 (mod 6). Also, we must
have (23—1)|(c—1),s0c=="7-23-¢ =1 (mod 22). Solving this yields ¢ = 19 (mod 22) If we apply the
Chinese remainder theorem to these two congruences we obtain ¢ = 41 (mod 66), that is ¢ = 41 + 66k.
Then we must have (¢ — 1)|(¢ — 1), which is (40 + 66k)|(7 - 23 - (41 4+ 66k) — 1. So there is an integer m
such that m(40 + 66k) = 6600 + 10626k = 160 + 6440 + 10626k = 160 + 161(40 + 66k). Therefore 160
must be a multiple of 40 + 66k, which happens only when k =. Therefore ¢ = 41 is the only such prime.

6.2.18.a. Suppose that 6m + 1,12m + 1, and 18m + 1 are primes. Let N = (6m + 1)(12m + 1)(18m + 1).
It follows that N — 1 = 6-12-18m3 + (6 - 12+ 6 - 18 + 12 - 18)m? + (6 + 12 + 18)m + 1 =
1296m® + 396m?2 + 36m. We see that [(6m + 1) — 1] = 6m | (N — 1) = 6m(216m2 + 66m + 6),
[(12m+1)—1] =12m | (N — 1) = 12m(108m? 4+ 33m + 3), and [(18m + 1) — 1] = 18m | (N — 1) =
18m(72m? + 22m + 2). Hence N is a Carmichael number.

b. Wehave7=6-1+1,13 =12-1+1and 19 = 18-1+1, so by part (a), 7-13-19 = 1729 is a Carmichael
number. We have 37 =6-6+ 1,73 =12-6 4+ 1 and 109 = 18- 6 + 1, so by part (a), 37 - 73 - 109 =
294409 is a Carmichael number. We have 211 = 6-35+ 1,421 =12-35+ 1and 631 = 18-35+1,
so by part (a), 211 - 421 - 631 = 56052361 is a Carmichael number. We have 271 = 6 - 45+ 1,541 =
12-45+ 1 and 811 = 18 - 45 + 1, so by part (a), 271 - 541 - 811 = 118901521 is a Carmichael number.
We have 307 = 6 - 51 + 1,613 = 12 - 51 + 1 and 919 = 18 - 51 + 1, so by part (a), 307 - 613 - 919 =
172947529 is a Carmichael number.

6.2.19. We have 321197185 — 1 = 321197184 = 4 - 80299296 = 18 - 17844288 = 22 - 14599872 = 28 - 11471328 =
36 - 8922144 = 136 - 2361744, so p — 1321197185 — 1 for every prime p which divides 321197185. There-
fore, by Theorem 6.7, 321197185 is a Carmichael number.

6.2.20. Let n be a Carmichael number and suppose there is a prime p such that n = p*m, with (p,m) = 1 and
t > 2. Let x = b be a solution to the system of congruences z = p'~! +1 (mod p'),z =1 (mod m). Then
since (b,p) = 1 and (b,m) = 1, we have that (b,n) = 1. If it were the case that b = 1 (mod n), then we
would have b = 1 (mod p'), a contradiction. Therefore b # 1 (mod n). On the other hand, note that
=t D)= ) )+ 4+ npttt +1 =1 (mod p'), by the binomial theorem and
the fact that p | n, so p' divides every term but the last. Also b" = 1 (mod m), so that by the Chinese
remainder theorem, we must have b = 1 (mod n). Since (b,n) = 1and b # 1 = b" (mod n), nis not a
Carmichael number. Therefore n must be squarefree.

6.2.21. We can assume that b < n. Then b has fewer than log, n bits. Also, t < n so it has fewer than log, n
bits. It takes at most log, n multiplications to calculate b so it takes O(log, n) multiplications to calcu-
late b2°**" = b'. Each multiplication is of two log, n bit numbers, and so takes O((log, n)?) operations.
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So all together we have O((log, n)?) operations.

6.3. Euler’s Theorem

6.3.1.a. Theset 1,5 is a reduced residue set modulo 6.
b. Theset1,2,4,5,7,8is a reduced residue set modulo 9.
c. Thesetl,3,7,9is areduced residue set modulo 10.
d. Theset1,3,5,9,11,13 is a reduced residue set modulo 14.
e. Thesetl1,3,5,7,9,11,13,15 is a reduced residue set modulo 16.
f. Thesetl,2,3,4,5,6,7,8,9,10,11,12,13, 14, 15,16 is a reduced residue set modulo 17.

6.3.2. Since the integers relatively prime to 2™ are the odd integers, 1,3,5,...,2" ! is a reduced residue
system modulo 2™.

6.3.3. If (a,m) =1, then (—a,m) = 1, so —¢; must appear among the ¢;. Also ¢; # —¢; (mod m), else 2¢; =
0 (mod m) and so (¢;,m) # 1.

6.3.4. Wehave (a — 1)(14 -+ a®™~1) = ¢?(™) — 1 =0 (mod m), since (a,m) = 1. But (a — 1,m) = 1 so
m| (1+---+a®™~1), as desired.

6.3.5. Since ¢(10) = 4, we have, by Euler’s theorem, 31%90 = (34)2°0 = 1250 = 1 (mod 10). Therefore the last
decimal digit of 31°9 is 1.

6.3.6. Since ¢(10) = 4 and 999999 = 4(249999) + 3, we have, by Euler’s theorem, 7999999 = (74)24999973 =
124999973 = 49.7=9.7 = 63 = 3 (mod 10). Therefore the last decimal digit is 3.

6.3.7. By Euler’s theorem 39(35) = 3%® = 1 (mod 35). Since 100000 = 2857 - 35 + 5, it follows that 3190000 =
(328)2857 .35 = 1.35 = 81 = 11 (mod 35).

6.3.8. By Fermat's little theorem, a” = a (mod 7), so we need to show that a” = a (mod 9). If 9 | a this re-
duces to 0 = 0 (mod 9) which is true. If 3 { a then (a,9) = 1. Then, since ¢(9) = 6, by Euler’s theorem,
we have a® =1 (mod 9) or a” = a (mod 9). Therefore a” = a (mod 63).

6.3.9. Since a® =1 (mod 8) whenever a is odd, it follows that a'? = 1 (mod 8) whenever (a, 32760) = 1. Eu-
ler’s theorem tells us that a®®) = a% = 1 (mod 9) whenever (a,9) = 1, so that a'> = (a%)2 =1 (mod 9)
whenever (a,32760) = 1. Furthermore, Fermat’s little theorem tells us that a* = 1 (mod 5) whenever
(a,5) = 1,a% = 1 (mod 7) whenever (a,7) = 1, and a!? = 1 (mod 13) whenever (a, 13) = 1. It follows
that a'? = (a*)® =1 (mod 5),a'? = (a%)? =1 (mod 7), and a'? =1 (mod 13) whenever (a, 32760) = 1.
Since 32760 = 233? - 5 - 7 - 13 and the moduli 8,9, 5, 7, and 13 are pairwise relatively prime, we see that
a'? =1 (mod 32760).

6.3.10. Suppose that a and b are relatively prime positive integers. Then by Euler’s theorem a®® = 1 (mod b)
and b*(® = 1 (mod a). Since a®® = 0 (mod a) and b*® = 0 (mod b) it follows that a®®) + p?(@) =1
(mod @) and (mod b). By the Chinese remainder theorem, since a and b are relatively prime it follows
that a?® + p%(®) = 1 (mod ab).

6.3.11. a. We multiply both sides of the congruence 5x = 3 (mod 14) by 5¢(!4)~1 = 55 to obtain 56z = 5° - 3

(mod 14). Since 5° = 1 (mod 14) by Euler’s theorem, it follows that z = 5° -3 = (5%)? - 5.3 =
112.15=9-1=9 (mod 14).
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b. We multiply both sides of the congruence 4z = 7 (mod 15) by 4?1191 = 47 to obtain 4%z = 4% - 7
(mod 15). since 4% = 1 (mod 15) by Euler’s theorem, it follows that z = 47-7 = (42).4.7=1-28 =
13 (mod 15).

c. We multiply both sides of the congruence 3z = 5 (mod 16) by 3?(16)=1 = 37 to obtain 3%z = 37 - 5
(mod 16). since 3% = 1 (mod 16) by Euler’s theorem, it follows that z = 37-5 = 3*-33.5=1-27-5 =
11-5=7 (mod 16).

6.3.12. Since the m; are pairwise relatively prime, we have (M;, m;) = 1 for all j, and (M;, m;) = m; for
i # j. Then, by Euler’s theorem, we have M f (ms) — 4 (mod my;). Therefore, for any j we have z =
ale)(ml) +-- ~+aij¢(mJ) oot a, MY =040+ ‘4+a;j(1)+0+---4+0 = a; (mod m;). Therefore,
x satisfies the system, and by the Chinese remainder Theorem, it must be the unique solution modulo M.

6.3.13.a. Wehaver =417+ 3. 11° = 27 (mod 187).
b. Wehavez =1-15'+2-10% + 3-6* = 23 (mod 30).
c. Wehavez=0-105"+0-702+1-42*+6-30° =6 (mod 210).
d. Wehave z = 2-50388'° +3-46189* 44 -42636'2 45 - 3260416 + 6 - 29172'% = 150999 (mod 554268).

6.3.14. We have M = 2310, M, = 1155, My = 770, M3 = 462, M, = 330, and M5 = 210. Then z = 1 - 1155 +
2-770% 4+ 3-462* +4- 3305 + 5 - 210'° = 1523 (mod 2310).

6.3.15. We have ¢(10) = 4,50 7* =1 (mod 10) and 71990 = (74)250 = 1250 = 1 (mod 10).

6.3.16. We have ¢(16) = 8 and 5000000 = 58125000 = 1125000 = 1 (mod 16). Therefore the last digit is 1, in
hexadecimal notation.

6.3.17. We note that ¢(p) = p — 1 if p is prime, so ¢(13) = 12, ¢(17) = 16, and ¢(19) = 18. Since the integers
relatively prime to 16 are the odd integers, we see that ¢(16) = 8. The integers relatively prime to 14 are
the odd integers not divisible by 7. We see that ¢(14) = 6. The integers relatively prime to 15 are those
not divisible by either 3 or 5. we see that ¢(15) = 8. The integers relatively prime to 18 are the odd inte-
gers not divisible by 3. It follows that ¢(18) = 6. the integers relatively prime to 20 are the odd integers
not divisible by 5. It follows that ¢(20) = 8.

6.3.18. Let a be an integer with (a, 10) = 1, and let n = 9k¢(a), where k is a positive integer. By Euler’s theo-
rem, 10" = (10%(4))% =1 (mod a). By Fermat’s Theorem, 10" — 1 = ((9+1)?%¢(2)) —1 = (99%¢(@) ... 4
(9)9+1)—1=0 (mod 92). Then (10" — 1) is divisible by 81, and by a, and so (10" — 1)/9 is divisible by
9 and by a.

6.3.19. If (a,b) = 1and (a,b — 1) = 1 then a | (b**(*) —1)/(b — 1) which is a base b repunit. If (a,b — 1) = d >
1, then d divides any repunit of length k(b — 1), and (a/d) | (b¥*(@/9) —1)/(b— 1) and these sets intersect
infinitely often.

6.3.20. Letm = p{'p3*---p? . If (a,p;) = 1 for some integer i then by Euler’s theorem we see that a®®i) =1
(mod p&). Since ¢(p*) | ¢(m) it follows p&i | (a®™ — 1) if (a,p;) = 1.
Since for i = 1,2,...,m we know that p{"~" | ¢(m), it follows that p;* "

.t ] (m — ¢(m)). since m —
¢(m) > 1, it follows that m — ¢(m) > p?"fl > a; (since ¢*~! > a for positive integers ¢ and a with ¢ >
2). Hence, if (a,p;) > 1, so that p; | a, we have p}* pzn*d’(m), which implies that p§* | a™~#(™),

We conclude that for every integer a we have p{* | a™=¢(™)(a®(™) — 1) = ¢™ — @™ (™) for i =

1,2,...,r. It follows that m | (a™ — a™?(™)), which implies that a™ = a™~ (™) (mod m).
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CHAPTER 7
Multiplicative Functions

7.1. The Euler Phi-Function

7.1.1.a. Since for all positive integers m and n, f(mn) =0=0-0= f(m) - f(n), f is completely multiplica-
tive.

b. Since f(6) =2, but f(2) - f(3) =2-2 =4, f is not completely multiplicative.

= 2, f is not completely multiplicative.

c. Since f(6) =3, but f(2)- f(3) = 2

([

d. Since f(4) =log(4) > 1,but f(2) - f(2) = log(2) - log(2) < 1, f is not completely multiplicative.

e. Since for any positive integers m and n, f(mn) = (mn)? = m?n? = f(m) - f(n), f is completely

multiplicative.
f. Since f(4) = 4! = 24, but f(2) - f(2) = 2!2! =4, f is not completely multiplicative.
g. Since f(6) =7,but f(2) - f(3) =4 -3 =12, f is not completely multiplicative
h. Since f(4) = 4* = 256, but f(2) - f(2) = 2222 = 16, f is not completely multiplicative.

i. Since for any positive integers m and n, f(mn) = mn = /my/n = f(m) - f(n), f is completely
multiplicative.

7.1.2.a. We have 100 = 2252, 50 ¢(100) = 100(1 — 1/2)(1 — 1/5) = 40.
b. We have 256 = 2%, 50 ¢(256) = 28 — 27 = 128.
c¢. Wehave 1001 =7-11-13,s0 ¢(1001) = (7 — 1)(11 — 1)(13 — 1) = 720.
d. Wehavep(2-3-5-7-11-13) = (2—1)(3 — 1)(5 — 1)(7 — 1)(11 — 1)(13 — 1) = 5760.

e. The primes which divide 10! are 2,3,5 and 7, so ¢(10!) = 10!(1 — 1/2)(1 — 1/3)(1 — 1/5)(1 — 1/7) =
829, 440.

f. The primes which divide 20! are 2, 3, 5, 7, 11, 13, 17 and 19, so ¢(20!) = 20!(1 — 1/2)(1 — 1/3)(1 —
1/5)(1 — 1/7)(1 — 1/11)(1 — 1/13)(1 — 1/17)(1 — 1/19) = 416,084,687,585,280,000.

7.1.3. We have the following prime factorizations of 5186, 5187, and 5188: 5186 = 2-2593, 5187 = 3-7-13-19,
and 5188 = 221297. Hence ¢(5186) = ¢(2)$(2593) = 1 - 2592 = 2592, ¢(5187) = ¢(3)d(7)(13)¢(19) =
2.6-12-18 = 2592, and ¢(5188) = ¢(22)$(1297) = 2 - 1296 = 2592. It follows that ¢(5186) = ¢(5187) =
d(5188).

714.a. Ifn > 1,letn = 28p{*ps? - .- p? be the prime factorization of n. If k > 0 then ¢(n) = 2~ 1(p{* —
P (o = pgr ) and if k = 0 then ¢(n) = (p* — p* ) -+ (pfr — pir 1) If ¢(n) = 1, then
eithern=1;ork=1and n = 2.
113
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b. Using the notation developed in part (a), if ¢(n) = 2, then either k = 2and n = 4; or k = 1 and

Pyt —pit ' =2s0p{* =3andn=6;0rk=0and p{* —pJ* "' =2,50p]" =3andn = 3.
c. Using the notation developed in part (a), if ¢(n) = 3, then p{* — p{*~! = 3, which is impossible, so

there are no solutions.

d. Using the notation developed in part (a), if p’ | n, then p'~!(p — 1) | ¢(n) = 4. Therefore, no odd
prime can appear in the factorization of n to a power higher than 1. Further, p — 1 must be a divisor
of 4, so p must be one of 2, 3, or 5. Say n = 2¥3%5°, where a and b are 0 or 1. Note that ¢(2F) > 2k~1
which must divide 4, so k is either 0,1, 2, or 3. If Kk = 3, then a = b = 0, and so one solution is n =
8. If k = 2, then ¢(2%) = 2 which forces a = 1 and b = 0, so a second solution isn = 12. If k = 0 or
1, then ¢(2%) = 1. This forces a = 0 and b = 1. This gives us two more solutions n = 5 and n = 10.
Having exhausted all possibilities, we have the complete set of solutions: 5, 8, 10, and 12.

7.1.5. If ¢(n) = 6, and suppose k distinct primes divide n. Then either & = 2 and p{* — p{*~! = 3, which is
impossible, or k = 1 and p{* — p{* ' = 6,50 p{* =9and n = 18 or p{* = 7Tand n = 14, or k = 0 and
Pt —p{* ' =6and p{* =9 =norp}" =7andn = 7. So the only solutions are n = 7,9, 14, or 18.

7.1.6. Suppose a prime p divides n. Then p — 1 is a divisor of 12. Sop —1 = 1,2,3,4,6, or 12, thatis p =
2,3,5,7,0r 13. If p? | n, then p | 12, and so only 2 and 3 can divide n to a power higher than 1. If 3% | n
then ¢(n) > ¢(3%) > 18 > 12, a contradiction. If 3? divides n, say n = 9k with 3 { k, then 12 = ¢(n) =
#(9)p(k) = 6¢(k), which forces ¢(k) = 2. Since 3 1 k, Exercise 4(b) shows that k = 4, yielding the solu-
tion n = 36. Likewise, if 5 | n, say n = 5k with 5 { k, then 12 = ¢(n) = 4¢(k), and so ¢(k) = 3, which is
impossible. If 2! || n, say n = 2'k, then ¢(2%) = 271 | 12,and so ¢t < 3. If t = 3, then ¢(k) = 3 which is
still impossible, so t < 2. Son = 2t397%13¢, where t = 0,1, or 2, and a, b, and c are either O or 1. If t = 2,
then n = 4k with k odd and 12 = ¢(n) = 2¢(k), so k is an odd solution to ¢(k) = 6, and from Exercise
5, we know k = 7 or 9 and therefore n = 28 and n = 36 are two solutions. If ¢t = 1 or 0, then n = 2%k
with k odd and 12 = ¢(n) = ¢(k). If 13 | k, then ¢(2'13) = 12 and there can be no other factors of n. So
n = 13 and n = 26 are two more solutions. The only other possibilities for k are 3,7, and 21. But only
¢(21) =12, s0n = 21 and n = 42 are the last two solutions. This gives us 13,21, 26, 28, 36, and 42 as the
only solutions.

7.1.7. If ¢(n) = 24, we have 5 cases as k = 0,1,2,3 or 4. Note that if p* — p*~! = 2™, thena = 1 and p =
2™ = 1. Also note that p* — p®~! is always even. In every case, 3 | p{* — p{*~'. Every other factor in the
formula for ¢(n) is of the form 2*~! or p — 1 where p is a Mersenne prime. If k = 4, then p§' — p‘l“_1 =

3 which is impossible. If k = 3, then ¢(n) = ¢(8 - m) = ¢(8)¢p(m) = 4¢(m), so ¢(m) = 6. By part (d)

m="Tor9son = 56or72. If k =2, then ¢(n) = ¢p(4-m) = ¢p(4)p(m) = 2¢(m), so ¢(m) = 12. Since

pit —pi Tt £ 3 pi —p Tt = 6 or 1250 p§* = 13 and n = 52 or p§* = 9 and p3* — p3>~ ' = 2 which
is impossible. If k = 1, then ¢(n) = ¢(2m) = ¢(m) so the case k = 0 is covered here also. We have

Pyt — p‘l“_1 =24 or (p]* — p‘l“_l)(p;1 — pgz—l) = 24. In the first case we have p; = 3 since 3 | 24 and this

agfl

leads to p2 = 13 so n = 39 or 78. In the second case, either p; = 3 and we have (3 — 1)(p52 —p5?~ ") = 24
s0 py = 13 as in the last case, or p; = 5and (5 — 1)(p3> — p52~") = 24, s0 p5> = 9 or 7 which leads to n =
45 and 35 respectively if £ = 0 and 90 and 70 if ¥ = 1. Then the totality of all solutions is 35, 39, 45, 52,

56,70,72,78,84, and 90.
7.1.8. If ¢(n) = 14, then 7| pi* — p‘fl_l for some odd prime p;. Since the only factors of 14 are 2 and 7, either
p1 = 7and a; > 1 and hence p; — 1 = 6 | 14 which is false, or 7 | p; — 1, but p; — liseven,sop; — 1 =

14 or p; = 15 which is not prime. Therefore there are no solutions.

7.1.9. Studying Table E.2 on page 609 and 610, we discover that the nth term of this sequence is given by
6(2n).

7.1.10. Studying Table E.2 on page 609 and 610, we discover that the nth term is the number of solutions to
¢(k) = n.
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7.1.11. Letn = 3¥m, where (3,m) = 1. If k = 0, then ¢(3n) = 2¢(n) # 3¢(n). On the other hand, if & > 1,
then ¢(3n) = ¢(35+1m) = (3F+1 — 3F)p(m) = 3(3F — 3k~ 1)p(m) = 3¢(3¥m) = 3¢(n). Therefore, ¢p(3n) =
3¢(n) if and only if 3 | n.

7112, Ifn = 25p@ps? ... p2r then ¢(n) = 28~ 1p$* 1 (py — 1) ---p%~(p, — 1). Since p; is odd, p; — 1 is even.
So ¢(n) is divisible by 4 if n satisfies any of the following: (1) n = 2* with k > 3; (2) n has an odd prime
divisor of the form 4k + 1; (3) n is divisible by 4 (i.e. k¥ = 2) and n has an odd prime divisor; (4) n has 2
odd prime divisors.

7113, Ifn=2"pf* - pfr then ¢(n) = n(p1 —1)/p1 -~ (pr —1)/py. I §(n) = n/2, we have (p1 —1)/p1 -+~ (pr —
1)/pr = 1/2. Let p, be the largest prime dividing n, then p, divides none of p; — 1,p2 — 1,--- ,p, — 1,
so it must appear in the denominator of (p; — 1)/p1 - -- (pr — 1)/p, in lowest terms. But 1/2 is in lowest
terms, therefore n has no odd prime divisors. Since ¢(2%) = 28~ = 2k/2 for k = 1,2,--- we have n =
2,22, .- as the only solutions.

7.1.14. Ifn=p}" - -p* and ¢(n) | n we have k¢(n) = kn(pr — 1)/p1--- (pr — 1)/pr = nso thatk = p1/(p1 —
1)---pr/(pr — 1) is an integer. The numerator can have at most one factor of 2, so the denominator can
have at most one factor of the form p; — 1 where p; is an odd prime. Thus either n = 2% and ¢(n) =

(n/2) [ norn=2%p®and ¢(n) =n((2—1)/2))((p—1)/p)and I = (2/(2—1)) - (p/(p—1) = 2p/(p — 1).

Sop—1=2orp=3and we have n = 291392, So the solutions are n = 1, 2%, 2% 3% with a1, as > 1.

7.1.15. If nis odd, then (2,n) = 1 and ¢(2n) = ¢(2)p(n) = 1 - ¢p(n) = ¢(n). If nis even, say n = 2°t with ¢
odd. Then ¢(2n) = $(2°71t) = (27F1)o(t) = 2°6(t) = 2(2°71¢(t)) = 2(4(2°)9(t)) = 2(4(2°1)) = 2¢(n).

7.1.16. Suppose that the prime factorization of n is n = H?:l p;’. Then since ¢ is multiplicative, ¢(n) =

[15_, 6(»}’). Note that ¢(p’) = p§’ "' (p; — 1). If p; is odd, then 2 | ¢(p;). Hence 2 | ¢(n) if n has &
distinct odd prime divisors.

7.1.17. 1If $(n) is a power of 2 then every factor p;* — pg”_l = p?i_l (pi — 1) must be a power of 2. Then either

pi =2ora; = 1and p; — 1 = 2% and so p; is a Mersenne prime. Therefore ¢(n) is a power of 2 if and
only if n = 28pyps - - - p, where each p; is a Mersenne prime.

7.1.18. Since n is odd, we have (4,n) = 1. Then since ¢ is multiplicative, we compute ¢(4n) = ¢(4)p(n) =
2¢(n).

7.1.19. Letn = pj’ --- pi~ be the factorization for n. If n = 2¢(n) then p{* - - - pir = 2[[’_ 1p;1j_1(pj —1). Can-
celling the powers of all p;’s yields py - --p. = 2[[;_,(p; — 1). If any p; is an odd prime, then the factor
(pj — 1) is even and must divide the product on the left-hand side. But there can be at most one factor of
2 on the left-hand side and it is accounted for by the factor of 2 in front of the product on the right hand
side. Therefore, no odd primes appear in the product. That is, n = 27 for some j.

7.1.20. First, if p t n, then (p,n) = 1. Since ¢ is multiplicative, we have ¢(pn) = ¢(p)d(n) = (p — 1)¢(n). Con-
versely, if p|n, say n = p®m, where (p,m) = 1, then we compute ¢(pn) = ¢(p**tm) = ¢(p**)p(m) =
(p**t —p®)p(m) = (p— 1)p®¢(m). On the other hand (p — 1)¢(n) = (p—1)(p*m) = (p—1)d(p*)p(m) =
(p—1)(p—1)p*~'p(m). If we form the ratio of these two expressions, we get ¢(pn)/(p —1)é(n) = p/(p—
1). Since this last expression can not be equal to 1, we know that ¢(pn) # (p — 1)¢(n).

7.1.21. Since (m,n) = p, p divides one of the terms, say n exactly once, so n = kp with (m,k) = 1 = (n, k).
Then ¢(n) = ¢(kp) = ¢(k)d(p) = ¢(k)(p — 1), and ¢(mp) = pé(m) by the formula in Example 7.7. Then,
¢(mn) = ¢p(mkp) = (mp)p(k) = (pp(m))(¢(n)/(p —1)).

7.1.22. Suppose that the prime factorization of m is m = [[;_, p{*. Then ¢(m) = [],_, ¢(p{*). Since m*

= [T, P, ¢(mk) = T, ¢(pF*). Note that ¢(pF*) = prai=t(p, — 1) = p* V¥ ps=L(p, — 1) =
5’“ D (pe). Hence (m*) = [T, pt* V" o(p2) = TTo—y p3F V" Ty ¢(03) = m*~1g(m).
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7.1.23. Letpq,---,p, be those primes dividing a but not b. Let ¢1, - - - , g5 be those primes dividing b but not
a. Letry,-- -7, be those primes dividing a and b. Let P = [J(1 — --),Q =[[(1 — ;) and R = [T(1 - ).
Then we have ¢(ab) = abPQR = “Plf.f,fQR = ¢(“}f(b). But ¢((a,b)) = (a,b)Rso R = ¢((“ I;)) and we have

Sa)olh) _ (eh)ote)ot)
¢(ab) = 5((a,0)

as desired.

7.1.24. If nisprime, then ¢(n) = n—1 > 10*. If n is not prime, then by Exercise 18, n > 10F4/n > 10 +10%/2.
So in each case, we seek the smallest prime between 10* and 10* +-10%/2: a. 101 b. 1013 ¢. 10007 d. 100003

7.1.25. From the formula for the ¢ function, we see that if p|n, then p — 1|k. Since k has only finitely many
divisors, there are only finitely many possibilities for prime divisors of n. Further, if p is prime and p®|n,
then p*~!|k. Hence, a < log,(k) + 1. Therefore, each of the finitely many primes which might divide
n may appear to only finitely many exponents. Therefore, there are only finitely many possibilities for n.

7.1.26. If nis odd, then ¢(2n) = ¢(n) = k, giving two solutions, so n must be even. If n = 2m with m odd,
then ¢(m) = ¢(2m) = ¢(n) = k, also giving two solutions, so 4 | n. Say n = 2'm with m odd and ¢ >
2. Then k = ¢(n) = 27 1¢(m). If 3 1 m, then ¢(2!713m) = 2!72(3 — 1)¢p(m) = 2!~ 1p(m) = k, giving two
solutions, so 3 | m. If m = 3s with (3,s) = 1, then k = ¢(n) = 2!71(3 — 1)¢(s) = 2'¢(s). But ¢(2n/3) =
(211 s) = 28¢(s) = k, again giving two solutions. Therefore 3 | sand so 4 -9 = 36 | n.

7.1.27. From the formula for the ¢ function, we see that if p|n, then p — 1|k. Since k has only finitely many
divisors, there are only finitely many possibilities for prime divisors of n. Further, if p is prime and p®|n,
then p®~'|k. Hence, a < log, (k) + 1. Therefore, each of the finitely many primes which might divide
n may appear to only finitely many exponents. Therefore, there are only finitely many possibilities for n.

7.1.28. We further assume that 2%p + 1 is not prime fora = 1,2,...,r, and that p is not a Fermat prime. Sup-
pose that ¢(n) = Hfzo(p?i — p$i~') = 2"p. Then only one odd non-Fermat prime can appear to a power
greater than 1 in the prime power factorization of n. There are two cases. First, p? || n, so that ¢(n) =
p(p — 1)2* = 2"p. But this forces p — 1 = 2"~%, so that p is a Fermat prime, which contradicts the hy-
potheses. Second, there is a prime ¢ || n such that p | ¢ — 1 so that ¢(n) = m(q — 1) = 2"p. So there is an
integer a with 1 < a < r such that 2°p + 1 = ¢ is prime. This also contradicts the hypotheses.

7.1.29. Assuggested, we take k = 2- 35! with j > 1, and suppose that ¢(n) = k. From the formula for ¢(n)
we see that ¢(n) has a factor of (p — 1), which is even for every odd prime that divides n. Since there is
only one factor of 2 in k, there is at most one odd prime divisor of n. Further, since 2 || k, we know that
4 |/n. Since k is not a power of 2, we know that an odd prime p must divide n. So n is of the form p®
or 2p®. Recall that ¢(p®*) = ¢(2p*). It remains to discover the value of p. If a = 1, then ¢(p®) =p—1 =
2-35+1 Butthen, p=2-3%+1 +1=6- (37 +1=(—1)(1)7 + 1 =0 (mod 7). Hence p = 7. But ¢(7) =
6 = 2 - 3%*! implies that j = 0, contrary to hypothesis, so this is not a solution. Therefore a > 1 and we
have ¢(p®) = (p — 1)p®~* = 2. 357+ from which we conclude that p = 3 and a = 65 + 2. Therefore the
only solutions are n = p%*2 and n = 2p%+2.

7.1.30. Let p be a prime. If a > 1, then ¢(p®) = p*~'(p — 1) > p*~! > p¥/2 = \ﬁ If p is odd, then ¢(p) =

p—1> /pand ¢(2p®) = p*~'(p—1) > p*~'2 > \/2p°. Finally,if p > 4, thenp +1 > 4p,s0 (p—1)% = p?—
2p+1 > 2p,and we have #(2p) = p— 1> /2p. Now suppose n = 2% p{* ... ptr If ao ;é 1, then by mul-
tiplicativity of the ¢-function and the square root function, we have ¢(n) = ]_[2 0 o) > 110 _,
v/n. If ag = 1 and, by rearrangement if necessary, " has either a; > 1orp; > 4, then again by mu1t1—
plicativity, we have ¢(n) = ¢(2p7*) [1;—, ¢(p \ /210(1‘1 [T v/P% = V/n. The remaining cases are for
n exactly divisible by 2, not divisible by a prlme greater than 4 and not divisible by a prime to a power
greater than 1. This leaves only n = 2 and n = 6, which are the only exceptions to the proposition.

7.1.31. Ifn = p"'m,then ¢(p"m) = (p" —p"~1)¢(m) | (p"m —1), hencep | 1 or r = 1. So n is square-free. If n =

pg, then ¢(pg) = (p = 1)(¢ = 1) | (pg — 1). Then (p— 1) | (pg — 1) = (p — 1)q = ¢ — 1. Similarly (¢ — 1) |
(p — 1), a contradiction.

STUDENTS-HUB.com Uploaded By: anonymous



7.1. THE EULER PHI-FUNCTION 117

7.1.32. Suppose that n = pi'ps*---p%. Using the formula for ¢(n) in terms of its prime factorization, we
find that n/¢(n) = — 1)(p5 ;- We see that ¢(n) | nif and only if (p1 — 1)(p2 — 1)+~ (pm — 1) |
P1P2 - - - Pm. The right hand side contams at most one factor of 2, so that there is at most one even factor
on the left hand side. Hence there can be at most one odd prime in the factorization.

We see that ¢(1) = 1 | 1. If n = 2% where a is positive integer then ¢(n) +2°~! so that n | ¢(n). Other-
wise, n = 2%p® where a and b are positive integers and p is an odd prime. Then ¢(n) = 24~ 1p*~1(p — 1).
We first show that p # 3. If p > 3 then (p — 1)does not divide 2p. Suppose that it does, then (p —1)d = 2p
where d is an odd positive integer so that d = (1)2%1) = ﬁ < % = 3, which is a contradiction. Now
suppose that p = 3. Then if a > 1, ¢(n) = 293°~! so that n = 3¢(n) and n | ¢(n). If a = 0 then ¢(n) =
2 - 3"~! so that n is odd but ¢(n) is even. Hence ¢(n) does not divide n. In summary, ¢(n) divides n if
and only if n = 1, 2%, or 223® where a and b are positive integers.

7.1.33. Letn = pi'p5*---p,*. Let P; be the property that an integer is divisible by p;. Let S be the set
{1,2,...,n — 1}. To compute ¢(n) we need to correct the elements of S with more of the properties
P, Pg, -+, Py. Letn(P;y, PZZ, .-+, P; ) be the number of elements of S with all of properties P;,, P,,, - -,

P; Then n(pil, - P;,,) = J=pi, i, By Exercise 18 of Section 1.4, we have ¢(n) = n— (- + -+ -+
1

n n k n _ 1 1 1

p7k> + (Plpz oot Pk—1Pk ) oot (_1) (Pl"'Pk ) - n(l o Zpi\n ITi +Zpi1m2 |” Piq Pig - anpupis Pi1PigPig t
-4 (=1)¥ 2 - - pg). On the other hand, notice that each term in the expansion of (1—--)(1— =) -+ (1 -

ﬁ) is obtained by choosing either 1 or — i from each factor and multiply the choice together. This gives

each term the form %. Note that each term can occur in only one way. Thus n(1 — p%)(l -
i1 Pig im

1 1y _ 1 1 k_n _y_
pa) (U= ) =0l =2 o + 2y oy~ (D o) = o(n).

7.1.34. If nis prime, ¢(n) =n —1 > n — /n. If nis not prime say n = ab with a,b > 1. Then b > \/n say. By

Exercise 23, ¢(ab) = %7‘1%1’)<¢( Jp(b) < (a—1)b—-1)=ab—a—-b+1<n—-b+1<n—n+1

So ¢(a,b) < n —+/n+ 1 but since both sides are integers we have ¢(a,b) < n — /n.

7.1.35. Note that1 < ¢(m) < m —1form > 1. Henceif n > 2, n > ny > ny > --- > 1 where n; = ¢(n) and
n; = ¢(n;—1) fori > 1. Since n;,7 = 1,2,3,. .. is a decreasing sequence of positive integers, there must
be a positive integer r such that n, = 1.

7.1.36. We have f(p~) = ‘1’(p’f) Gl ;’,’ckil) = (p;l) = @. Hence f(n) = 2% is strongly multiplicative.

7.1.37. Note that the definition of f * g can also be expressed as (f * g)(n) = >_,,_,, f(a)g(b). Then the fact
that f x g = g x f is evident.

7.1.38. Using the form of the definition in the solution to Exercise 37 above, we have ((f * g) * h)(n)

= D (f*9)(a)h()

ab=n

> fg(dh

ab=n cd=a

Y F(Q)g(dh(b)

cdb=n
Similarly, (f * (g* h))(n) = .p—n f(c)g(d)h(b) and we're done.

7.1.39. a. If either m > 1 orn > 1 then mn > 1 and one of «(m) or ¢(n) is equal to zero. Then ¢(mn) = 0 =
t(m)i(n). Otherwise, m = n = 1 and we have «(mn) =1 =11 = «(m)c(n). Therefore ¢(n) is multi-
plicative.

b. (tx f)(n) = 3y, d) () = «(1)f(}) = f(n) since ¢(d) = 0 except when d = 1.(f * ¢)(n) = (¢ *
f)(n) = f(n) by Exercise 37.
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7.1.40. We need, first of all, for (f* f~1)(1) = +(1) = 1 which reduces to f(1)f~!(1) = 1. Therefore if f(1) =
there is no solution and hence no inverse. If f(1) # 0, we define f~1(1) = ﬁ, the unique solution. Now

assume that f~!(k) has been uniquely determined for all k& < n. We solve the equation (f = f~1)(n) =
u(n), or 324, f(5)f~1(d) = 0. Rewriting gives

OEDH Vo

d|n
d<n

If d < n, then 2 < n and every quantity in the equation is uniquely determined except for f~*(n). Since
f(1) # 0 we can solve uniquely for f~!(n) and by induction we’re done.

7.141. Leth = fxgandlet (m,n) =1. Then h(mn) = -, f(d)g(“F"). Since (m,n) = 1, each divisor d of
mn can be expressed in exactly one way as d = ab where a | m and b | n. Then (a,b) = 1 and (*, %) =
1. Then there is a one-to-one correspondence between the divisors d of mn and the pairs of products ab

where a | m and b | n. Then
n
Zf (ab)g Zf <5>

b|n b|n
=" F@)g(Z) " F(b)g(5) = h(m)h(n)
alm bln

as desired.

7.1.42. By Exercise 38, Dirichlet product is associative. We compute F'«xh = (fxg)«xh = f*(g*h) = f x1by
the definition in Exercise 40. Then, by Exercise 39, f * « = f, which proves the theorem.

7.1.43.a. Since 12 = 223, we have \(12) = (—1)?T! = —1.
b. Since 20 = 225, we have A\(20) = (—1)?*! = —1.
c. Since210=2-3-5-7,wehave A\(210) = (—1)!F1F1+L =1,
d. Since 1000 = 2353, we have A\(1000) = (—1)3*3 = 1.
e. Since 1001 = 7-11-13, we have A(1001) = (—1)! T+ = —1.
f. Since 10! = 283527, we have A\(10!) = (—1)8T4+2+1 = 1.
g. Since 20! = 21838547211 - 13- 17 - 10, we have A(20!) = (—1)18+8+4+2+ 1414141 _ 1

7.1.44. We see that A\(n) = (—1)°® where S is the sum of the powers in the prime factorization of n (with S =
0 for n = 1). Suppose that m and n are positive integers with prime factorizations m = p* ---p?s and
n =g’ ¢ Then\(m) = (—1)* and A(n) = (—=1)” where S = Y a; and T = 3 b;. But A(mn) =
(=1)5+T = (-=1)%(—1)7T since the prime powers in the factorization of mn are formed by multiplying
the prime powers in the factorizations of m and n. Hence A(mn) = A(m)A(n).

7.145. Let f(n) = 3_;, AM(d). Then f is the Dirichlet product of A and the constant function 2(n) = 1. Since h
and X are both multiplicative, so is f, by Exercise 41. Now, f(p’) = A(1) + A(p) + A\(p?) + - -- + A\(p") =
1-1+1—---+(-1)=0iftisodd and = 1 if tis even. Then f(p}'p5*---p%) =[] f(p{") = 0if any a;
is odd and = 1 if all a; are even and hence n is a square.

7.1.46. Suppose that f and ¢ are multiplicative functions. Then f(mn) = f(m)f(n) and g(mn) =
whenever (m,n) = 1. Itfollows that (fg)(mn) = f(mn)g(mn) = f(m)f(n)g(m)g(n) = f(m)g(m
= (fg)(m)(fg)(n) whenever (m,n) = 1. We conclude that fg is completely multiplicative.

g(m)g(n)
)f(n)g(n)
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7.1.47. 1If f and g are completely multiplicative and m and n are positive integers we have (fg)(mn) =
f(mn)g(mn) = f(m)f(n)g(m)g(n) = f(m)g(m)f(n)g(n) = (fg)(m)(fg)(n), so fg is also completely

multiplicative.

7.1.48. If pisprime and f is completely multiplicative then f(p*) = f(p)f(p) - - - f(p), a—times, = f(p)®. Since
f is multiplicative we have f(n) = f(py* -+ p%m) = f(p") f(p5?) - f(p&m) = f(p1)* - f(pm)*™.

7.1.49. We have f(mn) =logmn = logm + logn = f(m) + f(n). Hence f(n) = logn is completely additive.
7.1.50. a. Since 1 has no prime factors, w(1) = 0.

b. Since 2 is prime, w(2) = 1.

c. Since 20 = 225, we have w(20) = 2.

d. Since 84 =223 -7, we have w(84) = 3.

e. Since 128 = 27, we have w(128) = 1.
7.1.51. a. Since 12 = 223, we have w(12) = 2.

b. Since 30 =2-2-5, we have w(30) = 3.

c. Since 32 = 2°, we have w(32) = 1.

d. Since the primes that divide 10! are exactly those primes less than or equal to 10, namely 2, 3,5 and
7, we have w(10!) = 4.

e. Since the primes that divide 20! are exactly those primes less than or equal to 20, namely 2, 3, 5, 7,
11,13, 17 and 19, we have w(20!) = 8.

f. Since the primes that divide 50! are exactly those primes less than or equal to 50, and 7 (50) = 15,
we have w(50!) = 15.

7.1.52. Suppose that (m,n) = 1. Then m and n have no common prime factors. Let the prime power factor-
izations of m and n be m = p* ---p% and n = ¢0* - - - ¢¥*, so that w(m) = s and w(n) = t. Then since
the primes p; and ¢; are distinct, the prime power factorization of mn is mn = p{* - - - p% qi’l e qf t, s0
that w(mn) = s + t. Hence w(mn) = w(m) + w(n), which shows that w is additive. To see that w is not
completely additive, note that w(4) = w(2-2) = 1butw(2) +w(2) =1+1=2.

7.1.53. Let (m,n) = 1, then by the additivity of f we have f(mn) = f(m) + f(n). Then g(mn) = 2/("") =
2f(m)+f(n) = 2F(m)2f(") = g(m)g(n), so g is multiplicative.

7.1.54. Let f(n) = n*. Then if n and m are any two positive integers, we have, by the ordinary rules of expo-

nents, f(mn) = (mn)* = mknk = f(m)f(n). Therefore f is completely multiplicative.

7.2. The Sum and Number of Divisors

7.2.1.a. Since 35 =5 -7 and ¢ is multiplicative, we see that ¢(35) = (1 +5)(1+7) =6 -8 = 48.
b. Since 196 = 2272 and ¢ is multiplicative, we see that 0(196) = (1 +2+22)(1+7+72) = 7-57 = 399.

c. Since 1000 = 235 and o is multiplicative, we see that ¢(1000) = (1 + 2 + 2% + 23) .
(145452 +53) = 15 - 156 = 2340.
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101
d. ByLemma 7.1 we have ¢(2!00) = 21 = 2101 1,

e. Since o(n) is a multiplicative function, we have ¢(2 -3 -5-7-11) = (1 +2)(1 + 3)(1 + 5) -
(14+7)(1+11) = 6912.

f. Since o is multiplicative, it follows that o(2° - 3* - 53 .72 . 11) = (1 + 2422 +23 + 21 +25) - (1 + 3 +
3243343 (1+5+52+5%) - (1+7+7%)-(1+11) =63-121-156 - 57 - 12 = 813404592.

g. The prime factorization of 10! is 10! = 283%527. By Theorem 6.8, we conclude that o(10) = 2=L .

2—1
5.1 52_ 2
81,21 71 _511.242.6-8 = 5935776.

h. The prime factorization of 20! is 20! =28 .3%.54.72.11.13-17-19. By Theorem 6.8 it follows that

0(20) = 2;9—_11 ) 3;—_11 ’ 555—_11 ) 773—_11 ) 11112—_11 ) 11332—_11 ' 11772—_11 ’ 11992—_11' =9841-781-57-12-14-18-20 =

26495791882560.

7.2.2.a. Since the prime factorization of 36 is 36 = 223% and 7 is multiplicative it follows that 36 has 7(36) =
(24 1)(2+ 1) = 3 - 3 = 9 positive integer divisors.

b. Since the prime factorization of 99 is 99 = 32 - 11 and 7 is multiplicative, it follows that 99 has
7(99) = (2+1)(1 + 1) = 3- 2 = 6 positive integer divisors.

c. Since the prime factorization of 144 is 144 = 2* - 3% and 7 is multiplicative, it follows that 144 has
7(144) = (4 4+ 1)(2 + 1) = 15 positive integer divisors.

d. Since 7 is multiplicative, it follows that2-3-5-7-11-13-17-19has7(2-3-5-7-11-13-17-19) =
(14 1)® = 28 = 256 positive integer divisors.

e. By Theorem 7.9 we find that 2-3%-5%.74.11°-13%.17°. 195 has 7(2-32-53 .74 . 115.13* . 175 . 19%) =
1+1D)2+D)B+1)A+1)(B+1)(4+1)(5+1)(5+ 1) = 129600 divisors.

f. Since the prime factorization of 20! is 20! = 21838517211 - 13- 17 - 19, and 7 is multiplicative, by The-
orem 7.9 it follows that 20! has 7(20) = (18 + 1)(8 4+ 1)(4 + 1)(2 + 1)(1 + 1)(1 + 1)(1 + 1)(1 + 1) =
19-9-5-3-2-2-2-2 = 41040 divisors.

7.23. Letn = p{'ps*---p%. We need to find when 7(n) is odd. By Theorem 7.9 7(n) = (a1 + 1)(az +
1)---(as + 1), so each factor a; + 1 must be odd, hence each a; must be even. Therefore n is a perfect
square.

7.2.4. Letn = p{'p3*---pis. We need to find when o(n) is odd. By Lemma 7.1 and the multiplicativity of o
wehaveo(n) = (1+p1+---+pi") 1 +p2+---+p5>)- - (L +ps+--- +p?). So we need each factor
(14 p; + -+ + p}*) to be odd. Each factor has a; + 1 terms. If p; is odd, then each term 1,p;,--- ,p}* is
odd, so their sum will be odd if and only if there is an odd number of terms, that is a; must be even. If
pi = 2,then 1 + 2+ 22 + ... + 2% is always odd. Therefore ¢(n) is odd if n = 2¥t with t odd and ¢ is a
perfect square.

7.2.5.a. For each part of this exercise let the prime factorization of n be p{*p5? - - - p%~. Then since ¢ is multi-
plicative, we have o(n) = [[;_, (1 + p; + - - + p{?).
Suppose that o(n) = 12. Each factor in the formula for o(n) must divide 12. The only ways to
get factors, other than 1, of 12 for sums of this type are (1+2) = 3,(1+3) =4, (1+5) =6, (1+11) =
12. Hence the only values of n for which o(n) = 12aren =2-3 =6and n = 11.

b. Suppose that o(n) = 18. Each factor in the formula for o(n) must divide 18 and the product of
these factors must be 18. The only ways to get factors, other that 1, of 18 for sums of this type are
(1+2)=3,(1+5)=06,and(1 + 17) = 18. It follows that the only solutions of c(n) = 18 are n =
2-5=10and n = 17.
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c¢. Suppose that o(n) = 24. Each factor in the formula for o(n) must divide 24 and the product of
these factors must be 24. The only ways to get factors, other than 1, of 24 for sums of this type are
(1+2)=3,(1+3)=4,(145)=6,(1+7)=8,(1+11) =12,and (1 + 23) = 24. It follows that the
only solutions of o(n) =24aren=2-7=14n=3-5=15,and n = 23.

d. Suppose that o(n) = 48. Each factor in the formula for o(n) must divide 48 and the product of
these factors must be 48. The only ways to get factors, other than 1, of 48 for sums of this type are
(1+2)=3(143) =4, (145)=6,(1+7) =8, (1+11) =12, (1 + 23) = 24, and (1 + 47) = 48. If
follows that the only solutions of o(n) + 48 aren =3-11=33,n =57 = 35, and n = 47.

e. Suppose that o(n) = 52. Each factor in the formula for o(n) must divide 52 and the product of
these factors must be 52. The only ways to get factors, other than 1, of 52 for sums of this type are
(143)=4and (1+3+9) = 13. Since only one factor for each prime can be included, there are no
solutions of o(n) = 52.

f. Suppose that o(n) = 84. Each factor in the formula for o(n) must divide 84 and the product of
these factors must be 84. The only ways to get factors, other than 1, of 84 for sums of this type are
(142)=3,(14+3)=4,(145)=6,(1+2+4) =7, (1+11) =12, (1+13) = 14, and (1 + 83) = 84.
It follows that the only solutions of o(n) =84 aren =5-13 =65, n =4-11 = 44, and n = 83.

7.2.6.a. Suppose that n = [’_, p}’ is the prime factorization of n. By Theorem 7.9 we know that 7(n) =
H;:l (1 + aj ) .
For 7(1) = 1 it is necessary that n = 1. Hence n = 1 is the smallest positive integer such that
7(n) =1.

b. For 7(n) = 2 we must have n = p where p is a prime. Consequently the smallest n for which 7(n) =
2isp = 2.

c. For 7(n) = 3 we must have n = p? where p is prime. Hence 22 = 4 is the smallest n for which
7(n) =4.

d. For 7(n) = 6, by the formula for 7(n) we see that n must have the form n = pg? or n = p> where p
and g are prime. The smallest n of the first kind is 3 - 22 = 12 and the smallest n of the second kind
is 2° = 32. Hence the smallest n such that 7(n) = 6is n = 12.

e. For 7(n) = 14, by the formula for 7(n), we see that n = pq® or n = p'® where p and ¢ are primes.
The smallest such integer is n = 3 - 26 = 192.

f. For 7(n) = 100, by the formula for 7(n) we see that n = pg*®, n = p¢**, n = p*¢'%, n = p%¢°, n =
par*t, n = pPriq* or n = pgris* where p, ¢, v, and s are primes. We can easily see that the smallest

such integer is of the final form listed, with n = 2% - 3% .5 . 7 = 45360.

7.2.7. Note that 7(pF~!) = k whenever p is prime and k is a positive integer k& > 1. Hence the equation
7(n) = k has infinitely many solutions.

7.2.8. The positive integers with exactly two prime divisors are the primes.

7.2.9. The only positive integers with exactly three prime divisors are those integers of the form p? where
p is prime. We see this using the formula given in Theorem 7.9. We have 7(p}* - - - p{*) = (a1 + 1)(a2 +
1)---(a¢ + 1). Since the terms on the right-hand side are all at least 2, this product can equal 3 if and
only if there is precisely one term on the right-hand side that is equal to 3.

7.2.10. Weneed 7(n) = 4. If n = p{*'pg? - - - p% then 7(n) = (a1 + 1)(az + 1) -+ - (as+1) = 4, so there are two

possibilities. Either (a3 + 1) = 4 or (a1 + 1) = (a2 + 1) = 2. In the first case a; = 3 and n = p>. In the
second case a; = as = 1 and n = pips.
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7.2.11. We first suppose that n is not a perfect square. Then the divisors of n come in pairs with product n,
that is, when d is a divisor, so is n/d and conversely. Since there are 7(n)/2 such pairs, the product of all
divisors is n"("/2. Now suppose that n is a perfect square. Then there are r(n)—1 pairs with product n

and the extra divisor \/n. Hence the product of all the divisors of n is n(7(")=1)/2 . p1/2 = p7(0)/2,

7.212. Ifn > ktheno(n) > n > k. So a solution must be a positive integer less than or equal to k. Since there
are only finitely many of these, we’re done.

7.2.13.a. The nth term is given by o(2n).

b. The nth term is given by o(n) — 7(n).

¢. The nth term of this sequence is the least positive integer m with 7(m) = n.

d. The nth term is the number of solutions & to the equation o (k) = n.
7.2.14.a. The nth term is given by o(n) + 7(n).

b. The nth term is given by o(2n — 1).

c. The nth term is the nth smallest solution to 7(n) = 4.

d. The nth term is given by 7(2n — 1).

7.2.15. If we list the values of 7(n) for n = 2,3,4, ..., in order, we can identify highly composite integers by
noting the first occurrence of a value which is larger than all previous values. From Table 2 in Appen-
dix E we see that 7(2) = 2 is the first occurrence of 2, and is larger than all previous values. This is first
exceeded when we find 7(4) = 3. This is exceeded when we find 7(6) = 4. This is exceeded when we
find 7(12) = 6. This is exceeded when we find 7(24) = 8. This is exceeded when we find 7(36) = 9. So
the first six highly composite numbers are 2,4, 6,12, 24 and 36.

7.2.16. Since n is highly composite, 7(m) > 7(n) > 7(j) for j = 1,2,...,n — 1. Let k be the smallest integer
greater than n for which 7(k) > 7(m). If no integer between m and n works, then k& = m, so the exis-
tence of k is assured. Then 7(k) > 7(j) for j = 1,2,...,k — 1, and hence k is highly composite. Since, for
instance 7(2) = a + 1 is arbitrarily large, such an m always exists, and hence, for each highly composite
number we can find a larger one. By induction, there are infinitely many highly composite numbers.

7.2.17. Let a be the largest highly composite integer less than or equal to n. Note that 2a is less than or equal
to 2n and has more divisors than a and hence 7(2a) > 7(a). By Exercise 16, there must be a highly com-
posite integer b with a < b < 2a. If b < n, this contradicts the choice of a. Therefore n < b < 2n. It
follows that there must be a highly composite integer k with 2™ < k < 2™*! for every nonnegative in-
teger m. Therefore, there are at least m highly composite integers less than or equal to 2. Thus the mth
highly composite integer is less than or equal to 2™.

7.2.18. Let the prime power factorization of n be 2#13% - .. pi’*, and suppose there is some pair i < j such that
a; < aj. Form a new integer m = 2% ... p% --p§* - -pi*. Then 7(m) = 7(n) since both integers have
exactly the same set of exponents in their prime power factorization. But n/m = (p;" p?j )/ (ps? pi) =

pjj ~% pi?T* > 1, since p; > p;. Therefore m < n with 7(m) = 7(n) and so n is not highly composite, a
contradiction. Therefore the sequence a1, as, . . ., ay, is strictly decreasing.

7.2.19. If n = 23" is highly composite, then by Exercise 18 we have a > b. Since 2¢3° > 27715315, we must
have 7(2%3%) > 7(22163°~15), that is (a + 1)(b+ 1) > 2ab. Rearranging the inequality yields (a — 1)(b —
1) < 2. Hence, either a = b = 2 or b < 2. In the first case we have n = 36, which is highly composite. If
b =1, assume a > 3. We have n = 293 > 24713 . 5. Then 7(23) = 2(a + 1) > 4(a — 2) = 7(2°713 - 5).
This reduces to a < 5, so we need only check a = 1,2, 3 and 4, which correspond to the numbers 6, 12, 24
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and 48, all of which are highly composite. Finally, if b = 0 assume a > 2. Then n = 2% > 2723, and so
tau(2®) = a +1 > 2(a — 1) = 7(29723, which reduces to a < 5. So we need only check the cases a =
0,1,2,3 and 4, which correspond to the numbers 1,2, 4,8 and 16. Of these, only 1,2, and 4 are highly
composite. The complete list of the highly composite numbers of the form 223 is 1,2, 4, 6, 12,24, 36 and
48.

7.220. Wehave o3(4) = >, d* = 1% +2° + 4% = 1 + 8 + 64 = 73. Similarly, we have 03(6) = >-d | 64° =
13 423 4+ 3% 4+ 6% = 1 + 8+ 27 + 216 = 252. Likewise, we have 03(12) = Y-, d® = 17 = 22 +- 3% +-4° +
6%+ 123 =1+ 8+ 27+ 64 + 216 + 1728 = 2044.

7.2.21. We find that oy, (p) = >, d* = 1¥ +-p* =1 4 p".

7.222. We find that 0y, (p°) = Yy d = 15 4 p 4 (p2)F - (p)F = 15 4 p 4 p2F .o pok = 21D,

7.2.23. Suppose that a and b are positive integers with (a,b) = 1. Then >3, ,,d* = 3, |, 4,p(d1d2)* =
Do 4 Xoayja @5 = ok(a)or(b).

a;k+1
T (pjj —1)

7.2.24. Suppose thatn = []_, p}’. Then since o}, is multiplicative, ox(n) = [Tj_; o (p}’) = [Tj=1 ~ 57—

7.225. Letn = p® ---pir. Then ¢(n) = (pi* — p§* =)+ (p&r — p2r=1) = 3" T;. Where 3" T} is this product is
expanded. Each term T} is of the form 7} = (—1)¥p5" - - - pbr where b; = a; or a; — 1. Note that each one of
these terms is a divisor of n, and note that one of the termsis p{* - - - p®~ = n. Now since o(n) is the sum of
the divisors of n, each of the terms T; above appears in the sum o(n) = 3~ ,, d, without the (— 1)*. Note
that n also appears in this sum. Then we have o(n) + ¢(n) = >_,,, d+>°T; = 2n+ Zdﬂ" d+> 20 Tj-

n
Now if T} is negative, then the | T | appearing in the first sum will cancel it. But if 7} is positive we get
two terms T} in the last sum. Then we have o(n) + ¢(n) = 20435, 4cn azr, 22 7,501, 20 1j- Since
both of these last sums are nonnegative, we need them both to be zero in order to have a solution. In

particular the expansion of ¢(n) = (p{* — pi*~')--- (p2 — p? ~!) can have no positive terms other than
n, and therefore we must have ¢(n) = (p{* —p$*~'). Now the term d = 1 appears in the first sum unless
T; = —1 for some j. Therefore ¢(n) = p; — 1 and so n is prime.

7.2.26. First we find an explicit formula for f(n) = [],,, d. Notice that
TN n n
d|n d|n dln dn

Now as d runs through the divisors of n, so does %, so the last two products are the same. Then nT() =

T(n) T(m)

2 (n ,
(Hdm d) and therefore f(n) =n"2 . Now if f(n) = f(m), with n < m, we have n™s = m™#* which

implies there exists an integer a such that a® = n and a’ = m for some nonnegative integers s and ¢.
Since n < m, we have s < t so any divisor of n is also a divisor of m, but not vice versa. Therefore
f(n) < f(m) a contradiction.

7.227. Letn = pi'p3?---p% and let x and y be integers such that [x,y] = n. then z | nand y | n so we

have & = p'ph? - p2r and y = p§*ps? - p¢, where b; and ¢; = 0,1,2, ..., a;. Since [z,y] = n, we must
have max{b;, ¢;} = a; for each i. Then one of b; and ¢; must be equal to a; and the other can range over
0,1,...,a;. Therefore we have 2a; + 1 ways to choose the pair (b;, ¢;) for each i. Then in total, we can

choose the exponents by, ba, ... by, c1,..., ¢ in (2a1 +1)(2a3 + 1) -+ (2a, + 1) = 7(n?) ways.

7.2.28. If pis an odd prime, then p® > (1 +2)® = 1+ 2a+...,42* > a + 1 for integers a > 1. Also 2¢ =
(1+1)*=14a+(3) +...+1>a+1fora > 2. Therefore, for any prime p, 7(p*) = (a+ 1) < p* unless
p® =21 Then 7(n) = [[7(p{") < [1p* = nif any p}* is different from 2. Thus n > ny > ngy > --- until,
for some r,n, = 2, and then n,1; = 7(n,) = 7(2) = 2 etc.
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7.2.29. Suppose that n is composite. Then n = ab where a and b are integers with 1 < a < b < n. It follows
that either a > /n or b > /n. Consequently o(n) > 1+a+b+n> 1+ /n+n>n+/n. Conversely,
suppose that n is prime. Then o(n) = n + 1 so that o(n) < n+ /n. Hence o(n) > n + /n implies that n
is composite.

7.2.30. If d is a divisor of n, then there is an integer k such that n = dk. It follows that 2¢ — 1 is a divisor of
2" — 1 since 2" — 1 = (24 —1)(24+=1) 4 2d(k=2) 4 ... 4+ 29 1 1). Hence 2" — 1 has at least as many divisors
as n does, or in other words, 7(2" — 1) > 7(n).

7.2.31. For n = 1, the statement is true. Suppose that ZJ 1 L) =2 Z [ } — [v/n — 1]%. For the in-
duction step, it suffices to show that 7(n) = 2 ijl ([?] - [”—1}) =23 . s=—l, which is true by

j
jln

the definition of 7(n), since there is one factor less than \/n for every factor greater than /n. Note that if

n is a perfect square, we must add the term 2v/n — (2y/n — 1) = 1 to the last two sums. For n = 100, we

have 1% 7(j) = 23012, [ﬂ — 100 = 482.

7.2.32. Let f(n) = @ Then f is multiplicative. f(p®) = ”;ps) = psﬂ’%;f“*pﬂ 1+ + 2 +- p%.

Then it is clear that f(p*) < f(p') whenever s < t. Suppose n=p*---p% and d = p}* - - p¥" is a divisor
of nsothatb; < a; fori=1,2,...,r. Then f(n) =[] f(p]*) > Hf(pfi) = f(d). Since a | ab this proves
the first inequality. Now if d | ab, then d can be written as d = xy where x | a and y | b in at least one way.
Thenevery din },,, d appears in the doublesum ° , >-, , 2y = >_, |, ©>_,, ¥ at least once, which is
to say o(ab) < o(a)o(b) which proves the second inequality.

z|a

7.2.33. We use the identity 32750 (pet0= 4 patb=i=l ooy piy = (p° 4 p® o D + P
+1). Ifa = [[p" and b = Hp i, then o(a)a(b) = [T(p" +p '+ + D" +p" 1+ +1) =
Hzmin{alb }( a;+b;—j _’_paﬁrbl Jj— + +pz)

7.2.34. By Theorem 7.8 we know that 3, 7(n) is multiplicative since 7(n) is multiplicative. By Exercise 46

2
in Section 7.1 it follows that (Z din T(d)) is multiplicative and 7(n)? is multiplicative. Moreover, by

Theorem 7.8 we see that 3, , 7(d)? is multiplicative. Hence both sides of this identity are multiplica-
tive, so to verify that the identity holds for all positive integers n it suffices to prove it holds for powers

2
of primes. So suppose that n = p* where p is prime and k is a positive integer. Then (Z dlp T(d)) =

N2 2 2 2
(ZfZOT(pJ)) = <Z§=o(j = 1)) = (25;1 k:) = (W) , using the formula for the sum
of the first k positive integers given in Exercise 6 of Section 1.2. On the other hand, 3~ r(d)? =

. 2
Zf:o T(p)? = Z?:o (j+1)3 = Z;Hll g3 = (W) , using the formula for the sum of the cubes of

the first k positive integers given in Exercise 8 of Section 1.2. It follows that both sides agree when n is a
power of a prime. Since both sides are multiplicative, Theorem 6.1 shows that they agree for all positive
integers n.

7.2.35. From Exercises 52 and 53 in Section 7.1 we know that the arithmetic function f(n) = 2¢(™ is multi-
plicative. Further, since the Dirichlet product i(n) = -, 2¢(d) = f x g(n), where g(n) = 1 is also mul-
tiplicative, we know that h(n) is also multiplicative. See Exercise 41 in Section 7.1. Since 7(n) and n? are
multiplicative, so is 7(n?). Therefore, it sufficient to prove the identity for n equal to a prime power, p”.

We have 7(p**) = (2a+1). On the other hand we have }°; . 2¢(4) = 371 2¢0) =1+ 370 | 21 = 2a + 1,
which completes the proof.

7.2.36. By Exercises 41 and 46 of Section 7.1, and Theorem 7.8, we know that both sides of the identity repre-
sent multiplicative functions. Therefore it suffices to prove the identity for prime powers. Suppose n =

p*. Then we have 3= . po(d)/d = 325, p*o(p') /' = Lo p* o (p) = il p* (0" + 0"+ +
1) =3 Z;:opa_j = Zj:o Zi:jpa 7= Zj:o( — 4+ Dp =30 (k+ 1)k = 0 pEr(pF) =
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>_djpe d7(d), which is the right hand side.

7.2.37. Let M be the matrix. Let D be the matrix with entries ¢(1), ¢(2), ..., ¢(n) on the diagonal and zeros
elsewhere. Let A be the matrix of 0’s and 1’s defined by the rule: If i divides j then the (i, j) entry is 1,
otherwise, it is 0. Then A has all 0’s below the main diagonal, and 1’s on the main diagonal, therefore
det(A) = 1. Check that M= ADA”. Then det(M) = 1 - det(D) - 1 = ¢(1)¢(2) - - - p(n).

7.2.38. We have n = 23 (mod 24) so n = 2 (mod 3), and n is odd. If every prime dividing n was = 1 (mod 3)
then n would be = 1 (mod 3) so n has a prime divisor p = 2 (mod 3), say p®||n. If a were even, then p* =
1 (mod 3) and then so is n, so there exists a prime divisor with a odd. Then o(p®) = p® +p*~' +--- +
p+1=2+1+24+1+--+24+1=3+3+---+3 =0 (mod 3),s03 | o(n). Similarly n = 7 (mod 8) so
either p?||n with p = 7 (mod 8) and a odd or ¢*||n and 7¢||n with ¢ = 3 (mod 8) and » = 5 (mod 8) and b
and c odd. In the first case o(p®) = p* +p* '+ +p+1=T7+1+7+1+ -+ 7+1=0 (mod 8) and
s08 | o(n). Inthe second case 0(¢) =3 +1+3+1+---+3+1=0 (mod4)so4|o(n)and o(rc) =
541454+1+---4+5+1=0(mod2)so2| %"),hence8 | o(n). Since 3 | o(n) we have 24 | o(n).

7.2.39. Suppose there are infinitely many pairs of twin primes. Let p and p + 2 be a pair of twin primes. Then
olp)=p+land ¢(p+2) =p+2—1=p+ 1. So each pair of twin primes is a solution to the equation.
Next Suppose there are infinitely many primes of the form 27 — 1 with ¢ prime. Then ¢(297!) = 27 and

0(29 —1) =27 -1+ 1 = 2% So once again we have infinitely many solutions.

7.2.40. By Theorem 7.8, the function F'(n) = }_,, #(d) is multiplicative. Therefore, to prove Theorem 7.7,
it suffices to show only that the identity holds for n a prime power. Suppose n = p®. Then F(n) =

Pappe 0(d) = 6(1) + 6(p) + ¢(p*) + -+ 6(p*) =1+ (1) + (p* —p) + (P* —p*) + -+ (" —p*7).
This is a telescoping sum, and every term cancels expect p®, and so F'(p*) = p® as desired.

7.3. Perfect Numbers and Mersenne Primes

7.3.1. From the table on page 264, the first six Mersenne primes are given by 2” —1 with p =2,3,5,7,13, and 17.
Then Theorem 6.9 gives the first six even perfect numbers as 21 (2% — 1) = 6;22(23 — 1) = 28;24(2° — 1) =
496; 26(27 — 1) = 8, 128;212(213 — 1) = 33,550, 336; and 21¢(217 — 1) = 8589869056.

7.3.2. 2'9 —1is prime, so the seventh even perfect number is 137438691328. 223 — 1 and 2%° — 1 are compos-
ite, but 23! — 1 is prime, so the eighth even perfect number is 2305843008139952128.

7.3.3.a. By the difference of cubes factorization we have 2'5 — 1 = (2°)3 — 1 = (2° — 1)(2'0 + 2° + 1), so
25 — 1 = 31 is a factor.

b. Since 791,127 =27 —1]2°1 — 1.

c. Since 7]1001,127 =27 — 1| 21001 — 1.
7.34.a. Since3|111,7=2%—1]2"11 1.

b. Since 17| 289,131071 = 2'7 — 1| 2289 — 1.

c. Since 11 | 46189,2047 = 2'1 — 1 | 246189 — 1.

7.3.5. We have 0(12) = 28,0(18) = 39, 5(20) = 42, 5(24) = 60, 5(30) = 72 and /(36) = 91.

7.3.6. Ifn = p2g, then "(n”) = f;ji)_pi . f;:)_ql < p’%l . qfl < 2.5 < 2s0nhas at least 3 distinct prime fac-
tors. If p < g are primes, then check that %;) > %a), so we may take the 3 prime factors to be 3,5, and

p q
7. Try the possibilities in order: 3-5-7,3%-5-7,3%-5.7,325%.7,3-5-7- 11, etc. and find that 0(3%-5-7) =
0(945) = 1920 is the smallest example.
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7.3.7. Suppose that n = p* where p is prime and k& is a positive integer. Then o(p*) = %. Note that

k k1 o f+1 E+1 _ kY — 9.k (" -1) k_
2pF — 1 < pF*tlsince p > 2. Tt follows that p**t1 — 1 < 2(p**t1 —p*) = 2p (p—l),sothatppf1 < 2p° =
2n. It follows that n = p” is deficient.

7.3.8. Let m and n be integers and write mn = [[pf* and n = [[p" where the p; are distinct primes and
b;

a; > b;. Then ”(7;””") =] pip:’i"’l "> p;:’i = # So if mn is deficient, then @ < % < 2,s0nis
also deficient.

7.3.9. Suppose that n is abundant or perfect. Then o(n) > 2n. Suppose that n | m. Then m = nk for some
integer k. The divisors of m include the integers kd and d | n. Hence o(m) > >_,,,(k + 1)d = (k +
1)> 4, d = (k+1)o(n) > (k+1)2n > 2kn = 2m. Hence m is abundant.

7.3.10. ‘7(2”“1);’(27”_1) — (2;,__11);((73:_)1) = "(22:__11) > 2, since o(n) > n + 1 with equality if and only if n is

prime.

7.3.11. If pis any prime, then o(p) = p+ 1 < 2p, so p is deficient. Since there are infinitely many primes, we
must have infinitely many deficient numbers.

7.3.12. The solution to Exercise 10 provides an infinite set of even abundant numbers, since 2™ — 1 is com-
posite whenever m is composite.

7.3.13. See Exercises 6 and 9. For a positive integer a let n = 3%5 - 7 and compute o(n) = ¢(3%5-7) = (3! —
1)/B-1)G+1)(T+1) = (3% — 1)24 = 39+124 — 24 = 2.3%(36) — 24 = 2-3%(35) +2-3% — 24 =
2n + 2 - 3% — 24, which will be greater than 2n whenever a > 3. This demonstrates infinitely many odd
abundant integers.

_ D@ -y _ et . p

7.3.14. We have o(p%q®) = D < T = ﬁ%p“qb < 2p%qP. Therefore n = p®q® is defi-
cient.

7.3.15.a. The prime factorizations of 220 and 284 are 220 = 22 - 5 - 11 and 284 = 2% - 71. Hence 0(220) =
o(22)a(5)o(11) = 7-6- 12 = 504 and o(284) = o/(22)o(71) = 7 - 72 = 504. Since ¢/(220) = o/(284) =
220 + 284 = 504, it follows that 220 and 284 form an amicable pair.

b. The prime factorizations of 1184 and 1210 are 1184 = 25 - 37 and 1210 = 2- 5 - 112. Hence 0(1184) =
a(2°)0(37) = 63 - 38 = 2394 and ¢(1210) = o(2)o(5)0(11?) = 3 -6 - 133 = 2394. Since o(1184) =
0(1210) = 1184 + 1210 = 2394, 1184 and 1210 form an amicable pair.

c. The prime factorizations of 79750 and 88730 are 79750 = 2 - 53 - 11 - 29 and 88730 = 2-5-19
467. Hence o(79750) + o(2)o(5%)o(11)0(29) = 3 - 156 - 12 - 30 = 168480 and similarly o(88730) =
o(2)0(5)0(19)0(467) = 3 - -6 - 20 - 468 = 168480. Since o(79750) = o(88730) = 79750 + 88730 =
168480 it follows that 79750 and 88730 form an amicable pair.

7316.a. o (27(3-2""1 —1)(3-2" — 1)) = (21 -1)3.27"1.3.27 = (2711 -1).32.22" Land ¢ (27(32 - 2271 — 1))
= (271 —1).32.22n-1 Als027(3-2771 —1)(3-2" — 1) +27(32.22n—1 1) = 2n(3292n—1 _3.9n—1 _
3.9n + 1 + 322277,71 _ 1) — 2n(3222n71 —3. 27171(1 + 2) + 3222n71) — 2n32(22n71 _ 2n71 + 227171) —
2n32(22n _ anl) _ 22n7132(2n+1 _ 1)

b. We find the following amicable pairs, (220, 284), (17296, 18416), (9363584, 9437056), corresponding
ton = 2,4, and 7 in the formulae in part (a).

7.3.17. Since 120 = 23-3-5 and o is multiplicative, we have ¢(120) = 0(23-3-5) = 0(23)0(3)0(5) = 15-4-6 =
360. Since ¢(120) = 360 = 3 - 120, it follows that 120 is 3-perfect.

7.318. 0(2°3%5-7) = Z=L. 321 (54 1)(7 + 1) = 120960 = 4 - 30240.
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8 5_ 3_
7.319. 0(273%5-7-112-17-19) = 2= - 2L 54+ 1)(T+ DA 17+ 1)(19+1) = 255-121-6-8-133-18-20 =
5 - 14182439040.

7.3.20. Suppose that n is 3-perfect and 3 does not divide n. Then o(3n) = ¢(3)o(n) =4-3n =12n =4 3n.
Hence 3n is 4-perfect.

7.3.21. Suppose that n is 3-perfect and 3 does not divide n. Then o(3n) = 0(3)o(n) =4-3n =12n =4- 3n.
Hence 3n is 4-perfect.

7.3.22. For example, 0(2433527) = o(75600) = 307520 > 4 - 75600.
7.3.23. For example, o(2634527211 - 13) = ¢(908107200) = 4561786152 > 5 - 908107200.

7.3.24. The argument in the solution to Exercise 6 shows that a multiple of ak-abundant number is k-abundant.
So it suffices that there are k-abundant numbers for arbitrarily large k. Let n, = szl p; be the product

of the first r primes. Then lim,,_. %T) =limy oo [ [}, (1 + pi) =300, F =00
7.3.25. Wehave o(0(16)) = o(31) = 32 = 2 - 16. Hence 16 is superperfect.
7.3.26. We compute o (¢(27)) = 0(2¢71 — 1) = (291 — 1) + 1 = 297! = 2. 29, Therefore n is superperfect.

7.3.27. Certainly if r and s are integers, then o(rs) > rs+r+s+1. Suppose n = 27t is superperfect with ¢ odd
andt > 1. Then 2n = 297t = o (0(29t)) = o (297 — 1) o(t)) = (271 = D)o(t) + (297 = 1)+ 0o(t) + 1 >
2015 (t) > 29+t(t +1). Thent > t + 1, a contradiction. Therefore we must have n = 29, in which case
we have 2n = 297! = 5 (0(2%)) = o (297! — 1) = ¢(2n — 1). Therefore 2n — 1 = 277! — 1 is prime.

7.3.28. Suppose o (o(p?)) = 2p?, then o(p® + p + 1) = 2p®. If p> + p + 1 has three distinct prime factors, then
for one of them we have o(¢%) = 2, which is impossible. Therefore p? +p+1 = ¢%r® with ¢ and r primes.
Then o(q%r®) = 2p%,50¢* +---+q+1=pandr®+---+7r+1 = 2p. Thenp = 1 (mod ¢q) and p? =
p=1=¢%"=0(modgq),s03 =0 (modgq)soq=3. Butp?+p+1=3(mod?9)since p =1 (mod 3),
therefore a = 1 and o(¢%) = 0(3) = 4, a contradiction.

7.3.29.a. By Theorem 7.12 any divisor of M7 = 127 must be of the form 14k + 1 where k is a positive integer.
There are no primes of this form less than /127 so M7 = 127 is prime.

b. By Theorem 7.12 any divisor of M;; = 2047 must be of the form 22k + 1 where k is a positive inte-
ger. The only prime of this form less than /2047 is 23. Since 23 does not divide 2047, it follows that
My, = 2047 is prime.

¢. By Theorem 7.12 any divisor of M7 = 131071 must be of the form 34k + 1 where k is a positive in-
teger. The primes of this form less than /131071 < 363 are 103, 137, 239, and 307, but none of these
divide 131071. Hence M;7 = 131071 is prime.

d. By Theorem 7.12 any divisor of My = 536870911 must be of the form 58k + 1 where k is a positive
integer. We first note neither that 59 nor 107 divides 536870911. However, 233 = 58 - 4 = 1 does
divide 536870911 since 536870911 = 233 - 2304167. Hence Mg is not prime.

7.3.30.a. Note that M3 =23 —1 =7 Wehaver, =4,andr, =42 -2 =14 =0 (mod 7). Since r, = 14 =
0 (mod 7) if follows that M3 = 7 is prime.

b. Note that M7 =27 — 1 = 127. wehaver; = 4,7, =42 —2 = 14 (mod 127),r3 = 142 -2 = 194 =
67 (mod 127), ry = 672 — 2 = 4487 = 42 (mod 127), r5 = 422 — 2 = 1762 = 111 (mod 127),and r¢ =
1112 — 2 = 12319 = 0 (mod 127). Since r7_1 = 75 = 0 (mod M), it follows that M; = 127 is prime.

c. My =21 —1 =2047. Thenr; = 4,79 = 16 —2 = 14,73 = 196 — 2 = 194,74 = 194% — 2
788 (mod 2047),rs = 7882 — 2 = 701 (mod 2047),7¢ = 7012 — 2 = 119 (mod 2047),7; = 1192
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1877 (mod 2047),rs = 1877% — 2 = 240 (mod 2047),r9 = 2402 — 2 = 282 (mod 2047), 19 = 282% —
2 =1736 # 0 (mod 2047), therefore 2047 is not prime.

d. M13 = 8191. r = 4, T9 = 14,T3 = 194,7‘4 = 4870,7‘5 = 3953,’/‘6 = 5970,7"7 = 1857,7“8 = 36,7’9 =
1294, r10 = 3470, 11 = 128, T12 = O,SO M13 is prime.

7.3.31. M,(M,+2) = (2"—1)(2"+1) = 22" —1. If 2n+ 1 is prime then ¢(2n+1) = 2nand 2*” = 1 (mod 2n+
1). Then (2n + 1) | 22" — 1 = M,,(M,, + 2). Therefore (2n + 1) | M,, or (2n + 1) | (M,, + 2).

7.3.32.a. Suppose that n is an odd perfect number with n = pf'pk2 ... pkm. Then o(n) = 2n = H;n:1 a(p?j ).

Since n is odd it follows that 2n = 2 (mod 4) and consequently o(n) = 2n is divisible by 2 but
not by 4. Hence o(n) = 2 (mod 4)). It follows that exactly one of the terms J(pfj ) is even and not
divisible by 4 and all other terms are odd. We now relabel the terms so that o(ph) is the even term.

Suppose that p; = —1 (mod 4). Note that o(p}) =1+ p; +p? +- - +pf =1+ (=1) + 1+ +
(—=1)* = 0 (mod 4) if k; is odd and 1 (mod 4) if k; is even. It follows that p; is not congruent to
—1 modulo 4 and that all primes congruent to —1 modulo 4 occur to an even power in the prime
factorization of n.

Now suppose that p; = 1 (mod 4). We have o(pf*) = 1+p;+p2+---+pF =14+1+12 4 +
1% = k; = 1 (mod 4). We know that p; = 1 (mod 4) and that o(p¥") = 2 (mod 4). It follows that
k; =1 (mod 4). For the primes p; in the factorization other than p, that are congruence to 1 modulo
4 it follows that k; = or 2 (mod 4) since o(k;) = k; + 1 is odd. Summarizing we see that the prime
factorization of n consists of a prime congruent to 1 modulo 4 to a power which is congruent to 1
modulo 4 and a product of even powers of other odd primes. It follows that n = p®m? where p is
prime and p = a = 1 (mod 4).

b. We see from part a) that n = p®m? where p is prime and p = a = 1 (mod 4). It follows that p® =
1! =1 (mod 4) and since m is odd, m? = 1 (mod 4). Hence n = 1 (mod 4).

7.3.33. Since m is odd, m?* = 1 (mod 8), so n = p®m? = p® (mod 8). By Exercise 32 (a), a = 1 (mod 4), so
p® = p**p = p (mod 8),since p** is an odd square. Therefore n = p (mod 8).

7.3.34. Letn = 3°5°7¢[[p}. Since 3 and 7 # 1 (mod 4), by Exercise 32 (a), we must have a,c > 2. Then 2 <

13-6-57 __ o(3%:5-7%) < o(n)
9.5.49 —  32.5.72 — n

= 2, a contradiction.

7.3.35. First suppose that n = p* where p is prime and a is a positive integer. Then o(n) = 2 <E—- =

=12 < % < 32 50 that o(n) # 2n and n is not perfect. Next suppose that n = p®q® where a and

r
at+1l_q qh+171 a+1_b+1 n

. — pq _
=T —1 < D=1 — G-D(¢=1)

p
b are primes and a and b are positive integers. Then o(n) = £

(17l;l(1fl) < (%)”(%) = 122 < 2n. Hence o(n) # 2n and n is not perfect.
7.3.36. Suppose n = p*q’rc. Then # < ";’;q:) = (pﬂ)(‘grl)(”l). If (p,q,r) is not (3,5,7) or(3,5,11), then

o(n)

the last expression is < 2 and so =~ < 2 and n is not perfect. Exercise 28 eliminates (3,5, 7). Exercise

32 (a) gives that if n = 325°11¢, then a, ¢, > 2. So # < % < 2.

7.3.37. By Exercise 11 of Section 7.2 it follows that the product of all positive divisors of an integer n is n -l

If the product of all divisors of n other than n is n? then n1 = n? so that @ = 3. This implies that
7(n) = 6. The integers with 7(n) = 6 are those of the form p® and p*q where p and ¢ are primes.

7.3.38.a. Suppose that n = n; is perfect. Then ny = o(n) —n =2n—n =n, so thatn; = o(n;_1) —nj_1 =
o(n) —n=nforall j > 1. It follows thatn =n; =ng =ng =---.

b. Suppose that m and n are an amicable pair. Then o(m) = o(n) = m +n. If ny = m then ny, =
o(ny) —ny = (m+n) —m =n. We see that ng = g(ny) —ng = o(m) —m = (m+n) —n =m. We
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7.4. MOBIUS INVERSION 129
see that the terms n; are periodic, with nl = m, ny = n, ng = m, n4y = n, and so on.

c. Letn; = 12496 = 2% -11-71. Then ny = o(ny) — ny = 26784 — 12496 = 14288, since (12496) =

o(24)0(11)0(71) = 31 - 12 - 72 = 26784.

Iterating, we find that ng = o(ng) — ny = 29760 — 14288 = 15472, since 14288 = 24.19-47 and
0(14288) = 0(24)5(19)0 (47) = 31 - 20 - 48 = 29760.

Continuing, we see that ny = o(n3) — n3 = 30008 — 15472 = 14536 since 15472 = 2% - 967 and
o(15472) = 0(245(967) = 31 - 968 = 30008.

Carrying the computation to the next stage, we see that n5 = o(n4) — ns = 28800 — 14536 =
14264. Since 14536 = 23 - 23 - 79 and 0(14536) = 0(23)0(23)0(79) = 15 - 24 - 80 = 28800.

The next iteration shows that ng = o(ns) — ns = 26760 — 14264 = 12496. Since 14264 = 23 - 1783
and 0(14264) = o(23)0(1784) = 15 - 1784 = 26760.

Since ng = ny, it follows that the sequence ny,n2,n3,n4 - - - is periodic with period equal to five,
withnj =MNj—5 fOI'j = 6,7,8,-".

7.3.39. Suppose M,, = 2" — 1 = a*, with n and k integers greater than 1. Then a must be odd. If k = 2j, then
2" —1 = (a’)?. Since n > 1 and the square of an odd integer is congruent to 1 modulo 4, reduction of the
last equation modulo 4 yields the contradiction —1 = 1 (mod 4), therefore & must be odd. Then 2" =
a*+1=(a+1)(a*t—a*"2+...+1). Soa+1 = 2™ for some integer m. Then 2" — 1 = (2™ — 1)*. Now
n > mk so reduction modulo 22™ gives —1 = —k2™ — 1 (mod 22™) or, since k is odd, 2™ = 0 (mod 22™),
a contradiction.

7.4. Mobius Inversion
7.4.1.a. Since 12 = 223 is not squarefree, ;(12) = 0.

b. Since 15 = 3 - 5 is the product of two primes, x(15) = (-1)? = 1.
c. Since 30 =2 -3 -5 is the product of three primes, 11(30) = (—1)3 = —1.
d. Since 50 = 2 - 57 is not squarefree, (50) = 0.
e. Since 1001 = 7- 11 - 13 is the product of three primes, 1(1001) = (—1)3 = —1.
f. Since2-3-5-7-11-13is the product of six primes, y(2-3-5-7-11-13) = (-1)% = 1.
g. Since 4|10!, we know 10! is not squarefree, so we have £(10!) = 0.
7.4.2.a. Since 33 = 3 - 11, the product of two primes, x(33) = (-1)? = 1.
b. Since 105 =357, we have p(105) = (—1)3 = —1.
c. Since 110 =2-5-11, we have x(110) = (-1)3 = —1.
d. Since 2?2 | 740, we have x(740) = 0.
e. Since 3? | 999, we have 1(999) = 0.
f. Since3-7-13-19- 23 is the product of five distinct primes, (3 -7-13-19-23) = (—1)° = —1.

g. Letn = 10!/(5!)%. The highest power of 2 dividing the numerator is 2°. The highest power of 2
dividing 5! is 23 so the highest power of 2 dividing the denominator is 26. Therefore 22 | n, and so

wu(n) = 0.

7.4.3. Since 4 divides 100, 104, and 108, the value of u for each of these is 0. Since 101,103, 107, and 109 are
prime, u for each of these values is —1. Then p(102) = p(2-3-17) = (—1)> = =1, u(105) = u(3-5-7) =
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130 7. MULTIPLICATIVE FUNCTIONS
(—1)% = —1, u(106) = p(2- 53) = (—1)2 = 1, and p(110) = (2 5-11) = (~1)? = —1.

7.4.4. Since 4 divides 1000, 1004, and 1008, the value of i1 at these numbers is 0. From Exercise 1(e), u(1001) =
—1. Since 1002 = 2 - 3 - 167, we have 1(1002) = —1. Since 1003 = 17 - 59, we have 1(1003) = 1. Since
1005 =3 -5 67, we have ;(1005) = —1. Since 1006 = 2 - 503, we have 1(1006) = 1. Since 1007 = 19 - 53,
we have ¢(1007) = 1. Since 1009 is prime, we have £(1009) = —1. Since 1010 = 2 -5 - 101, we have
1£(1010) = —1.

7.4.5. Such n must be the product of an even number of distinct primes. The only product of zero primes is
1. The products of 2 primes which are less than or equal to 100,are2:-3=6,2-5=10,2-7=14,2-11 =
22,2-13=26,2-17=34,2-19=38,2-23=46,2-29=058,2-31=62,2-37=174,2-41 =82,2-43 =
86,2-47=94,3-5=15,3-7=21,3-11=33,3-13=39,3-17=51,3-19=57,3-23 =69, 3-29 = 87,
3-31=93,5-7=35,5-11=55,5-13=65,5-17=285,5-19=95,7-11 = 77,and 7 - 13 = 91. Since the
product of the four smallest primes is 210 > 100, the above list is exhaustive.

7.4.6. The product of the 4 smallest primes is 210, so we need only find those integers with exactly one or
three distinct prime factors. The primes between 100 and 200 are given in the table in the appendix. The
integers in this range which are products of three primes are: 102, 105, 110, 114, 130, 138, 154, 165, 170,
174, 182, 186, 190, and 195.

7.4.7. Starting with the values p(1) = p(6) = p(10) =1, p(2) = = —1,and p(4) = u(8) =
#(9) =0, we compute M(1) =1, M(2) =1+ (-1) =0, M3) =0+ (-1)=—-1, M(4) =-14+0= -1,
MGB)=—1+(—1)=-2,M(6)=-2+1=—1,M(7)=—1+—1= = —240=—-2 M(9) =
—2+0=-2and M(10) = —2+1=—1,

7.4.8. If pisan odd prime between 1 and 50, then both ;(p) = —1 and u(2p) = 1 are in the sum, and add to
zero, so we need not consider these numbers in the sum. We also need not consider numbers which are
not squarefree. There are 10 primes between 50 and 100 which contribute, collectively —10 to the sum.
This leaves only 1,2, 15,21, 30, 33, 35, 39, 42, 51, 55, 57, 65, 66, 69, 70, 77, 78, 85, 87, 91, 93, and 95. But 16 of
these are the product of two primes, so they contribute 16 to the sum. This leaves 1,2, 30,42, 66, 70, and
78. The last 5 of these are the products of 3 primes, and so contribute —5 to the sum. Then we have
M(100) = pu(1) +p(2) —10+16 —5=1—-1+4+1=1.

7.4.9. Since p(n) is 0 for nonsquarefree n, 1 for n a product of an even number of distinct primes and —1 for
n a product of a odd number of distinct primes, the sum M(n) = Y, u(i) is unaffected by the non-
squarefree numbers, but counts 1 for every even product and —1 for every odd product. Thus M (n)
counts how many more even products than odd products there are.

7.4.10. Sincen,n+1,n+2,n+ 3 form a complete residue system modulo 4, one of them is divisible by 4, and
so not squarefree. Therefore one of the factors in p(n)u(n+1)pu(n+2)u(n+3) is 0, making the product 0.

7.4.11. For any nonnegative integer k, the numbers n = 36k + 8 and n + 1 = 36k + 9 are consecutive and
divisible by 4 = 22 and 9 = 32 respectively. Therefore 1(36k + 8) + (36k +9) =0+ 0 = 0.

7.4.12. If nis a solution to the system of congruences n = —1 (mod 4),n = 0 (mod 9),n = 1 (mod 25), then
4| (n+1),9 | nand 25| (n — 1), and none of n — 1,n, or n + 1 is squarefree, making each term of the
sum 0. Since the Chinese remainder theorem ensures infinitely many solutions, all n = 351 (mod 900),
there are infinitely many such n.

7.4.13. Since every multiple of 4 is nonsquarefree, we can have at most 3 consecutive integers for which
takes on nonzero values.

7.4.14. We can have pi(n) = 0 for arbitrarily long strings of integers. To see this, let £ be a positive integer and
p; be the ith prime. By the Chinese remainder theorem, there is a solution n to the system of congru-
encesn =0 (mod p?),n = —1 (mod p3),n = —2 (mod p3),...,n = —k + 1 (mod p?). Then for every i =
0,1,....k—1,we havep?Jrl | n+1, and so none of the numbers n,n+1,n+2,...,n+k—1is squarefree.
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Hence  takes on the value 0 for all of them.

7.4.15. Let h(n) = n be the identity function. Then from Theorem 7.7 we have h(n) =n =3_;, ¢(n). Then
by the Mobius inversion formula, we have ¢(n) = >, p(d)h(n/d) = >y, p(d)(n/d) =n3_,,, n(d)/d,
as desired.

74.16.a. Let F(n) = n for all n. Then we have F(n) = >_,, ¢#(n/d). By the Mobius inversion formula
we have ¢(n) = 3=, u(d)F(n/d). The divisors of p' are 1,p,p?, ..., p' of which only 1 and p are

square-free so we have ¢(p') = X4 u(p!)F(p' /p7) = n(D)F (') + p(p) F(p' 1) = pt — pt1.

b. Since F' as defined in part (a) is multiplicative, and since p is multiplicative, we have ¢ = p * F'is
also multiplicative by Exercise 41 in Section 7.1.

7.4.17. Since p and f are multiplicative, then so is their product i f, by Exercise 46 of Section 7.1. Further, the
summatory function 3, ,, 1(d) f(d) is also multiplicative by Theorem 7.17. Therefore it suffices to prove
the proposition for n a prime power. We compute >, . 1(d) f(d) = p(p®) f(p®) + pp® D fp* )+ +
w(p)f(p) + p(1) f(d). But for exponents greater than 1, u(p?) = 0, so the above sum equals x(p)f(p) +
w(D)f(1) = —f(p) + 1, as desired.

7.4.18. Letn = pi'py*---pi* be the prime power factorization for n. Using f(n) = n in Exercise 17, we have

2 djn d(d) = [T, (1= py).

7.419. Here we let 1/n play the role of f(n) in the identity in Exercise 17. This gives }_,, u(d)/d =

Hle (1 —1/p;). We might note that this resembles the formula for ¢(n), indeed, it equals ¢(n)/n. Com-

pare Exercise 15.

7.4.20. Letn = pi'ps*---pi* be the prime power factorization for n. Using f(n) = 7(n) in Exercise 17, we

have 3, p(d)(d) = [Ti—, (1 — 7(pi) = [T1=, (1 = 2) = (-1)*.

7.4.21. Here we let o play the role of f in the identity. Then the sum equals H§=1 (1—0o(py)) H§=1 (1—(p; +
1)) = H§:1 Di-

7.4.22. 1If n is prime, then [],, u(d) = p(1)p(n) = 1(~1) = —1. If s* | n for some s > 1, then p(s*) = 0
appears in the product, making the whole product 0. Finally, if n = pips - - - pg, then [] djn u(d) = 1-

[, wwi) - 11, s w(pipj) - - - (p1p2 - - - px). The first of these products contributes k (—1)s to the whole

k
2

tributes (’f) (—1)s to the product. Therefore, we need only count the number of (—1)s in the product,

namely, (}) + (§) + (§) + - -. By Exercise 6 of Appendix B, this last sum is 2°~!, which is even. (If k =

1, then n is prime.) Since the product consists of an even number of (—1)s, it must equal 1.

product. The second product contributes (;;) (—1)s to the product, and in general, the ith product con-

7.4.23. Since both sides of the equation are known to be multiplicative, (see Exercise 35 in Section 7.2) it suf-
fices to prove the identity for n = p“, a prime power. On one hand we have 3= ;. p*(d) = p?(p)+4*(1) =
1 + 1 = 2. On the other hand, we have w(p®) = 1, so the right side is 2! = 2, which equals the left side.

7.4.24. Exercises 52 and 53 in Section 7.1 show that g(n) = 2¢(") is multiplicative. Then by the M&bius inver-
sion formula, we have p?(n) = g Md)g(n/d)) =>4, w(d)2¢/4)  as desired.

7.4.25. Let X play the role of f in the identity of Exercise 17. Then the left side equals H?Zl(l — Apj)) =

]_[?:1(1 — (—1)) = 2*. But w(n) = k by definition, so we’re done.

7.4.26. Since \(n) and 2¢(™) are multiplicative, so is their Dirichlet product, which is the sum in question.
Therefore it suffices to prove the identity for n = p®, where p is prime. Then we have }© ;,, A(n/ d)2¢(d) =

Mo Ap 220 = A(p)2¢ ) 4 07 (~1)7772t = (=1)7(1) + 2307, (~1)*~ which equals (~1) +
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132 7. MULTIPLICATIVE FUNCTIONS
2(1) =1lifaisodd, and 1 + 2(0) = 1 if a is even. This completes the proof.
7.4.27. We compute v+ v(n) =y, p(d)v(n/d) =>4, 1(d) = «(n), by Theorem 7.15.

7.4.28. Suppose f and g are multiplicative functions and f = ) din g(d) = g x v. From Exercise 42 in Section
7.1 we can Dirichlet multiply on both sides of the equation by y, which is the inverse for v, and get
f*p=g, thatis, g(n) =3>_,, u(d)f(n/d), which is the M8bius inversion formula.

7.4.29. Since v(n) is identically 1, we have F(n) =3, f(d) = >_,,, f(d)v(n/d) = f *v(n). If we Dirichlet
multiply both sides by p, we have F x = fxv*u= f*.= f. as desired.

7.4.30. Letn =p{' ---pir. Since A(d) = O unless dis a prime power, wehave 3, A(d) = >7_; 3=y ,= A(d) =
doim1 g Apy) = 20 D5k log(pi) = 320y ailog(pi) = 305, log(py') = logn.

7.4.31. From the Mobius inversion formula, we have A(n) = _,, u(d)log(n/d) =34, p(d)(logn —logd) =

5 1(d) 10g(1) — 31 () 10g(d) = Log 15 () — S g () log(d) = log mar() — 3" . 1(d) log(d) =
= 2_ajn 1(d) log(d), since v(n) = 0if nisnot 1, and logn = 0 if n = 1.
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CHAPTER 8

Cryptology

8.1. Character Ciphers

8.1.1. We translate ATTACK AT DAWN into the corresponding numbers. We obtain 0191902100193 0
22 13. When encrypting this message using the Caesar cipher we obtain the numbers 3 22 22 3513 3 22
6 3 25 16. Translating this into letters give DWWDF NDWGD ZQ.

8.1.2. Using Table 8.2 we find L in the ciphertext corresponds to I in plaintext. Continuing in this manner
we have ICAME ISAWI CONQU ERED.

8.1.3. We first translate the message SURRENDER IMMEDIATELY into the corresponding numbers. We
obtain 18 2017174133417 812124 3 8 019 4 11 24. We encipher each of these numbers using the
transformation C' = 11P + 18 (mod 26). This gives 8 423 23 105251023 220201025218 1910 9 22.
Translating back to letters gives IEXXK FZKXC UUKZC STKJW.

8.1.4. First we convert each letter of the plaintext to its corresponding number, to get 19, 7, 4, 17, 8, 6, 7, 19,
2,7, 14, 8, 2, 4. Then we apply the affine transformation C' = 15P + 14 (mod 26) to each number. For
instance 15 - 19 + 14 = 13 (mod 26). Continuing in this fashion, we get 13, 15, 22, 9, 4, 0, 15, 13, 18, 15,
16, 4, 18, 22 which are the numberical equivalents to NPWJE APNSP QSW.

8.1.5. Since 5 is an inverse for 21 modulo 26, we have P = 5(C — 5) = 5C + 1 (mod 26) as the deciphering
transformation. Converting the ciphertext to numbers gives us 24,11, 5, 16, 23, 15,2, 17, 8,19. We apply
the deciphering transform to each number, for instance, 5 - 24 + 1 = 17 (mod 26). Continuing in this
fashion gives us 17, 4, 0, 3, 12, 24, 11, 8, 15, 18 which are the numerical equivalents of READM YLIPS.

8.1.6. Since 3-9 = 27 = 1 (mod 26),9 is an inverse for 3. Then we have p = 9(C — 24) = 9C — 9(24) =
9C — 9(—2) = 9C + 18 = 9C — 8 (mod 26). Converting the ciphertext to numbers gives: 17 19 14 11 10
19 14 8 10. Applying the transformation P = 9C — 8 (mod 26) to each number gives: 15714134 714
12 4 and converting back to letters: PHONE HOME.

8.1.7. Since E is the most common letter suppose that E is sent to Q. Since E corresponds to 4 and Q corre-
sponds to 16, we have 4 + k = (mod 16). Hence k = 12.

8.1.8. In the ciphertext V occurs 7 times, which is more than any other letter. We guess that V corresponds
to E since E is the most common letter in English text. This implies that 21 = 4 + k£ (mod 26), or that
k = 17. If this is correct, deciphering is carried out using the relationship P = C — 17 = C' + 9 (mod 26).
Attempting to decipher, we obtain THEVA LUEOF THEKE YISSE VENTE EN. Hence, the plaintext mes-
sage was ”"The value of the key is seventeen.”

8.1.9. By counting letter frequencies, we find that M is the most common letter, occuring 8 times. We guess
that M stands for E, which would be a shift of 8. We subtract 8 from each letter and get ANIDE AISLI
KEACH ILDNO NEISB ETTER THANY OUROW NFROM CHINE SEFOR TUNEC OOKIE

8.1.10. Since E and T are the most common letters, and E=4, T=19, Q=16, and X=23, we suspect that 23 =
a4 + b (mod 26), and 16 = a19 + b (mod 26), which has solution a = 3,b = 11.

133
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134 8. CRYPTOLOGY

8.1.11. Since E=4 and T=19 are the most common letters in plaintext and W=22 and B=1, we have 22 = a4 + b
and 1 = al9 + b (mod 26). By Theorem 3.14, the solution to the systemis a = 9,b = 12 (mod 26).

8.1.12. We find that ] occurs 11 times followed by F at 7 times and O at 5 times. Our first guess is J — E and
F — T. Hence we solve 9 = a4 + b,5 = al9 + b (mod 26). This yields a = 24, but (24,26) = 2 # 1 so
wetry J — Eand O — T. We need to solve 9 = a4 + b and 14 = a19 + b (mod 26). Therefore P= 3C +
3 (mod 26) and we have WEUSE FREQU ENCIE SOFLE TTERS TODEC RYPTS ECRET MESSA GES.

8.1.13. We count the frequencies of letters in the ciphertext and discover that A, B, T, and N appear most of-
ten, namely 6 times each. Let P = D(C) = ¢C + d (mod 26). Then D(A) = d is one of A, E, N, or S.
From which we deduce that d = 0,4, 13 or 18. Also D(B) = ¢ + d, must be another one of these num-
bers. Since A, B, T, N is not a simple shift of A, E, N, S, we see that c is not 0. Assuming that d is also not
zero, the possible pairs for (c,d) are (9,4), (14,4), (5,13), (17, 13), (12, 18), and (21, 18). We try various of
these and discover that P = 5C + 13 is the deciphering transformation. Applying this to the ciphertext
gives us THISM ESSAG EWASE NCIPH EREDU SINGA NAFFI NETRA NSFOR MATIO N

8.1.14. A frequency count shows that ] occurs 12 times, F occurs 7 times and O occurs 5 times. Our first guess
is that ] is the ciphertext for E and F is the ciphertext for T. But when we solve for ¢ we get an even num-
ber, which is not relatively prime to 26, so we guess that O is the ciphertext for T instead. Then we solve
9=ad+0b,14 =0al9+b (mod 26) and get a = 9,b = 25. Then we solve C = 9P + 25 (mod 26) for P and
get P = 3C + 3 (mod 26). This decrypts the message as follows: WEUSE FREQU ENCIE SOFLE TTERS
TODEC RYPTS ECRET MESSA GES.

8.1.15. Wehave C = 17(5P 4 13) + 3 = 85P + 224 = 7P + 16 (mod 26).

8.1.16. We have C = c(aP + b) + d = acP + bc + d (mod 26).

8.2. Block and Stream Ciphers

8.2.1. We first translate the letters of the message DO NOT OPEN THIS ENVELOPE into the correspond-
ing numbers, grouping letters into blocks of six. This gives 3141314 191415413197 818413 21
411 14 15 4. The letters of the word SECRET, which is the key, translate to 184217419. For each block
P1P2P3PaAP5PeWE find c; = p; + kh (mod 26) where 0 <g¢ < 25 where kl = 18,k2 = 4, k’3 = 2, k’4 = 17,
ks =4,and ks = 19. This gives 211815523778 1510111108 1512 8 4 6 19 6. Translating this back to
letters gives VSPFXH HIPLKB KIPMIE GTG.

8.2.2. We have p; = ¢; — k; (mod 26), so we subtract the numerical equivalents of the letters SECRET from
the numerical equivalents of the letters of the ciphertext respectively. SECRET =18 4217 4 19. The
cyphertextis 2211721811 02569126 10125 21. Subtracting the key gives 42315111418 8214
18 813 18 8 3 4, which has letter equivalents EXPLOS IVESIN SIDE.

8.2.3. The numerical equivalents for the key TWAIN are 19 22 0 8 13. The numerical equivalents for
ANENGLISHMAN are 0 13 4 13 6 11 8 18 7 12 0 13. Adding the key numbers to the correspond-
ing first five plaintext numbers yields 19 9 4 21 19, (mod 26) which stand for TJEVT. Adding the
key numbers to the corresponding next five plaintext numbers yields 4 4 18 15 25, (mod 26) which
stand for EESPZ. Adding the numbers for TA to the last two letters yields TJ. Continuing in this fash-
ion we find the cipher text to be TJEVT EESPZ TJIAN IARAB GSHWQ HASBU BJGAO XYACF XPHML
AWVMO XANLB GABMS HNEIA TIEZV VWNQF TLEZF HJWPB WKEAG AENOF UACIH LATPR
RDADR GKTJR XJDWA XXENB KA

8.2.4. The numerical equivalents for the key TWAIN are 19 22 0 8 13. The numerical equivalents for
PACWH EZUAR are 15 0 2 22 7 4 25 20 0 17. We substract successively each number of the key
from the cipher text numbers and get22 4 2 14 20 11 3 20 18 4, (mod 26) which stands for WECOU
LDUSE. Continuing in this fashion we discover the plaintext to be WECOU LDUSE UPTWO ETERN
ITIES INLEA RNING ALLTH ATIST OBELE ARNED ABOUT OUROW NWORL DANDT HETHO
USAND SOFNA TIONS THATH AVEAR ISENA NDFLO URISH EDAND VANIS HEDFR OMITM
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8.2. BLOCK AND STREAM CIPHERS 135
ATHEM ATICS ALONE WOULD OCCUP YMEEI GHTMI LLION YEARS.

8.2.5. Let n be the key length, and suppose k1, k2, . .., k,, are the numerical equivalents of the letters of the
keyword. If p; = p; are two plaintext characters separated by a multiple of the key length, when we
separate the plaintext into blocks of length n, p; and p; will be in the same position in their respective
blocks, say the mth position. So when we encrypt them, we get ¢; = p; + kn, = pj + ks = ¢; (mod 26).

8.2.6. We see that the initial UCY is repeated 9 letters later. Likewise with the BS in the second row. The HF
in the fourth block is repeated 21 letters later, so we guess that the period is (9,21) = 3. A frequency
count of letters in the 1st, 4th, 7th, etc. positions givesus 6 U’s, 5 F'sand 4 B'sand T’s. Since ' — E' = 15
and U — F' = 15, we are quite sure that ' — E and U — T, thatis, [; = B. The other two cases are not so
clear. A frequency count of letters in the 2nd, 5th, 8th, etc positions gives us 6 C’s, 6 H’'s and 4 V’s. None
of these have a difference of 15, so we guess that one of E or T doesn’t appear among C, H, and V. So we
have 6 reasonable guesses to try. C — E,H — E,V — E,C —T,H — T,and V — T. Each of these 6
cases determines a different second letter, namely E, Z, T, T, O, and A respectively. It is unlikely that Z
or T would follow the first letter, which we believe to be T, so we easily discard three of the cases. A fre-
quency count of letters in the 3rd, 6th, 9th, etc positions gives us 6 B’s, 5 O’s and 4 K’s. We try, in order,
B — E, which implies 3 =X, with each of the three remaining cases for /5, and discover that H — T,
which corresponds to Iy = O, is the correct choice. Therefore the key is BOX and the plaintext is TOBEO
RNOTT OBETH ATIST HEQUE STION WHETH ERTIS NOBLE RINTH EMIND TOSUF FERTH ESLIN
GSAND ARROW SOFOU TRAGE OUSFO RTUNE.

8.2.7. Searching the ciphertext, we find two occurrences of KMK which are 42 positions apart, and two oc-
currences of PWQW which are 39 positions apart, so we guess that the period is (42, 39) = 3. The index
of coincidence for the letters in positions 1, 4, 7,. . . is 0.064, the index of coincidence for the letters in po-
sitions 2, 5, 8,...is 0.072, and the index of coincidence for the letters in positions 3, 6, 9,...is 0.068. Since
these indexes are all about 0.065, we are sure that the period is 3. Counting frequencies of the letters in
positions 1,4, 7,..., we find 9 R’s and 7 C’s, and since R — C' = 15, we suspect that R — T'and C' — E,
which implies that /; = Y. Counting frequencies for the letters in positions 2, 5, 8,..., we find 11 E’s, 6
M’s, 5 W’s and 5 I's. We seek a difference among these letters which is the same as a difference among
the commonly occurring letters E, T, N, R, I, and O. We find that M — I = 4and £ — I = 4, so we suspect
that M — I and I — E, which implies that [ = E. Counting frequencies for the letters in positions 3, 6,
9,...we find 8 S’s,7 W’s and 6 K’s. We try successively assuming that each of these has plaintext E, and
discover that W — E yields a sensible message with key YES. The plaintext is MISTA KESAR EAPAR
TOFBE INGHU MANAP PRECI ATEYO URMIS TAKES FORWH ATTHE YAREP RECIO USLIF ELESS
ONSTH ATCAN ONLYB ELEAR NEDTH EHARD WAYUN LESSI TISAF ATALM ISTAK EWHIC HA-
TLE ASTOT HERSC ANLEA RNFRO M.

8.2.8. Searching the ciphertext, we find two occurrences of GP which are 15 positions apart. We also find
two occurrences of WV which are 42 positions apart, so we guess that the period is (15,42) = 3. We
compute the indexes of coincidence for each of the three groups of letters and get 0.057, 0.053, and 0.095,
respectively, which shows that the period is likely 3. Counting frequencies of the letters in positions 1,
4,7,..,wefind 7 W’s, and 4 each of A, ] and P. Comparing the differences of these letters with the dif-
ferences of E, T, N, R, I and O (the most common plaintext letters) we see that P — J = 6and T'— N =
6, so we guess that P — T and J — N, which implies /; = W. Counting frequencies of the letters in po-
sitions 2, 5, 8,..., we find 7 X’sand 4 I’s. Since X — I = 15and T' — E = 15 we guess that X — T which
implies that [, = E. Counting frequencies of letters in positions 3, 6, 9,..., we find 9 F’'s and 8 P’s. Since
P —F =10and O — E = 10, we guess that P — O, which implies I3 = B. Using the key WEB, we find
the plaintext to be WEHAV EHEAR DTHAT AMILL IONMO NKEYS ATAMI LLION KEYBO ARDSC
OULDP RODUC ETHEC OMPLE TEWOR KSOFS HAKES PEARE NOWTH ANKST OTHEI NTERN
ETWEK NOWTH ATISN OTTRU E.

8.2.9. Searching the ciphertext, we find two occurrences of UPRW, which are 16 positions apart. We also
find two occurrences of UQ, which are 12 positions apart, so we guess that the period is (16,12) = 4.
We compute the indexes of coincidence for each of the four letter groups and get 0.059, 0.055, 0.058, and
0.043, which are all significantly greater than 0.038, so we believe the keyword has 4 letters. Counting
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frequencies of the letters in positions 1, 5, 9,..., we find 6 F's and 5 U’s, and since U — F' = 15 and
T — E = 15, we guess that U — T and so I; = B. Counting frequencies of the letters in positions 2, 6,
10,..., we find 6 Q’s, 5 P’sand 4 W’s. Since W — Q = O — I = 6, we guess that W — O, so that [y = I.
Counting frequencies of letters in positions 3, 7, 11,..., we find 6 E’'s and 5 V’s and R’s. Since V — E =
17 = E—N,weguess that V' — E, and so 3 = R. Counting frequencies of letters in positions 4, 8, 12,.. .,
we find 5 D’s, 4 K’s and 3 each of B, H, ], O, U, and W. (Since the index of coincidence for this group was
relatively small, we are not surprised at the more random-seeming distribution of letters.) After several
attempts we guess that W — T and so l4 = D. Using the keyword BIRD, we find the plaintext to be
IONCE HADAS PARRO WALIG HTUPO NMYSH OULDE RFORA MOMEN TWHIL EIWAS HOEIN
GINAV ILLAG EGARD ENAND IFELT THATI WASMO REDIS TINGU ISHED BYTHA TCIRC UMSTA
NCETH ATISH OULDH AVEBE ENBYA NYEPA ULETI COULD HAVEW ORN.

8.2.10. Searching the ciphertext, we find two occurrences of YLP which are 72 positions apart. We also find
two occurrences of RR which are 20 positions apart, so we guess that the period is (72,20) = 4. We
compute the indexes of coincidence for each of the four letter groups and get 0.060, 0.060, 0.053, and
0.066, which are all significantly greater than 0.038, so we believe the keyword has 4 letters. Counting
frequencies of the letters in positions 1, 5, 9,..., we find 7 P’s, and 6 E’s and Z’s. Since Z — P = 10 =
O — E, we guess that Z — O, and so I; = L. Counting frequencies of the letters in positions 2, 6,
10,..., we find 8 M’s, and 7 Q’s and W’s. Since W — M = 10 = O — E, we guess that W — O, and
so lo = I. Counting frequencies of the letters in positions 3, 7, 11,..., we find 6 each of ], W and Y.
Since these match the numerical pattern of E, R, and T, we guess that / — E and so I3 = F. Counting
frequencies of the letters in positions 4, 8, 12, ..., we find 11 I's and no other letter approaching that
frequency. We guess that I — E, so that [; = E. Using the keyword LIFE, we find the plaintext to be
EVERY DAYYO UMAYM AKEPR OGRES SEVER YSTEP MAYBE FRUIT FULYE TTHER EWILL STRET
CHOUT BEFOR EYOUA NEVER LENGT HENIN GEVER ASCEN DINGE VERIM PROVI NGPAT HY-
OUK NOWYO UWILL NEVER GETTO THEEN DOFTH EJOUR NEYBU TTHIS SOFAR FROMD IS-
COU RAGIN GONLY ADDST OTHE] OYAND GLORY OFTHE CLIMB.

8.2.11. Searching the ciphertext, we find two occurrences of ZEELN which are 40 positions apart. We also
find two occurrences of SUMHR which are 45 positions apart, so we guess that the period is (40, 45) =
5. The indexes of coincidence for the five letter groups are 0.073, 0.062, 0.062, 0.059, and 0.089, which
are all significantly greater than 0.038, so we are confirmed in our guess that the keyword has length 5.
Counting frequencies of the letters in positions 1, 6, 11,..., we find 5 W’s, S’'s and M’s, and 4 G’s and L’s.
Since W — L = E —T = 15 (mod 26), we guess that W — E, and so [; = S. Counting frequencies of
the letters in positions 2, 7, 12,..., we find 6 A’s, 5 T’s and 4 E’s. Since these letters should be frequent
in the plaintext, we suspect that A — A and that I, = A. Counting frequencies of the letters in posi-
tions 3, 8, 13,..., we find 5 K’'s and 5 Z’s, and since 7 — K = 15 = T — E, we guess that Z — T and
so I3 = G. Counting frequencies of the letters in positions 4, 9, 14,..., we find 5 T’s, 4 S’s and H'’s, and
3 E’s and N’s. Since these letters should be frequent in the plaintext, we suspect that A — A and that
l4 = A. Counting frequencies of the letters in positions 5, 10, 15,..., we find 7 R’s, 6 U’s and 5 G’s. Since
R—-G=FE—-T =15 we guess that R — EF and so Is = N. Using the keyword SAGAN we discover
the plaintext to be BUTTH EFACT THATS OMEGE NIUSE SWERE LAUGH EDATD OESNO TIMPL
YTHAT ALLWH OAREL AUGHE DATAR EGENI USEST HEYLA UGHED ATCOL UMBUS THEYL
AUGHE DATFU LTONT HEYLA UGHED ATTHE WRIGH TBROT HERSB UTTHE YALSO LAUGH
EDATB OZOTH ECLOW N.

8.2.12. Counting frequencies of the letters in positions 1,4, 7,..., we find 7 N’s, 6 L'sand 5 Y’s. Since N - Y =
15and T'— E = 15, we guess that N — T"and Y — E, which would make the first letter of the keyword
equalto N —T =13 —19 = 20 (mod 26) = U. Counting frequencies of the letters in positions 2, 5, §,.. .,
we find 13 W’s and no other frequencies nearly so high. We guess that W — E and so the second letter
of the keyword would be S. Counting frequencies of the letters in positions 3, 6, 9,..., we find 10 E’s and
8 T’s, which is typical for plaintext. We guess that the third letter of the keyword is A which has numer-
ical equivalent 0.

8.2.13. We first translate BEWARE OF THE MESSENGER into numerical equivalents. This gives 01 04 22 00
17 04 14 05 19 07 04 12 04 18 18 04 13 06 04 17. We now encipher each block. We have 3 -1+ 10-4 =
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17 (mod 26),9-1+47-4 =11 (mod 26);3-22+410-0 = 14 (mod 26),9-22+47-0 = 16 (mod 26);3 - 17 +
10-4 =13 (mod 26),9- 17+ 74 = 25 (mod 26);3- 14+ 105 = 14 (mod 26),9- 14+ 7-5 = 5 (mod 26);
3.19+10-7 =23 (mod 26),9-19+7-7 =12 (mod 26); 3-4+10-12 = 2 (mod 26), 9- 4+ 7-12 =
16 (mod 26); 3-4+10-18 = 10 (mod 26),9-4+7-18 = 6 (mod 26); 3-18 + 10 -4 = 16 (mod 26),
9.184+7-4=8 (mod26);3-13+10-6 =21 (mod26),9-134+7-6 =3 (mod26);3-4+10-17 =
0 (mod 26) ,9-4+ 7-17 = 25 (mod 26). This gives the enciphered values 17 11 14 16 132514 523 12 2
16 10 6 16 8 21 3 0 25. Translating back to letters givesRLOQNZOFXMCQKGQIVDAZ.

8.2.14. We break the plaintext into blocks of 2 and convert to numerical equivalents to get 3 14 13 14
1918 714 1419 197 412 418 184 136 4 17. Applying the transformation to each block
givesus207 2211 221 019 2317 74 1014 122 2420 21 3 17 which converted to
letters is UH WL CV AT XR HE KO MC YU CB DR.

8.2.15. The matrix 193 ;1 has inverse 293 12 > The numerical values of R D are 17 and 3. Then
9 16 17\ _ [ 19 . o
93 13 3 = 1 (mod 26), and 19 14 are the numerical values for TO. Continuing in

this fashion we have TO SL EE PP UR CH AN CE TO DR EA MX

8.2.16. The matrix ( ?g 235 ) has inverse ( 110 g ) The numerical values of U W are 20 and 22. Then

( 110 3 ) ( gg ) = ( 2 ) (mod 26), and 8 6 are the numerical values for IG. Similarly we have
DM— NO, NK— RE, QB— TH, and EK— IS. So the plaintext is IGNORE THIS.

8.2.17. RH NI TH and HE correspond to 177 13 8 19 7 and 7 4 respectively, so we have 177 183 ) =

a b 19 7 . 4 19 . . 19 7 a b\ _
( e d > ( ! ) (mod 26). Slnce< 19 19 > 1san1nversefor< 7y ) we have < e d > =
17 13 4 19\ _ 3 24
(7 8)(19 19)(24 25>(m°d26)'
8.2.18. a. If the pair P, P, remained unchanged, we have P, = 4P; + 5P, and P» = 3P; + P, (mod 26). Then
we have 3P; = 0 (mod 26) hence P; = 0 from the second congruence. Then the first congruence

gives 5P, = 0 or P, = 0 (mod 26). Since 0 0 corresponds to the block AA, this is the only unchanged
pair.

b. Asabove, we need to solve the congruences P, = 7P, + 17P, and P, = P; + 6P, (mod 26), or 6P; +
17P, = 0and P; + 5P, = 0 (mod 26). Subracting six times the second from the first gives —13P, =
0 (mod 26) which has solutions P, =0,2,4,...,24. Then P, = —5P, = 21P, (mod 26) and since 21
has a unique inverse modulo 26, we have a unique P> for each P;, so we have 13 solutions.

c¢. Asabove, we solve the congruences P, = 3P, + 5P, and P, = 6P; + 3P, (mod 26), or 2P, + 5P, =
0 and 6P; 4+ 2P = 0 (mod 26). If we take 3 times the first from the second we have —13P, = 0, so
P, =0,2,4,...,24 are all solutions. The second congruence implies 6P, = —2P, (mod 26) which

reduces to 3P; = —P, (mod 13). Three has an inverse mod 13, so given P,, we can solve for P;
modulo 13. This gives two solutions modulo 26, namely P, and P; + 13. Therefore we have 26 so-
lutions.

8.2.19. Wehave C = AP (mod 26). Multiplying both sides on the leftby A gives AC = A2P = IP = P (mod 26).
The congruence A% = I (mod 26) follows since A is involutory. It follows that A is also a deciphering
matrix.

8.2.20. The numerical equivalents of LME, WRI and ZYC are 11 12 4 22 17 8 and 25 24 2. The numerical
11 22 25

equivalents of THE, AND and THA are 1974 0133 and 1970. ThenC= | 12 17 24 | and P=
4 8 2
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19 0 19
7 13 7 |. Now note that det P = 0 (mod 26) so P doesn’t have an inverse. We can still find a
4 3 0
suitable A however. Our matrix conguence is
11 22 25 a b c 19 0 19
12 17 24 | = d e f 7T 137
4 8 2 g h i 4 3 0
If we perform the multiplication on the right and equate corresponding entries we get the follow system

of 9 congruences in 9 unknowns, modulo 26:

19a+7b+4c = 11
13b+3c = 22
19a+7 = 25

194+ Te +4f = 12
13¢+3f = 17
19d+7e = 24

19g+7h+4i = 4
13h+3i = 8
19g+7h = 2

Notice that this is really three 3 x 3 systems. We can solve the first three congruences for a,b, and
c. Subtracting the third from the first gives 4c = —14 (mod 26). Hence 2¢ = —7 (mod 13) and so ¢ =
3 (mod 13). Therefore ¢ = 3or 16 (mod 26). We can choose either of these and we'll take ¢ = 3 (mod 26).
Then the second congruence yields 13b + 3(3) = 22 (mod 26) or 13b = 13 (mod 26) hence b can be any
odd number. Take b = 1 (mod 26), then the third congruence becomes 19a + 7(1) = 25 (mod 26) which
forces a = 16 (mod 26). Similarly, we solve the other systems and get, among the several possibilities,

6 1 3
A= 6 2 23 |.
22 0 20

. . 5 1 2 1 (11 32 (11 6
8.2.21. WehaveC’C’ngP<25 4><1 4)P( 54 143 >P< 9 13)P.Hence’cheprod—

uct cipher is given by C' = AP (mod 26) whereA= < 121 163 )

8.2.22. Let A be the enciphering matrix for the first Hill cipher and B be the enciphering matrix for the sec-
ond Hill cipher. Then if P is a plaintext vector we have C; =AP (mod 26) for the first encryption. Then
the second encryption is C; = BC; = BAP (mod 26). So the final result is the same if we just use the
matrix BA as our encryption matrix.

8.2.23. If the plaintext is grouped into blocks of size m, we may take % of these blocks to form a super-
block of size [m, n]. If A is the m x m enciphering matrix, form the [m,n] x [m, n] matrix B with [”Zn—"]

A 0 --- 0

0 A --- 0
copies of A on the diagonal and zeros elsewhere: B= ) . . Then B will encipher %—M

0 --- A

blocks of size m at once. Similarly, if C is the n x n enciphering matrix, form the corresponding [m, n] x
[m, n] matrix D. Then by Exercise 8, BD is an [m, n] x [m, n] enciphering matrix which does everything
at once.
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8.2.24. As described in Exercise 23, we form two 6 x 6 matrices and multiply them:

1 100 00 3 10 0 0 0
1 01000 2 1 0000
011000 0 0 3 1 0 0
0 00110 0 0 21 0 O
000101 0 0 00 31
00 0O0T11 00 00 21
5 2 0 0 0 O
313100
1213100
o0 2131
00 21 21
0000 5 2
b1
D2
8.2.25. Multiplication of (0---010---0) | . | with the 1 in the ith place yields the 1 x 1 matrix (7;). So if
Dn
h Cy
the jth row of a matrix A is (0---010---0) then A : = : gives C; = P;. So if every row
Pn Cn
of A has its 1 in a different column, then each Cj is equal to a different P;. Hence A is a “permutation”

matrix.

8.2.26. We break the plaintext into blocks of two and convert to numerical equivalents to get 70 21 4
013 82 43 024 Applying the transformation to each pair givesus316 12 86 1019 02
4 23 which are the numerical equivalents for DQ BC IG KT AC EX.

8.2.27. The matrix( 3 2 )has inverse( 117 Z; )modulo 26. We compute P = ( 117 A; ) (C — ( 189 )> =

( 117 Z;)C—%( f?) (mod 26).

8.2.28. We need to solve the congruence for P.Since C and B are n x 1 matrices we can subtract B from both
sides and get C — B = AP (mod 26). Since (detA, 26) = 1, A has an inverse A modulo 26. We multiply
both sides by A and get A (C — B) =P (mod 26), or AC — AB =P (mod 26) as the deciphering trans-
formation.

. 5 2 . 15 24 _ (15 24 14
8.2.29. Thematrlx( 115 >hasmverse( 15 5 )modu1026. We compute P = ( 15 5 ) (C— ( 3 ))

( 117 Z; > C+ ( ;1 ) (mod 26). Applying this deciphering transformation to the numeric equivalents

of the ciphertext and converting back to letters gives TOXIC WASTE as the plaintext.

8.2.30. First make a frequency count of digraphs in the ciphertext. Since there are 6 variables to determine,
guesses about 3 digraphs will be needed. We would first guess that the most common digraph has
plaintext TH, the next most common has plaintext HE, etc. Then we could solve the 6 corresponding
congruences in 6 variables.

8.2.31. Make a frequency count of the trigraphs and use a published English language count of frequencies of
trigraphs. Then proceed as in problem 18. There are 12 variables to determine, so 4 guesses are needed.

8.2.32. Yes. Let the first transformation be C; = A;P+B; (mod 26) and the second be C; = AsP+By (mod 26).
Then composition of these transformations is C =A3(A;P+B1)+B; = AsA1P+ A3B1+B2 (mod 26),
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which is an affine transformation.

8.2.33. Let A be an m x m matrix, B be an m x 1 matrix, D be an n X n matrix, and E be an n x 1 matrix. Form
mn X mn matrices X and Yby placing n copies of A along the diagonal of X and m copies of D along
the diagonal of Y. Form mn x 1 matrices Z and W by stringing n copies of B together and m copies of
E, respectively. Then the product tranformation is given by C = YXP + YZ + W which is an affine
transformation based on a block size of mn.

8.2.34. To encrypt the string, we need to add corresponding bits of the string to the keystream to produce the
string 21 1121 1012 and then reduce modulo 2 to get 01 1101 1010 as the ciphertext.

8.2.35. To decrypt the string, we need to add corresponding bits of the string to the keystream to produce the
string 21 1121 1012 and then reduce modulo 2 to get 01 1101 1010 as the plaintext.

8.2.36. Converting MIDDLETOWN and Z to numerical equivalents gives us 12,8, 3,3, 11,4, 19, 14, 22, 13 for
the plaintext and 25 for the seed value. We add 25 to 12 and reduce modulo 26 to get the first ciphertext
as 11. Then we add 12 to 8 and reduce modulo 26 to get 20. Then we add 8 to 3 and reduce to get 11 and
so on. This generates the ciphertext 11, 20, 11,6, 14, 15,23, 7, 10,9, which are the numerical equivalents
of LULGOPXHK].

8.2.37. We first convert the ciphertext to its numerical equivalents: 25 21 17 16 7 3 20 9 8 12. The seed is I
which has numerical value 8. We subtract 8 from 25 to get 17 which stands for R. Then we subtract 17
from 21 to get 4 which stands for E. Then we subtract 4 from 17 to get 13 which stands for N. Then we
subtract 13 from 16 to get 3 which stands for D. Then we subtract 3 from 7 to get 4 which stands for E.
Then we subtract 4 from 3 to get —1 = 25 (mod 26) which stands for Z. Then we subtract 25 from 20 to
get —5 = 21 (mod 26) which stands for V. Then we subtract 21 from 9 to get —12 = 14 (mod 26) which
stands for O. Then we subtract 14 from 8 to get —6 = 20 (mod 26) which stands for U. Then we subtract
20 from 12 to get —8 = 18 (mod 26) which stands for S. So the plaintext is RENDE ZVOUS.

8.2.38. Suppose the plaintext is p1ps . . . pr, where each p; is a binary digit. Also let cicy .. . ¢i, be the resulting
ciphertext. Then for each i = 1,2, ...k, if p; = ¢; then the ith digit of the keystream is 0 and if p; # ¢;
then the ith digit of the keystream is 1. Thus the entire keystream can be determined.

8.2.39. Letpips---pmandqiqs - - - ¢n be two different plaintext bit streams. Let k1, kg, . . ., ky, be the keystream
by which the plaintexts are encrypted. Then note that for any i = 1,2,...,m, Ey,(p;) + Ex,(¢;) = k; +
pi + ki + g; = 2k; + p; + ¢; = p; + ¢; (mod 2). Therefore, by adding corresponding bits of the ciphertext
streams, we get the sums of the corresponding bits of the plaintext streams. This can lead to the discov-
ery of portions of the keystream. For instance if p; 4+ ¢; is known to be 2, then it is known that both p; and
g; are 1. Then if E,,, = 1 we know that k; = 0, but if £, = 0 then k; = 1. Likewise, if p; + ¢; is known to
be 0, then it is known that both p; and ¢; are 0. Then if £,, = 0 we know that k; = 0, but if £,, = 1 then
k; = 1. If significant portions of the keystream are discovered in this way, then decoded parts of each
message will aid in deducing further pieces of the keystream, perhaps resulting in complete cryptanal-
ysis.

8.3. Exponentiation Ciphers

8.3.1. Since 25 < p < 2525, m = 1 The numerical equivalents for GOOD MORNING, in blocks of 2 = 2m
digits, are 06 14 14 03 12 14 17 13 08 12 06. Raising each of these 2-digit numbers to the 3rd power and
reducing modulo 101 gives: 14 17 17 27 11 17 65 76 07 76 14.

8.3.2. Converting the plaintext to numerical equivalents and grouping in 4-digit blocks gives 1822 0404 1903

1704 0012. Raising each of these blocks to the 7th power and reducing modulo 2621 yields 0394 1679
1804 0755 0117 for the ciphertext.
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8.3.3. We find that 17 is an inverse of 5 modulo 28 = ¢(29). We raise each block to the 17th power and re-
duce modulo 29 to get 01 04 00 12 12 04 20 15, which are the numerical equivalents of BEAM ME UP.

8.3.4. Aninverse for 13 modulo 2590 is 797. For each block of ciphertext C, we find the corresponding block
of plaintext by the formula P = C™7 (mod 2591). This gives us 0314 1314 1917 0400 0319 0708 1823,
which is the numerical equivalent of DO NO TR EA DT HI SX.

8.3.5. We encipher messages using the transformation ¢ = P!! (mod 31). The deciphering exponent is the
inverse of 11 modulo 30 since ¢(31) = 30. But 11 is its own inverse modulo 30 since 11 - 11 = 121 =
1 (mod 30). It follows that 11 is both the enciphering and deciphering exponent.

8.3.6. We have 24 = 20° (mod 29) and we know that (e, 28) = 1 so e must be odd and not 7 or 21. We try 3:
20% = 25 (mod 29). We try 5: 20° = 24 (mod 29) so e = 5. Now d = 17 is an inverse for 5 modulo 28,
so we raise each cipher block to the 17th power and reduce modulo 29: (04)!7 = 06, (19)!7 = 14,117 =
03,247 = 20,09'7 = 04, and 15'7 = 18 (mod 29). And 06 14 14 03 06 20 04 15 15 stands for GOOD
GUESS.

8.4. Public Key Cryptography

8.4.1. Suppose that n = pg = 14647 and ¢(n) = 14400. Since ¢(n) = (p—1)(¢—1) =pg— (p+4q) + 1,
we have 14400 = 14647 — (p + ¢q) + 1 we have p + ¢ = 248. Also, we havep —q = \/(p+¢q)? —4n =
V2482 — 414647 = /2916 = 54. When we add p + ¢ = 248 and p — ¢ = 54 we see that 2, = 302. Hence
p =151 and ¢ = 97.

8.4.2. Since ¢(n) = pg —p —q+ 1 = 4386607 — p — g + 1 = 4382136, hence p + 1 = 4472. Also ¢(n) =
(p—1)(q—1) = 4382136 =8-9-11-11-503,50 503 | p — 1, say. Now p < 4472 s0 23 < 472 < 9. So the
possibilities for p are: 503-2+1,503-3+1,503-4+1,503-6+ 1, and 503 -8 + 1. Of these only 503-6+1 =

3019 is prime. Then g = 4472 — 3019 = 1453.

8.4.3. Since a block of ciphertext p is less than n, we must have (p,n) = p or ¢q. Therefore the cryptanalyst
has a factor of n.

8.4.4. The probability a message P is not relatively prime to n = pgq is the probability that a randomly se-
lected integer between 0 and n — 1, inclusive, is divisible by p or by ¢. The probability such an integer is
divisible by p is 1/p since there are ¢ integers in the range of pq integers divisible by p, that it is divisible
by ¢ is 1/g since there are p integers in the range divisible by ¢, and that it is divisible by both p and ¢
is 1/pq since among the integers in the range only 0 is divisible by both p and ¢q. Hence the probability
that (P,n) > 1is1/p+ 1/q — 1/pg. When p and g are both greater than 10'%° this probability is less than
1/10%00 4+ 1/10190 — 1/(10%99)% = 2/10%%0 — 1/1020 < 1/10%.

8.4.5. We first translate the letters of BEST WISHES into their numerical equivalents. We group together
numbers into blocks of four digits since n = 2669. This gives 01041819220818070418. We use the trans-
formation C = P? (mod 2669) to encipher the message. We have 104% = 1215 (mod 2669), 1819% =
1224 (mod 2669), 22082 = 1471 (mod 2669), 18072 = 23 (mod 2669), 4182 = 116 (mod 2669). Hence the
ciphertext is 1215 1224 1471 0023 0116.

8.4.6. We group the letters into block of two and convert to the numerical equivalents to get 1108 0504 0818
0003 1704 0012. We raise each block to the 7th power and reduce modulo 2627 to get the ciphertext 1019
0014 1066 2187 1349 2155.

8.4.7. Since 2747 = 41 - 67, we have ¢(2747) = 40 - 66 = 2640. An inverse for 13 modulo 2640 is 2437, so we
raise each ciphertext block to the 2437 power modulo 2747. For instance, 22062437 = 0617 (mod 2747).
The entire plain text is 0617 0404 1908 1306 1823, which corresponds to the message GR EE TI NG SX.

8.4.8. Since 2881 = 43 - 67,$(2881) = 42 - 66 = 2772. Since 5 - 1109 = 1 (mod 2772), 1109 is an inverse for
5 modulo 2772. Therefore we perform the transformation P = C'1% (mod 2881) to each 4-digit block
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of ciphertext. For instance 050419 = 0400 (mod 2881). Similarly we find 1902, 0714, 0214, 1100, 1904,
0200, and 1004 as the other blocks of plaintext. The letters for these are EA TC HO CO LA TE CA KE.

8.4.9. We convert the plaintext into numerical equivalents and group into blocks of 4 (appending an X) to
get 1804 1111 1314 2223. Applying the enciphering algorithm to the first block yields C' = 1804 - 1809 =
2145 (mod 2573). We encrypt the other blocks the same way. The ciphertext is 0872 2263 1537 2392.

8.4.10. We convert the plaintext into numerical equivalents and group into blocks of 4 (appending an X) to get
1104 0021 0419 1422 1323. Applying the enciphering algorithm to the first block yields C = 11041115 =
2145 (mod 3901). We encrypt the other blocks the same way. The ciphertext is 2145 0672 0724 1404 1630.

8.4.11. No. It is as if the encryption key were (ejez,n), and it is no more difficult (or easy) to discover the
inverse of e = ejes than it would be to discover the inverse of either of the factors modulo ¢(n).

8.4.12. Suppose n = pq. If (P,n) > 1, we must have (P,n) = p or ¢, assuming that the numerical plaintext
block P < n. Without loss of generality, suppose (P,n) = p. The corresponding ciphertext is C' = P*¢
(mod n). Then C' =0 (mod p), and so p|C. Since it is computationally feasible to compute greatest com-
mon divisors, we can find one factor of n, by computing (C,n) = p. Then ¢ = n/p and we have factored
n. Having factored n, we can easily compute ¢(n) and then d = e~ (mod n), which is the private key.

8.4.13. Suppose P is a plaintext message and the two encrypting exponents are e; and e;. Let a = (e, e2).
Then there exist integers = and y such that ez + eoy = 1. Let C; = P°' (mod n) and C; = P°? (mod n)
be the two cipher texts. Since Cy,C5, e, and ey are known to the decipherer, and since x and y are rel-
atively easy to compute, then it is also easy to compute C{Cy = Pe1* Pe2v = peirte2y = pPe (mod n).
If a = 1, then P has been recovered. If a is fairly small, then it may not be too difficult to compute ath
roots of P and thereby recover P.

8.4.14. Assuming the three moduli are pairwise relatively prime, we can use the Chinese remainder theorem
to solve the system of congruences to give us a least nonnegative integer x = P3 (mod ninang3). Since,
by construction P < n; for i = 1,2, 3, we have P? < ninans. By the uniqueness guaranteed by the Chi-
nese remainder theorem, = must be a perfect cube, whose cube root is, therefore, easy to compute. This
will be the plaintext P.

8.4.15. Encryption works the same as for the two prime case. For decryption, we must compute an inverse d
for e modulo ¢(n) = (p — 1)(¢ — 1)(r — 1) where n = pgr the product of three primes. Then we proceed
as in the two prime case.

8.4.16. Suppose n; = pi1q1 and ng = paqe. Then if (ny,n2) > 1 we must have (ny,n2) = p; or ¢y, since ny #
ny. Without loss of generality, suppose (n1,n2) = p1. Since it is computationally feasible to compute
greatest common divisors, we have a factor of ny, and can easily compute ¢; = n/p1, to have the com-
plete prime factorization for n;. Further, since p; | ne, we have that p; = p, or g, and we also have the
complete factorization for ny, and the system is broken.

8.5. Knapsack Ciphers

8.5.1.a. Wehave3 <5,3+5=8<9,34+5+9=17<19,and 3+5+9+19 = 36 < 40. Hence the sequence
is super-increasing.

b. Wehave2 < 6,2+6 =8 < 10, but 2+6+10 = 18 > 15. Hence the sequence is not super-increasing.

c¢. Wehave3 < 7,3+7=10<17,34+7+17=27<30,and 3+ 7+ 17+ 30 = 57 < 59. Hence the
sequence is super-increasing.

d. Wehave 11 < 21,11 421 =32 < 41,11 + 21 +41 = 73 < 81, but 11 + 21 4 41 4 81 = 154 > 151.
Hence the sequence is not super -increasing.
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8.5.2. Suppose that a;,as, - ,a, is super-increasing. We will prove that a; > 277! using the second prin-
ciple of mathematical induction. For j = 1 we have a; > 1 since a; is a positive integer. Hence a; >
2171 =20 = 1. Now assume that a; > 277! for every positive integer j with 1 < j < k. Since a; + a2 +
-+ ap—1 < ay the inductive hypothesis shows that ay, > 1+ 2+ --- 4 2872 = 2¥=1 — 1. Hence a;, > 2*.
This completes the proof.

8.5.3. Proceed by induction. Certainly a; < 2a; < as. Suppose Z;:ll aj < an. Then377_  a; = Z;:ll aj +
an < an + an = 2a, < ap41. This completes the induction step.

8.5.4. If the largest integer in the sum is 16 we can only obtain 18 by taking 16 + 2; every other sum with 16
in it is greater than 18. If 13 is the largest integer in the sum we can include 2 and then also include 3
to find that 13 + 3 + 2 = 18. This is the only way to obtain a sum of 18 with 13 included. Suppose the
largest integer in the sum is 11. If we also include 2 we find that 11 4+ 5 + 2 = 18. If we include 3 we find
that 11 + 4 + 3 = 18. We also see that 11 + 7 = 18. If the largest integer in the sum is 7 the largest the
sum can be is 2 + 3 + 4 + 7 = 16. Hence thee only sums that equal 18 are 16 + 2, 13+ 3 + 2,11 + 5+ 2,
11+4+3,and 11 + 7.

8.5.5. We multiply each element by 17 and reduce modulo 163 to get: (17, 51, 85, 7, 14, 45, 73).

8.5.6. We multiply each element of the sequence by 29 and reduce modulo 331 to get (162, 220, 80, 32, 6).
Then we convert each letter to its binary equivalent: B =00001, U=10100, Y=11000, N=01101, O=01110,
W=10110. Then B becomes 6, U becomes 162 + 80 = 242, Y becomes 162 + 220 = 382, N becomes 220 +
80 4 6 = 306, O becomes 220 + 80 4+ 32 = 332, and W becomes 162 4 80 + 32 = 274.

8.5.7. 273 is the inverse of 17 modulo 464. We multiply each ciphertext element by 273 and reduce modulo
464 to get 242 59 280 101. Then 242 = 22 + 41 + 179 and so corresponds to 01101 which is the binary
equivalent for N. 59 = 18 + 41 and 10100 stands for U. 280 = 18 4+ 83 + 179 and 10011 stands for T. 101 =
18 + 83 and 10010 stands for S. So the plaintext message is NUTS.

8.5.8. We multiply each element by 7 and reduce modulo 92 to get (21,28,56,27,47,9). Then we multiply by
11 and reduce modulo 95 to get (41,23,46,12,42,4). Finally, we multiply by 6 and reduce modulo 101 to
get (44,37,74,72,50,24).

8.5.9. If the multipliers and moduli are (w1, m1), (w2, m2),..., (w,, m,), the inverse w7, w3, ..., w, can be
computed with respect to their corresponding moduli. Then we multiply and reduce succesively by
(wy, my), (Wr=1,Mr_1), ..., (w1, m1). The result will be the plaintext sequence of easy knapsack prob-
lems.

8.5.10. We have the following prime factorizations: 60 =2%-3-5,2=2,3=3,5=5,6=2-3,and 10 =2-5.
To obtain 60 by multiplying terms from 2, 3,5, 6, 10 we need to multiply integers so that the sum of the
powers of 2 in these integers is 2 and so that there is one factor of 3 and one factor of 5 in these integers.
This can be done as follows: 60 =2-3-10,60=2-5-6,and 60 = 6 - 10.

8.5.11. Since 5 | 15960 the product must contain 95, the only element divisible by 5, so 15960 = 95 - 168. 8 is
the only even element so we must have 95 - 8 - 21 as the only possibility.

8.5.12. If pis a prime factor of P = aj'a3? - --a®", then p must divide one of the a;’s. Since the a;’s are pair-
wise relatively prime, at most one of them is divisible by p, and that one must be in the factorization.
Thus, by examining all the prime factors of P, we can determine all a;’s that must be in the product. If
the product of these a;’s actually equals P, then we have a unique solution. If they don’t, there is no
solution.

8513. For i = 1,2,...,n, we have b = a; (modm). Then v = P = (b™)%1(b*2)%2 ... (h%n)Tn

= parrtotontn (mod n). Then S = ay@q + -+ -+ apzy, (mod ¢(m)). Since S + ké(m) is also a logarithm
of P to the base b we may take the congruence to be an equation. Since the =; = 0 or 1, this becomes an
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additive knapsack problem on the sequence (a1, @, ..., an).

8.5.14. Given the binary equivalent for a plaintext block, we can assign the value 1 or 0 to the z;’s accord-
ingly. Then the knapsack cipher S = ajz; + -+ + a2z, is a generally difficult knapsack problem.
But the receiver who knows b and m can easily convert the problem to b* = P = p* @1t Fontn =
a® ---a® (mod n) as in Exercise 13. Then by Exercise 12, this is an easy multiplicative knapsack prob-
lem, so the receiver can recover the values of the z;’s and hence the plaintext.

8.6. Cryptographic Protocols and Applications

8.6.1. The first party, having chosen k; = 27, computes y; = 527 = 94 (mod 103) and sends it to the second
party. The second party, having chosen ko = 31, computes K = 943! = 90 (mod 103).

8.6.2. The first party, having chosen k; = 7, computes y; = 27 = 22 (mod 53) and sends it to the second
party. The second party, having chosen ky = 8, computes K = 228 = 16 (mod 53).

8.6.3. We compute K = ((7%)19)° = 71°0 (mod 601). Using a calculator or computational software we find
K = 7' = 476 (mod 601).

8.6.4. We must compute 31121719 (mod 1009). We find that 359 = 1 (mod 1009) and 11 -12-17-19 =
300 (mod 504). Hence 311121719 = 3300 = 150 (mod 1009).

8.6.5. Let k1,k2,...,k, be the private keys for parties 1 through n respectively. There are n steps in this
protocol. The first step is for each of the parties 1 through n to compute the least positive residue of
r¥ (mod p) and send this value y; to the i + 1st party. (The nth party sends his value to the 1st party.)
Now the ith party has the value y;_; (Where we take yo to be y,,.) The second step is for each party to
compute the least positive residue of 4, (mod p) and send this value to the i + 1st party. Now the ith
party has the least positive residue of r*i-1T*i-2 (mod p). This process is continued for a total of n steps.
However, at the nth step, the computed value is not sent on to the next party. Then the ith party will
have the least positive residue of r¥i-1ki—2++kitknthn_1+--kiri+ki (mod p), which is exactly the value
of K desired.

8.6.6. a. We have ¢(19 - 67) = 1188 and 713 an inverse for 5 (mod 1188). So Romeo finds the numerical
equivalents for his message: 0614 1403 0124 0418 2204 0419 1114 2104. Then he applies his decryp-
tion function to each block, that is he raises each block to the 713th power modulo 19 - 67, to get:
1100 0731 0945 0304 0285 0324 1046 1248. Then, since Juliet’s modulus is smaller than his, he splits
each block in two before encrypting them with Juliet’s public key. He raises each block of size 2 to
the 3rd power and reduces modulo 11 - 71 to get the signed ciphertext: 550, 000, 343, 113, 729, 529,
027, 064, 008, 259, 027, 547, 219, 492, 166, 471 which he sends to Juliet.

b. Juliet knows that 467 is an inverse for 3 modulo ¢(11 - 71) = 700. So she applies her decryption
functions to the numerical equivalents of her message: 00 03 08 04 20 05 14 17 04 21 04 17 to get 000
361 002 555 598 025 372 492 555 615 555 492. Since Romeo’s modulus is larger than hers, she pro-
ceeds to encrypt the message with Romeo’s key. She raises each block to the 5th power and reduces
modulo 19 - 67 to get 000 266 32 1119 225 442 900 1127 1119 999 1119 1127 as the signed ciphertext.

8.6.7.a. We have ¢(23 - 47) = 1012 and 675 an inverse for 3 (mod 1012). The numerical equivalents for
CHEERS HAROLD are 02 07 04 04 17 18 07 00 17 14 11 03, using blocks of 2 since 25 < 1081 <
2525. The first step to perform the transformation D= P%"® (mod 1081) on each block, which gives
us 0867 1003 0394 0394 0521 0625 1003 0000 0521 0477 1022 0357. Next we perform the transforma-
tion C=d” (mod 1829) which gives 0371 0354 0858 0858 0087 1369 0354 0000 0087 1543 1797 0535.

b. We have ¢(31 - 59) = 1740 and 1243 an inverse for 7 modulo 1740. The numerical equivalents for

SINCERELY AUDREY are 18 08 13 02 04 17 04 11 24 0 20 03 17 04 24. We take each and perform
the transformation D = P'?%3 (mod 1829) and perform the transformation C = D? (mod 1081). This
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8.6. CRYPTOGRAPHIC PROTOCOLS AND APPLICATIONS 145
gives 0833 0475 0074 0323 0621 0105 0621 0865 0421 0000 0746 0803 0105 0621 0421.

8.6.8. a. The block size 2m is chosen so that every possible block of numerical equivalents is less than n;.
This ensures that each block will be unique modulo n. Since n; < H < n;-, then each block will be
unique modulo n;- as well.

b. Individual j knows €; modulo n;+, so he can compute Dy . (Ej,. (d,(P))) = Dx,(P). Since he also
knows e;, he can compute Ey, (D, (P)) = P. Since only individual ¢ knows & modulo n;, only he
could have produced Dy, (P), and thereby make Fy, (di, (P)) intelligible.

c. ¢(781) = 700. 467 is the inverse for 3 modulo 700, so Dy, (P) = P*7 (mod 781). So the plain-
text numbers for HELLO ADAM, 7 4 11 11 14 0 3 0 12, become 0138 0555 0033 0033 0372 0000
0361 0000 0419. Then apply Ej,. (D) = D7 (mod 1147) to each 4-digit block gives 0360 0851 0562
0562 0868 0000 0576 0000 0194. ¢(893) = 828. 355 is the inverse for 7 modulo 828, so Dy, (P) =
P355 (mod 828). Then Ej,. = D? (mod 1189). This gives us 0921 0888 0888 0659 0001 0951 0575
0000 0890 1030 0700 0575 as the encryption for GOODBYE ALICE.

8.6.9.a. If n; < nj, the block sizes are chosen small enough so that each block is unique modulo n;. Since
n; < nj, each block will be unique modulo n; after applying the transformation Dy,. Therefore we
can apply Ey; to Dy, (P) and retain uniqueness of blocks. If n; > n; the argument is similar.

b. If n; < nj, individual j receives Ej,; (Dy,(P)) and know an inverse for e; modulo ¢(n;). So he can
apply Dy, (Ey, (Dy,(P))) = Dy, (P). Since he also knows e;, he can apply Ej, (Dy,(P)) = P and dis-
cover the plaintext P. If n; > n;, individual j receives Dy, (Ey, (P)). Since he knows e; he can apply
Ey,(Dy,(Ey,(P))) = Ey,(P). Since he also knows €; he can apply Dy, (Ex,(P)) = P and discover
the plaintext P.

c. Since only individual ¢ knows €;, only he can apply the transformation Dj, and thereby make
Ek, (Dy, (P)) intelligible.

d. n; = 2867 > n; = 2537, so we compute Dy, (Ey,;(P)). Both n; and n; > 2525 so we use blocks of
4. REGARDS FRED becomes 1704 0600 1703 1805 1704 0323 (adding an X to fill out the last block.)
e; = 11 and ¢(n;) = 2760, so e; = 251. We apply Ej, = P% = P'3 (mod 2537) to each block and get
1943 0279 0847 0171 1943 0088. Then we apply Dy, (E) = E?*! (mod 2867) and get 0479 2564 0518
1571 0479 1064. Now since n; < n; individual j must send Ey, (Dy,(P)),e; = 13,¢(2537) = 2436
and g; = 937. Then Dy, (P) = P%7 (mod 2537) and Ey, (D) = D'* (mod 2867). The cipher text is
1609 1802 0790 2508 1949 0267.

8.6.10. Sincet = 14, we compute Ky = K +tp = 5+ 14 -7 = 103. The three shadows are given by k; = 103 =
4 (mod 11), k2 = 103 = 7 (mod 12) and k3 = 103 = 1 (mod 17).

8.6.11. Suppose the master key K =3,p =5,M; =8,me =9,m3 =11, and ¢t = 13. Then M = m;m2 =72 >
p-m3=5-11=55andt =13 < % = %.WehaveKo = K +tp;=3+ 13 -5 = 68. The shadows k1, ks,
and k3 are given by k; = 68 =4 (mod 8),k; = 68 =5 (mod 9), and k3 = 68 = 2 (mod 11).

8.6.12. The 3 shadows from Exercise 10 are k1 = 4,k> = 7 and k3 = 1. If k1 and k5 are known, we solve the
system of congruences x = 4 (mod 11),z = 7 (mod 12) to get z = 103. If k; and k3 are known, we solve
the system of congruences z = 4 (mod 11),z = 1 (mod 17) to get x = 103. If k2 and k3 are known, we
solve the system of congruences z = 7 (mod 12),z = 1 (mod 17) to get x = 103. In all three cases we
recover Ky. Then K = Ky —tp =103 — 14 -7 =5.

8.6.13. The 3 shadows from Exercise 11 are k1 = 4, k> = 5 and k3 = 2. If k1 and ks are known, we solve the
system of congruences z = 4 (mod 8),z = 5 (mod 9) to get x = 68. If ky and k3 are known, we solve the
system of congruences z = 4 (mod 8),z = 2 (mod 11) to get z = 68. If ks and k3 are known, we solve
the system of congruences z = 5 (mod 9),z = 2 (mod 11) to get = 68. In all three cases we recover

STUDENTS-HUB.com Uploaded By: anonymous



146 8. CRYPTOLOGY
Ko. Then K = Ko —tp = 68 — 13- 5 = 3.

8.6.14. We choose p = 23 and mutually relatively prime moduli m; = 41, my = 43, m3 = 45, my = 47, ms
49. Then since 41 - 43 - 45 = 79335 > 52969 = 23 - 47 - 49, the moduli satisfy inequality 8.7. Now M /p
41 -43-45/23 = 3449.34. .., so we may pick t = 33. Then Ky = 22 + 33 - 23 = 781. Then k; = 781
2 (mod 41), ks = 781 = 7 (mod 43), k3 = 781 = 16 (mod 45), k4 = 781 = 29 (mod 47), and ks = 781 =
46 (mod 49). Suppose we have the shadows k; = 2, ks = 16 and ks = 46. If we solve the system x =
2 (mod 41),z = 16 (mod 45), and = = 46 (mod 49), the Chinese remainder theorem gives us © = 781 =
Ky. Then K = 781 — 33 -23 = 22.
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CHAPTER 9
Primitive Roots

9.1. The Order of an Integer and Primitive Roots
9.1.1.a. Since the order of an integer modulo 5 divides ¢(5) = 4, the order of an integer modulo 5 must
equal 1,2, or 4. Since 22 =4 # 1 (mod 5) the order of 2 modulo 5 is 4.

b. Since the order of an integer modulo 10 divides ¢(10) = 4, the order of an integer modulo 10 must
equal 1, 2, or 4. Since 32=9#1 (mod 10), the order of 3 modulo 10 is 4.

c. Since the order of an integer modulo 13 divides ¢(13) = 12, the order of an integer modulo 12 must
equal 1,2, 3, 4, 6, or 12. We have 10? = (—3)? = 9 (mod 13), 103 =9 - (=3) = —1 (mod 13), 10* =
(=1)-(=3) =3 (mod 13),and 10° = 10® - 10® = (=1)?2 = 1 (mod 13). If follows that the order of 10
modulo 13 is 6.

d. Since the order of an integer modulo 10 divides ¢(10) = 4, the order of an integer modulo 10 must
equal 1,2, or 4. We have 7> =49 = 9 = 1 (mod 10), hence the order of 7 modulo 10 is 4.

9.1.2.a. Since ord;;3 must divide ¢(11) = 10,3? = —2 (mod 11),and 3° =1 (mod 11), we have ord;;3 = 5.

b. We have ¢(17) = 16. Then 2* = —1 (mod 17),s0 28 =1 (mod 17). Therefore, ord;72 = 8.

|
_

c. We have ¢(21) = 12. Then 10?> = —5 (mod 21),10% = 13 (mod 21),10* = 4 (mod 21), and 10° =
(mod 21). Therefore, ords; 10 = 6.

d. We have ¢(25) = 20. Then 92 = 6 (mod 25),9* = 11 (mod 25),9° = —1 (mod 25), and 91 = 1
(mod 25). Therefore, ords59 = 10.

9.1.3.a. Wehave ¢(6) = 2,and 5> =1 (mod 6).
b. Wehave ¢(11) = 10,22 =4,25 = —1,2' =1 (mod 11).

9.1.4.a. The order of 3 modulo 4 is ¢(4) = 2. Hence 3 is a primitive root of 4.
b. The order of 2 modulo 5 is ¢(5) = 4 since 22 = —1 (mod 4). Hence 2 is a primitive root of 5.
¢. The order of 3 modulo 10 is ¢(10) = 3 from Exercise 1(b). Hence 3 is a primitive root of 10.

d. We have ¢(13) = 12. The proper divisors of 12 are 1, 2, 3, 4, and 6. Then 22 = 4,22 = 8,2% = 3, and
26 = —1 (mod 13). So 2 is a primitive root modulo 13.

e. 3isa primitive root modulo 14.
f. 2is a primitive root modulo 18.
9.1.5. Only1,5,7,11 are prime to 12. Each one squared is congruent to 1, but ¢(12) = 4.
9.1.6. We have ¢(20) = 8. The proper divisors of 8 are 1, 2, and 4. The integers relatively prime to 20 are 1,

3,7,9,11,13,17,and 19. Note that 1* =3* = 7" =9* = 11* = 13* = 17* = 19* = 1 (mod 20). Therefore,
147
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148 9. PRIMITIVE ROOTS

no element has order 8 and hence there are no primitive roots modulo 20.
9.1.7. Since ¢(¢(14)) = ¢(6) = 2, there are 2: 3 and 5.

9.1.8. There are ¢(¢(13)) = ¢(12) = 4 primitive roots modulo 13. The possible order for an integer modulo
13is 1,2, 3,4, 6, or 12. We have 22 = 4 (mod 13),23 = 8 (mod 13),2* = 16 (mod 13), and 256 = 12
(mod 13), so that 2 is a primitive root modulo 12. We know that the primitive roots of 12 are the least
positive residues of 2* where (u, ¢(13)) = (u,12) = 1. Hence 2, 2° = 6 (mod 13),2” = 11 (mod 13), and
211 =7 (mod 13) are a set of 4 incongruent primitive roots of 13.

9.1.9. That ord,a 7ord a follows from the fact that ' = 1 (mod n) if and only if @* = 1 (mod n). To see
this, suppose that a’ = 1 (mod n). Then @’ = (@'a’)(a') = (aa)'a’ =1 -1 =1 (mod n). The converse is
shown in a similar manner.

9.1.10. Letr =ord,a,s =ord,b, and r =ord,,ab. Then we have (ab)"® = (a")*(b*)" = 1°1" =1 (mod n). So t |
rs. On the other hand, 1 = (ab)’ = (ab)™ = (a")'"* = b™ (mod n). By Theorem 9.1, s | rt, but (r,s) =1,
so s | t. Similarly r | t. Again, since (7, s) = 1, we have rs | t. Therefore rs = t as desired.

9.1.11. We have [r,s]/(r,s) < ord,ab < [r, s]

9.1.12. This is false. For a counterexample, let n = 8, so that ¢(n) = ¢(8) = 4. Since (a,8) = 1 implies that a is
odd, and a? = 1 (mod 8) whenever a is odd, the order of an integer modulo 8 is no more that two, and
hence cannot equal 4.

9.1.13. Letr =ord,,a’, then a'” = 1 (mod m), hence tr > ts and r > s. Since 1 = a** = (a')* (mod n), we
have s > r.

9.1.14. Suppose that m was not prime. Then ¢(m) < m — 1. Since ord,,a | ¢(m) it follows that ord,,a is less
than m — 1. This shows that if there is an integer « relatively prime to m such that ord,,a = m — 1 then
m is prime.

9.1.15. Suppose that r is a primitive root modulo the odd prime p. Then r(P=1)/4 £ 1 (mod p) for all prime
divisors ¢ of p — 1 since no smaller power than the (p — 1)st of r is congruent to 1 modulo p. Conversely,
suppose that 7(P~1/¢ £ 1 (mod p) for all prime divisors of p — 1. Suppose that r is not a primitive root
of p. Then there is an integer ¢ such that r* = 1 (mod p) with ¢ < p — 1. Since ¢t must divide p — 1, we
have p — 1 = st for some positive integer s greater than 1. Then (p — 1)/s = ¢. Let ¢ be a prime divisor of
s. Then (p — 1)/q = t(s/q), so that rP=1/a = y(s/0) = (y)/9 = 1 (mod p). This contradicts the original
assumption, so r is a primitive root modulo p.

9.1.16. Suppose ord,,7 = h. Then h | ¢(m). Note that 1 = 7r = (7r)" = 7" (mod m). Therefore, ord,,r =
¢(m) | h. And so, h =ord,,,r, and T is a primitive root for m.

9.1.17. Since 22" + 1 = 0 (mod F,), then 22° = —1 (mod F,). Squaring gives (22°)2 = 1 (mod F,). Thus,
ordp, 2 < 2"2 = 2"t

9.1.18.a. Let h —ord,2. Then h | ¢(p) = p — 1. Note that 22" = —1 (mod p), so (22")2 = 22" =1 (mod p).
Therefore, h | 21, say h = 28, Butif k < n+ 1and 2" = 22" =1 (mod p), then 22" =1 (mod p), a
contradiction. Therefore h = 271,

b. Since 2"t =ord,2 | ¢(p) =p — 1, wehave 2"k =p—1orp=2"+ 1k + 1.
9.1.19. Note that a® < m = a™ — 1 whenever 1 < ¢ < n. Hence a' cannot be congruent to 1 modulo m when ¢

is a positive integer less than n. However, a,, = 1 (mod m) since m = (a™ — 1) | (a™ — 1). It follows that
ord,,a = n. Since ord,,a | m, we see that n | ¢p(m).
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9.2. PRIMITIVE ROOTS FOR PRIMES 149

9.1.20.a. Iford,2 | (p — 1) and ord,2 | (¢ — 1), then 277 = (27)? = 27 = 2 (mod g¢), and similarly, 279 =
2 (mod ¢). By the Chinese Remainder Theorem, there exists a unique solution modulo pq to the
system z = 2 (mod ¢),z = 2 (mod p). Since 2 and 277 are both solutions, we must have 2 = 274
(mod pq). Therefore, pq is a pseudoprime to the base 2. Conversely, if pg is a pseudoprime to the
base 2, then 277 = 2 (mod pg) and so 2P? = 2 (mod p). But by Fermat'’s Little Theorem, 27 = 2
(mod p), so (2P)? = 27 = 2 (mod p). Since (2,p) = 1, we have 297! = 1 (mod p) and so ord,?2 |
(¢ — 1). Similarly, ord,2 | (p — 1).

b. 19-73 and 23 - 89 are pseudoprimes to the base 2. The other numbers are not.

9.1.21. First suppose that pq is a pseudoprime to the base 2. By Fermat’s Little Theorem, 2 = 2 (mod p), so
there exists an integer k such that 2” —2 = kp. Then 2M»~1 —1 = 22"~1 _1 = 2P _ 1. This last expression
is divisible by 2¥ — 1 = M, by Lemma 6.1. Hence, 2"»~! =1 (mod M,), or 2M» = 2 (mod M,,). Since
pq is a pseudoprime to the base 2, we have 277 = 2 (mod pq), so 2P? = 2 (mod p). But 27 = (27)7 = 2¢
(mod p). Therefore 29 = 2 (mod p). Then there exists an integer ! such that M, — 1 =29 — 2 = Ip. Then
2Ma=1 1 =922"-2 = 2P 1,502 — 1 = M, divides 2M«~! — 1. Therefore 2"« =2 (mod M,). Then we
have 2MrMs = (2Mp)Ms = 2Ma = 2 (mod M,,). Similarly, 2M»Ms = 2 (mod M,). By the Chinese remain-
der theorem, noting that M, and M, are relatively prime, we have 2"»Ms = 2 (mod M, M, ). Therefore
MyM, is a pseudoprime to the base 2. Conversely, suppose M, M, is a pseudoprime to the base 2.
From the reasoning in the proof of Theorem 6.6, we have that 2"» = 2 (mod p). Therefore 2»Ms =
2(Mp=1)Mq+ My = 9Ma¢ = 2 (mod p). But since M, = 2P — 1 = 0 (mod M,), we have that the order of
2 modulo M, is p. Therefore p|M, — 1. In other words, 29 = 2 (mod p). Then 2P? = 27 = 2 (mod p).
Similarly, 277 = 2 (mod ¢). Therefore, by the Chinese remainder theorem, 277 = 2 (mod pq). Therefore,
since pq is composite, it is a pseudoprime to the base 2.

9.1.22. We prove that C; = c (mod n) for every positive integer j using mathematical induction. For j =
Owehave Cy = C = Ceo = C' (mod n), so the basis step holds. Next we carry out the inductive step.
Assume that C; = C¢' (mod n). Then C;,, = (C¢')¢ = ce (mod n). This completes the proof.

9.1.23. Let j =ordy(,)e. Thene/ =1 (mod ¢(n)). Since ord, P | ¢(n), we have ¢/ = 1 (mod ord,, P). Then by
Theorem 8.2, P¢ = P (mod n),s0 C¢ ' = (P¢)¥ "= P = P (mod n) and C¢ = P* = C (mod n).

9.1.24. Computing the sequence, we have C; = 15047 = 2444 (mod 47 - 59), Cy = 2444'7 = 470 (mod 47 -
59), C3 = 47017 = 2209 (mod 47 - 59), Cy = 220917 = 1504 (mod 47 - 59). Therefore P = C' — 3 = 2209
which is the numerical equivalent of W J.

9.2. Primitive Roots for Primes
9.2.1.a. By Lagrange’s Theorem, there are at most 2 roots. Since (£3)? +2 = 0 (mod 11), we have found all
the roots.

b. By Lagrange’s Theorem, there are at most 2 roots. Since (+1)? + 10 = 0 (mod 11), we have found
all the roots.

c. By Lagrange’s Theorem, there are at most 3 roots. Note that the polynomial factors thus 22 + 22 +
20+2=a%(x+1)+2(x+1) = (22 +2)(z +1). So z = —1is a solution, and the two solutions from
part (a) are solutions, and this must be all.

d. By Lagrange’s Theorem, there are at most 4 roots. Since the polynomial is an even function it suf-
fices to check only the numbers 0, 1,2, 3,4, and 5 as roots. We find that none of these work, so there

are no roots of the polynomial modulo 11.

9.2.2.a. We find that 52 + 1 =82+ 1 =0 (mod 13) are the only 2 solutions.
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b. We find that 112 +3-11 +2 =122 +3-12+2 =0 (mod 13) are the only 2 solutions.
c. Wefindthat1®+12=3%+12=9%+12=0 (mod 13) are the only 3 solutions.
d. Wefind that 7* + 72 + 7+ 1 =0 (mod 13) is the only solution.

9.2.3.a. Thereare ¢(7 — 1) = ¢(6) = 2 primitive roots modulo 7.

b. There are ¢(13 — 1) = ¢(12) = 4 primitive roots of 13.
c¢. Thereare ¢(17 — 1) = ¢(16) = 8 primitive roots of 17.
d. There are ¢(19 — 1) = ¢(18) = 6 primitive roots of 19.
e. Thereare ¢(29 — 1) = ¢(28) = 12 primitive roots of 29.
f. There are ¢(47 — 1) = ¢$(46) = 22 primitive roots of 47.

9.2.4. There must be ¢(¢(7)) = 2 primitive roots modulo 7. Since 3 is one, the other must be 3 raised to a
power relatively prime to ¢(7) = 6, sowe take 3° =9-9-3=2-2-3 =12 =4 (mod 7). Thus 3 and 5
make a complete set of primitive roots modulo 7.

9.2.5. There must be ¢(¢(13)) = 4 primitive roots modulo 13. Since 2 is one, the others must be 2 raised to a
power relatively prime to ¢(13) = 12. So we take 2° = 6 (mod 13),2” =6 -4 = 11 (mod 13), and 2! =
6-6-2=7 (mod 13). So a complete set of primitive roots is 2, 6, 7, 11

9.2.6. There must be ¢(¢(17)) = 8 primitive roots modulo 17. Since 3 is one, the other ones must be 3 raised
to powers relatively prime to ¢(17) = 16, so we take 3%,35,37, 3% 311 313 and 3' modulo 17. Reducing
gives 10, 5,11, 14,7, 12, and 6.

9.2.7. Since ¢(19) = 18 and ¢(18) = 6, we seek 6 primitive roots for 19. Since 2 is one, we raise 2 to the pow-
ers which are relatively prime to 18, namely, 2°,27, 211,213 and 2!". Reducing modulo 19 gives us 2, 3,
10, 13, 14, 15, as a complete set of primitive roots.

9.2.8. Suppose that r is a primitive root of the prime p where p = 1 (mod 4). Let ¢ be the order of —r mod-
ulo p. We know thatt¢ | (p — 1). Let tu = p — 1. We first show that u cannot be odd. If u were odd
thent = (p — 1)/u is even, so that r* = (—r)" = 1 (mod p) which is a contradiction since r is a prim-
itive root of p. Now suppose that u is even. Then (—r)* = (—r)®~1/* = 1 (mod p). Since u is even,
(p—1)/u| (p—1)/2sothat (—r)P~1/2 =1 (mod p). But since p = 1 (mod 4) it follows that (p — 1)/2 is
even. Hence (—7)®P~1/2 = (=1)(p=1)/2p(p=1)/2 — »(P=1)/2 = 1 (mod p). This is a contradiction since r is
a primitive root of p.

9.2.9. By Lagrange’s Theorem there are at most two solutions to z2 = 1 (mod p), and we know = = +1 are
the two solutions. Since p = 1 (mod 4),4 | (p — 1) = ¢(p) so there is an element x of order 4 modulo
p. Then z* = (2%)?2 = 1 (mod p), so 22 = £1 (mod p). If x> = 1 (mod p) then = does not have order 4.

Therefore 22 = —1 (mod p).

9.2.10.a. Wehave 0> —0 =0 (mod 6),1? —1 =0 (mod 6),22 —2 =2 (mod 6),3? =3 =0 (mod 6),4%> —4 =
0 (mod 6), and 52 — 5 = 2 (mod 6). Hence there are 4 incongruent roots modulo 6.

b. This does not contradict Lagrange’s theorem since 6 is not prime.
9.2.11.a. Let f(z) = apz™ + ap—12" "' + - - ap and let k be the largest integer such p does not divide aj. Let

g(x) = apa® + ap_12*"1 + -+ - ao. Then f(x) = g(x) (mod p) for every value of x. In particular g(x)
has the same set of roots as f(z). Since the number of roots is greater than n > k, this contradicts
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Lagrange’s theorem. Therefore, no such k exists and p must divide every coefficient of f(x).

b. Note that the degree of f(x) is p — 2. By Fermat’s little theorem we have that zP~! —1 =0 (mod p),
forx =1,2,...,p — 1. Further, each z in the same range is a zero for (zr — 1)(z —2)--- (¢ —p + 1).
Therefore, eachz = 1,2,...,p — lis aroot of f(x). Since f(z) has degree p — 2 and p — 1 roots, part
(a) tells us that all the coefficients of f(x) are divisible by p.

c¢. From part (b) we know that the constant term of f(z) is divisible by p. The constant term is given
by f(0) = (=1)(=2)---(—p+ 1)+ 1= (-1 p-—1)!+1=(p—1)!+1=0 (mod p), which is
Wilson's theorem.

9.2.12. This is clearly true if p = 2. Now suppose that p > 2. Note that r is a primitive root of p if and only
if 7 is a primitive root of p where 7 is an inverse of » modulo p. Also note that r and 7 are incongruent
modulo psincr =7 (mod p) if and only if r = £1 (mod p). Hence the product of the ¢(p — 1) primitive
roots of p is the product of ¢(p — 1)/2 pairs of primitive roots r and 7, each pair of which has a product
congruent to 1 modulo p. Hence the product of all these primitive roots is 1.

9.2.13.a. Since ¢/’ | #(p) = p — 1, by Theorem 9.8 there exists ¢(q}*) elements of order ¢’ for each i =
1,2,...,r. Let a; be a fixed element of this order.

b. Usinginduction and Exercise 10 of Section 9.1, we have ord,,(a) = ord,(a1as - - - a,) =ord,(ai - - - ar_1)
ord ,(a,) = -+ =ord,(a;) - - ord,(a,) since {ord,(a1), ord,(az),..., ord,(a,)} = {q}", ..., q"} are
pairwise relatively prime.

c. #(29) =28 =227,and 12* =1 (mod 29), so ordag(12) = 4. Also, 167 = 1 (mod 29) so ordag(16) =
7. Then by part (b), ordag(12 - 16) = 4 - 7 = 28. Therefore 12 - 16 = 192 = 18 (mod 29) is a primitive
root modulo 29.

9.2.14. Let b be an integer such that n is a pseudoprime to the base b. Then " = b (mod n). For each i, let
di = (n—1,p;—1). Then b" = b (mod p{*), and since (b,p) = 1, we have b" ! =1 (mod p{*). Therefore,
ord,e:b | (n — 1) and ord,«:b | ¢(p{*). Hence, ord b | (n — Lp¥ Yp; —1)) = (n—1,p; — 1) = d;. Then
b% =1 (mod p{*), and this last congrence has at most d solutions modulo p{*, by Lagrange’s Theorem.
Let s; be a primitive root modulo p{’. Then s* = b (mod p§*) for some ¢. Then td = ¢(p;*) and each of
st,s2t ..., s is an incongruent solution to b% =1 (mod p{*). Therefore, there are exactly d; solutions.
If we choose a solution for each i =1, ..., r, then the Chinese Remainder Theorem guarantees a unique
solution modulo n. Since there are [];_, d; ways to choose the solutions, we have this many different b’s

modulo n.

9.2.15. If nis odd, composite and not a power of 3, then the product in Exercise 14 is ]_[;:1 (n—1,p; —1) >
(n—=1,3—1)(n—1,5—1) > 2.2 = 4. So there must be two bases other than —1 and +1.

9.2.16. We have ¢(p) = p — 1 = 2q. so the possible orders or p — a? are 1,2, g and 2q. Computing, we have
(p —a®)? = p*® — 2pa® + a* = a* (mod p). If a* = 1 (mod p), then a®> = 1 (mod p) since a can not have
order 4. Then a = +1 (mod p), but 1 < a < p — 1 so this is a contradiction. and p — a® doesn’t have
order 2. Secondly, using the binomial theorem, (p — a?)? = —(a??) = —1 (mod p), so (p — a?) doesn’t
have order ¢. Therefore, it has order 2¢g and must be a primitive root modulo p.

9.2.17.a. Suppose that f(x) is a polynomial with integer coefficients of degree n—1. Suppose that x1, z2,- - - , zp
are incongruent modulo p where p is prime. Consider the polynomial g(z) = f(z)—

Z?Zl (f(a:j) [Tiz(x —2i)(z; — x,)) Note that z;, j = 1,2, - ,nis a root of this polynomial mod-
ulo psinceits value at z; is f(z;) —[0+0-+- -+ f(x;) [ [, (xj — i) (z; — i)+ -+ 0] = f(z;)— f(25)
1 =0 (mod p). Since g(x) has n incongruent roots modulo p and since it is of degree n — 1 or less,
we can easily us Lagrange’s theorem (Theorem 8.6) to see that g(x) = 0 (mod p) for every integer x.
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b. By part (a) we have f(5) = f(1)(5 —2)(1 —2)(5 - 3)(1 - 3) + f(2)(5 — )( 1)( -3)
fB3)B-1)3-1)(5-2)(3 - ) 3(-1)2-(-2)4+2-4-1-2-(-1)+4-4-2-3-1=8-

(2—- 3)+
=38 10 -
542-4-1-2-10+4-4-6-3-1=10 (mod 11).

3-

9.2.18.a. Given r shadows, we have f(z) evaluated at r incongruent integers modulo p. By Exercise 17, since
deg f =r — 1, we can determine f(0) = K (mod p).

b. From Exercise 17 we have f(0) =K = Zk H z; —x;) (mod p). Solving for k, gives
i

o= K= 2 kil () — i) (
[1(=zi)(z; — )

k1,ka, ..., kr—1. If only r — 1 shadows were needed, then k£ — r could take on any value without

effecting the value of K.

mod p) from which we can see that k, is determined by K and

2,f(2) =131 =37, f(3) = 243 = 8, f(4) = 429 = 6, f(5) = T13 = 8, f(6) =

c¢. We have f(1) = 69
F(7) = 1671 = 26 (mod 47).

1119 = 38, and

)

d K = f(0) = 22@(1—2)(—3)(1—3)( HT=A)] + 37(-1)E=1)(-3)(Z=3)(-4) (2@ —3)] +
8- 1) - D(-2)3=2)(~4)(B = D) + 6[(~ 1)@~ D)(~2)(T— 2)(~3)(A - 3)] = 33 (mod 47).

9.2.19. By Exercise 23 of Section 9.1, j | ord 4(,,ye. Here, ¢(n) = ¢(pq) = 4p'q’,s0 j | p(4p'q’) = 2(p' —1)(¢' - 1).
Choose e to be a primitive root modulo p’. Then p’ — 1 = ¢(p')|¢(¢(n)), so p’ — 1|ordy(,)e. The decrypter
needs e/ =1 (mod n), but this choice of e forces j = p’ — 1, which will take quite some time to find.

9.3. The Existence of Primitive Roots

9.3.1. The positive integers that have a primitive root are 2,4 and integers of the form p*, and 2p* where p is
prime and ¢t is a positive integer. Hence the integers in the list that have a primitive root are 4, 10 = 2- 5,
and 22 =2-11.

9.3.2. By Theorem 9.15, we only admit prime powers and twice prime powers. This leaves only 9, 26, 27,
and 31.

9.3.3.a. First note that 2 is a primitive root modulo 3. Since 237! = 22 =4 # 1 (mod 3?), 2 is also a primi-
tive root modulo 32.

b. First note that 2 is a primitive root modulo 5. Since 2°~! = 2* = 16 # 1 (mod 5%), 2 is also a primi-
tive root modulo 52.

c. First note that 5 is a primitive root modulo 23. Since 5%~ = 522 = 323 # 1 (mod 23?), 5 is also a
primitive root modulo 232

d. First note that 2 is a primitive root modulo 29. Since 22971 = 228 = 30 # 1 (mod 29?), 2 is also a
primitive root modulo 292.

9.3.4.a. First note that 2 is a primitive root modulo 11. Since 217! = 210 = 1024 = 56 # 1 (mod 112), 2 is
also a primitive root modulo 112.

b. First note that 2 is a primitive root modulo 13. Since 21371 = 212 = 4096 = 40 # 1 (mod 132), 2 is
also a primitive root modulo 132

c. First note that 3 is a primitive root modulo 17. Since 3'7~! = 3% = 6561 = 203 # 1 (mod 17?), 3 is
also a primitive root modulo 172.
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d. First note that 2 is a primitive root modulo 19. Since 21971 = 218 = 262144 = 58 # 1 (mod 19?), 2 s
also a primitive root modulo 192.

9.3.5.a. We know that 2 is a primitive root of 3 and also of 32 since 2*~1) =4 # 1 (mod 9). It follows that 2
is also a primitive root of 3* for all positive integers .

b. From Exercise 2(a) we know that 2 is a primitive root modulo 112. Tt follows that 2 is a primitive
root modulo 11* for all positive integers k.

c. From Exercise 2(b) we know that 2 is a primitive root modulo 132. It follows that 2 is a primitive
root modulo 13* for all positive integers k.

d. From Exercise 2(c) we know that 3 is a primitive root modulo 172. It follows that 3 is a primitive
root modulo 17* for all positive integers k.

9.3.6. a. By Theorem 9.10, we need only find a primitive root for k¥ = 1,2. We find that 5 is a primitive root
modulo 23. Then by Theorem 9.9, either 5 or 23 — 5 = 18 is a primitive root modulo 23%. We find
that 5 is also a primitive root modulo 232, therefore it is a primitive root modulo 23" for any posi-
tive integer k.

b. Asin part (a) 2 is a primitive root modulo 29" for any positive integer k.
¢. Asin part (a), 3 works.

d. Asin part (a), 2 works.

9.3.7.a. Since 2 is even and primitive root for 5, we have by Theorem 9.14 that 5 + 2 = 7 is a primitive root
for 10.

b. Since 3 is odd and a primitive root for 17, we have by Theorem 9.14 that 3 is also a primitive root
for 34.

c. Since 2 is even and a primitive root for 19, we have by Theorem 9.14 that 2 4 19 = 21 is a primitive
root for 38.

d. We have 50 = 2 - 5. By Exercise 3(b), 2 is a primitive root for 52. By Theorem 9.14, since 2 is even,
25 + 2 = 27 is a primitive root for 50.

9.3.8.a. By Theorem 9.14, since 2 is an even primitive root for 3, then 2 + 3 = 5 is a primitive root for 6.

b. By Theorem 9.14, and Exercise 3(a), since 2 is an even primitive root for 9, then 2+9 = 11 is a prim-
itive root for 18.

c¢. By Theorem 9.14, since 2 is an even primitive root for 13, then 2 + 13 = 15 is a primitive root for 26.

d. We have 338 = 2- 132, By Exercise 4(b), 2 is a primitive root for 132. By Theorem 9.14, since 2 is
even, 169 + 2 = 171 is a primitive root for 338.

9.3.9. First note that 2 is primitive root of 11. Since 2 is even, Theorem 9.14 tells us that 2 + 11 = 13 is a
primitive root of 22. Hence the primitive roots of 22 are the least positive residues of 13" where 1 < k <
#(22) = 10 and (k, ¢(12)) = (k, 10) = 1. These are the integers 13! = 13, 13% = 19 (mod 22), 13" = 7
(mod 22), and 13° = 17 (mod 22). Hence the primitive roots of 22 are 7, 13, 17, and 19.

9.3.10. 2 is a primitive root modulo 25. There must be ¢(¢$(25)) = 8 of them, given by raising 2 to powers
relatively prime to ¢(25) = 20. It follows that 21,23 27 29 211 213 217 and 2! become 2, 8, 3, 12, 23, 17,
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22, and 13 when reduced modulo 25.

9.3.11. By Exercise 7 in Section 9.1, a complete set of primitive roots modulo 19 is 2, 3,10, 13, 14, 15. By The-
orem 9.14, the odd numbers in this set are primitive roots of 38, and if we add 19 to each of the even
numbers in this set, we also have primitive roots of 38. Thus we have 2 + 19, 3,10+ 19,13,14 4+ 19,15 as
all the primitive roots of 38. Reducing gives us 3,13, 15, 21, 29, 33.

9.3.12. By Theorem 9.5, there are ¢(¢(p')) = ¢(p' — p'~!) primitive roots modulo p’, and ¢(¢(2p")) = ¢ (p* —
p'~!) primitive roots modulo 2p*.

9.3.13. Suppose that r is a primitive root of m and suppose further that z> = 1 (mod m). Letz = r’ (mod m)
where 0 <t < p— 1. Then r?** = 1 (mod m). Since r is a primitive root, it follows that ¢(m) | 2t so that
2t = ké(m) and t = k¢(m)/2 for some integer k. We have z = rt = pFo(m)/2 = p(6(m)/2)k = (_1)k =
+1 (mod m), since 7*(™/2 = —1 (mod m). Conversely, suppose that m has no primitive root. Then m
is not of one of the forms 2,4, p*, or 2p* with with p and odd prime. So either 2 distinct primes divide
m or m = 2°M with M and odd integer and b > 1 or m = 2° with ¢ > 2. In each of these cases we have
¢(m) = 2°N with N odd and ¢ > 3. From Theorem 9.12, we know there are at least 3 solutions y1, y2, y2
to y> = 1 (mod 2°) and certainly z = 1 (mod N) is a solution of 2 = 1 (mod N). By the Chinese re-
mainder theorem, there is a unique solution modulo 2°N of the system z = y; (mod 2¢),z =1 (mod N)
fori = 1,2, 3. Since these solutions are distinct modulo m, at least one of them is not +1 (mod m).

9.3.14. Let r be a primitive root modulo n. Note that 7*(")/2 = —1 (mod n). The integers 7,72, ..., 7% re-
duced modulo 7, is the set of integers less than and relatively prime to n. Their productisr - 72 - - - ##(") =
pXY i — pem)(@m-1)/2 = (=1)?™=1 = _1 (mod n) since ¢(n) is even.

9.3.15. By Theorem 9.12 we know that ordyx5 = ¢(2%)/2. Hence the 2*~2 integers 57, = 0,1,--- ,2¥72 — 1,

are incongruent modulo 2k. Similarly the 2*~2 integers —57,j = 0,1,---,2*~2 — 1, are incongurent
modulo 2*. Note that 5/ cannot be congruent to —5° modulo 2* where i and j are integers since 5/ =
1 (mod 4) but —5" = 3 (mod 4). It follows that the integers 1,5, - - - 527771 1 5, 52 L are

2F=1 incongruent integers modulo 2*. Since ¢(2*) = 2*~1 and every integer of the form (—1)*5” is rela-
tively prime to 2%, it follows that every odd integer is congruent to an integer of this form with a = 0 or
land 0 < g =2F"2 1.

9.3.16. 2 is the smallest. To find the next case, we search tediously through the primes, in order, using Table
E.3 in the back of the text. We do the case, p = 19 as an example. The table gives 2 as a primitive root
modulo 19. Then all primitive roots are found by raising 2 to powers relatively prime to ¢(19) = 18.
Reducing 2, 2°,27,211, 213,217 modulo 19 gives us 2, 13, 14, 3, and 10 as all the primitive roots modulo
19. If one of these were not a primitive root modulo 19?, then it would have order equal to 19 — 1 = 18.
(See the argument in the proof of Theorem 9.9.) We raise each of the primitive roots to the 18th power,
and reduce modulo 192 to get 58, 343, 305, 210, 343, 286. Since we didn’t get a 1, we continue our search
with the next prime. We finally find that 14 is a primitive root modulo 29, but not for 292

9.4. Index Arithmetic

9.4.1. We first compute the least positive residues of the powers of 5 modulo 23. We have 5! =5 (mod 23),
52 = 2 (mod 23) 53 = 10 (mod 23), 5* = 4 (mod 23), 5° = 20 (mod 23),5% = 8 (mod 23),57 = 17

mod 23), = mod 23), 5° = 11 (mod 23), 5! = 9 (mod 23), 5! = 22 (mod 23), 52 18
(

mod 23), = mod 23), 5% = 13 (mod 23), 5! = 19 (mod 23), 5% = 3 (mod 23), 57 15
( ;

(mod 23), 518 = 6 (mod 23), 519 = 7 (mod 23), 5?° = 12 (mod 23), 5! = 14 (mod 23), and 5?2 = 1
(mod 23). Hence inds1 = 22, ind52 = 2, ind53 = 16, inds4 = 4, ind55 = 1, indsg = 18, ind57 = 19,

inds8 = 6, ind59 = 10, ind510 = 3, ind511 = 9, ind512 = 20, ind513 = 14, ind514 = 21, ind515 = 17,
inds16 = 8,ind;17 = 7, ind518 = 12, ind519 = 15, ind520 = 5, ind521 = 13, and ind522 = 11.

9.4.2.a. From Exercise 1, we can take indices base 5 modulo 23 and get inds3 + 5indsz =inds1 (mod 22). If
y =indsx, we have 16 + 5y = 22 (mod 22) which has solution y = 10 (mod 22). Therefore, x = 9

STUDENTS-HUB.com Uploaded By: anonymous



9.4. INDEX ARITHMETIC 155
(mod 23).

b. Taking indices gives us inds3 + 14indsz =inds2 (mod 22) or 16 + 14y = 2 (mod 22) which has so-
lution y = 10 or 21 (mod 22),s0z =9 or 14 (mod 23).

9.4.3.a. Suppose that 3” =2 (mod 23). We take indices with respect to the primitive root 5 of 23. This gives
ind5(3?) = ind52 which implies that = inds3 = ind52 (mod 22). Since ind5(3%) = 16 and ind;2 = 2
it follows that 16 = 2 (mod 22). Hence 8¢ = 1 (mod 11). Since 7 is the inverse of 8 modulo 11, it
follows that x = 7 (mod 11), so that z = 7 or 18 (mod 22).

b. Taking indices gives us x ind513 = inds5 (mod 22) or 14z = 1 (mod 22) which has no solutions
since (14,22) =21 1.

9.4.4. Suppose that az* = 2 (mod 13). Taking indices with respect to the primitive root 2 of 13, we have
indy(ax?) = ind»2 (mod 12). Hence indsa + 4- indoz = 1 (mod 12), or 4-indyx = 1— indsa (mod 12).
There is a solution « if and only if (4,12) = 4 divides 1— indsa. This is true if indsa = 1,5 or 9, which
holds if and only if a = 2! = 2 (mod 13), a = 2° = 6 (mod 13), or a = 2° = 5 (mod 13). Hence this
congruence has a solution if and only if a = 2,5, or 6 (mod 13).

9.4.5. We use the table of indices on page 612 of the text. We see that 2 is a primitive root for 29. Taking
indices base 2 of the congruence and expanding gives us ind»8 + 7indsx = indzb (mod 28). From the
table we have 3 + 7ind,z = ind2b (mod 28), which has a solution if and only if (7,28) = 7 | (indsb — 3).
So indeb — 3 = 0,7, 14, or 21, that is ind2b = 3,10, 17, or 24. This corresponds to b = 8,9, 21, or 20, re-
spectively.

9.4.6. Suppose that 2” = = (mod 13). Taking indices of both sides to the base 2 modulo 13 gives ind»(27) =
indaz (mod 12). Since ind3(2%) = 2 (mod 12), this implies that z = indsx (mod 12). Since indaz de-
pends on the remainder when z is divided by 13, and we also need the remainder when ind,z is divided
by 12. By the Chinese remainder theorem we need to consider the remainder when x is divided by 13 -
12 = 156. The solutions are given by the integers « such that z = 0 (mod 12) and indsz = 0 (mod 12);
z =1 (mod 12) and indsz = 1 (mod 12); x = 2 (mod 12) and inds2z = 2 (mod 12); z = 3 (mod 12)
and indyz = 3 (mod 12); x = 4 (mod 12) and indsz = 4 (mod 12); x = 5 (mod 12) and indsz = 5
(mod 12); z = 6 (mod 12) and indsx = 6 (mod 12); x = 7 (mod 12) and indsz = 7 (mod 12); x = 8
(mod 12) and indyz = 8 (mod 12); = 9 (mod 12) and indsz = 9 (mod 12); 2 = 10 (mod 12) and
indsz = 10 (mod 12); and = 11 (mod 12) and indsz = 11 (mod 12). These are the solutions to = =
0 (mod 12) and z = 1 (mod 13); z = 1 (mod 12) and z = 2 (mod 13); z = 2 (mod 12) and =z = 4
(mod 13); z = 3 (mod 12) and z = 8 (mod 13); x = 4 (mod 12) and x = 3 (mod 13); x = 5 (mod 12)
and z = 6 (mod 13); * = 6 (mod 12) and = = 12 (mod 13); x = 7 (mod 12) and z = 11 (mod 13);
2 =8 (mod 12) and x = 9 (mod 13); x = 9 (mod 12) and 2 = 5 (mod 13); = 10 (mod 12) and z =
10 (mod 13); and « = 11 (mod 12) and z = 7 (mod 13). We solve each of these 12 systems of simulta-
neous congruences to see that all solutions, in order of which set of congruence they satisfy, are given
by x = 144,145,134, 99, 16, 149, 90, 115, 152,57, 10,59 (mod 156). Listing these in order, we see that all
solutions are given by those integers x that satisfy = 10, 16, 57,59, 90,99, 115, 134, 144, 145, 149, or 152
(mod 156).

9.4.7. Taking indices of the congruence gives us zindx = indz (mod 22), so that 22 | (indz)(x — 1). If
(indz, 22) = 1, then 22 | (x — 1), which is the case for x = 5,7,10, 11,14, 15,17,19, 20, and 21, from the
table on page 548. So any solution of the systems # = 1 (mod 22),z = a (mod 23), as a runs through
the list above, is a solution to the congruence. If (indx, 22) = 2, then z is one of 2,3,4,6,8,9,12, 13, 16,
or 18,and 11 | (z — 1), so any solution to the systems z = 1 (mod 11),z = b (mod 23), as b runs through
this list, is also a solution to the congruence. If (indz, 22) = 11, then indz = 11, so = 22 (mod 23), but
this is not a solution. Finally, if (indx, 22) = 22, then indz = 22, so z = 1 (mod 23). Since 23 - 22 = 506,
we list the solutions modulo 506: 1, 12, 23, 24, 45, 46, 47, 67, 69, 70, 78, 89, 91, 92, 93, 100, 111, 115, 116,
133, 137, 138, 139, 144, 155, 161, 162, 177, 183, 184, 185, 188, 199, 207, 208, 210, 221, 229, 230, 231, 232, 243,
253, 254, 265, 275, 276, 277, 287, 299, 300, 309, 321, 322, 323, 331, 345, 346, 353, 367, 368, 369, 375, 386, 391,
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392, 397,413, 414, 415, 419, 430, 437, 438, 441, 459, 460, 461, 463, 483, 484, 485, 496, 505.

9.4.8. Suppose that r is a primitive root modulo p. Then 7®~Y/2 = —1 = p — 1 (mod p) since rP~D/2 £
1 (mod p) and (r=1/2)2 = 1 (mod p). (This follows since the congruence 22 = 1 (mod p) has exactly

two incongruent solutions modulo p, namely z = 1 (mod p) and 2 = —1 (mod p).) Henceind,(p—1) =
(p—1)/2.

9.4.9. Suppose that z* = —1 (mod p) and let y =ind,z. Then, —z is also a solution and by Exercise 8,
ind, (—z) =ind,(—1)+ind,(z) = (p—1)/24+y (mod p—1). So without loss of generality we may take 0 <
y < (p—1)/2,0r0 < 4y < 2(p—1). Taking indices of both sides of the congruence yields 4y =ind,(—1) =
(p—1)/2 (mod p—1), again using Exercise 8. So 4y = (p—1)/2+m(p—1) for some m. Butdy < 2(p—1),
so either 4y = (p — 1)/2 and so p = 8y + 1 or 4y = 3(p — 1)/2. In this last case, 3 must divide y, so we
have p = 8(y/3) + 1. So in either case, p is of the desired form. Conversely, suppose p = 8k + 1 and let r
be a primitive root of p. Take z = r*. Then 2* = 74 = r(»=1/2 = —1 (mod p) by Exercise 8. So this z is
a solution.

9.4.10. Suppose that py,...,p, are all of the primes of the form 8k + 1. Let Q = (p1--- P,)* + 1. Then Q =
(1)*+1 =2 (mod 8). So Q has an odd prime factor ¢. Then (p; - -- P,)* = 1 (mod q). By Exercise 9, ¢ is
of the form 8k + 1.

9.4.11. We have 7 = (—1)52 (mod 2%) and 9 = (—1)°5% (mod 2%). Hence the index systems of 7 and 9 mod-
ulo 16 are (1, 2) and (0, 2), respectively.

9.4.12. Letz = (-1)*5% and y = (—1)75%. Then zy = (—1)*t75%+% (mod 2*), and 2" = (—1)"*5"%. So the
index system for xy is (a + v, f + 9), and the index system for 2" is (na, n3). Further, the first compo-
nents of the indices are modulo 2, while the second are modulo 252,

9.4.13. Since 7 = (—1)5? (mod 32) and 11 = (—1)5° (mod 32), we have that the index systems for 7 and 11
are (1,2) and (1, 5) respectively. Let the index system for z be («, 3). Then by the rules in Exercise 12, the
index system for 7z° is (1 + 9a, 2 4+ 93), which must equal the index system for 11. Therefore 1 + 9a = 1
(mod 2),s0a=0. And 2+ 98 =5 (mod 8),s0 3 = 3. Thenz = (—1)°53 = 29 (mod 32). For the second
congruence, we note that the index system for 3 and 17 are (1, 3) and (0, 4) respectively. Then the index
system for 3” is (z,3x) and we must have x = 0 (mod 2) while 3z = 4 (mod 8). A solution to the sec-
ond congruence is necessarily a solution to the first. So all solutions are given by x = 4 (mod 8).

9.4.14. We do only the case t; < 2. Suppose a and b have the same index system (7o, ..., 7Vn) modulo n.
Then for each i, we have that a and b both solve the system given by v, = ind,,x (mod ¢(p})), or
r}* =z (mod p'"). By the Chinese remainder theorem, there is a unique solution to this system modulo

pio - plm, therefore a = b (mod p - - - ptm). The case ty > 3 is a concatenation of the case ¢y < 2 and the
solution to Exercise 15 of Section 9.3.

9.4.15. We have 120 = 2% - 3. 5. The index system of 17 modulo 120 is («, 8,7, 4?) where 17 = (—1)*5°
(mod 23), 17 = 27 (mod 3), and 17 = 27 (mod 5). We see that 17 = 1 = (—1)°5° (mod 23), 17 = 2!
(mod 3), and 17 = 2! (mod 5), so that « = 0, 3 = 0, 71 = 1, and 72 = 1. Hence the index system of
17 modulo 120 is (0,0, 1,1). The index system of 41 modulo 120 is (a, 8,71,72) where 41 = (—1)25°
(mod 23), 41 = 27 (mod 3), and 41 = 272 (mod 5). We see that 41 = 1 = (—1)5° (mod 23),41 =2 =
2! (mod 3),and 41 = 1 = 2% (mod 5). Hence a = 0, 3 = 0,71 = 1, and 72 = 4. Hence the index system
of 41 modulo 120 is (0,0,1,4).

9.4.16. Asin Exercises 12 and 14, we have (7o, ..., Ym) (00, .-, 0m) = (Yo+00, - - -, Ym—+Im), and (Yo, . . ., Ym)"™ =
(Y05 -+ s Ym).-

9.4.17. We have 60 =4 - 3 - 5. We take 3,2, and 2 as primitive roots for 4, 3, and 5 respectively. Then we find
that the index system for 11 is (1,1, 0), while the index system for 43 is (1,0, 3). Let the index system for
x be (o, 8,7). Applying the rules from Exercise 16, we have (1+ 7a,1+ 73,0+ 7v) = (1,0, 3). Therefore
1+7a=1 (mod ¢(4)),s0a = 0. Next, 1 +73 =0 (mod ¢(3)),so 3 = 1. Next, 0 + 7y = 3 (mod ¢(3)),
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so v = 1. Therefore the index system for z is (0,1, 1). Using the Chinese remainder theorem, we solve
the system z = 3° (mod 4),z = 2! (mod 3),z = 2! (mod 5), to get that z = 17 (mod 60).

9.4.18. Suppose that p is a prime greater that 3. Suppose that a is relatively prime to p. By Theorem 8.17 the
3 = (1)

congruence z° = a (mod p) has a solution if and only if a @ =1 (mod p), whered = (3,p — 1). It

follows that if 3 | (p — 1), or equivalently, if p = 1 (mod 3), then 2® = a (mod p) has a solution, that is
a is a cubic residue of p, if and only if a = (mod p). Also, if (3,p — 1) = 1, or equivalently, if p =
2 (mod p), then 2® = a (mod p) has a solution, that is a is cubic residue of p, if and only if a?~! =1
(mod p), but this is satisfied by every integer a relatively prime to p. Hence every integer a with (a,p) =

1is a cubic residue of p when p = 2 (mod p).

9.4.19. We must have k odd for this exercise. We seek a solution to z* = a (mod 2¢). We take indices as de-
scribed before Exercise 11. Suppose a = (—1)*5” and = = (—1)75° Then we have indz* = (kv, k§) and
inda = (o, 3), s0 ky = a (mod 2) and k§ = 3 (mod 2¢~2). Since k is odd, both congruences are solvable
for v and 4, which determine z.

9.4.20. Letk = 2"m, where m is odd. Note that if e < n + 2, then bF = p2"™ = 1 (mod 2°), by Euler’s The-
orem, and the only solution to b* = 1 (mod (4k,2°) = 2¢) is b = 1. Therefore, we may assume that
e > n + 2. We need to show first that if b is an odd integer then a = b* = 1 (mod (4k,2¢)). Note that
(4k,2¢) = 2772, Now ordgn+2b | ¢(2"72) = 2"F1 but there are no primitive roots modulo 2" %!, so
we have ordyni2b | 2". Then b* = v>"™ = 1 (mod 22*"), as desired. To show the converse, note that
there are 2¢/2"2 = 2¢7"~2 jncongruent elements modulo 2¢, of the form a = 1 + 2"*2r, thatisa = 1
(mod 2"*2). From Exercise 15 of Section 8.3, we have that 5 has order 2°~2 modulo 2¢, and hence 5* has
order 2¢/(k,2¢72) = 2°=2="_Therefore, the 2°~2~" numbers 5%, 52¢ ... 52°° "% are incongruent mod-
ulo 2¢ and each one is a kth power residue. Then from the first part of this proof, each of 5+ is of the
form 1+2"*2r, but since there are only 2¢~"~2 of these, we must have them all. This completes the proof.

9.4.21. First we show that ordsc5 = 2¢72. Indeed, ¢(2°) = 2¢7}, so it suffices to show that the highest power
of 2 dividing 527 — 1is 2¢. We proceed by induction. The basis step is the case e = 2, which is true.
Note that 52°~ — 1 = (52" ° —1)(52°° + 1). The first factor is exactly divisible by 2¢~! by the induction
hypothesis. The second factor differs from the first by 2, so it is exactly divisible by 2, therefore 5277 -1
is exactly divisible by 2¢, as desired. Hence, if k is odd, the numbers +5%, +52% ..., +52°7%k are 2¢=1 in-
congruent kth power residues, which is the number given by the formula. If 2™ exactly divides k, then
5% = —5F (mod 2°¢), so the formula must be divided by 2, hence the factor (k,2) in the denominator.
Further, 52" has order 2¢~2 /2™ if m < e —2and order 1if m > e — 2, so the list must repeat modulo 2¢
every ordae 52" terms, whence the other factor in the denominator.

9.4.22. Let r be a primitive root modulo p, and take indices base r to get 2/u = Nind,z =ind,(-1) = (p —
1)/2 = 27! (mod 2°t). By Theorem 3.10 This congruence has solutions if and only if (2/u,2¢) | 2571,
that is, if and only if j < s — 1. If there are solutions, then Theorem 3.10 gives us ((27u, 2°t) = 27 (u, t) of
them, as desired.

9.4.23. a. From the first inequality in Case (i) of the proof of Theorem 6.10, if n is not square-free, the prob-
ability is strictly less than 2n/9, which is substantially smaller than (n — 1)/4 for large n. If n is
square-free, the argument following inequality (9.6) shows that if n has 4 or more factors, then the
probability is less than n/8. The next inequality shows that the worst case for n = p;p, is when
s1 = s and s; is as small as possible, which is the case stated in this exercise.

b. Wehaven —1=2-32.7-132.29-41-197,andp; —1=2-3-7-29-4landp, —1=2-3-7-29-41.
So that, using the notation in the proof of Case (ii) of Theorem 6.10, t = 32.7.132.29.41-197,t; =
to =-3-7-29-41, and s; = 1. Then the number of integers b with 1 < b < n — 1, for which n is a
strong pseudoprime to the base b is 71 T»(1 + E?:o 292) = (3-7-29-41)%(2). so the probability that
n is a strong pseudoprime to the base bis 2(-3-7-29-41)%?/(n—1) = 2(-3-7-29-41)%/(2-32-7-13%-
29.41-197) = 7-29 -41/(13% - 197) = 0.24999 . . .

STUDENTS-HUB.com Uploaded By: anonymous



158 9. PRIMITIVE ROOTS

9.5. Primality Tests Using Orders of Integers and Primitive Roots

9.5.1. We have 22 = 4 (mod 101), 2° = 32 (mod 101), 2!° = (25)2 = 322 = 14 (mod 101), 220 = (219)2 =
14:2 = 95 (mod 101), 2%° = (2°)° = 32° = (322)232 = 1024?32 = 14232 = 196 - 32 = —6-32 = —192 =
0 (mod 101), 250 = (22°)2 = 10 = 100 = —1 (mod 101), 210 = (250) (—=1)2 =1 (mod 101). Since

(101 1) (101—1)

# 1 (mod 101) for every proper divisor ¢ of 100, and 2t =1 (mod 101) it follows that 101

is prime.

9.5.2. Applying Theorem 9.18, we have 22! = 1 (mod 211). The prime divisors of 210 are 2, 3, 5, and 7.
Then 2(219/2) = —1 (mod 211),210/3) = 196 (mod 211),2(19/%) = 107 (mod 211), and 2(?1%/7) = 171
(mod 211). Therefore, 211 is prime.

9.5.3. Applying Corollary 9.18.1, we have 233 —1 = 2329, 3116 = —1 (mod 233),and 3% = 27 # 1 (mod 233).
So 233 is prime.

9.54. Applying Corollary 9.18.1, we have 3(2°6/2) = —1 (mod 257). There are no odd prime divisors of 256,
therefore 257 is prime.

9.5.5. The first condition implies »~! = 1 (mod F,). The only prime dividing F,, — 1 = 2%" is 2, and
(F, —1)/2 = 22"~1,s0 the second condition implies 2(»=1/2 £ 1 (mod F,). Then by Theorem 9.18, F,,
is prime.

9.5.6. Suppose thatn — 1 = pi*py* and that there exist integers x;, for j = 1,2, - - , ¢, such that xg-n*l)/pj %
1 (mod n)and z/~ = (mod n). Let N = [ord,x1, -+ ,ord,x¢]. Then N | (n—1) but N does not divide
(n—1)/p; forj =1,2,--- ,t. It follows from this observation that N = n — 1. Since x‘b( "= (mod n)

for all j it follows that ord z; | ¢(n) for all j. We conclude that ¢(n) > N. Itimplies that n is prime since
#(n) <n—1= N when n is not prime.

9.5.7. Let p be a prime dividing n. By the hypotheses, 2 ~' = 1 (mod n), but (z, (=019 _ 1 n) =1, s0 we
know that ord,z; divides n—1, butnot (n—1)/g;. Therefore ord,z; is d1v151b1e by p}’ for some prime p;
dividing qj But since ord,z; also divides p — 1 and since the ¢; are pairwise relatively prime, it follows
that [}, p}’ divides p — 1 Therefore, p > 1+ [[}_, pj’ > 1+ [Ij_, bj’ > v/n, by the last inequality of
the hypotheses Therefore, n can have only one such prime divisor, namely itself.

9.5.8. Sincen — 1 = 7056 = 243272, we take F = 2432 = 144 and R = 7% = 49, noting that F' > R. We ap-
ply Pocklington’s test with a = 2. We check (using a calculator or computational software) that 2705¢ =
1 (mod 7057) and (279%6/2 — 1,7057) = 1 and (27%%6/3 — 1,7057) = 1, since 2 and 3 are the only primes
dividing F'. Therefore n passes Pocklington’s test and so is prime.

9.5.9. Sincen — 1 = 9928 = 2317 - 73, we take F = 2317 = 136 and R = 73, noting that F' > R. We apply
Pocklington’s test with a = 2. We check (using a calculator or computational software) that 29928 = 1
(mod 9929) and (29928/2 — 1,9929) = 1 and (29928/17 — 1,9929) = 1, since 2 and 17 are the only primes
dividing F'. Therefore n passes Pocklington’s test and so is prime.

9.5.10. Note that 449 = 267+1 and 7 < 2%, so it is of the form which can be tested by Proth’s test. We compute
2(449-1)/2 = 9224 = 1 (mod 449) (using a calculator or computational software.) So Proth’s test fails for
a = 2. Next we try a = 3 and compute 3?24 = —1 (mod 449), which shows that 449 is prime.

9.5.11. Note that 3329 = 2813 + 1 and 13 < 28, so it is of the form which can be tested by Proth’s test. We try
2(3329-1)/2 = 91664 = 1 (mod 3329) (using a calculator or computational software.) So Proth’s test fails
for a = 2. Next we try a = 3 and compute 31564 = —1 (mod 3329), which shows that 3329 is prime.

9.5.12. Suppose p is a prime dividing n, and let F' have prime-power factorization F = [[’_, q?j . Then, for
each ¢;, we have that a}~ ' =1 (mod n), for some integer a;, and hence, a;” ' =1 (mod p). So ord,a; |

(n—1). But (a; (n=1)/95 _1 ) =1, s0 that ord,a; | (n—1)/q;. Therefore, ¢ q;’ | ordya; | (p—1). Since the g;
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are distinct primes, we have F | (p—1). Likewise, ord,b | n—1, and since (b¥ —1,n) = (b(*~1D/E_1 n) =
1, we have that at least one prime divisor @ of R divides p — 1. Since (F,Q) =1, wehave FQ | (p — 1),
and Q > B. Then p > FQ > FB > y/n. Therefore all prime divisors of n are greater than /n. But this
is only possible if n is prime.

9.5.13. We apply Pocklington’s test to this situation. Note that n — 1 = hg*, so we let F = ¢* and R = h and
observe that by hypothesis F' > R. Since q is the only prime dividing F', we need only check that there
is an integer a such that ¢”~! = 1 (mod n) and (a®~1/? — 1,n) = 1. But both of these conditions are
hypotheses, therefore n is prime by Pocklington’s test.

9.5.14. Let m = 78557 - 2" + 1. Note that 78557 = 2 (mod 3), so if n = 2a is even, then m = 2-2%% + 1 =
2-141=0 (mod 3). So 3| mand 3 < m, so mis not prime. If n is odd, there are two cases. First, if
n = 4a+ 1, then m = 78557 - 2%+l + 1 =2.2+4+1 = 0 (mod 5), so again, m is not prime. Second, if
n = 4a + 3, there are 3 cases, either n = 12a +3,n = 12a 4+ 7, 0orn = 12a + 11. If n = 12a + 7, then
m = 78557 - 212047 + 1 =3.27 + 1 =0 (mod 7), and so m is not prime. If n = 12a + 11 we have m =
78557 - 212a+11 1 1 =11.21 + 1 =0 (mod 13), and so m is not prime. If n = 12a + 3, there are 3 cases,
either n = 36a + 3, 36a + 15, or 36a + 27. If n = 36a + 3 we have m = 78557 - 236243 1 1 =9.23 + 1 =
0 (mod 73), and so m is not prime. If n = 36a + 15, we have m = 78557 - 236¢+15 1 1 = 11.21° 4 1 =
0 (mod 19). Finally, if n = 36a + 27 we have m = 78557 - 2369%27 1 1 =6.227 + 1 =6 (2°)°22 + 1 =
6-(—5)°4+1=0 (mod 37), and again, m is not prime. (Note that the congruence classes represented by
the various arithmetic progressions for n constitute a system of covering congruences for the integers.)

9.6. Universal Exponents
9.6.1. a. Since the prime factorization of 100 is 100 = 2252 we have \(100) = [A(2?), ¢(5%)] = [2,20] = 20.

b. Since the prime factorization of 144 is 144 = 2432 we have A\(144) = [A\(2%), ¢(3%)] = [4, 6] = 12.

c. Since the prime factorization of 22 is 222 = 2-3-37, we have A\(222) = [A(2), ¢(3), #(37)] = [1,2,36] =
36.

d. Since the prime factorization of 884 is 884 = 22 - 13 - 17, we have A\(884) = [A(2?),¢(13),¢(17)] =
[2,12,16] = 48.

e. Wehave A(2-33.5%-7) = [A(24), ¢(33), 6(52), 6(7)] = [4, 18, 20, 6] = 180.

f. Wehave A\(2°-32-52-73.112- 13- 17-19) = [A(2°), 0(3%), #(52), ¢73), 6(112), ¢(13), ¢(17), ¢(19)] =
8,6,20,294,110, 12,16, 18] = [23,2-3,22.5,2-3-72,2.5-11,22.3,2% 2.3%] = 2%.32.5.72.11 = 388080.

g. Since 10! = 2% - 3% - 52. we have A\(10!) = [A(2%), ¢(3%), #(52), ¢(7)] = [64, 54, 20, 6] = 8640.

h. Since 20! = 218.38.54.72.11.13-17-19, it follows that A(20!) = [A(2!8), ¢(3%), ¢ (54), $(72),
B(17), p(19)] = [65536,4374, 500,42, 10,12, 16, 18] = [216,2 - 37,2253,2.3.7,2. 5,22 .

216.37 . 53 . 7 = 125411328000.

¢(11), (1)7
3,242.32] =

9.6.2. a. We will use the following facts: ¢(p?) is even for an odd prime p. A\(2!) = 2/~2 is even for ¢ > 3.
A(4) = 2,and A\(2) = 1. If p' | n, then ¢(pt) | A(n).
If A(n) = 1 there can be no even components in the least common multiple. Therefore, n = 1 or 2.

b. Since A\(p') | 2, we can have only p* = 3!,2! 22, or 23. Therefore n = 8,4, 3,6,12, or 24.

c. The only integers n giving odd A(n) are given in part (a). Therefore, there are no solutions to A(n) =
3.
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d. We must have \(p) | 4, so p' = 5,3,2,22, 23, or 2%. Therefore n = 5,15, 16, 10, 30, 20, 60, 40, 120, 80,
or 240.

e. Asin part (c), there are no solutions to A(n) = 5.
f. We must have \(p') | 4, s0 p' = 2,4,8,7, or 9. Therefore n = 7,14, 28, 56,9, 18, 36, 72.

9.6.3. We seek n = 2fop!t ... ptm such that A\(n) = [\(2%), d(p}'),. .., d(pim)] = 12. So we must have \(2%) |
12. For ty > 3, we have \(2%) = 2%~2 | 12, so the largest ¢, can be is t; = 4. We also must have ¢(p}’) =
P (pi —1) | 12,50 p; — 1 =1,2,3,4,6, 0r 12, and p; = 2,3,4,5,7, or 13. But p; is an odd prime, so p; =
3,5,7, or 13 are the only possibilities for odd prime divisors of n. Also, pfi_l | 12, so if t; > 1, we have
that p; = 3 and t; = 2. Therefore the largest such n is 2432 - 5. 7 13 = 65520.

9.6.4.a. Wehave \(12) = [A\(4),A(3)] = 2,and 52 = 1 (mod 12).
b. We have A(15) = [A(3),A(5)] = 4,and 2% = 1 (mod 15).
c. We have A(20) = [A(4),A(5)] = 4,and 3! = 1 (mod 20).
d. We have A(36) = [A(4), A(9)] = 6,and 56 = 1 (mod 36).
e. Wehave A(40) = [A(8), A(5)] = 4,and 3% = 1 (mod 40).
f. We have A(63) = [A(7), A(9)] = 6,and 5° = 1 (mod 63).

9.6.5. Suppose that m = 20pi pts. Then A(m) = [A(2%),¢(p1),...,¢(p:,)]. Furthermore, ¢p(m) =
B(2t0)p(pit - - - p(ple). Since A(2%°) = 1,2, or 202 when t; = 1,2, or t; > 3, respectively, it follows
that A(2%) | ¢(2%) = 2%~1. Since the least common multiple of a set of numbers divides the product of
these numbers, or their multiples, we see that A(m) | ¢(m).

9.6.6. Let M = [\(m), \(n)]. Then for any integer a with (a,m) = (a,n) = 1, we have a™ =1 (mod m) and
a™ =1 (mod n), since A(m) | M and A(n) | M. By the Chinese remainder theorem, this system has
a unique solution modulo mn, so we must have ™ = 1 (mod mn). Therefore, M is a universal expo-
nent of mn and hence A\(mn) | M. Now let b be an element of order A(m) modulo m. Then b*(™") = 1
(mod mn), so b’ =1 (mod m). So, \(m) | A(mn). Similarly, \(m) | A(mn), and so M = \(mn).

9.6.7. For any integer x with (z,n) = (z,m) = 1 we have 2* = 1 (mod n) and z* = 1 (mod m). Then the
Chinese remainder theorem gives us 2* = 1 (mod [n,m]). But since n is the largest integer with this
property, we must have [n, m] = n, so m|n.

9.6.8. We count solutions of the system in the proof of Theorem 9.21. For each p; there are ¢(¢(p})) primi-
tive roots, so there are this many choices for r; for each i. Similarly, by Exercise 15 of Section 8.3, there
are 23 elements of maximal order modulo 2%, so in all there are 2¥73 [ | ¢(¢(p}')) ways to choose
the system. Each system gives a unique and different element with maximal order.

9.6.9. Suppose that az = b (mod m). Multiplying both sides of this congruence by a*(™)~1 gives ™)z =
a™=1p (mod m). Since a*™ = 1 (mod m), it follows that z = a*(™)~1b (mod m). Conversely, let
zo = a1 (mod m). then azy = aa*™~1b = a*"™b = b (mod m), so z is a solution

9.6.10. Suppose p? | m, where p is prime. We show that for no a is a° = p (mod m). If this congruence holds,
then p | a. However, if ¢ > 1,p? | a%, but p? { p, so since p? | m this congruence is impossible modulo
p?, and hence, modulo m. If (¢, A\(m)) > 1, let g = A(m)/(c, \(m)). We know that g is not a universal
exponent for m, because g < A(m). So, if 1¢,2¢, ..., (m — 1)¢ is a complete residue system, one of these
numbers raised to the g power is not congruent to 1 modulo m. This, however, is impossible, because
A(m) | cg. Conversely, suppose a® = b¢ (mod m), and let ¢ be a prime dividing m. If ¢ | (a — b) then
a =0b (mod q).If g t (a — b), then we note that ¢(q) = (¢ — 1) | A(m). Since (¢, \(m)) = 1,(¢,g — 1) = 1.
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Therefore, a® = b° (mod ¢), and hence a = b (mod q). Since this is true for all such primes ¢ dividing m,
we have a = b (mod m), by the Chinese remainder theorem.

9.6.11. a. First suppose that m = p®. Then we have z(z°~! — 1) = 0 (mod p®). Let s be a primitive root for
p?, then the solutions to 2! = 1 are exactly the powers s* with (¢ — 1)k = 1 (mod ¢(p?)), and
there are (¢ — 1, ¢(p®)) of these. Also, 0 is a solution, so we have 1 + (¢ — 1, ¢(p®)) solutions all to-
gether. Now if m = p{* - - - p%~, we can count the number of solutions modulo p;* for each i. There
is a one-to-one correspondence between solutions modulo m and the set of r-tuples of solutions to
the system of congruences modulo each of the prime powers. The correspondence is given by the

Chinese Remainder Theorem.

b. Suppose (c —1,¢(m)) = 2, then c — 1 is even. Since ¢(p*) is even for all prime powers, except 2, we
have (¢ — 1, ¢(p*)) = 2 for each i. Then by part (a), we have the number of solutions = 3". If 2! is a
prime factor, then ¢(m) = ¢(m/2), and since z¢ and x have the same parity, z is a solution modulo
m if and only if it is a solution modulo m/2, so the proposition still holds.

9.6.12. In an RSA cipher, m = pq, so r = 2. By part (b) of Exercise 11, there are exactly 3* = 9 solutions to
P = P¢ (mod m). These are the 9 plaintext messages which stay unchanged.

9.6.13. Letn = 3pg, with p < ¢ odd primes, be a Carmichael number. Then by Theorem 9.27, p — 1|3pg — 1 =
3(p—1)g+3¢g—1,s0p—1|3¢ —1,say (p — 1)a = 3¢ — 1. Since ¢ > p, we must have a > 4. Similarly,
there is an integer b such that (¢ — 1)b = 3p — 1. Solving these two equations for p and ¢ yields ¢ =
(2a +ab—3)/(ab—9),and p = (2b+ ab — 3)/(ab—9) = 1+ (2b+ 6)/(ab — 9). Then since p is an odd
prime greater than 3, we must have 4(ab — 9) < 2b + 6, which reduces to b(2a — 1) < 21. Since a > 4,
this implies that b < 3. Then 4(ab —9) < 2b+ 6 < 12,s0 ab < 21/4,s0 a < 5. Therefore a = 4 or 5. If b =
3, then the denominator in the expression for ¢ is a multiple of 3, so the numerator must be a multiple
of 3, but that is impossible since there is no choice for a which is divisible by 3. Thus b = 1 or 2. The
denominator of ¢ must be positive, so ab > 9, which eliminates all remaining possibilities except a = 5,
b =2, in which case p = 11 and ¢ = 17. So the only Carmichael number of this form is 561 = 3 - 11 - 17.

9.6.14. The inequalities in the solution to Exercise 15, give us p,q < (5% + 52 — 5 + 1)/(2) = 73, so we have
finitely many cases to check. Only 3 of the possible numbers are pseudoprimes to the base 2: 5-13-17,5-
17-29,and 5 - 29 - 73. Of these, 5 - 17 - 29 is not a pseudoprime to the base 3, and 5 - 13 - 17 one fails to be
a pseudoprime to the base 6. However, 5 - 29 - 73 is a Carmichael number, as was shown in Exercise 16
of Section 6.2.

9.6.15. Assume ¢ < r. By Theorem 9.23, ¢ — l|pgr — 1 = (¢ — 1)pr + pr — 1. Therefore ¢ — 1|pr — 1, say
a(qg — 1) = pr — 1. Similarly b(r — 1) = pg — 1. Since ¢ < r, we must have ¢ > b. Solving these two
equations for ¢ and r yields 7 = (p(a — 1) + a(b—1))/(ab—p?) and ¢ = (p(b— 1) + b(a — 1)) /(ab — p?) =
1+ (p? +pb—p—>b)/(ab— p?). Since this last fraction must be an integer we have ab—p? < p*> + pb—p—b
which reduces to a(b — 1) < 2p?> + p(b—1)ora —1 < 2p?/b+ p(b—1)/b < 2p* + p. So there are only
finitely many values for a. Likewise, the same inequality gives us b(a—1) < 2p?+pb—porb(a—1—p) <
2p? — p. Since a > b and the denominator of the expression for ¢ must be positive, we have that a > p+1.
Ifa=p+1, wehave (p+1)(¢—1) =pg—p+q—1=pr—1, which implies that p|g, a contradiction.
Therefore a > p+ 1, and so a — 1 — p is a positive integer. The last inequality givesus b < b(a —1 —p) <
2p? — p. Therefore there are only finitely many values for b. Since a and b determine q and r, we see that
there can be only finitely many Carmichael numbers of this form.

9.6.16. Since (e, ¢(n)) = 1 and A(n) | #(n), we have (e, A(n)) = 1. Therefore, and inverse d of e modulo A(n)
exists. Then ed = kA(n) + 1 for some integer k. Then, if P is a plaintext block, the cipher text is C' = P°
(mod n). Then C? = pe? = PFA+1 = 1k P = P (mod n), since \(n) is a universal exponent.

9.6.17. We have g, (ab) = ((ab)*™ —1)/n = (e — gA) — pA() 11 4 gAML pA) —9) /= (o M) —

DA™ —1)/n+ (N — 1) + (0¥ — 1)) /n = gn(a) + ¢.(b) (mod n). At the last step, we use the fact
that n2 must divide (a*™ — 1)(b*(™ — 1), since A(n) is the universal exponent.
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9.6.18. First, note that a*™~1g = ¢*™ =1 (mod n), so @
rem, we have, g, (a + nc) = ((a +ne)*™ —1)/(n) = (a
(ne)M™ —1)/(n) = a*™ /n 4+ A(n)dc — 1/n = q,(a) +

= ¢~ (mod n). Then by the Binomial Theo-
A(n) + )\( ) A(n)flnc_i_ (A(Qn))a)\(n)fz(ncy R
A(n)ac (mod n).
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CHAPTER 10

Applications of Primitive Roots and the Order of an
Integer

10.1. Pseudorandom Numbers

10.1.1. First term: 69; second term: 76, since 692 = 4761; third term: 77, since 762 = 5776; fourth term: 92,
since 772 = 5929; fifth term: 46, since 922 = 8464; sixth term: 11, since 462 = 2116; seventh term: 12,
since 112 = 0121; eighth term: 14, since 12? = 0144; ninth term: 19, since 14%> = 0196; tenth term: 36,
since 192 = 0361; eleventh term: 29, since 362 = 1296; twelfth term: 84, since 292 = 0841; thirteenth
term: 05, since 842 = 7056; fourteenth term: 02, since 52 = 0025; fifteenth term: 00, since 022 = 0004;
sixteenth term and all remaining terms are 00, since 0 = 0000.

10.1.2. Wehavexzy = 6,21 =5-64+2 =32 =13 (mod 19),21 =5-13+2 =67 =10 (mod 19),22 =5-10+2 =
52=14 (mod 19),23 =5-14+2=72=15 (mod 19),24 =5-154+2=77=1 (mod 19),25 =5-1+2 =
7 (mod 19),26 =5-7+2=37=18 (mod 19),27, =5-1842=92=16 (mod 19),z§ =5-16+2 =82 =
6 (mod 19),29 =5-6+2=32=1,3 (mod 19),210=5-13+2=67 =10 (mod 19),z1; =5-10+2 =
52 = 14 (mod 19), and since z1; = zo, it follows that z;, = x,_g for k£ > 11. Hence the sequence is
13,10,14,15,1,7,18,16,6,13,10, 14,15, 1,7, 18, ... and the period length is 9.

10.1.3. We compute 2y = 2,21 = 15,25 = 17,23 = 0,24 = 7,25 = 10,26 = 22,27 = 20,23 = 12,29 = 15, and
210 = 2 = x¢. So the period length is 10.

10.1.4. If a = 0 we have z,41 = ¢ (mod m) which means that the sequence is constant for n > 1, clearly not
a good choice for a sequence of pseudorandom numbers. If ¢ = 1 we have z,,41 = =, + ¢ (mod m),
which shows that the terms of the sequence differ by a constant modulo m, also not a good choice for a
sequence of pseudorandom numbers.

10.1.5. a. From Theorem 10.2, we must have a = 1 (mod 4) since 4 | 1000, and since 5 is the only odd prime
dividing 1000, we must also have @ = 1 (mod 5). By the Chinese remainder theorem, we have a =
1 (mod 20).

b. Wehave 30030 =2-3-5-7-11-13. So we solve the system a = 1 (mod m), form = 2,3,5,7,11,13,
togeta =1 (mod 30030).

c. Wehave 10 — 1 = 3271113 - 37, so we must have a = 1 (mod m) for m = 3,7,11,13,37. This
system has solutions ¢ =1 (mod 111111), by the Chinese remainder theorem.

d. We have 2% — 1 = 31- 601 - 1801, so we must have a = 1 (mod m) for m = 31,601, 1801. By the
Chinese remainder theorem, we have a = 1 (mod 225 — 1).

10.1.6. We proceed by induction. yo = 0,soy; = 1, and by; +z¢ = (a — 1)zg+c+zp = axo+c = x; (mod m),
so the basis step holds. Suppose x, 1 = byn—1 + 2o (mod m). Then we have by,, + ¢ = b(ayn—1 + 1) +
2o = abyp—1+b+ 20 = a(xn_1 —x0)+b+20 = axp_1+b—(a—1)xg = axp_1+c =z, (mod m), which
completes the induction step.

10.1.7.a. Since 23! =1 (mod M3;), the order of 2 must be a divisor of 31. Since 31 is prime, the order must
be 31, which is the period length.
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b. Using computational software, we compute 3(Ms1=1/P (mod M) for each prime power divisor
p* of M3z, — 1. The residue is 1 only for p = 3, but not for p* = 32. Therefore the period length is
(M3, — 1)/3 = T15827882.

c. From part (a) we have 43! = (231)2 = 1 (mod Ms,), so the order of 4, and hence the period length,
must be 31.

d. Using computational software, we compute 5(M21=1)/P (mod Ms3,) for each prime power divisor p*
of M3y —1. Theresidueis 1 only for p = 11. Therefore the period length is (M3 —1)/11 = 195225786.

e. Using computational software, we compute 13(M31=1/P (mod Mz, ) for each prime power divisor
p* of M3 — 1. The residue is 1 only for p = 2. Therefore the period length is (M3 — 1)/2 =
1073741823.

f. Using computational software, we compute 17(M31=1/? (mod Mz, ) for each prime power divisor
p* of Ms; — 1. The residue is 1 only for p = 2. Therefore the period length is (M3 — 1)/2 =
1073741823.

10.1.8. From Exercise 15 of Section 9.3, we know that 5 has order 2¢~2 modulo 2¢, but no element has higher
order, since that order would have to be 2¢~! which would imply the existence of a primitive root, con-
tradicting Theorem 9.15. Therefore, we have zg.—2 = a2672x0 = z¢ (mod 2°¢), and hence the maximum
period length is 2°~2. We also see that this is achieved for a = 5 = —3 (mod 8). Then it is also achieved
fora = —5=3 (mod 8).

10.1.9. We compute z1 = 8% = 64 (mod 77), z2 = 64% = 15 (mod 77), z3 = 15> = 71 (mod 77), z4 = 71% =
36 (mod 77),and z5 = 36% = 64 = z; (mod 77). So the sequence of numbers is 8,64, 15,71,36,64, . ...

10.1.10. We compute z; = 5% = 25 (mod 1001), zo = 25% = 625 (mod 1001), z3 = 625 = 235 (mod 1001),
r4 = 2352 = 170 (mod 1001), x5 = 170? = 872 (mod 1001), and z¢ = 8722 = 625 = x5 (mod 1001). So
the sequence of numbers is 5, 25, 625, 235,170, 872,625, . . ..

10.1.11. First we compute ord778. Since 8 = 1 (mod 7) and 8! = 1 (mod 11) by Fermat’s Little Theorem,
the Chinese remainder theorem shows that 8!1° = 1 (mod 77). Since 8° = 43 (mod 77), we know that
ord;78 = 10. Therefore t = 1 and s = 5. Since 2 is a primitive root modulo 5, we know that ords2 = 4.
So by Theorem 10.4, the period length is 4.

10.1.12. First we compute ordjgo15. Since 5 = 1 (mod 7), 5° = 1 (mod 11), and 5* = 1 (mod 13), then by the
Chinese remainder theorem, 5°° = 1 (mod 1001). Since 53° = 155 (mod 1001), we have ord;gp15 = 60.
Therefore t = 2 and s = 15 in Theorem 10.4. Since 2* = 1 (mod 15), we know the period length is 4.

10.1.13. Using the notation of Theorem 10.4, we have ¢(77) = 60, so ord77z is a divisor of 60 = 223 - 5. Then
the only possible values for s are the odd divisors of 60, which are 3,5, and 15. Then we note that 22 = 1
(mod 3),2* =1 (mod 5),and 2* = 16 = 1 (mod 15). In each case we have shown that ord,2 < 4. Hence
by Theorem 10.4 the maximum period length is 4.

10.1.14. Using the notation of Theorem 10.4, we have ¢(989) = 924 = 223-7-11. So ord 1017 is an odd divisor
of 924. Then the only possible values for s are 3,7, 11, 21, 33, 77, and 231. We compute that ordss;2 = 30.
Hence by Theorem 10.4 the maximum period length is 30.

10.1.15. We have zp = 1 and z; = 24. Using the definition of the Fibonacci generator, it follows that 2, =
x1+xo =1424 =25 (mod 31). Hence o = 25. Continuing, we find that x3 = 23 +2; =25+24 =49 =
18 (mod 31), so z3 = 18. We compute successive terms in the same manner: x4 = 3 + 2 = 18 4 25 =
43 = 12 (mod 31), so x4 = 12525 = 24 + 3 = 12 4+ 18 = 30 (mod 31), so x5 = 30;26 = x5 + T4 =
30+ 12 =42 =11 (mod 31),s0 a6 = 11;27 = ¢ + x5 = 11 + 30 = 41 = 10 (mod 31), so z7 = 10; and
28 = a7 + 26 = 10+ 11 = 21 (mod 31), so g = 21. The terms x; withi = 0,1,2,...,8 are 1, 24, 25, 18,
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10.2. THE ELGAMAL CRYPTOSYSTEM 165
12,30, 11, 10, and 21.

10.1.16. From Table E.3 in the back of the text, we find that 2 is a primitive root modulo 101. Now (17, ¢(101)) =
1, s0 21" = 75 is also a primitive root modulo 101. Since it is so large, it will make a good multiplier.

10.1.17. Check that 7 has maximal order 1800 modulo 22° — 1. To make a large enough multiplier, raise 7 to a
power relatively prime to ¢(22° — 1) = 32400000, for example, to the 11th power.

10.1.18. We have 402 = a + ¢ (mod 1003) and 361 = 402a + ¢ (mod 1003). Multiply the first congruence by
402 and subtract the second to get 402% — 361 = 402¢ — ¢ (mod 1003), or 401c = 763 (mod 1)003, which
has solution ¢ = 197 (mod 1003). Then the first congruence gives us a = 402 — 197 = 205 (mod 1003).

10.1.19. We must have 313a = 145 (mod 1000). Solving this congruence yields a = 665.
10.1.20. a. We have r; =32 =9 (mod 17), 72 = 3% = 14 (mod 17), 23 = 3'4 =2 = 2y (mod 17).

b. Wehave z; = 5% =31 (mod 47), 72 = 531 = 39 (mod 47), and the sequence continues: 39, 30, 36, 4,
14,27,33,35,29,26,16,17, 38, 6,21,15,41, 45,19, 10, 12, 18, 2, 25, 22,28, 24,42,37,20, 3 = x33 = xo.

c. If we have a table of indices for the primitive root ¢ modulo p, then we have ind,z, = %,—1
(mod p — 1). Since each z,, < p, this will determine x,,_1.

10.1.21. a. We compute z; = 2% =8 (mod 15),and 25 = 8% =64-8 =4 -8 = 32 = 2 (mod 15). Since x5 = o,
the sequence is 8,2,8,2,8,2, ...

b. We compute z; = 32 = 9 (mod 23), z2 = 92 = 81 = 12 (mod 23), z3 = 122 = 6 (mod 23), x4 =
62 = 13 (mod 23), x5 = 13?2 = 8 (mod 23), 26 = 8% = 18 (mod 23), 27 = 182 = 2 (mod 23), 25 =
22 =4 (mod 23), g = 42 = 16 (mod 23), 19 = 162 = 3 (mod 23). Since x19 = o, the sequence is
9,12,6,13,8,18,2,4,16,3,9,12,6, ...

10.2. The ElGamal Cryptosystem

10.2.1. We select k = 1234 for our random integer. Converting the plaintext into numerical equivalents results
in 0700 1515 2401 0817 1907 0300 2423, where we filled out the last block with an X. Using a calculator or
computational software, we find v = r¥ = 61234 = 517 (mod 2551). Then for each block P we compute
§=P-bk = P.3324 = P.651 (mod 2551). The resulting blocks are 0700 - 651 = 1622 (mod 2551),
1515-651 = 1579 (mod 2551), 2401 - 651 = 1839 (mod 2551), 0817 - 651 = 1259 (mod 2551), 1907 - 651 =
1671 (mod 2551), 0300 - 651 = 1424 (mod 2551) and 2423 - 651 = 855 (mod 2551). Therefore, the cipher-
text is (517, 1622), (517, 1579), (517, 1839), (517, 1259), (517, 1671), (517, 1424), (517, 855). To decrypt this
ciphertext, we compute y?~17¢ = 517255171713 = 5172537 = 337 (mod 2551). Then for each block of the
cipher text we compute P = 337-6 (mod 2551). For the first block we have 337-1622 = 0700 (mod 2551)
which was the first block of the plaintext. The other blocks are decrypted the same way.

10.2.2. We select ¥ = 1007 for our random integer. Converting the plaintext into numerical equivalents
results in 0314 1314 1915 0018 1806 1423, where we filled out the last block with an X. Using a calcu-
lator or computational software, we find v = 7% = 7197 = 1423 (mod 2591). Then for each block P
we compute § = P -b* = P - 5911907 = P . 1313 (mod 2591). The resulting blocks are 0314 - 1313 =
0313 (mod 2591), 1314 - 1313 = 2267 (mod 2591), 1915 - 1313 = 1125 (mod 2591), 0018 - 1313 = 0315
(mod 2591), 1806 - 1313 = 0513 (mod 2591), and 1423 - 1313 = 0288 (mod 2591). Therefore, the cipher-
text is (1423,0313), (1423,2267), (1423,1125), (1423,0315), (1423,0513), (1423, 0288). To decrypt this ci-
phertext, we compute y?~17¢ = 1423259171799 = 14232491 = 2443 (mod 2591). Then for each block of
the cipher text we compute P = 2443 - § (mod 2591). For the first block we have 2443 - 0313 = 0314
(mod 2591) which was the first block of the plaintext. The other blocks are decrypted the same way.

10.2.3. We start by computing 7% = 2161271371717 = 216126% = 167 (mod 2713). Then multiplying the
second number of each block and reducing yields 167 - 660 = 1700 (mod 2713), 167 - 1284 = 0101
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(mod 2713), and 167 - 1467 = 0819 (mod 2713). So the plaintext is 170001010819 which is equivalent to
RABBIT.

10.2.4. We start by computing 7* = 1061267717133 = 1061243 = 1759 (mod 2677). Then multiplying the
second number of each block and reducing yields 1759 - 2185 = 1920 (mod 2677), 1759 - 0733 = 1710
(mod 2677), and 1759 - 1096 = 0424 (mod 2677). So the plaintext is 192017100424 which is equivalent to
TURKEY.

10.2.5. First we compute v = 3'%! = 2022 (mod 2657). Using the Euclidean algorithm we can compute 101 =
973 (mod 2656) then the signature is given by s = (823 — 211 - 2022)973 = 833 (mod 2656). To verify
this signature, we compute V; = 2022833801222 = 1014 (mod 2657) and V2 = 3823 = 1014 (mod 2657).
Since V; = V5, the signature is verified.

10.2.6. First we compute v = 527 = 1344 (mod 2543). Using the Euclidean algorithm we can compute 257 =
999 (mod 2542) then the signature is given by s = (2525 — 99 - 1344)999 = 1589 (mod 2542). To verify
this signature, we compute V; = 1344189161534 = 614 (mod 2543) and V> = 52525 = 614 (mod 2543).
Since V; = V5, the signature is verified.

10.2.7. Let 6, = Pib* and 62 = Pyb* as in the ElGamal cryptosystem. If P; is known, it is easy to compute
an inverse for P, modulo p. Then b¥ = P;6; (mod p). Then it is also easy to compute an inverse for bk
(mod p). Then P, = b¥d, (mod p). Hence the plaintext P, is recovered.

10.2.8. We have knowledge of Pi, %, s1, 52,71, 72, and the public key information. Note that v; = k=,
(mod p), so we call this common value 7. Then we compute s1 —s2 = (Py—ay)k—(Py—ay)k = (P1—Py)k
(mod p — 1). There are (p — 1, P, — P») solutions for k, which is hopefully a small number of solutions.

If k is a solution, then it is easy to find k by solving kz = 1 (mod p — 1). Then it is easy to recover a by
solving s1 = (P — ay) (mod p — 1) for a, thatis a = —%(S1k — P;) (mod p — 1).

10.3. An Application to the Splicing of Telephone Cables

10.3.1. a. Since 17 is prime it has a primitive root. Hence the maximal +1-exponent of 17 is ¢(17)/2 = 8.

b. Since 22 is of the form 2p where p is prime it has a primitive root. Hence the maximal +1-exponent
of 221is ¢(22)/2 = 10/2 = 5.

c. We see that 24 = 23 - 3 does not have a primitive root since it is not a power of a prime nor twice a
power of a prime. Hence the maximal +1-exponent of 24 is A(24) = [\(23),¢(3)] = [2,2] = 2.

d. We see that 36 = 22 - 32 does not have a primitive root since it is not a power of a prime nor twice a
power of a prime. Hence the maximal +1-exponent of 36 is A(36) = [A\(2?), ¢(3%)] = [2,6] = 6.

e. We see that 99 = 3% - 11 does not have a primitive root since it is not a power of a prime not twice a
power of a prime. Hence the maximal +1-exponent of 99 is A(99) = [$(3?), ¢(11)] = [6, 10] = 30.

f.  We see that 100 = 2252 does not have a primitive root since it is not a power of a prime nor twice a
power of a prime. Hence the maximal +1-exponent of 100 is A\(100) = [A(2?), ¢(5%)] = [2,20] = 20.

10.3.2.a. Since 2 is a primitive root modulo 13, 2¢ = —1 (mod 13). So 2 has maximal +1-exponent.
b. Since 3 is a primitive root modulo 14, 3 = —1 (mod 14). So 3 has maximal +1-exponent.
c¢. Wehave \(15) = 4, and 2 has order 4 modulo 15 without any lower power being congruent to —1.

d. Since 2 is a primitive root modulo 25, it does the job.
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10.3. AN APPLICATION TO THE SPLICING OF TELEPHONE CABLES 167
e. Wehave A(36) = 6, and 5 has order 6.
f. Wehave A\(60) = 4, and 7 has order 4.

10.3.3. a. By Theorems 10.6 and 9.23, the maximal +1—exponent of 50 is Ao (50) = A(50) = [A(2), ¢(25)] = 20.
We seek an integer with order 20 (mod 50) to be the spread. Since 3 is a primitive root for 5, either
3 or 8 is a primitive root for 25. It turns out that ordss3 = 20 = ¢(25). So it follows that ord;o3 = 20.
So we choose s = 3 for our spread.

b. We compute \o(76) = [A\(4), 9(19)] = [2, 18] = 18. Since 2 is a primitive root modulo 19, we consider
s =19 + 2 = 21 for our spread. A quick computation shows that ord721 = 18.

c.  We compute \g(125) = ¢(125) = 100. Since 2 is a primitive root for 5, we start there. Now 2°0 = —1
(mod 125), so ordygp2 = 100. Thus we use s = 2 as our spread.

10.3.4. In a section of cable, there are m adjacent pairs of wires. After [(m — 1)/2] sections of cable, we have
generated m[(m — 1) /2] pairs of adjacent wires. But from a set of size m there are only ('}') = m(m—1)/2
possible different pairs, so the above is the maximum. If two wires are adjacent in the first section and
in the kth section, then we have Si(j) = Sk(j £1) + 1 (mod m). Using Theorem 10.7, and assuming s
has maximal +1-exponent, we have 1 + (j — 1)s*"? = 1 + (j £ 1 + 1)s*"1 + 1 (mod m) or s*~! = +1
(mod m), which implies that k = A\g(m) + 1 = ¢(m)/2 = (m +1)/2. So we canhave k — 1 = (m —1)/2
sections of cable before we repeat a pair.

STUDENTS-HUB.com Uploaded By: anonymous



STUDENTS-HUB.com Uploaded By: anonymous



CHAPTER 11
Quadratic Residues

11.1. Quadratic Residues and Nonresidues

11.1.1. a. We have 12 = 22 = 1 (mod 3). Hence the quadratic residues of 3 are those integers congruent to 1
modulo 3.

b. Wehave 12 =42 = 1 (mod 5) and 2 = 3? = 4 (mod 5). Hence the quadratic residues of 5 are those
integers congruent to 1 or 4 modulo 5.

c. Wehavel = 122 = 1 (mod 13), 22 = 112 = 4 (mod 13), 32 = 10> = 9 (mod 13), 4> = 9% =
3 (mod 13), 5% = 8% = 12 (mod 13), and 6 = 72 = 10 (mod 13). Hence the quadratic residues of 13
are those integers congruent to 1, 3, 4, 9, 10, or 12 modulo 13.

d. We have 12 = 182 = 1 (mod 19), 22 = 17?2 = 4 (mod 19), 32 = 162 = 9 (mod 19), 42 = 152
16 (mod 19), 52 = 142 = 6 (mod 19), 62 = 132 = 17 (mod 19), 72 = 122 = 11 (mod 19), 82 = 112 =
7 (mod 19), and 92 = 102 = 5 (mod 19). Hence the quadratic residues of 19 are those integers con-
gruentto1,4,5,6,7,9,11, 16, or 17 modulo 19.

11.1.2.a. Wehave 12 =62 =1 (mod 7), 22 = 52 = 4 (mod 7), and 3% = 42 = 2 (mod 7). Hence, the quadratic
residues of 7 are those integers congruent to 1, 2, or 4 modulo 7.

b. A reduced residue system modulo 8 is 1, 3, 5, and 7. We have 12 = 3% = 52 = 72 = 1 (mod 8).
Hence 1 is the only quadratic residue modulo 8.

c. A reduced residue system modulo 15is 1,2, 4,7, 8,11, 13, and 14. We have 12 = 142 = 4% = 11 =
1 (mod 15), and 22 = 13% = 72 = 82 = 4 (mod 15). Hence 1 and 4 are the only quadratic residues
modulo 15.

d. A reduced residue system modulo 18 is 1, 5, 7, 11, 13, and 17. We have 12 = 172 = 1 (mod 18),
52 = 13% = 7 (mod 18), and 72 = 11? = 13 (mod 18). Hence, the quadratic residues of 18 are those
integers congruent to 1, 7, or 13 modulo 18.

11.1.3. From Exercise 1 (b) we have (%) = (g) =1land (%) = (%) =1

11.1.4. We have 12 = 62 = 1 (mod 7), 22 = 52 = 4 (mod 7), and 3? = 42 = 2 (mod 7). Hence the quadratic
residues of 7 are those integers congruent to 1,2,or 4 modulo 7. It follows that (%) =1, (%) =1, (%) =

-1, (;) =1, (%) — —1,and (g) -1

lll)57(11—1/25755492-7552-753-75_1(modn)

b. We compute (7,14,21,28,35) = (7,3,10,6,2) (mod 11) and three of these are greater than 11/2, so
() = (-2 = -1

11.1.6. Note that (%) (%) = (%’) It follows that if either both or neither of a and b is a quadratic residue of
p then ab is a quadratic residue of p. On the other hand, if exactly one of a and b is a quadratic residue
of p then it follows that ab is also a nonresidue. We conclude that either one or all three of a, b, and ab is
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170 11. QUADRATIC RESIDUES
a quadratic residue of p.

11.1.7. We know that ( ) ( > (% by Theorem 11.4 Using Theorems 11.5 and 11.6 we have: If p =
1 (mod 8) then (*72) (1)(1) = L. If p = 3 (mod 8) then (*72) —(~1)(~1) = L. If p = —1 (mod 8) then
(*72) = (~1)(1) = —1. If p = —3 (mod 8) then (*72) = (1)(~1) = L

2t1+1 2t +1 2t 2t
11.1.8. Theorem114g1ves< ) = (p - ) (pkk ) = (pl 1)(%) : (p’“k> < prg. Since p}'* is a square,

q q q

webave (3) =1- () 1(%) 1 (%)

11.1.9. Sincep—1=-1,p—-2=-2,...,(p+1)/2=(p—1)/2 (mod p), we have((p —1)/2)? = —(p—1)! =
1 (mod p) by Wilson’s theorem. (since p = 3 (mod 4) the minus signs cancel). By Euler’s criterion, ((p —

1)/2)1=1/2 = (5> (%) (W) = (—1)! (mod p), by definition of the Legendre symbol. Since

(p—1)/2! = £1 (mod p), and (p — 1)/2 is odd, we have the result.

11.1.10. Suppose that (b,p) = 1. Then (%) + (%’) + ((p*pil)b> = (%) K%) + (%) +-0F (%)} =

(%) -0 = 0, because (%) + (%) +ot ((p%)> = 0 since it is the sum of an equal number of 1’s and
—1’s. (This follows since there are an equal number of quadratic residues and nonresidues modulo p

among the integers 1,2,--- ,p — 1).

11111 Ifp=1 (mod 4), (_7“) - (—71) (5) =1-1=11Ifp=3 (mod 4), (‘Tf‘) = (—71) (ﬁ) =(-1)-1=-1.

11.1.12.a. If ¢ = 0 (mod 2) then 2 = 0 is a solution. z = lisa solutionof 22 +1 =0 (mod 2). 12 +1+1=1
and 02+ 0+ 1 =1 (mod 2) so 22 +  + 1 = 0 (mod 2) has no solution.

b. y? =d (mod p) if and only if (2az+b)? = b*>—4ac (mod p) if and only if 4a%z% +4abz +b? —b? +4ac =
0 (mod p) if and only if a?z? + abz + ac = 0 (mod p) since (4, p) = 1, if and only if ax? +bx +c =0
since (a, p) = 1. The conclusion follows.

11.1.13. a. We will use properties of congruence to complete the square. Suppose that z? + z + 1 = 0 (mod 7).
Adding —7z + 8 to both sides give 2> — 62+ 9 = —7z +8 = 1 (mod 7). Hence (z —3)? = 1 (mod 7).
Since the solutions of 4> = 1 (mod 7) arey = 1 and y = —1 (mod 7), this implies that z — 3 =
1 (mod 7) or x — 3 = —1 (mod 7). It follows that the solutions are those x satisfying = 4 (mod 7)
orz =2 (mod 7).

b. Suppose that z?+52+1 = 0 (mod 7). Adding — 7z to both sides gives 2% —2x+1 = 72 = 0 (mod 7).
Hence (z — 1) = 0 (mod 7). It follows that z — 1 = 0 (mod 7), so all solutions are given by x =
1 (mod 7).

c. Suppose that 22 + 3z + 1 = 0 (mod 7). Then adding —7z + 3 to both sides gives z? — 4z + 4 =
—7x+3 = 3 (mod 7). Hence (z — 2)? = 3 (mod 7). But 3 is a quadratic nonresidue of 7. Hence
there are no solutions.

11.1.14. Suppose that p is a prime that is at least 7. At least one of the three incongruent integers 2,5, and 10 is
a quadratic residue of p, because if neither 2 nor 5 is a quadratic residue of p then 10 = 2- 5 is a quadratic
residue of p. If 2 is a quadratic residue of p then 1 and 2 are consecutive quadratic residues, if 5 is a qua-
dratic residue of p then 4 and 5 are consecutive quadratic residues, while if 10 is a quadratic residue of p
then 9 and 10 are consecutive quadratic residues.

11.1.15. Suppose that p is a prime that is at least 7. At least one of the three incongruent integers 2,3, and 6 is
a quadratic residue of p, because if neither 2 nor 3 is a quadratic residue of p then 2 - 3 = 6 is a quadratic
residue of p. If 2 is a quadratic residue, then 2 and 4 are quadratic residues that differ by 2; if 3 is a qua-
dratic residue, then 1 and 3 are quadratic residues that differ by 2; while if 6 is a quadratic residue then
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11.1. QUADRATIC RESIDUES AND NONRESIDUES 171
4 and 6 are quadratic residues that differ by 2.
11.1.16. Since 1 and 4 are quadratic residues for all primes greater than 3, and 4 — 1 = 3, we're done.

11.1.17.a. Sincep =4n +3,2n+2 = (p+ 1)/2. Then 22 = (£a" )% = o> 12 = oPTV/2 = oP-D/2 =1 .4 =
a (mod p) using the fact that a(P~1)/2 = 1 (mod p) since a is a quadratic residue of p.

b. From Lemma 11.1, there are exactly two solutions to y*> = 1 (mod p), namely y = +1 (mod p).
Since p = 5 (mod 8), —1 is a quadratic residue of p and 2 is a quadratic nonresidue of p. Since p =
8n+5,wehave4n +2 = (p—1)/2and 2n + 2 = (p + 3)/4. Then (+a"*')? = a*+3)/4 (mod p) and
(£22H1gnt1)2 = 2= 1)/2q(r+3)/4 = _¢(P+3)/4 (mod p) by Euler’s criterion. We must show that
one of a?*3)/4 or —aP*3)/4 = g (mod p). Now a is a quadratic residue of p, so a®»~1/2 = 1 (mod p)
and therefore a(?~1/4 solves 22 = 1 (mod p). But then a(P~1/4 = +1 (mod p), that is aPT3)/4 =
+a (mod p) or +aP*t3)/4 = ¢ (mod p) as desired.

11.1.18. Since 4n < p — 1, and r is a primitive root modulo p, we have %" # 1 (mod p), and r®" = rP~1 =
1 (mod p). Then 747 (r6n 4 p2n) = pl0n 4 p6n = p8np2n 4 60 = 20 4 p6n (mod p). Since 74" # 1 (mod p)
we must have 76" + 2" = 0 (mod p). Then (£(r™ £ r"))2 = pl4n £ 2987 4 420 = 60 £ 2 4 420 =
+2 (mod p) as desired.

11.1.19. Note 22 = 1 (mod 15) if and only if 22 = 1 (mod 3) and 22 = 1 (mod 5). The solutions to z? =
1 (mod3)arez = 1and z = 2 (mod 3) and the solutions to 22 = 1 (mod5) are z = 1 and z =
4 (mod 5). We use the Chinese remainder theorem to solve the four sets of simultaneous congruences:
z=1(mod3)and z =1 (mod 5),z =1 (mod 3) and z =4 (mod 5),z = 2 (mod 3) and z = 1 (mod 5),
and z = 2 (mod 3) and 2 = 4 (mod 5). This yields the four incongruence solutions z = 1,4,11, and
14 (mod 15).

11.1.20. Solving z? = 58 = 2 (mod 7) yields z = 3 or 4 (mod 7). Solving 2> = 58 = 3 (mod 11) yields z =
5or 6 (mod 7). This gives 4 possibilities: If = 3 (mod 7) and z = 5 (mod 11), then the Chinese Re-
mainder Theorem gives us = 38 (mod 77). Similarly, if + = 3 (mod 7) and z = 6 (mod 11), then z =
17 (mod 77). Similarly, if x = 4 (mod 7) and = 5 (mod 11), then z = 60 (mod 77). Similarly, if z =
4 (mod 7) and « = 6 (mod 11), then = 39 (mod 77). So the solutions are 38, 17, 39, and 60 modulo 77.

11.1.21. Note that 1001 = 7-11-13, so we solve the congruence modulo each of these primes. First we have 2* =
207 = 4 (mod 7),s0 z = 2 or 5 (mod 7). Next we have 2> = 207 = 9 (mod 11), s0 x = 3 or 8 (mod 11).
Next we have 22 = 207 = —1 (mod 13), so z = 5o0r 8 (mod 13). There are now 8 systems of three
congruences each to solve via the Chinese remainder theorem. The solution of x = 2 (mod 7),z =
3 (mod 11),z = 5 (mod 13) is = 135 (mod 1001). The solution of x = 2 (mod 7),x = 3 (mod 11),x =
8 (mod 13) is z = 905 (mod 1001). The solution of z = 2 (mod 7),z = 8 (mod 11),z =5 (mod 13) isz =
954 (mod 1001). The solution of x = 2 (mod 7),z = 8 (mod 11),x = 8 (mod 13) is x = 723 (mod 1001).
The solution of x = 5 (mod 7),z = 3 (mod 11),2 = 5 (mod 13) is z = 278 (mod 1001). The solu-
tion of x = 5 (mod 7),2 = 3 (mod 11),z = 8 (mod 13) is © = 47 (mod 1001). The solution of z =
5 (mod 7),z =8 (mod 11),z = 5 (mod 13) is = 96 (mod 1001). The solution of x = 5 (mod 7),z =
8 (mod 11),z = 8 (mod 13) is x = 866 (mod 1001). In order, the solutions modulo 1001 are 47, 96, 135,
278,723, 866, 905, and 954.

11.1.22. If zy is a solution to 22 = a (mod p®), then (—z0)? = a (mod p¢) and 2y # — (mod p®) since p® {
2z¢. So if there is one solution, there must be two. Now suppose zy and z; are solutions. Then z3 =
2t (mod p®) so p® | (z§ — 1) = (xo — 21). If p | 2o — 21 and p | 2o + z1. Then p | (zo — 21) + (w0 + 21) =

2z which is impossible since p t a = 2% so0 p® | zo — 1 or p® | z¢ + 21 and hence zy = £z (mod p®). So

there are at most 2 solutions.

11.1.23. If 2% = a (mod p™!) then 2 = a (mod p°). Conversely, if 23 = a (mod p°) then 22 = a + bp°® for some
integer b. We can solve the linear congruence 2zoy = —b (mod p), say y = yo. Let 1 = zo + yop°®. Then

x3 = 2 + 2woyop® = a + p°(b+ 2xoyo) = a (mod p*T) since p | 2z¢yo + b. This is the induction step in
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showing that 22 = a (mod p°) has solutions if and only if (%) =1

11.1.24. Finding a solution to 2% = a (mod n) is equivalent to finding a solution to the system

22 = a(modp!)

2?2 = a(modp¥)

2> = a(modpir)
So we count the solutions to the system. 2 = a (mod p}*) has two solutions if (f) = 1 and no solu-
tions if (pi) = —1. Soif any (pi) = —1, there are no solutions to 22 = a (mod n). Otherwise there are

2™ solutions.
11.1.25.a. 75 =523 and (3—51) = (%) =1and (33—1) = (%) = 1, so there are 22 = 4 solutions.
b. 105=3-5-7and 16 is a quadratic residue of 3, 5, and 7, so there are 23 = 8 solutions.

c. 231=3-7-11and (%) = (%) =1, (4—76) = (%) =1, (%) = (%) = 1 so there are 2° = 8 solutions.

d. (%) = (%) =1, (%) = (%) =1, (@) = (%) =1,and (%) = (ﬁ) = 1 so there are 24 =
16 solutions.

11.1.26. If 22 = (mod 2¢) has a solution ¢, then —z is also a solution, and (27! 4 1()? = (2¢ £2- 271z +
23) = 22 (mod 2°). If zg = —x (mod 2¢), then 2¢ | 2z, but zg is odd, so zg t —x¢. If zg = 271 +
2o (mod 2¢) then 2¢ | 2671, s0 2g Z 271 + 2. If 7 = 271 — 29 (mod 2¢) then 2¢ | 2671 + 22,50 2¢ — 1 |
2z which is impossible, so x # 2¢71 — z,. Since any of the four solutions could have been z,, we have
shown there are four distinct solutions. Suppose z; is a fifth solution. Then 23 — 23 = 0 (mod 2¢). Then
2¢ | (23 — 23) = (wo — 1) (w0 +21). If 4 | (0 — 1) and (x¢ + 21) then 4 | (xg — x1) + (w9 — 1) = 2z, but
x is odd, so ged ((xg — 21), (o + x1)) = 2 or 1. So either 2¢ | g — 21 and so z1 = xg (mod 2°), or 2° |
2o + 21 and so ¥1 = —x¢ (mod 2¢), or 2¢7! | 29 — 21 and so x1 = 2°7! + 2o (mod 2¢) or 27t |z + 21
and 71 = 2°7! — 2 (mod 2¢), so x; is one of the four solutions.

11.1.27. Suppose p1,p2, - - -, p, are the only primes of the form 4k + 1. Let N = 4(p1p2 - - pn)? + 1. Let ¢ be an
odd prime factor of N. Then ¢ # p;,i = 1,2,...,n,but N = 0 (mod q), s0 4(p1p2 - - - p)?> = —1 (mod ¢)
and therefore (’Tl) =1,s0¢g =1 (mod 4) by Theorem 11.5.

11.1.28.a. Let N = (p1,pa,...,pn)? = 2. Then N = 3 (mod 8) since(p1,pa, ..., p,)? is an odd square. The
product of integers of the form 8k + 1 is another integer of the same form. Therefore, NV has an odd
prime divisor ¢ not of the form 8k + 1. Then —2 = (p1,p2...,pn)? (mod ¢) and so (_72) = 1. By
Exercise 7, ¢ = 1 or 3 (mod 8) and we have excluded ¢ = 1, so ¢ is of the form 8k + 3. If ¢ = p; for
some i, then ¢ | N and q | (p1,p2,---pn)? 50 ¢ | 2, a contradiction. Therefore g is a new prime of the
form 8k + 3.

b. Let N = (p1,pa,...pn)? +4. Then N = 5 (mod 8). As in part (a), there must be an odd prime di-
visor ¢ not of the form 8k + 1, and ¢ # p; for any i. Then we have (p1,p2...,p,)? = —4 (mod q),
and since 4 is a quadratic residue, —1 must be. Therefore ¢ = 1 (mod 4), but ¢ # 1 (mod 8) so ¢ =
5 (mod 8) as desired.

c. LetN = (4p1,p2,...,pn)?>—2. Then % = 7 (mod 8), and must have an odd divisor ¢ not of the form
8k + 1. We have 2 = (4p1,ps . .., pn)? (mod q), so (%) =1land ¢ = 1 (mod 8). Therefore ¢ = —1 =

7 (mod 8) as desired.

11.1.29. Let by, bs, b3, and b4 be the four modular square roots of @ modulo pg. Then each b; is a solution to
exactly one of the four systems of congruences given in the text. For convenience, let the subscripts
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11.1. QUADRATIC RESIDUES AND NONRESIDUES 173

correspond to the lower case Roman numerals of the systems. Suppose two of the b;’s were quadratic
residues modulo pg. Without loss of generality, say b; = y7 (mod pq) and by = y3 (mod pq). Then from
systems (i) and (ii), we have that y? = b; = x> (mod ¢) and y3 = by = —z2 (mod gq). Therefore both z-
and —x9 are quadratic residues modulo ¢, but this is impossible since ¢ = 3 (mod 4). The other cases
are identical.

11.1.30. Let r be a primitive root modulo p and k¥ = ind,a. If (%) = 1, then &k = 2m for some integer m.
Then ind,a®~1/2 = ((p — 1)/2)2m = 0 (mod p — 1). Since only 1 has index 0, we must have a(P~1)/2 =
1 (mod p). If (%) = —1, then k = 2m + 1 for some integer m. Then ind,.a?~1/2 = ((p—1)/2)(2m +1) =

(p—1)/2 (mod p — 1). Since only —1 has index (p — 1)/2, we must have a?~1/2 = —1 (mod p).

11.1.31. Letr be a primitive root for p and let a = 7* (mod p) and b = r* (mod p) with1 < s,t <p—1.Ifa =
b (mod p), then s = ¢ and so s and ¢ have the same parity. By Theorem 11.2, we have part (i). Further, we
have ab = r*** (mod p). Then the right hand side of (ii) is 1 exactly when s and ¢ have the same parity,
which is exactly when the left hand side is 1. This proves part (ii). Finally, since a®> = r?* (mod p) and
2s is even, we must have that a? is a quadratic residue modulo p, proving part (iii).

11.1.32. By Exercise 31 we know that every primitive root of p is a quadratic nonresidue of p. Since there are
¢(p — 1) primitive roots of p and (p — 1)/2 — ¢(p — 1) quadratic nonresidues of p that are not primitive
roots of p.

11.1.33. If r is a primitive root of g, then the set of all primitive roots is given by {r* : (k,¢(q)) = (k,2p) =
1}. So the p — 1 numbers {r* : k is odd and k # p,1 < k < 2p} are all the primitive roots of g. On the
other hand, ¢ has (¢ — 1)/2 = p quadratic residues, which are given by {r2,r4,...,7?P}. This set has no
intersection with the first one.

11.1.34. Let r be a primitive root of ¢ and let 7* = a. Since a is a nonresidue, k is odd. Since 4 # ord,a =
4p/(k, 4p), we have (k, ¢(q)) = (k,4p) = 1 and hence a is a primitive root.

11.1.35. First suppose p = 22" + 1 is a Fermat prime and let r be a primitive root for p. Then ¢(p) = 22".
Then an integer a is a nonresidue if and only if a = r* with k odd. But then (k, ¢(p)) = 1, so a is also a
primitive root. Conversely, suppose that p is an odd prime and every quadratic nonresidue of p is also
a primitive root of p. Let r be a particular primitive root of p. Then, 7* is a quadratic nonresidue and
hence a primitive root for p if and only if k is odd. But this implies that every odd number is relatively
prime to ¢(p), so ¢(p) must be a power of 2. Thus p = 2° + 1 for some b. If b had a nontrivial odd divisor,
then we could factor p as a difference of b powers, contradicting the primality of of p. Therefore b is a
power of 2 and so p is a Fermat prime.

gn+1

11.1.36. Note that 22" = —1 (mod p) and 2 =1 (mod p) so ord,2 = 2"*!. Now 22" +1 = 1 (mod 8), so
2(=1)/2 = 1 (mod p) by Theorem 11.6. Therefore 2"*! | (p —1)/2, say k2"+! = (p — 1)/2. Then p =
22+ 1.

11.1.37.a. Wehaveq=2p+1=2(4k+3)+1=8k+7,s0 (%) = 1 by Theorem 11.6. Then by Euler’s criterion,
2(a=1)/2 = 9? = 1 (mod q). Therefore ¢ | 2" — 1.

b. 11=4(2)+3and 23 =2(11)+1,s0 23 | 2!' — 1 = My, by part (a); 23 = 4(5) + 3 and 47 = 2(23) + 1,
s0 47 ‘ M23,‘ 251 = 4(62) + 3 and 503 = 2(251) + ]., s0 503 | M251.

11.1.38. Ifn =0 (mod 4) then 2n + 1 = 1 (mod 8). If n = 3 (mod 4) then 2n + 1 = 7 (mod 8). In either case,
(Tzﬂ) = 1 by Theorem 11.6. Therefore 2(27+1-1)/2 = 2" = 1 (mod 2n + 1), and hence 2n +1 | 2" — 1 =
M,. If n =1 (mod 4) then 2n + 1 = 3 (mod 8). If n = 2 (mod 4) then 2n + 1 = 5 (mod 8). In either
case, ﬁ) = —1 by Theorem 11.6. Therefore 2?1712 = 2" = —1 (mod 2n + 1), and hence 2n + 1 |
2" +1=M, +2.
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11.1.39. Let g = 2k + 1. Since ¢ does not divide 2”7 + 1, we must have, by Exercise 38, that £ = 0 or 3 (mod 4).
Thatis, k =0,3,4 or 7 (mod 8). Then ¢ = 2(0,3,40r 7) + 1 = £1 (mod 8).

11.1.40. By Theorem 7.12, every prime divisor of M;; = 2'7 — 1 must be of the form 2 - 17k + 1, where k is
a positive integer. Further, by Exercise 39, every prime divisor must be of the form 8/ & 1, where [l is a
positive integer. Therefore 2 - 17k + 1 = 1 (mod 8). Whence, k£ = 0 or 3 (mod 4). Therefore we would
need only check prime divisors of the forms 2-4-17m+1 = 136m+1 and 2(4m+3)17+1 = 136m + 103.

11.1.41. Note that (M) = (M) = (M) = (@) since j? is a perfect square. Then,
p p p p

Zf;f (%) = Zf;f (%) = Z?;Ql (%) = 25’;11 (%) — 1 = —1. Here we have used the method
in the solution to Exercise 10 to evaluate the last sum, and the fact that as j runs through the values 1
through p — 2, so does j.

11.1.42. a. If we add the number of pairs of consecutive quadratic residues among the integers 1,2,...,p — 1
and the number of pairs of a quadratic residue followed by a nonresidue among these integers, we
obtain the number of quadratic residues other than perhaps p — 1 among the integers 1,2,...,p — 1.
Whenp =1 (mod 4)—1 is a quadratic residue of p and the number of quadratic residues of p among
the first p — 1 positive integersis (p — 1)/2 — 1 = (p—3)/2 = (p — 2 — (—1)(P=1)/2) /2. When p =
—1 (mod 4), —1is a quadratic nonresidue of p and the number of quadratic residues of p among the
first p — 1 positive integers is (p — 1)/2 = (p — 2 — (—1)?=1/2)) /2. Hence (RR)+(RN)= (p — 2 —
(—1){r=1)/2) /2. Similarly, if we add the number of pairs of consecutive quadratic nonresidues and
the number of pairs of a quadratic nonresidue followed by a quadratic residue, we obtain the num-
ber of quadratic nonresidues other than perhaps p — 1 among the integers 1,2,. .., p — 1. An analysis
similar to that given above shows that (NR)+(NN) = (p — 2 + (—=1)?=1/2) /2. If we add the num-
ber of pairs of consecutive quadratic residues and the number of pairs of a quadratic nonresidue
followed by a quadratic residue is the number of quadratic residues other than 1. Since there are
(p —1)/2 — 1 quadratic residues other than 1, we have (RR)+(NR) = (p — 1)/2 — 1. If we add the
number of pairs of a quadratic residue followed by a quadratic nonresidue and the number of pairs
of quadratic nonresidues, we obtain the number of pairs of quadratic nonresidues among the inte-
gers2,...,p— L

b. Note that (@) = 1 if and only if (%) = (%) = lorif (%) = (%) = —1. Hence

Z?;f (%) = (RR) + (NN) — (RN) — (NR) = —1, since this sum is —1 from Exercise 35.

c. The system of 5 equations in 4 unknown determines the solution (RR) = 1 (p —4 — (—=1)P=1)/2),
(RN) =1 (p— (-1)P=D/2) (NR) = (NN)= % (p — 2+ (—1)P=D)/2),

11.1.43. Letr be a primitive root of p. Then 22 = a (mod p) has a solution if and only if 2 ind,.# = ind,.a (mod p—

1) has a solution in ind,.z. Since p — 1 is even, the last congruence is solvable if and only if ind,a is even,

which happens when a = r?, 74, ... rP~1je. (p — 1)/2 times.

11.1.44. If p is of the form 4k + 1, then ¢ = 4(4k + 1) + 1 = 8n + 5. If p is of the form 4k + 3, then ¢ =
4(4k + 3) + 1 = 8n + 5. So by Theorem 11.6, 2 is a quadratic nonresidue of q. Therefore 2(4=1)/2 = 220 =
—1 (mod ¢), and s0 22 # 1,27 # 1 and 2% # 1 (mod q). Hence ord,2 = 4p.

11.1.45. ¢ =2(4k+ 1)+ 1 =8k + 3, 502 is a quadratic nonresidue of ¢q. By Exercise 33, 2 is a primitive root.

11.1.46. Since ¢ = 2(4k — 1) + 1 = 8k — 1, —2 is a quadratic nonresidue of ¢, by Exercise 7. By Exercise 33, -2 is
a primitive root.

11.1.47. Check that ¢ = 3 (mod 4), so —1 is a quadratic nonresidue of ¢g. Since 4 = 22, we have (_74) =

(_Tl) (%) = (—1)(1) = —1. Therefore —4 is a nonresidue of q. By Exercise 33, —4 is a primitive root.
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11148, Note that 482 = —49 (mod 59), and (522 ) = (53) (%) = (5¢) = ~1 since 59 = 3 (mod 4), so there

are no solutions.

11.1.49. a. By adding (2b)? to both sides of the congruence C = P(P +b) (mod n), we have C' +a = P? + Pb+
(2b)2 = (P + 2b)? (mod n).

b. There are 4 solutions to z2 = C' + a (mod pq). From each, subtract 2b, which gives the 4 messages.

c. First we solve 2z = 1 (mod 2773) to get 2 = 1387. Then 2b = 1338 (mod 2773), and (2b)* =
2082 (mod 2773). For the first block of ciphertext, we have 1819 = P(P + 3) (mod 2773). we add
2082 to both sides to get 1128 = (P + 1388)% (mod 2773). We solve z2 = 1128 (mod 2773) to find
the two solutions 1692 and 1081. Subtracting 1388 from both of these and reducing gives us the
two possible values for P, 0304 and 2466. Since 66 is not the numerical equivalent of a letter, we
know the solution must be 0304 which is equivalent to DE. Similarly we find that 0459 has P =
0856, 1796, 1914, or 0974. Of these, only 1914 has letter equivalents, so the second digraph is TO. Fi-
nally, we find that 0803 has P = 2346, 2017, 0424, or 0753. Two of these have letter equivalents: 0424
is equivalent to EY, which makes the message DETOEY; 2017 is equivalent to UR, which makes the
message DETOUR. We guess that the message is DETOUR.

11.1.50. Suppose that P is a quadratic residue of p. Then there is an integer z such that 2> = P (mod p). Hence
C = P¢ = (22)°¢ = (2°)? (mod p). It follows that C is also a quadratic residue of p. Now suppose that
C is a quadratic residue of p. Then there is an integer y such that y> = C' (mod p). Then P = C? =
(y*)? (mod p), where d is an inverse of e modulo p — 1. Hence P is also a quadratic residue of p.

11.1.51. a. By noting this, the second player can tell which cards dealt are quadratic residues, since the cipher-
text will also be quadratic residues modulo p.

b. All ciphers will be quadratic residues modulo p.

11.1.52. We complete the square in j. Since (b,m) = 1, and inverse b of b exists modulo m. Then 4h;(K) =
4h(K)+4aj+bj? (mod m). Then 4h;(K)—4h(K)+ba? = b(2j —ba)? (mod m) or (2j —ba)? = 4bh,;(K)—
4bh(K) + b’ (mod m). Since there are only m/2 quadratic residues modulo m the right-hand side can
take on only m/2 values. For each of these values, the congruence is linear in 4;(K), and so has only
one solution for h;(K), giving only m/2 locations searched.

11.1.53. The quadratic residues modulo 11 are 1, 3,4, 5, and 9. So there are several chains: 1+3=4,4+5=9,
and 9+ 5 = 14 = 3 (mod 11), for example.

11.1.54. The quadratic residues modulo 7 are 1, 2, and 4. Since the sum of no two of these is congruent to the
other modulo 7, there is no chain of quadratic residues modulo 7.
11.2. The Law of Quadratic Reciprocity
11.2.1.a. Since 53 = 1 (mod 4) the law of quadratic reciprocity shows that (%) = (%) We have (53) =

(%) = —1. Hence (%) =—1.

b. Since 79 = 1 (mod 4) the law of quadratic reciprocity shows that (%) = (77) We have (7—79) =

(%) = 1 since 2 is a quadratic residue of 7.

c. We have (

(i) = (%

) = ( T ) (101) Since 101 = 1 (mod 4), the law of quadratic reciprocity shows that

) an

,_.H

@ () = (122). Wehave (1) = (2) = ~1and (12) = (2) = 1. Hence
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11.2.2. First suppose that p is a prime with p = 1 (mod 4). Then by the law of quadratic reciprocity it fol-
lows that (%) = (%) We see that if p = 1 (mod 3), so that p = 1 (mod 12), then (%) = (g) =1.1If
p = 2 (mod 3), so that p = 5 (mod 12), then (%) = (g) = —1. Next suppose that p is a prime with
p = 3 (mod 4). Then by the law of quadratic reciprocity it follows that (%) = - (%) We see that if p =
1 (mod 3) so that p = 7 = —5 (mod 12) then (%) = —(3) = —1. If p =2 (mod 3),so thatp = 11 =

1 (mod 12),then (2) = ~(2) 1. 3

11.2.3. If p = 1 (mod 6) there are 2 cases: If p = 1 (mod 4) then (’7) =1la ( ) (g)
So (’7‘3) = 1. If p = 3 (mod 4) then ) = —land (%) = —(% , SO (’3) =(-1)(-1)=11Ifp=
—1 (mod 6) and p = 1 (mod 4), then ) = (*71) (g) =1 (g) - (%1)
()= B)6) -0 (1) = (= ()

11.2.4. By the law of quadratic reciprocity it follows that (%) = (g) We find that (%) = (%) =land (%) =

Il
|
[y
=
=
|
w
=
]
Q.
N
-
=
o
=}

ﬁ‘w 'U“

(g) = —1. It follows that 5 is a quadratic residue of the odd prime p if and only if p = 1 (mod 5) or p =
4(

11.2.5. Suppose that p is an odd prime. By the law of quadratic reciprocity it follows that (%) = (%) ifp=
1 (mod 4) and (%) =— (%) if p =3 (mod 4). So, 7 is a quadratic residue of a prime p withp = 1 (mod 4)

if (%) = 1. This is the case when p = 1,2 or 4 (mod 7). Using the Chinese remainder theorem we see
that 7 is a quadratic residue of p when p = 1,9 or 25 (mod 28), and 7 is a quadratic nonresidue of p when
p = 5,13 or 17 (mod 28). Also, 7 is a quadratic residue of a prime p with p = 3 (mod 4) if (%) = -1
This is the case when p = 3,5 or 6 (mod 7). Using the Chinese remainder theorem we see that 7 is a qua-
dratic residue of p when p = 3,19 or 27 (mod 28) and 7 is a quadratic nonresidue of p when p = 11,15
or 23 (mod 28). It follows that 7 is a quadratic residue of p if and only if p = 1, 3,9, 19, 25 or 27 (mod 28).

11.2.6. If every prime divisor of @ = 5(n!) — 1 were of the form 5k + 1, then Q = (mod 5), which it isnt,
so @ has a prime divisor p not of the form 5k + 1. Also, if p < n, then p | 5(n!)* and p | 5(n') -Q =1,

a contradiction, so p > n. Now 5(n!)2 = 1 (mod p), so 1 = (1%) = (5("' ) (%)( (G ) (%) (%)

Therefore p = 4 or 1 (mod 5) and we have excluded the latter case.

11.2.7.a. Wehave F, = 22' + 1 = 5. We find that 3(":~1/2 = 36-1)/2 — 32 — 9 = —1 (mod F} ). Hence by
Pepin’s test we come (to the already obvious) conclusion that F; = 5 is prime.

b. We have Fy = 22° + 1 = 257. We find that 3(Fs=1)/2 = 3(257-1)/2 — 3128 = (38)16 = 13616 =
(136%)* = 64* = (64%)? = 2412 = 256 = —1 (mod 257). Hence by Pepin’s test we see that F3 = 257

is prime.

c. Using a calculator we find 3%°° = 94 (mod Fy). 332768 = 3255-1283128 = 941283128 = _1 (mod Fy}).
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11.2.8. If F,,, = 22" + 1 is prime, then ¢(F,,) = 22", so ordp,, 3 is a power of 2, say 2%, Then 32" = 32°2" " =
(1)*"" =1 (mod F,,) if n > k. But by Pepin’s test, 3/m~1)/2 = —1 (mod F,,) and (Fy, —1)/2 = 2" 1.
Soordr, 3 = 22" = ¢(Fy,).

11.2.9. a. The lattice points in the rectangle are the points (i, j) where 0 < ¢ < p/2 and 0 < j < ¢/2. There are
the lattice points (¢,j) withi =1,2,...,(p—1)/2and j = 1,2,...,(¢ — 1)/2. Consequently, there
are (p —1)/2- (¢ — 1)/2 such lattice points.

b. The points on the diagonal connecting O and C are the points (z,y) where y = (¢/p)z. Suppose
that = and y are integers with y = (¢/p)z. Then py = gz. Since (p, ¢) = 1 it follows that p |  which
is impossible if 0 < 2 < p/2. Hence there are no lattice points on this diagonal.

c¢. The number of lattice points in the triangle with vertices O,A, and C is the number of lattice points
(1,j)withi=1,2,...,(p—1)/2and 1 < j < ig/p. For a fixed value of i in the indicated range, there
are [ig/p] lattice points (i, j) in the triangle. Hence the total number of lattice points in the triangle

is Y27 lig/p).

d. The number of lattice points in the triangle with vertices O,B, and C is the number of lattice points
(1,j)withj=1,2,...,(¢—1)/2and 1 < ¢ < jp/q. For a fixed value of j in the indicated range, there
are [jp/q] lattice points (¢, j) in the triangle. Hence the total number of lattice points in the triangle

is Y40V 2 [ip/q).

e. Since there are (p—1)/2- (¢ —1)/2 lattice points in the rectangle, and no points on the diagonal OC,
the sum of the numbers of lattice points in the triangles OBC and OACis (p —1)/2- (¢ — 1)/2. By

parts (b) and (c) it follows that Zg.pz_ll)/?[jq/p] Z(q D /2[]p/q] =(p—1)/2-(¢—1)/2. By Lemma
11.3 it follows that (%) = (=1)T®9 and (5) = (=1)T(@P) where T(p, q) Z(p D/2[5p/q] and

T(q,p) = Z(q V2154 /p]. We conclude that (%) (%) = (=1)P=1/2. (¢ — 1)/2. This is the law of
quadratic reciprocity.

11.2.10. Without loss of generality, assume p > ¢ are odd primes. First assume that p = ¢ (mod 4). Then

p = ¢ + 4a for some positive integer a, and p = ¢ (mod 4a). Then (%) = (%) = (47“) = (%) Like-

wise, (%) = (”_p#) = (_71) (%) (%) = (=1)r=1/2 (%) From these two equations we have (%) (%) =

a)(-1)p=1/2(2) By Theorem 11.8, we have (2) = (2),s0 (2)(4) = (—1)»~Y/2. But since
() () (3) = ()= (5)(2)

(p—1)/2 = (¢ — 1)/2 = 2a, we know that (p — 1)/2 and (¢ — 1)/2 have the same parity. Therefore
(=1)P=D/2 = (_1)((P=D/D((a=1)/2)  This proves the first case. Now assume p # ¢ (mod 4). Then we
must have p = —¢ (mod 4), so that p = —¢ + 4a for some positive integer a, and so p = —¢ (mod 4a).

ton (1) (5%) - (3. 2) - (255%) () b orm 15 (3) - ()0 (3)5) -

(%) (%) =1.But(p—1)/2+(¢—1)/2=2a— 1,50 (p—1)/2, and (¢ — 1)/2 have opposite parity, so at

least one of them is even. Noting that then (—1)((P=1)/2({(a=1)/2) = | completes the second case.

11.2.11. First suppose ¢ = 2. Then we have p = +¢ (mod 8) and so (%) = (%) by Theorem 11.6 Now
suppose a is an odd prime. If p = ¢ (mod 4a), then p = ¢ (mod a) and so (g) = (%) And since
p=gq (mod4),(p—1)/2=(¢—1)/2 (mod 2). Then by Theorem 11.7, (%) = (g)( 1)(p=1)/2(a=1)/2 =
(g)(—l)(q‘l)m'(“—l)/2 = (g) But if p = —¢ (mod 4a), then p = —¢ (mod a) and so (%) = (§>
And since p = —¢ (mod4), (p —1)/2 = (¢ — 1)/2 + 1 (mod2). Then by Theorem 11.7, ( ) =

(5)(_1)(1071)/2((171)/2 - (—TQ)(_1)((q71)/2+1).(a71)/2 _ (%)(_1)(11 WQ(E) _ (5).The general case
follows from the multiplicativity of the Legendre symbol.
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11.2.12. To apply Gauss’s lemma to compute ( ) we need to find the parity of the number of a,2a,...,((p —

1)/2)a which have least positive residue between p/2 and p. If ka is such a number, with 1 < k <
(p —1)/2, then (2t — 1)p/2 < ka < tp for some integer ¢t. Since 1 < k < (p — 1)/2, the range for t is
1,2,...,[a/2]. Letu = [a/2] = a/2if ais even and (a — 1)/2 if a is odd. For ¢t = 1,2,...u, divide each
inequality by a to get (2t — 1)p/a < k < tp/a. We must find the parity of the number of integers k
satisfying these last conditions. Suppose p = 4am + r, with 0 < r < 4a. Then the conditions become
22t —1)m+ (2t —1)r/(2a) < k < 4dmt +tr/a, fort = 1,2,...u. Since we are only concerned with the
parity of the number of k, we can drop the even integers in each of these inequalities, (thereby reducing
the count of k£ by even numbers and preserving parity.) Thus, the conditions reduce to (2¢t — 1)r/(2a) <

k < tr/a, which depend only on r. Therefore, if p = ¢ = r (mod 4a), then (%) = (%) Now if p =
—q = r (mod 4a), then ¢ = 4a — r (mod 4a). Then substituting 4a — r in for r in the conditions we get
(2t —1)(4a —1)/2a < k < t(4a — r)/a which reduces to (2t — 1)2 — (2¢t — 1)r/(2a) < 4t — tr/a. Again we
may drop the even integers in each inequality. Multiplying through by —1 doesn’t change the number

of k, but it makes the conditions identical to the conditions for p above. Therefore, (%) = (%) .

11.2.13. a. Recall that e”® = 1 if and only if z is a multiple of 2. First we compute (e(27#/mk)n — (2mi/n)nk
(e@m)k = 1k = 1, 50 ¢(2™/™)k is an nth root of unity. Now if (k,n) = 1, then ((27i/n)k)a is a mul-
tiple of 27 if and only if n|a. Therefore a = n is the least positive integer for which (e(27i/m)k)a
1. Therefore e(2™/™)¥ is a primitive nth root of unity. Conversely, suppose (k,n) = d > 1. Then
(e@ri/mky(n/d) — ¢(2mi)k/d — 1 gince k/d is an integer, and so in this case e(>™*/™)* is not a primitive
nth root of unity.

b. Letm =1+ kn where k is an integer. Then (™ = ¢/t#" = (!¢*" = (!. Now suppose ( is a primitive
nth root of unity and that (™ = ¢!, and without loss of generality, assume m > [. From the first part
of this exercise, we may take 0 < [ < m < n. Then 0 = ¢("™ — ¢! = ¢!(¢(™~! — 1). Hence, (™! = 1.
Since 7 is the least positive integer such that (" = 1, we must have m — [ = 0.

c. First, f(Z + 1) _ eQ‘n’i(z-‘rl) _ e—27ri(z+1) — 2z 2mi _ p—2Tizp—2Wi . 2Wiz] _ o —2miz] — f(Z) Next,
f(=2) = e72™= — Tz = (22 — ¢727i%) = _ f(2). Finally, suppose f(z) = 0. Then 0 = €2™** —
e2miz = ¢72miz (¢4miz _ 1) g0 ™% = 1. Therefore 4miz = 2min for some integer n, and so z = n/2.

d. Fix y and consider g(z) = 2™ — y" and h(z) = (z — y)(Cx — ("'y)--- (" ‘o — (- Vy) as poly-
nomials in z. Both polynomials have degree n. The leading coefficient in h(z) is (! 2T +7=1 =
¢nn=1/2 = (¢n)(n=1)/2 = 1, since n — 1 is even. So both polynomials are monic. Further, note that
g(%y) = ((T2Hy)" —y" =y —y* = 0fork = 0,1,2,...,n — 1. Also h(¢~?*y) has (¢F¢2Fy
¢(*y) = (¢"*y — (~*y) = 0 as one of its factors. So g and h are monic polynomials sharing these n
distinct zeros (since —2k runs through a complete set of residues modulo n). By the Fundamental
Theorem of Algebra, g and & are identical.

e. Letxz = ¥ and y = e 2™ in the identity from part (d). Then the right hand side becomes

n—1 n—1 n—1

H (<k€2m'z _ C—ke—Qﬂ'iz) _ H <e2m‘(z+k/n) _ e—zm'(z+k/n)) _ H f (z—i— k) _

k=0 k=0 k=0 "
(n—1)/2

k
H f <z + ) H f (z + > . From the identities in part (c), this last product be-
k= " k=nr1)/2

(n—1)/2

AL G S

k=(n+1)/2

(n— 1)/2
. k
So the product above is equal to H f <z + ) kl;[l f (z - n) =
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11.2. THE LAW OF QUADRATIC RECIPROCITY 179

(e72miz)n = g2minz _ o=2minz — f(ny) finishes the proof.

(p—1)/2
f. Forl=1,2,...,(p—1)/2, let k; be the least positive residue of la modulo p. Then H f(
=1

lay _

p

(r—1)/2 K

H f (—) by the perodicity of f established in part (c). We break this product into two pieces
p

I G TG = T0G) T () = TG T ~(557) -

ki<p/2 ki<p/2 ki>p/2 ki<p/2 b ki>p/2
(r—1)/2
H f (*) N where N is the number of k; exceeding p/2. But by Gauss’ lemma, (—1)Y =

(7) . This establishes the identity.
p

(p—1)/2
g. Letz =I[/pandn = ¢intheidentities in parts (e) and (f). Then we have ( ) H f —= / f

(p—1)/2(q—1)/2
zHl H f( ) ( ) H H f( ) ( )_]%(—1)(”_1)/2'("_1)/2,wherewe

have used the fact that f (—=2) = f (2) and the fact that there are exactly (p —1)/2- (¢ — 1)/2 factors
in the double product. But, by symmetry, this is exactly the expression for (]%) (=1)P=D/2(a=1)/2

which completes the proof.

11.2.14. Assume that n = k2™ + 1 with k¥ < 2™ and m > 2. Then n = 1 (mod 4). If n is prime, then by the
Law of Quadratic Reciprocity, we have (%) = <%) = —1. Then by Euler’s Criterion, p("~1/2 = (%) =

—1 (mod n) as desired. Conversely, suppose p("~1/2 = —1 (mod n). Then n satisfies all the hypotheses
of Proth’s Primality Test, Theorem 9.20, and hence n is prime.

11.2.15. Since p =1 (mod 4), we have (%) = (g) And since p = 1 (mod g) for all primes ¢ < 23, then (%) =
(% = 1.. Then if a is an integer with 0 < a < 29 and prime factorization a = pip> - - - pi, then each p; <
29 and (%) = (%) e (%) = 1% = 1. So there are no quadratic nonresidues modulo p less than 29.
Further, since a quadratic residue must be an even power of any primitive root r, then ! can not be less
than 29.

11.2.16.a. Since p = 1 (mod 8), we have by Theorems 11.5 and 11.6 that (’71) = (%) = 1. Since p =

4 (mod p), by the Law of Quadratic Reciprocity and Theorem 11.4, we have, foreachi =2,3,...,n
i\ _ (148 g\ (1)
that (%) = (2) = (=) = () = 1.

b. Lettbe an arbitrary integer and let k be an integer such that —M <t + kp < M. Since q1,¢2, ..., ¢n
are all the primes not exceeding M, t + kp has a prime power factorization of the form
(—1)%°q7'g5? ... ¢5m, where 0 < e;. Then by the complete multiplicativity of the Legendre symbol

e el €n
and by part (a), we have (%) = (’71) (%) e (%) = 1. Therefore ¢ + kp is a quadratic
residue modulo p and hence not a primitive root modulo p. Now let 7, be the least primitive root
modulo p. If 0 < r, < M. By the above, r}, + 0p = r, is a quadratic residue modulo p, a contradic-
tion. If p — M < r, < p, then —M < r, —p <0, and from the above, , — p is a quadratic residue
modulo p. But r, = r, — p (mod p), so 7, is also a quadratic residue modulo p, again a contradic-

tion. Therefore, we must have M < r, <p— M.
11.2.17.a. Ifa € T thena = gk forsome k =1,2,...(p—1)/2. So1 < a < q(p —1)/2 < (pq — 1)/2. Further,

since k < (p — 1)/2, and p is prime, we have (p, k) = 1. Since (¢,p) = 1, then (a,p) = (¢k,p) = 1,
soa € S,and hence T' C S. Now supposea € S —T. Then1 < a < (pg — 1)/2 and (a,p) = 1, and

STUDENTS-HUB.com Uploaded By: anonymous
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since a ¢ T, then a # ¢k for any k. Thus (a,q) = 1,s0 (a,pq) = 1,and soa € R. Thus S — T C R.
Conversely, ifa € R, then1 < a < (pg — 1)/2 and (a, pa) = 1, so certainly (a,¢q) = 1, and so a is not
a multiple of g and hence a ¢ T. Hence a € S —T. Thus R C S — T Therefore R =5 —T.

b. Since by part (a)) R = S — T we have Ha: HaHa:A(qo2q~-((p—1)/2)a)

a€S acER a€T
AgP=D2 (p—1)/2)! = (;’)) ((p—1)/2)! (mod p) by Euler’s criterion. Note that (pg — 1)/2 =

pl¢ — 1)/2 + (p — 1)/2, so that we can evaluate H a=((p- N2 ((p-1)/2)! =
acsS

(=1)@=D/2 ((p — 1)/2)! (mod p) by Wilson’s Theorem. When we set these two expressions congru-

ent to each other modulo p and cancel we get A = (—1)(@—1)/2 (%) as desired.

c. Since the roles of p and ¢ are identical in the hypotheses and in parts (a) and (b), the result follows
by symmetry.

d. Assume that (—1)(a—1/2 (%) = (=1)r=D/2 (%) Then A = =1 so certainly A = £1 (mod pq).
Conversely, suppose A = 1 (mod pg). Then A = 1 (mod p) and A = 1 (mod ¢). Then by parts
(b) and (c) we have (—1)@—1/2 (%) =A=(-1)r-1/2 (%). The same argument works if A = —1
(mod pg).

e. Ifaisanintegerin R, itisintherangel < a < (pq— 1)/2 and therefore its additive inverse modulo
pq is in the range (pg + 1)/2 < —a < pg — 1 in the set of reduced residue classes. By the Chi-
nese Remainder Theorem, the congruence a’? =1 (mod pq) has exactly 4 solutions, 1, —1,b, and —b
(mod pq) and the congruence a? = —1 (mod pq) has solutions if and only p = ¢ = 1 (mod 4), and in
this case it has exactly 4 solutlons i, —1,1b, and —ib (mod pq). Now for each element a € R, (a,pq) =
1, so a has a multiplicative inverse v. By the remark above, exactly one of v, —v isin R. We let U
be the set of those elements which are their own inverse or their own negative inverse, that is let
U = {a € R|a® = £1 (mod pq)}. Then when we compute 4, all other elements will be paired with
another element which is either its inverse or the negative of its inverse. Thus we have A H a=

a€ER
+ H a (mod pq).Soifp=¢g=1 (mod pq), then A = + H a==+(1-c-i-ic)=c**=7F1 (mod pq).
acU acU
Conversely, in the other case, A = H a==£(1-c)# =+l (mod pq), which completes the proof.
acU

f. By parts (d) and (e) we have that (—1)@~1/2 <q> = (—1)P=D/2 (p) ifand onlyifp = ¢ = 1
p q

(mod 4). Soif p=¢ =1 (mod 4) we have (q> = <p) Butif p =1 (mod 4) while ¢ = 3 (mod 4)
p q
then we must have — < ) < ) which means we must change the sign and have (;) = ( Z)

The case where p = 3 (mod 4) but ¢ = 1 (mod 4) is identical. If p = ¢ = 3 (mod 4), then we must

have — (q) # — (p so that we must have — (q) = (p) , which concludes the proof.
p q p q

11.3. The Jacobi Symbol

11.3.1. a. By the reciprocity law for Jacobi symbols, since 5 = 1 (mod 4) we have (251) = (%) = (%) =1

b. We have (%) = (13—1)3 = (%)3 = (%)3 = (—1)3 = —1, where we have used the law of qua-

dratic reciprocity to replace ( 13 ) by %) since 101 = 1 (mod 4).
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c. Since 1001 = 1 (mod 4), by the reciprocity law of Jacobi symbols we have (L) = (%) =

1001
(m) = 1since 111 = 7 (mod 4).

d. Since 1009 = 1 (mod 4) by the reciprocity law for Jacobi symbols we have (%) = (%) =

2
289 |\ _ 17 =1
1009 /] = \ 1009 o
2663

e. Since 2663 = 3299 = 3 (mod 4) by the reciprocity law for Jacobi symbols we have (m> =

(322) = (35%) = (5i85) (335 ) = 1eg1592663 since 3229 = 636 (mod 2663). Since 159 = 2663 =

3 (mod 4), by the reciprocity law for Jacobi symbols we have (%) = - (%) = - (%) since
2663 = 85 (mod 159). Since 85 = 1 (mod 4), the reciprocity law for Jacobi symbols shows that

(1) = (#) - (3) - ()3 - (&

(85) since 85 = 1 (mod 4). By the reciprocity law for
Jacobi symbols we have (1 ) = (%) = (%) =

follows that (%) =—1.

[,

3
(127) = (~1)3 = —1since 11 = 3 (mod 8). It

&l

f. Since 10001 = 1 (mod 4) the reciprocity law for Jacobi symbols shows that (;888}3) = (fgggi’) =

o051 | = 1, where we have used the periodicity of the Jacobi symbol and the congruence 20003 =

1 (mod 10001).
11.3.2. By the reciprocity law for Jacobi symbols it follows that if (15,n) = 1 then (7> = (1"—5) ifn =
1 (mod 4) and (;) = (ﬁ> if n = 3 (mod 4). Note that ( ) (% ( ) We have <ﬂ> = 1 when
n =1 (mod 3) and (5) = —1 when n = 2 (mod 3). We have (% = 1whenn = 1or4 (mod5) and

(%) = —1whenn = 2or 3 (mod 5). It follows that (ﬁ) = 1whenn =1,2,4, or 8 (mod 15) and (%) =

N—

—1whenn = 7,1,,13, or 14 (mod 15). It follows by the Chinese remainder theorem that (%) = 1if
and onlyifn =1,7,11,17,43,49,53, or 59 (mod 60).

n

11.3.3. We have (3;1—0) = (%) (5) By Theorem 11.10(iv) (%) = 1 when n = +1 (mod 8). From Exer-
cise 2, (E) = 1whenn = 1,7,11,17,43,49, 53, or 59 (mod 60). By the Chinese remainder theorem,
(2) - (;) =1, whenn = 1,7,17,49, 61,67, 77, or 109 (mod 120) and (2) - (1—) — 1whenn=

n n

13,19,29,37,71,83,91, 101,103,107, 113, or 119 (mod 120).

11.3.4. Since (%) = (%) (%) = 1, we know that (%) and ( ) have the same sign. If they are both equal
to 1, then a = z? (mod p) and a = y? (mod ¢) for some integers x and y. We can solve the system of
congruences b = z (mod p),b = y (mod q). Then b* = a (mod p) and b* = a (mod g), so by the Chinese

remainder theorem, b*> = a (mod pq), which shows that a is a quadratic residue of pg = n. This contra-
diction shows that (%) = (%) =—1.

11.3.5. Wehave 21 = 3-7. The only quadratic nonresidue of 3 is 2. The quadratic nonresidues of 7 are 3, 5, and
6. From Exercise 4, we need to solve each of the systems of congruences z = a (mod 3),z = b (mod 7)
where a is a quadratic nonresidue of 3 and b is a quadratic nonresidue of 7. For z = 2 (mod 3),z =
3 (mod 7), we have x = 17. For x = 2 (mod 3),z = 5 (mod 7), we have x = 5. And for z =
2 (mod 3),z = 6 (mod 7), we have x = 20. So the pseudo-squares modulo 21 are 5, 17 and 20.

11.3.6. We follow the strategy in the solution to Exercise 5. We have 35 = 5 - 7. The set of quadratic non-

residues modulo 5 is S = {2, 3} and the set of quadratic nonresidues modulo 7is T' = {3, 5,6}. We form
the 6 systems of congruence z = a (mod 5),z = b (mod 7), where ¢ € S and b € T, and solve them. We
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find that the pseudo-squares modulo 35 are: 3, 12, 13, 17, 27, and 33.

11.3.7. We follow the strategy in the solution to Exercise 5. We have 143 = 11 - 13. The set of quadratic
nonresidues modulo 11 is § = {2,6,7,8,10} and the set of quadratic nonresidues modulo 13 is T" =
{2,5,6,7,8,11}. We form the 30 systems of congruence z = a (mod 11),z = b (mod 13), wherea € S
and b € T, and solve them. We find that the pseudo-squares modulo 143 are: 1, 3, 4, 9, 12, 14, 16, 23, 25,
27,36, 38,42,48,49, 53,56, 64,69, 75,81, 82,92,100, 103, 108, 113, 114, 126, and 133.

11.3.8. Suppose that (a,b) = 1,bis odd and positive, and a = (—1)*2'q where ¢ is odd. It follows that (%) =
((q)bs?q) _ (%)Y%)t(%) _ (_1)(1771)/2(_1)(172—1)/8<%) = (—1)(b=D/2+®*-1)/8 (%)

11.3.9. Since n is odd and square-free, n has prime factorization n = p1ps - - - p,. Let b be one of the (p — 1)/2

quadratic nonresidues of p;, so that (p%) = —1. By the Chinese Remainder Theorem, let a be a solution
to the system of linear congruences:
x=b (modp)

r=1 (mod ps)

x=1 (modp,)

Then () = (£) = 1, (%) = 1. () = () = 1. Therefore (2) = (2) ()

(=1)-1---1=—1.

11.3.10. a. Let a be the integer given in Exercise 9. If {k1, k2, ..., ky(,)} is a reduced residue system modulo n,
then so is {aki, aks, ..., akyn)} by Theorem 6.13. Then we have
ks
()

o) g o Wy ki g
X)) =X(G)=XR)E)=X-6G)=-

i=1 =

b
3

)

aki
n

i=1

Therefore %) (%) =0.

b. LetR =3} (%) where the sum is taken over all K in a reduced residue system with (%) = 1. Let
N=> (%) where the sum is taken over all K in a reduced residue system with (%) = —1. By part
(@), R— N = Z(%) = 0. Therefore R = N.

11.3.11. a. Note that (a,b) = (b,r1) = (r1,72) = -+ = (rp—1,7n) = 1 and since the ¢; are even, the r; are odd.
Sincerg = band a = ;71 (mod b) we have (%) = (ﬂ) = (E—1> (T—l) = (5—1> (T—")(—1)(“_1)/2'(7"1_1)/2

To To To To 71

by Theorem 11.11. If ¢; = 1, then (%) = (—1)(7"0_1)/2‘(51”_1)/2(:—‘;) If ¢ = —1, then (:—;) =

(71)(7"0*1)/2 and we have (%) _ (71)(r071)/2-(r1+1)/2<%) — 71(7“071)/2-(—7"171)/2 (%)) —
(—1)ro—1)/2(eam1—1)/2 (:—?) since (r1 +1)/2 and (—r; — 1)/2 have the same parity. Similarly, (%’) =
(_1)(r171)/2v(62r271)/2(%),SO <%> _ (_1)(%71)/2.(61”71)/2+(r171)/2v(62r271)/2(7%) Proceed induc-

tively until the last step, when (T:—il) = ( L ) =1.

Tn—1

b. Ifeitherr;_; =1 (mod 4) ore;r; =1 (mod 4), then (r;—1 —1)/2-(e;r; —1)/2 is even. Otherwise, that
is, if r;_1 = €;7; = 3 (mod 4), then (r,_1 —1)/2- (¢;7; — 1)/2is odd. Then (r,—1 —1)/2 - (enrn — 1)/2
the exponent in part (a) is even or odd as 7" is even or odd.
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11.3.12. Ifa > 0 and b > 0, then Theorem 11.11 says (%) (g) = (—=1)(e=D/20=1/2 1f ¢ < 0 and b > 0, then

la| = —a > 0 and |b| = b. Then (Ib\) (%) = (—Tl) (—Ta) (_%) = (=1)=D/2(=1)(~a=1)/2(=1)/2 by The-
orem 11.10(é¢7) and 11.11. The total exponent on —1 on the right hand sideis (b—1)/2+ (—a—1)/2- (b—

/2= 1+ (—a—1)/2(b—1)/2) = (—a+1)/2-(b—1)/2 = (=1)e=1/2(=1)/2 Gimilarly if a > 0 and b <
0.Ifa < 0and b < 0, we apply Theorems 11.10 and 11.11 to get (\bl) (ﬁ) =< —1—b<:—‘;) (;1) (;b) =

—a —a

(—1)(_b_1)/2(—1)(_“‘1)/2(:—‘;) (:—Z) = (—1)(=b=0/2H(ma=1)/2(_1)(=b=1)/2(=a=1)/2_ The total exponent

of —1is (—b—1)/24(—a—1)/2+ (=b—1)/2-(—a—1)/2 = (—a—1)/2((=b—1)/2+ 1)+ (=b—1)/2 =
(—a—1)/2((=b+1)/24 (=b+1)/2) =1 = (=b+1)/2((—a— 1)/2+ 1) =1 = (=b+1)/2-(—a+1)/2—1 =
(a—1)/2-(b—1)/2— 1. Then (w)(i) = (1)@ D/2:0-D/2-1 = _(_1)(a-1)/2(-1)/2,

fa

)2( ) = (~1)2. (%) —1.(-1)= 1.
b. We have (%) = (73)2 ) = (-1)- (g) =1-(-1) = 1.
c. Wehave (%8(1)) = (%)Y%)Q =(-1)% 12=-1.

11314. Ifa > 0, then (ll) = (2) = (~1)@-1/5 If ¢ < 0, then (%) = (i> = (—1)(-n/8

o
wlut

11.3.13.a. We have (%) - (

H
g

al a =
(*1)(0,271)/8, Butaisodda =1 (mod ()4) soa = 1or 5 (mod 8). (71)(a2,1)/s “1ifa=1(mod8)and
(—1)(a2_1)/8 —1if a = 5. Hence (I |> = %)

11.3.15. Letn; = p'p3 ---p% and ng = ¢"'¢%* - - - g% be the prime factorizations of 7; and ny. Then by the
a a, b bs
definition of the Kronecker symbol, we have ( - ) = (i) L (i) (i) L (i) = (i> (i>
nin2 p1 Pr q1 qs ni n2

11.3.16. Write n = 2*m, where m is odd. Then if a is odd, we have (%) ( ) (% ’ (%) by the defini-

tion. From Exercises 12and 14 (2) = () (2) = () () (( r) =

[al %
) (2) %) By Exercise 12,

n

\S

( a|) If a is even, then

/N
~——” Qo

n is odd, since (a,n) = 1. Write a = 2°¢ with ¢t odd. Then
(%) = (%) (—1)(n=1/2:(t= 1)/2( ‘) as desired.

11.3.17. If a is odd, then by Exercise 16, we have (i) = (ﬂ) By Theorem 11.10(:), we have (ﬂ) =

ny la la

a
n

lal

(2) (@m0 (5 and () = (2) (-1)¢0/2 002 (82, Since g = na (mod | ¢ ),

we have (7“71') = (lt‘),and since 4 | a,m; = my (mod 4) and so (—1)(t=1/2(m=1)/2 — (_1)(t=1)/2:(n2=1)/2

(M) = (n%), using Exercise 16 again. If a is even, say a = 2°t with ¢t odd, Exercise 16 gives (nil) =

Now a = 0 (mod 4), so s > 2. If s is 2, then certainly ( )2 = (%)2 If s >2,then8 | aand m; =
ms (mod 8), s ( ):(— YrE-1/8 = (_1)(nE-1)/8 = (n—z)Therefore (7?) - (77)

11.3.18. If ais odd, then |a| is not a square. Then a has an odd prime divisor p which appears to an odd power
k,a = p*r, with r odd. Let m be a nonresidue modulo p. By the Chinese Remainder Theorem, let n be

a solution to the system n = m (mod p),n = 1 (mod r). Then (%) = (ﬁ) = (ﬂ>k(%> = (§>k(%) —

p p

(-1)*¥ = —1. If a is even, a = 2°t with ¢t odd and s > 2. If sis odd, then s > 3. Let n be a solution to
n=5mod8),n=1(mod |]|). Then (7) = (%) (71)<t*1>/2~<n*1>/2(%) = (%) |- (‘1‘) 1 Ifs
is even, then ¢ can’t be a square since a isn't. If t = 3 (mod 4), let n be a solution ton = —1 (mod 4),n =

1 (mod |t ). Then (%) = (—1)t-D/2(n=1)/2 (%) =—-1-1=-1.Ift = (mod 4),|¢| is not a square

and [t| = p*r with k odd for some prime p. Let m be a nonresidue of p and let n be a solution to n =
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k
m (mod p),n =1 (mod r),n =1 (mod 2). Then (%) = (p%) = (p%) (%) = (%) (%) =(-1)F=-1.
11.3.19. Ifa =1 (mod 4), then |a| = 1 (mod 4) if a > 0 and |a] = —1 (mod 4) if a < 0, so by Exercise 16 we
have (‘Tl) - ('l';ll) - (ﬁ) = (~1){lel=D/2 Z 1if g > 0and = —1ifa < 0. Ifa = 0 (mod 4),
a = 2%t with t odd and ¢ > 2, then by Exercise 16 (‘ = 1) = (\a|2 1) (=1t 1)/2(|“|‘J1). Since s > 2,
check that (‘ ) =1,(|a| ~1=7 (mod8)if s > 2). Also (—1)(~ 1>/2( “ ) - (_1)<t—1>/2(ﬁ) -
(—1)¢t= 1>/2+(|t\ D/2 =1ift >0and = —1if t < 0.

11.3.20. The essential operation at each step is division, so this computation is equivalent to the division
algorithm in complexity. Therefore, by Lame’s theorem, the Jacobi symbol (%) can be evaluated in

O((log, b)?) bit operations.

11.4. Euler Pseudoprimes

1141, We find that 2(561-1)/2 — 9280 _ (910)*% — (_9g)28 — (_982)"* = 6714 = (672)" = 17 = 1 (mod 561).

Furthermore, we see that ( ) = 1since 561 = 1 (mod 8).

561

11.4.2. Note that 2% = 1 (mod 15841), so 2(19841-1)/2 = 97920 — 945176 — | (mod 15841). Since 15841 =
1 (mod 8) we have (152@) =1, s0 15841 is an Euler pseudoprime. Now 15841 — 1 = 2%.990 and 29 =

24522 = 122 = 1 (mod 15841), so 15841 passes Miller’s test for the base 2. Therefore 15841 is a strong
pseudoprime to the base 2. Next, 15841 = 7-31-73,then 7 —1 = 6 | 15840,31 — 1 = 30 | 15840 and
73 —1 =72 15840, so by Theorem 6.7, 15841 is a Carmichael number.

11.4.3. Suppose that n is an Euler pseudoprime to both the bases a and b. Then a(*~1)/2 = (%) and b("~1/2 =
(%) It follows that (ab)("~1/2 = (%) (%) = (%’) Hence n is an Euler pseudoprime to the base ab.

11.4.4. Since n is an Euler pseudoprime to the base b, we have b("~1)/2 = (%) (mod n). Then (n—b)(*~1/2 =
(=b)(n=1/2 = (—1)(n=D/2(p)(n=1)/2 = (_—1) (9> = (‘—b) = ("‘b) (mod n). So n is an Euler pseudo-

n n n n

prime to the base n — b.

11.4.5. Suppose that n = 5 (mod 8) and n is an Euler pseudoprime to the base 2. Since n = 5 (mod 8) we

have (%) = —1. Since n is an Euler pseudoprime to the base 2, we have 2("~1)/2 = (%) = —1 (mod n).
Write n — 1 = 22t where ¢ is odd. Since 2(("~1))/2 = 22 = 1 (mod n), n is a strong pseudoprime to the
base 2.

11.4.6. Writen = 12k+5. Thenn—1 = 12k+4 = 2%(3k+1) = 22t with ¢ odd. Since n is an Euler pseudoprime
to the base 3, we have 3("~1)/2 = 36k+2 = 32t — (%) (mod n). If (%) = —1, then n passes Miller’s test
for the base 3 since 3% = —1 (mod n). If (%) = 1, then 3% = 1 (mod n) and so 3! = +1 (mod n), and
again n passes Miller’s test for the base 3. Therefore n is a strong pseudoprime to the base 3.

11.4.7. Letn be an Euler pseudoprime to the base 5 such that n = 5 (mod 20). Then n = 20k + 5and n — 1 =
20k 4 4 = 22(5k + 1) = 2%, and 5(»~1)/2 = 520k+1) = 52t = (%) (mod n). If (%) = —1, then n satisfies
Miller’s test to the base 5. If (%) =1, then 5% = 1 (mod n) and so 5! = —1 and n satisfies Miller’s test

to the base 5. Therefore n is a strong pseudoprime to the base 5.

11.4.8. We sketch a proof. First note that the number of solutions to 2("~1/2 = 1 (mod p“ ') is the same as
the number of solutions to ((n — 1)/2)ind,2 = 0 (mod ¢(p?j)), which is ((n — 1)/2, paﬁl(pj —1)) =
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11.5. ZERO-KNOWLEDGE PROOFS 185

((n—1)/2,p; — 1), since p; { (n — 1). It suffices, then, to consider only the case where all the a; = 1. By
the Chinese remainder theorem, there are N = [/, ((n—1)/2, p; —1) solutions to 2("~1/2 = 1 (mod n).

Now suppose b("~1)/2 = 1 (mod n). Prove the following two facts: If k; > k, then (%) = 1 for all solu-

tions b, and if k; < k, then (%) = 1 for exactly 1/2 of the solutions b and (%) = —1 for the other 1/2.
(Use an argument similar to that in the proof of Theorem 11.17.) This shows that if k; = k, then every
solution b of z("~1/2 = 1 (mod (n — 1)/2) is a base for which n is an Euler pseudoprime, and if k; < k,
then exactly N/2 of the solutions b are bases for which n is an Euler pseudoprimes. Next, we count the
number of solutions b to z("~1/2 = —1 (mod n) for which (%) = —1. Prove that if k; = k then there

are N such b, and that if k; # & then there are no such b. (Do the cases ki < k and k; > k separately.)
Putting all these cases together yields the result.

11.4.9. Using Exercise 8, we compute 561 = 3 - 11 - 17. Then 561 = 1 + 2435,3=142,11=1+2-5,and
17=1+4+2%sok=4,k; =1,ks =1,and k3 = 4. Sincea; = lisodd and k; = 1 < k = 4, we see that
dn = 1/2. Then the number we seek is (1/2)((561—1)/2,3—1)((561—1)/2,11—-1)((561—-1)/2,17—1) =
(1/2)(280,2)(280,10)(280,16) = (1/2)2 - 10 - 16 = 80. So there are 80 different values for b.

11.4.10. Using Exercise 8, we compute 1729 = 7-13-19,and wehave 7 =1+2-3,19 = 142-9,and 13 = 1+223.
Therefore, k1 = 1,ks = 1,ks =2,¢1 = 3,020 =9,and g3 = 3. Alson = 1729 =1+ 2627, s0k =6and ¢ =
27. We compute d,, = 1/2 since k; < k and all a;’s are odd. Then the number of integers b for which 1729
is an Euler pseudoprime to the base b is given by (1/2)(869, 6)(869, 12)(869,18) = (1/2)-6-12-18 = 648.

11.5. Zero-Knowledge Proofs

11.5.1. We check that both 47 and 67 are congruent to 3 modulo 4. If p is a prime congruent to 3 modulo
4, then (+z*)P+D/4 = 271 = 22 (mod p), by Fermat’s little theorem. In this case, we have 22 =
+207047+D/4 = £912 = 7 (mod 47), and z? = £207067+1D/4 = +£717 = 423 (mod 67). Next, since z>
is a quadratic residue modulo 3149, it must be a quadratic residue modulo each of the factors of 3149.
We compute (4—77) =1, (Z—?) =1, (g%) =1, and (%273) = —1. Therefore we solve the system z? =
7 (mod 47), 2% = 23 (mod 67), to find 2% = 1229.

11.5.2. Note that 103 - 107 = 11021, and we take 2* = 1686 (mod 11021). As in Exercise 1, we compute 22 =
+1686(103+1)/4 = +1686%0 = +55 (mod 103). and 22 = +1686(197t1/4 = +£1686%7 = +9 (mod 107).

Then we compute (%) =1, (IT%?) =1, (%) =1, and (1’797) = —1. So we solve the system 22 =

55 (mod 103), 22 = 9 (mod 107) to find 22 = 6750.

11.5.3. Since p, ¢ = 3 (mod 4), —1 is not a quadratic residue modulo p or q. If the four square roots are found
using the method in Example 9.19, then only one of each possibility for choosing + or — can yield a qua-
dratic residue in each congruence, so there is only one system which results in a square.

11.5.4. Paula sends z = 11012 = 303 (mod 1961). since 18632 = 1760 (mod 1961), we have v = 1760, so she
sends y = vZ = 1760- 1385 = 77 (mod 1961). Vince checks that zy = 1760 (mod 1961) and sends 1 as his
random bit. Paula then sends s = u7 = 1863 - 1188 = 1236 (mod 1961) Vince checks that s? = 12362 =
77 (mod 1961).

11.5.5. Paula sends x = 1226,y = 625. After receiving a 1, she sends u7 = 689.

11.5.6. Paula sends x = 8882 = 788544 = 1388 (mod 2491). Vince chooses and sends the subset {2,3,5}.
Paula sends y = rvgv3vs = 888 - 877 - 2001 - 101 = 2101 (mod 2491). Vince computes y?szs355 = 21022 -
2453 - 1553 - 494 = 1388 = z (mod 2491).

11.5.7. The prover sends x = 1403? = 1968409 = 519 (mod 2491). The verifier sends {1, 5}. The prover sends
y = 1425. The verifier computes y?z = 14252 - 197 - 494 = 519 = z (mod 2491)

STUDENTS-HUB.com Uploaded By: anonymous



186 11. QUADRATIC RESIDUES

11.5.8. a. First we find inverses modulo 2491 of the six numbers, getting 1688, 1741, 201, 1789, 161, and 214, re-
spectively. Next we square and reduce these numbers modulo 2491 to get s; = 2131, s = 2025, s3 =
545,54 = 2077, s5 = 1011, and s = 958.

b. Paulasendsy = 10911199 - 2144 - 557 - 2200 = 1474 (mod 2491).

c. Vince computes 14742 - 2025 - 545 - 1011 - 958 = 2074 (mod 2491), and then checks that 1091% =
2074 (mod 2491) also.

11.5.9. a. First we find inverses modulo 3953 of the six numbers, getting 3333, 753, 411, 1319, 705, and 1811, re-
spectively. Next we square and reduce these numbers modulo 3953 to get s; = 959, so = 1730, 55 =
2805, s4 = 441, s5 = 2900, and sg = 2684.

b. Paulasendsy = 403 - 1001 - 21 - 989 - 1039 = 1074 (mod 3953).
c. Vince checks that 10742 - 959 - 1730 - 441 - 2684 = 336 = 4032 (mod 3953).

11.5.10. If an integer a is a quadratic residue modulo n then it is also a quadratic residue modulo p and ¢, and
so there are two square roots modulo each of p and ¢. The Chinese remainder theorem shows that there
are, therefore, 4 square roots of a modulo n. For our algorithm, we choose x and note that z? is neces-
sarily a quadratic residue modulo n. Then z? has 4 square roots modulo n, two of which are +z, so if
we extract a square root b of 22, the probability is 2/4 = 1/2 that b is different from +z. If so, then b* =
z? (mod n) and so (b — z)(b + x) = 0 (mod n). So we expect that either (b — z,n) or (b + x,n) yields a
non-trivial factor for n. If the square root is not different from +z, we select a new integer and repeat the
process. The probability that we fail to find a square root different from +x after k tries is 1/2*. There-
fore the probability that we succeed in factoring n is 1 — 1/2* which approaches 1.

11.5.11. If Paula sends back a to Vince then a? = w? (mod n), witha #Z w (mod n). Then a? —w? = (a—w)(a+
w) =0 (mod n). By computing (a—w,n) and (a+w, n) Vince will likely produce a nontrivial factor of n.
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CHAPTER 12
Decimal Fractions and Continued Fractions

12.1. Decimal Fractions

12.1.1. a. Using the recursive formulae from Theorem 12.1. Let vy = 2/5. Then ¢; = [10-(2/5)] =4, and 1 =
10 - (2/5) — 4 = 0, so we're done, and the decimal expansion is 0.4.

b. Letyy =5/12. Thenc¢; = [10- (5/12)] =4and y; =10- (5/12) —4 =1/6. Then ¢y = [10- (1/6)] =1,
and v2 = 10-(1/6) —1 =2/3. Then ¢z = [10- (2/3)] = 6, and 3 = 10 - (2/3) — 6 = 2/3 = 72, so the
sequence repeats and the decimal expansion is 0.416.

c¢. Lety =12/13. Then¢; = [10- (12/13)] = 9, and 7; = 10- (12/13) — 9 = 3/13. Then ¢; = [10 -
(3/13)] =2,and 72 =10 - (3/13) — 2 =4/13. Then c3 = [10- (4/13)] = 3,and 73 = 10 - (4/13) — 3 =
1/13. Then ¢s = [10- (1/13)] = 0, and ~4 = 10- (1/13) — 0 = 10/13. Then ¢5 = [10- (10/13)] = 7, and
75 = 10-(10/13) =7 = 9/13. Then ¢ = [10 - (9/13)] = 6, and v = 10 - (9/13) — 6 = 12/13 = 7. So
the decimal expansion is .923076.

d. Let~o=8/15. Thenc; = [10-(8/15)] = 5,and 7y, = 10- (8/15) — 5 = 5/15. Then ¢, = [10 - (5/15)] =
3,and 72 = 10 (5/15) — 3 = 5/15 = 1. So the decimal expansion is 0.53.

e. Letyy = 1/111. Then¢; = [10 - (1/111)] = 0, and 1 = 10 - (1/111) — 0 = 10/111. Then ¢, =
[10 - (10/111)] = 0, and 5 = 10 - (10/111) — 0 = 100/111. Then ¢3 = [10 - (100/111)] = 9, and 75
10 - (100/111) — 9 = 1/111 = ;. So the decimal expansion is 0.009.

f. Let~, = 1/1001. Then ¢; = [10- (1/1001)] = 0, and 7; = 10 - (1/1001) — 0 = 10/1001. Then c;
[10-(10/1001)] = 0, and 2 = 10-(10/1001) —0 = 100/1001. Then c3 = [10-(100/1001)] = 0, and 3 =
10 - (100/1001) — 0 = 1000/1001. Then ¢4 = [10 - (1000/1001)] = 9, and 74 = 10 - (1000/1001) — 9 =
991/1001. Then ¢5 = [10 - (991/1001)] = 9, and 5 = 10 - (991/1001) — 9 = 901/1001. Then ¢z = [10 -
(901/1001)] = 9, and v = 10 - (901/1001) — 9 = 1/1001 = ~y,. So the decimal expansion is 0.000999.

12.1.2.a. Letyy=1/3. Thenc¢; =[8-(1/3)] =2,andy; =8-(1/3) —2 =2/3. Then ¢y = [8- (2/3)] = 5, and
v2 =8-(2/3) =5 =1/3 = 7. So the base 8 expansion is (.25)s.

b. Letyy =1/4. Thenc; = [8-(1/4)] =2,and y; = 8- (1/4) — 2 = 0. So the base 8 expansion is (.2)s.

c. Letyy=1/5.Thenc; =[8-(1/5)]=1,and~; =8-(1/5)—1=3/5. Thence = [8-(3/5)] =4, and
Y2 =8-(3/5)—4 =4/5. Thencz = [8-(4/5)] = 6,and 73 = 8- (4/5) =6 = 2/5. Then ¢4 = [8-(2/5)] =

3,and 4 = 8- (2/5) —3 =1/5 = 7. So the base 8 expansion is (.1463)s.

d. Letyy=1/6. Thenc; =[8-(1/6)]=1,andy; =8-(1/6) —1 =1/3. Thency = [8-(1/3)] = 2, and
Y2 =8-(1/3) —2=2/3Thencz = [8-(2/3)] =5,and y3 = 8- (2/3) — 5 = 1/3 = ~;. So the base 8
expansion is (.125)g.

e. Letyy =1/12. Thenc; = [8-(1/12)] =0,and 7, = 8- (1/12) — 0 = 2/3. Then ¢, = [8 - (2/3)] =5,
and v =8-(2/3) —5=1/3Thenc; =[8-(1/3)] =2, and y3 = 8- (1/3) — 2 = 2/3 = ;. So the base
8 expansion is (.052)s.

f. Letyy=1/22. Thenc; = [8-(1/22)] =0,and v, = 8- (1/22) — 0 = 4/11. Then ¢, = [8 - (4/11)] = 2,
and 7, = 8-(4/11)—2 = 10/11. Then c3 = [8-(10/11)] = 7, and v3 = 8-(10/11)—7 = 3/11. Then ¢, =
187
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8- (3/11)] = 2,and v, = 8- (3/11) — 2 = 2/11. Then c5 = [8 - (2/11)] = 1, and 75 = 8- (2/11) — 1 =
5/11. Then ¢ = [8- (5/11)] = 3,and v = 8- (5/11) —3 =7/11. Then ¢; = [8 - (7/11)] = 5, and y; =
8-(7/11)—5 = 1/11. Then ¢s = [8-(1/11)] = 0,and vs = 8-(1/11)—0 = 8/11. Then ¢ = [8-(8/11)] =
5,and 9 = 8- (8/11) — 5 =9/11. Then ¢;o = [8 - (9/11)] = 6, and y10 = 8- (9/11) — 2 = 6/11. Then
c11 = [8-(6/11)] = 4,and 11 = 8:(6/11)—4 = 4/11 = 7. So the base 8 expansion is (.02721350564)s.
12.1.3.a. We reduce 12/100 to get 3/25.
b. Note that .12 = .1+ (2/100) Y57, 1/10" = (1/10) + (2/100)(1/(1 — 1/10)) = 11/90.
¢. Leta = .12. Then 100 = 12.12, so that 99« = 12. Therefore o = 12/99 = 4/33.
12.14.a. Wehave (.123); = 1/7 + 2/72 + 3/7% = 66/343.

b. Let o = (.013)g. Then 6%a = (1.313)g, so that (62 — 1)a = (1.3)s = 1+ 3/6 = 3/2. Then a =
3/(2-35) = 3/70.

c. Wehave (.17)11 = >, 2, (17)11/(100), = (18/121)(1/(1 — 1/121)) = 3/20.

d. Leta = ((ABC)y. Then 163 = (ABC.ABC) g, so that (163 — 1)ar = (ABC)16 = 10-162 +11-16 +
12 = 2748. Then a = 2748/(16% — 1) = 916,/1365.

12.1.5. All prime divisors of 210 = 2- 3 -5 - 7 must divide b, so b = 2"3°5!7%, with r, s, ¢, and u nonnegative
integers.

12.1.6.a. Since 12 = 223, we have T' = 22|10%, and U = 3. So the pre-period length is 2, and ord310 = 1, so
the period length is 1.

b. Since 30 = 20 - 3, we have T' = 10/10', and U = 3. So the pre-period length is 1, and ord310 = 1, so
the period length is 1.

c. Since 75 = 523, we have T' = 52|10%, and U = 3. So the pre-period length is 2, and ord;10 = 1, so
the period length is 1.

d. Since 23 =1-23, we have T' = 1|10°, and U = 23. So the pre-period length is 0, and ord2310 = 22,
so the period length is 22.

e. Since 56 = 237, we have T' = 23]103, and U = 7. So the pre-period length is 3, and ord;10 = 6, so
the period length is 6.

f. Since 61 = 1-61, we have T' = 1|10%, and U = 61. So the pre-period length is 0, and ordg; 10 = 60,
so the period length is 60.

12.1.7.a. Since 4 = 22, we have T' = 22|12}, and U = 1. So the pre-period length is 1, and ord; 12 = 0, so the
period length is 0.

b. Since 8 = 23, we have T' = 2%|122, and U = 1. So the pre-period length is 2, and ord;12 = 0, so the
period length is 0.

c. Since 10 = 2-5, we have T' = 2|12}, and U = 5. So the pre-period length is 1, and ord512 = 4, so the
period length is 4.

d. Since 24 = 233, we have T' = 223|122, and U = 1. So the pre-period length is 2, and ord;12 = 0, so
the period length is 0.
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e. Since 132 = 12- 11, we have 7' = 12|12!, and U = 11. So the pre-period length is 1, and ord;;12 =
1, so the period length is 1.

f. Since 360 = 23325, we have T = 2332|122, and U = 5. So the pre-period length is 2, and ord;12 = 4,
so the period length is 4.

12.1.8. If m is prime and b is a primitive root modulo m, then ord,,b = m — 1, so the period length of 1/m
is m — 1. Conversely, if the period length is m — 1, then ord,,b = m — 1, but ord,,,bjm so (m — 1)|¢(m),
which implies m is prime.

12.1.9. If p = 2 or 5, the period length is 0. Otherwise, ord,b = n is the period length. Now, ord,,b = n for
exactly those primes dividing 10" — 1, but not dividing 10™ — 1 for any m < n. Then, (a) 10— 1 =3%p =
3(b)10°-1=3%11,p=11(c)10>°-1=3-11-37,p=37(d) p = 101 (e) p = 41 and 271 (f) p = 7 and 13.

12.110.a. We have 1/(b— 1) = (1/b) (1/(1 — 1/b)) = (1/b) S5%0(1/b)7 = (D).

b. Wehave 1/(b+ 1) = (b—1)/(02 — 1) = (b — 1)/b* - 1/(1 — 1/8%) = (b— 1)/ 52 (1/02) = (b —

1)/b2(1.01), = (b — 1)(.01) = (.06 — D).

12.1.11. Using the construction from Theorem 12.2 and Example 12.1, we use induction to show that ¢, = k—1
and 7y, = (kb—k+1)/(b—1)% The induction step is as follows: cj11 = [byr] = [(kb*> — bk +b)/(b—1)?] =
[(k(b—1)2+bk+1)—k)/(b—1)?] = [k+ (b(k+1) —k)/(b—1)?] =k, and 11 = (k+ 1)b—k, if k #
b—2.If k =b—2,wehave ¢;,_2 = b, so we have determined b — 1 consecutive digits of the expansion.
From the binomial theorem, (z+1)* = az+1 (mod 2?), so ord(,_1)2b = b—1, which is the period length.
Therefore we have determined the entire expansion.

12.1.12. By Theorem 12.4, a non-repeating expansion represents an irrational number. To see that (.0123... (b—
1)10111213...), is non-repeating, notice that the sequence of digits contains arbitrarily long strings of
Zeros.

12.1.13. The base b expansion is (.100100001 . ..), which is non-repeating and therefore by Theorem 12.4 rep-
resents an irrational number.

12.1.14. Use the construction from Theorem 12.1 and Example 12.1, but replace b by b,, at the nth step: ¢, =
[bnYn—1] and v, = bpYn—1 — . Then 0 < ¢, < by,.

12.1.15. Let v be a real number. Set ¢p = [y] and and 71 = 7 — ¢g. Then 0 < v, < 1 and v = ¢p + 1. From the
condition that ¢, < kfork =1,2,3,..., wemusthave ¢; = 0. Let c; = [27y1] and 2 = 271 —¢2. Then v, =
(CQ +’}/2)/2, SO 7Y = Cp +Cl/].' +CQ/2' +’YQ/2' Now let C3 = [3’}/2] and Y3 = 3")/2 — C3. Thenvz = (03 +’}’3)/3
and so vy = ¢g +¢1/1!+c2 /2! + ¢3/3! 4+ v3/3!. Continuing in this fashion, for each k = 2,3, .. ., define ¢;, =
[kvi—1] and v, = kyk—1 — cg. Theny = co+c1 /1 4+ ca/2 + ¢3/3!+ - - - + ¢ /k! + 5 /E!. Since each v, < 1,
we know that limy_,, v /k! = 0, so we conclude that v = ¢o + ¢1 /1! + ¢2 /2! + ¢3 /3! + - - + e /R + - - .

12.1.16. Letr < s be integers. Then the rational number ~ — (% + S+ + ;:5:11!>, where the ¢; are given by
Exercise 15, has common denominator s!, so let ¢, be the corresponding numerator. Check that 0 < ¢, <

1.

12.1.17. In the proof of Theorem 12.1, the numbers p,, are the remainders of b upon division by p. The pro-
cess recurs as soon as some +y; repeats a value. Since 1/p = (.¢1¢z--.¢,_1) has period length p — 1, we
have by Theorem 12.4 that ord,b = p — 1, so there is an integer k such that b* = m (mod p). So the re-
mainders of mb™ upon division by p are the same as the remainders of v*b" upon division by p. Hence
the nth digit of the expansion of m/p is determined by the remainder of b* " upon division by p. There-
fore, it will be the same as the (k + n)th digit of 1/p.

12.1.18. First note that b* = —1 (mod p), since ord,b = 2¢t. Now pv; is the remainder of »/ upon division by p,
and py; is the remainder of ' upon division by p, which must be the same as the remainder of —b’
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190 12. DECIMAL FRACTIONS AND CONTINUED FRACTIONS

upon division by p. By the division algorithm, ¥/ = kp+7r,s0 =0/ = —kp—r = —(k— 1)p+ (p — r).
Hence, ¢; = [br/p], and ¢; 4+ = [b(p — r)/p|. Let br/p = a + « where a is an integer and 0 < = < 1. Then
¢j+cjr=r/pl+bp—r)/pl=la+z]+b—(a+z)=a+b—a—1=>b—1,as desired.

12.1.19. Suppose n = TU, with T' = 2% and U odd. Then the period length of the binary expansion of 1/n is
ordy2. If ordy2 =n — 1, then U = n. So n is prime, and 2 is a primitive root of n.

12.1.20. By Theorem 12.4, n = TU with (U, 10) = 1 and every prime factor of T divides b. Then the length of
the period of the decimal expansion of 1/n is ord; 10 which can be no larger than U — 1, which occurs if
and only if U is prime and 10 is a primitive root modulo U. Thus T = 1 and n is a prime with primitive

root 10.

12.1.21. Suppose e = h/k. Then kl(e — 1 —1/11 —1/2] — ... — 1/k!) is an integer. But this is equal to k!(1/(k +
D+1/(k+2!+--)=1/(k+1)+1/(k+1)(k+2)+---<1/(k+1)+1/(k+1)*+--- =1/k < 1. But
kElle—1—-1/11—=1/2! — ... — 1/k!) is positive, and therefore cannot be an integer, a contradiction.

12.1.22. We have b = 14 and v = 1/6 in the formula from Exercise 21. So the jth digit in the base 14 expan-
sion is given by ¢; = [1471/6] — 14[147~11/6]. The possible values for U in Theorem 12.4 are 1, 2, 3, and
6. Since ¢ of each of these numbers is less than or equal to 2, the expansion for 1/6 must have period
1 or 2. Computing, we have: ¢; = [14 - 1/6] — 14[1/6] = 2; co = [1421/6] — 14[14 - 1/6] = 4; and c3 =
[1431/6] — 14[14%1/6] = 9. Therefore we have 1/6 = (.2494949...)14.

[e'S) k 0o 0o
(1 P (D" e (-1 e
12.1.23. Leta = Z Tof ,and q—k = Z o7 .Then |a — q—k = Z Tof < Z 0T As in the proof
=1 1=1 i=k+1 1=k+1
2
of Corollary 12.5.1, it follows that ‘a — % < oGO which shows that there can be no real number C'
. !

as in Theorem 12.5. Hence, oo must be transcendental.

12.1.24. We mimic the proof of Theorem 12.6. The only changes are that each d;; is either 0 or 1. Form a new
number r = 0.dydadsds ..., by d; = 0if d;; = 1 and d; = 1if d;; = 0. Then r is different from every
number in the listing and so is not in the listing. Therefore, the listing, no matter what it was, could not
contain all the real numbers with decimal expansions consisting of only 0s and 1s.

12.1.25. Suppose e = h/k. Then k!(e — 1 —1/1! —1/2! — .. -1/k!) is an integer. But this is equal to k!(1/(k +
D+1/(k+2!+--)=1/(k+ 1)+ 1/(k+1)(k+2)+---<1/(k+1)+1/(k+1)*>+--- =1/k < 1. But
EN(1/(k+1)!+1/(k+2)! 4+ ---) is positive, and therefore can not be an integer, a contradiction.

12.1.26. a. We find 1/19 = (.024024024 . . .y 7, so starting at the 7th position we have 0,2,4,0,2,4,0,2,4,0.

b. We find 1/21 = (.030303030303. . .)s, so starting at the 6th position we have 3,0, 3,0, 3,0, 3,0, 3,0.

12.2. Finite Continued Fractions
12.2.1.a. Wehave [2;7] =2+ 1/7=15/7.

. h, 1;,2,3| =14 ———+=1 =10/7.
b. We have [1;,2, 3] —|—2+1/3 +3/7=10/7
1
. h '5,6] = ————— = 6/31.
c¢. We have [0'5, 6] 55 (1/6) 6/3
1 1

d. Wehave [3;7,15,1] = 3 + = 3+ 51716 = 355/113. Note that this is a very good ap-

T 15+1

proximation for 7.
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12.2.3. a.
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We have [1;1] =1+ (1/1) = 2.

1
We have [1,1,1] :1+m:3/2
1
We have [1;1,1,1] = 1—&-71:5/3

14—
+1+1

1
We have [1;1,1,1,1] = 1 + — ] = 8/5. Note that the numerators and denominators in
1+
1+ !
1+1
these last four exercises are Fibonacci numbers.

We have [10;3] =10+ 1/3 = 31/3.

We have [3;2,1] =3+ 1=3—|—1/3:1O/3.

2+1/1
We have [0;1,2,3] =0+ ;1 = 3/10. Compare this with part (b).
A FRYE
We have [2;1,2,1] =2+ . =11/4.
L+ o
We have [2;1,2,1,1,4] =2+ . = 87/32.
1+ ). 1
IR
1+1/4
We have [1;2,1,2] = 1+ ;1: 11/8.
MEESYE
We have [1;2,1,2,1] =1+ ! . =15/11.
2+ i
2+1/1
We have [1;2,1,2,1,2] =1+ I = 41/30.
2
: 1+ !
2+ 1717

Using the construction in the proof of Theorem 12.8, we let 7o = 18 and r; = 13. Then 18 =1 - 13 +
5,13 =2-54+3,5=1-34+2,3=1-2+1,and 2 = 2. 1. The sequence of quotient gives us the
continued fraction [1;2,1, 1, 2].

We perform the Euclidean algorithm on 32 and 17 toget 32 = 1-17+ 15,17 = 1-15+ 2,15 =
7-2+1,2=2-1. The sequence of quotients gives us [1;1, 7, 2].

We perform the Euclidean algorithm on 19 and 9 to get 19 = 2-9+ 1,9 = 9 - 1. The sequence of
quotients yields [2;9].
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192 12. DECIMAL FRACTIONS AND CONTINUED FRACTIONS

d. We perform the Euclidean algorithm on 310 and 99 to get 310 = 3-99+ 13,99 =713+ 8,13 =
1-845,8 =1-54+3,5=1-3+2,3 = 1-2+1, 2 = 2-1. The sequence of quotients yields [3;7,1,1,1, 1, 2].

e. We perform the Euclidean algorithm on —931 and 1005 to get —931 = —1 - 1005 + 74,1005 = 13 -
74443,74=1-43+31,43=1-314+12,31=2-1247,12=1-7+5,7=1-54+25=2-2+1,2 =
2 - 1. The sequence of quotients yields [-1;13,1,1,2,1,1,2,2].

f. We perform the Euclidean algorithm on 831 and 8110 to get 831 = 0 - 8110 + 831,8110 = 9 - 831 +
631,831 = 1- 631 4 200,631 = 3-200 + 31,200 = 6-31 + 14,31 = 2-14+3,14 = 4.3 + 2,3 =
1-2+41,2 =2-1. The sequence of quotients gives us [0;9, 1,3,6,2,4,1,2].

12.2.4.a. Wehave 6/5 =1+ 1/5, so the continued fraction expansion is [1; 5].

b. Wehave 22/7 =3+ 1/7, so the continued fraction expansion is [3; 7].

¢. The Euclidean algorithm gives: 19 = 0(29) + 19;29 = 1(19) + 10;19 = 1(10) + 9; 10 = 1(9) + 1,9 =
9(1). The quotients give the continued fraction expansion [0; 1,1, 1, 9].

d. The Euclidean algorithm gives: 5 = 0(999) + 5;999 = 199(5) + 4;5 = 1(4) + 1;4 = 4(1), so the con-
tinued fraction expansion is [0; 199, 1, 4].

e. The Euclidean algorithm gives: —943 = —1 - 1001 + 58,1001 = 17-58 4 15,58 = 3 - 15 + 13,15 =
1-1342,13=6-2+1,2=2-1, so the continued fraction expansion is [-1,17,3,1,6, 2].

f. The Euclidian algorithm gives: 873 = 0 - 4867 4 873,4867 = 5 - 873 + 502,873 = 1 - 502 4 371,502 =
1-371+ 131,371 =2-1314+ 109,131 =1-109+ 22,109 =8-22+4+21,22=1-21+4+1,21 =21-1,s0
the continued fraction expansion is [0;5,1,1,2,1,4, 1, 21].

12.2.5.a. Wecomputepy =1,p1 =1-24+1=3,po=1-34+1=4,p3=1-44+3="7,p,=2-T+4=18,and
o=1q0=2¢=124+1=3,¢g3=1-34+2=5,q4 =25+ 3 = 13. Then the convergents are
Co=1/1=1,C,=3/2,C,=4/3,C35=7/5,Cy = 18/13.

b. .Wecomputepy =1,p1 =1-1+1=2,p, =7-24+1=15,p3 =2-15+2=32,and gy =1,¢1 = 1,q2 =
7-1+1=38,q3 =2-8+1=17. Then the convergents are Cy = 1,C; = 2,Cy = 15/8,C5 = 32/17.

c¢. Wecomputepg =2,p1 =2-9+1=19,and ¢o = 1,¢; = 9. Then the convergents are Cy = 2, =
19/9.

d. We compute the sequence of p; to be 3, 22, 25, 47, 72, 119, 310, and the sequence of ¢; tobe 1, 7, 8,
15, 23, 38, 99, so the convergents are 3, 22/7, 25/8, 47/15,72/23,119/38, 310/99.

e. We compute the sequence of p; to be —1, -12, —13, —25, —63, —88, —151, -390, —931, and the se-
quence of g; to be 1,13,14,27,68, 95,163,421, 1005, so the convergents are —1, —12/13, —13/14,
—25/27, —63/68, —88/95, —151/163, —390/421, —931/1005.

f. We compute the sequence of p; to be 0, 1, 1, 4, 25, 54, 241, 295, 831, and the sequence of ¢; to be
1, 9, 10, 39, 244, 527, 2352, 2879, 8110, so the convergents are 0, 1/9, 1/10, 4/39, 25/244, 54/527,
241/2352,295/2879, 831/8110.

12.2.6. a. The convergents are Cp = 1,C; =1+ 1/5=6/5.
b. The convergents are Cy = 3,C1 =3+ 1/7 = 22/7.

c¢. We compute the sequence of p; to be 0,1,1,2,19, and the sequence of ¢; to be 1,1,2,3,29, so the
convergents are 0,1,1/2,2/3,19/29.
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d. We compute the sequence of p; to be 0,1, 1,5, and the sequence of ¢; to be 1,199,200, 999, so the
convergents are 0,1/199, 1/200, 5/999.

e. We compute the sequence of p; to be —1, —16, —49, —65, —439, —943, and the sequence of ¢; to be
1,17,52,69,466,1001, so the convergents are —1, —16/17, —49/52, —65/69, —439/466, —943/1001.

f. We compute the sequence of p; tobe 0,1, 1, 2, 5,7, 33, 40, 873, and the sequence of ¢; tobe 1, 5, 6, 11,
28,39, 184,223, 4867, so the convergents are 0,1/5,1/6,2/11,5/28,7/39,33/184,40/223, 873 /4867.

12.2.7. For Exercise 5: (a) 3/2 > 7/5and 1 < 4/3 < 18/13 (b)2 > 32/17and 1 < 15/8 (c) vacuously
true (d) 22/7 > 47/15 > 119/38 and 3 < 25/8 < 72/23,< 310/99 () —12/13 > —25/27 > —88/95 >
—390/421and —1 < —13/14 < —63/68, < —151/163 < —931/1005 (f)1/9 > 4/39 > 54/527 > 295/2879
and 0 < 1/10 < 25/244 < 241/2352 < 831/8110.

12.2.8. The recursion formula for the Fibonacci sequence tells us that the Euclidean algorithm for fi11/fx
gives the following sequence of equations: fy+1 = 1(fx) + fu—1; fx = L(fe—1) + fr—2;...; f2 = 1(f1). So
fk+1/fk = [17 ]-7 ]-7 R 1] (k-times).

12.29. Let a = r/s. The Euclidean Algorithm for 1/a = s/r < 1 gives s = 0(r) + s;7 = ao(s) + a1, and con-
tinues just like for r/s.

12.2.10. The recursion formula for the p; tells us that the Euclidean algorithm for py/pr—1 gives the following
sequence of equations: py = agpr—1+pPk—2;---;P1 = a1po+1;p0 = ao(1). SO pi/Pr—1 = [ak; Gk—1, - - ., ao).
Similarly for the gj,.

12.2.11. Proceed by induction. Assume ¢; > f; for j < k. Then g, = arqr—1 + qr—2 > apfe—1 + fr—2 >
fe—1+ fr—2 = fr, as desired.

12.2.12. Rewrite the last step of the Euclidean Algorithm: r,_1 = ¢n7n = (¢n — 1)7 + "0 T = Qn417n, SO
qn+1 = 1 and we have [ag; a1, ..., a,] = [ag; a1, ..., an, — 1,1].

12.2.13. By Exercise 10, we have p,,/pn—1 = [an;an-1,...,00] = [ao;a1,...,a,] = pn/g, = r/s if the contin-
ued fraction is symmetric. Then, ¢, = p,—1 = s and p, = r, so by Theorem 12.10 we have p,g,—1 —
GnPn-1 = Tqn-1 — s> = (—=1)"71. Then rg,—1 = s> + (=1)""! and so r|s* — (—1)". Conversely, if
r|s? + (=1)"1, then (=1)n — 1 = puGn-1 — @uPn—1 = Tqn—1 — Pn—15. SO r|pp—1s + (—1)"~! and hence
rl(s2 4+ (=1)" 1) — (pp_15+ (=1)""1) = s(s — p_1). Since s, p,,_1 < r and (r,s) = 1, we have s = p,,_1.
Then [ay;an—1,...,a0] = Pn/Pn-1 =1/ = [ag;a1,...,an].

12.2.14. If a,b are integers, then Section 1.5, Exercise 16 gives a = qob + r1;0 = qir1 + 12371 = qar2 +
T3i...iTh—1 = QnTn, With —=b/2 < 7 < b/2 and r;_1/2 < r; < rj_1/2 for each j. Then a/b =

[90;41, - - -, gn] following the construction in Theorem 12.6

12.2.15. Note that the notation [a¢; a1, . . ., a,] makes sense, even if the a; are not integers. Use induction. As-
sume the statement is true for £ odd and prove it for k + 2. Define a), = [ax; ar+1, ary2] and check that
aj, < lag; agt1,ak+2 + x] = aj, + 2’ Then [ag; a1, ..., akt2] = [ao;a1,-..,a}] > [aosa1,...,a}, + 2] =
[ag; a1, ..., akte + z]. Proceed similarly for k even.

12.2.16. a. By Exercise 8 we have 13 = 8 + 5, all Fibonacci numbers, which gives 8/5 = [1;1,1, 1, 1].
b. Wehave 17 =12+ 5and 12/5 = [2;2,2].
c¢. Wehavel9 =12+ 7and 12/7 =[1;1,2,2].

d. We check the continued fraction for each of (23 — j)/j for j = 1,2,...,11 and find no solution.
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e. Wehave27=18+9and 18/9 = 2.

f. Wehave29=21+8and21/8=[2,1,1,1,2].

12.3. Infinite Continued Fractions

12.3.1.a. Wecompute ag = [v2] = 1,1 = 1/(vV2 - 1) = V2 + 1,a; =[] = 2,00 = m =V2+1=

a. Therefore the sequence repeats, and we have V2 =1[1;2,2,...].

b. We compute ap = [V3] = 1,a; = 1/(vV3—-1) = (V3+1)/2,a1 =[] = L,ag = ——t— =

(vV3+1)/2—-1
V34 1,a0 =[] = 2,03 = = (V3 +1)/2 = a;. Therefore the sequence repeats, and we
have v3 = [1;1,2,1,2,.. ].

1

(V3+1)-2

c. We compute ag = [V5] = 2,a; = 1/(v/5—2) = V5+2,a; = [a1] = 4,00 = 1/((/5+2) —4) =
V5 + 2 = a;. Therefore the sequence repeats, and we have V5 =[2;4,4,...].

d. We compute ag = [(v5+1)/2 = 1,01 =
[1;1,1,...].

m = (\f-i- 1)/2 = ap. This gives (\/5—1— 1)/2 =

12.3.2.a. Wecomputeag = [V/2] = 1,a; = 1/(V2—1),a1 = [a1] =3, a2 = W =(V2-1)/(3V2-4),
a2=[a2]=1,a3ZWZ(S%—@/M\[—@ a3—[ ]—5@4:m:(4\?/7—
5)/(23¥/2 — 29), ay = [a4] = 1, so the first five partial quotients are 1,3, 1,5, 1.

b. We compute ap = [27] = 6 a1 =1/27—6),a1 =[1] =3, a2 = W = (27 +6)/(67 — 19),
az = [ao] = 1, a3 = q7ay=a; = (~67 +19)/(87 — 25), a3 = [as] = 1, au = (q75y=a; = (—l47 +

44)/(106m — 333), a4 = [oia] = 1, so the first five partial quotients are 6,3,1,1, 7.

c¢. Wecomputeag =[(e—1)/(e+1)]=0,a1 =1/((e—1)/(e+1)) = (e+1)/(e—1),a1 = [a1] =2, a2 =
W:—(e—l)/(e—i’)),ag [] 6, 3:W —(e=3)/(7Te—19), as = [az] =10, ay =
4] =

m = —(7e—19)/(71e—193), as = [a4] = 14, so the first five partial quotients are 0, 2, 6, 10, 14.
d. We compute ap = [(e -1/ +1)]=0,a; =1/((e2=1)/(2+1)) = (2 +1)/(e2 = 1), a1 = [1] =
1, a0 = 1/(a11 —(e2—1)/2,a2 = [a2] = 3, a3 = m =1/(e*=7), a3 = [a3] =5, ay =
m = —(e? — 7)/(5€? — 37), as = [ay] = 7, s0 the first five partial quotients are 0, 1, 3,5, 7.
12.3.3. From Example 12.11, we have 7 = [3;7,15,1,292,1,1,1,2,...]. We compute the convergents until

we have a denominator greater than 100000: 3, 22/7, 333/106, 355/113, 103933/33102, 104348/33215,
208341/66317, 312689/99532, 833719/265381, . ... Therefore, the best approximation with denominator
less than 100000 is 312689/99532.

12.3.4.a. Using Theorem 12.9, we compute the sequence of p; and g to get the following convergents:
3.8 11 19 87 106 193

7Y 37 40 77327 397 71

b. The ninth convergent is 1282, The tenth is 127, so the tenth is the best.

465 536 /
12.3.5. Ifa; > 1,let A = | ]. Then | 1+ 1 1;1 1 ] + !
a , le = lag; az,...]. Then [ag;aq,... —ag — 1;1,a1 — 1,a0,a3,...] = a
1 2; a3 0; a1 0 1 2, a3 0 o + (1/A)
1 L .
—ag — 1+ 1 = 0. Similarly if a; = 1.
1+ ———F—
a1 — 1+ (1/4)
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12.3.6. Without loss of generality, k is odd. Theorem 12.11 says that the odd convergents decrease to «, and
the even convergents increase to a, SO pr+1/qr+1 < @ < pi/qx. The hint follows after Theorem 12.10.
Notice that (g1 —qr)* > 0,50 ¢i 1 + ¢ > 2qr41qx- Then dividing by 2¢7, 3 gives oo — (pr/qx)| + | —
(Pr+1/qr+1)| = 1/(arar+1) < 1/(247) +1/(2¢3,,), and the proposition follows.

1
12.3.7. If a = [ag;a1,as,...], then 1/a = 1/[ag;a1,a2,...] =0+ N = [0;ag, a1, as,...]. Then the
ap +
0 al +...
kth convergent of 1/« is [0; ag, a1, a9, ...,ak—1] = 1/[ap;a1,a2,...,a,x—1], which is the reciprocal of the

(k — 1)st convergent of a.

12.3.8. Suppose |a — (px/qx)| > 1/(V/542), for k = j —1, 4,7+ 1. Note that z + 1/ > /5 implies (v/5 —1)/2 <
z < (V54 1)/2. Then as in the hint to Exercise 6, |a — (pj_1/q;—1)| + | — (p;/a;)| = 1/(qj-1q;) >
1/ (\/gq?_l) +1/ (\/gq?), where the inequality is strict since the left side is rational. Then v/5 > ¢;/g;-1 +
qj—1/q;, so by the note, (v/5 —1)/2 < q;/gj-1) < (/5 +1)/2. Similarly, (v5 — 1)/2 < gj+1/q; < (V5 +
1)/2. Then using ¢; 1 = a;jq; + ¢;—1 we have (V5 +1)/2 > gj+1/q; = a; + (¢j—1/q;) > 1+ (V5 —1)/2 =
(v/5 + 1)/2, which is a contradiction.

12.3.9. By Theorem 12.17, such a p/q is a convergent of a. We have (v/5 +1)/2 = [1;1,1,...], 50 ¢, = f,, (Fi-
bonacci) and p, = ¢,+1. Then lim, oo Gn_1/¢n = liMy o0 Gn_1/Pn-1 = 2/(v/5+1) = (v/5 — 1)/2. So
limy oo (V5 +1)/2+ (gu-1/an)) = (V5+1)/2+ (V5 -1)/2 = V5. S0 (V5 +1)/2+ (4n—1/qn) > conly
finitely often. Whence, 1/ (V5 +1)/2+ (¢n-1/4n)) ¢2 < 1/(cg?). The following identity finishes the
proof. Note that a,, = a for all n. Then | — (pr/qn)| = |(@n+1Pn + Pr—1)/(Cnt1Gn + Gn-1) — (Pn/qn)| =
[(=(Prgn—1 = Pn-1a1))/ (@ (@G0 + gu-1))| = 1/ (g7 (@ + (an-1/4n))-

12.3.10. Notethata=(1-a+0)/(0-a+1).

12.3.11. If §is equivalent to o, then 5 = (aac+ b)/(ca + d). Solving for o gives o = (—d +b)/(cf — a), so ais
equivalent to 5.

12.3.12. Say 8 = (aa +b)/(ca +d) and v = (ef + f)/(g8 + h). Then v = (e(acx + b)/(cae + d) + f)/(g(acx +
b)/(ca+d) +h) = ((ea+ fc)o+ (eb+ df))/((ga + ch)a + (gb+ dh)), so v and « are equivalent.

12.3.13. Ifa # 0, thenr/s = ((rb)a + 0)/((sa)b+ 0), so r/s and a/b are equivalent. If a = 0 thenr/s = (1 -a +
r)/(0-b+s).

12.3.14. First note that with a; defined in the usual way, o; = 1/(aj+1 + @;+1), S0 «; is equivalent to a;41.
From the transitivity of Exercise 12, we have a equivalent to «; for all j. The solution then follows easily.

12.3.15. Note that py,tqk—1 — @k ,tPk—1 = H(Pk—19k—1 — qk—1Pk—1) +(Pk—2qk—1 — Pr—1qk—2) = 1. Thus p; ; and
qk,+ are relatively prime.

12.3.16. Consider the function f(t) = (at + b)/(ct + d), where a/b > ¢/d. Then f’(t) = (ad — be)/(ct + d)? > 0
for all ¢. Therefore, f(x) is a strictly increasing function. Now as ¢ goes from 0 to aj, we see that g(t) =
Ph.t/Qi,t goes from C_o to Ci. Now if k is even, we have Cy_2 < Cj, and ¢(t) is a function of the same
form as f(t). Therefore, as t increases, so must the pseudoconvergents. If k is odd, the argument is sim-
ilar.

12.3.17. See, for example, the classic work by O. Perron, Die Lehre von den Kettenbriichen, Leipzig, Teubner
(1929).

12.3.18. We have m = [3;7,15,...] for which the first convergents are 3/1,33/7,333/106,.... Then ps /g2 =

(tpr +po)/(tqr + qo) = (t22+3)/(t7+ 1) for t = 1,2, ..., 14, so the pseudoconvergents are: 25/8, 47/15,
60/22, 91/29, 113/36, 135/43, 157/50, 179/57, 201 /64, 223 /71, 245/78, 267/85, 289,/92, and 311/99.
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12.3.19. Using Exercise 17, we test each of the pseudoconvergents in Exercise 18 and find that |7 — 179/57| <
|T —22/7].

12.3.20. The smallest denominator of a pseudoconvergent greater than 71 is 39 + 71 > 100, so the 8th conver-
gent 193/71 is the best approximation.

12.3.21. (Proof by Rob Johnson.) Note first that if b < d, then |a/b—c/d| < 1/2d? implies that |ad —bc| < b/2d <
1/2, but since b # d, |ad — bc| is a positive integer, and so is greater than 1/2. Thus b > d. Now assume
that ¢/d is not a convergent of the continued fraction for a/b. Since the denominators of the convergents
increase to b, there must be two successive convergents p,, /g, and p,+1/¢n+1 such that ¢, < d < gp41.
. . . 2 a C Cc Pn a DPn (& Pn Pn+1 DPn
Next, by the triangle inequality we have 1/2d~ > ‘ b dl T |d T . b 0 i o anl
since the n + 1st convergent is on the other side of /b from the nth convergent. Since the numerator of
the first difference is a nonzero integer, and applying Corollary 12.3 to the second difference, we have

the last expression greater than or equal to 1/dg, — 1/¢,+1q,. If we multiply through by d* we get

1_d d d
- > (1 - > >1- since d/g,, > 1. From which we deduce that 1/2 < d/¢;,41.
2 Gn In+1 In+1

Now the convergents p,, /g, and p,,+1/gn+1 divide the line into three regions. As ¢/d could be in any

1
of these, there are three cases. Case 1: If ¢/d is between the convergents, then T < 2 _bn since the
dn dn
numerator of the fraction is a positive integer and the denominators on both sides of the inequality are
the same. This last is less than or equal to Pnit  Pn)_ since the n 4 1st convergent is farther
dn+1 dn dn+14n
from the nth convergent than ¢/d and where we have applied Corollary 12.3. But this implies that d >
1
¢n+1, a contradiction. Case 2. If ¢/d is closer to p, /¢, then again — < € _Pn < a_c since a/b
dgn ~ |d  gn b d

is on the other side of the nth convergent from c/d. But this last is less than 1/2d* and if we multiply
through by d we have 1/¢,, < 1/2d, which implies that ¢,, > d, a contradiction. Case 3. If ¢/d is closer to

<SPt |2 B 2142,

dn+1 d  qni1 b d
But this implies that d/g,+1 < 1/2 contradicting the inequality established above. Having exhausted all

the cases, we must conclude that ¢/d must be a convergent of the continued fraction for a/b.

Pn+1/qn+1, then with the same reasoning as in Case 2, we have

12.3.22. From the proof of Theorem 12.8, we see that finding the convergents of a rational number involves
exactly the same calculations as finding the greatest common divisor of the numerator and denomina-
tor. By Corollary 3.13.1 (to Lame’s Theorem) this takes O((log, n)®) operations.

12.4. Periodic Continued Fractions

12.4.1.a. Using Theorem 12.20, we have ag = V7,09 = 2,P) = 0,Qp = 1,P, =2-1-0=2,Q; = 5% =

Bar =2 g =1, P,=1-3-2=1,Q2="5C =2 a5 =47 4, =1, Py =1-2-1=1,Q3 =

T =3y =T a3 =1, P =13-1=2,Q="F =lay =2 gy =4,Ps=4.1-2=

2,Qs = 152 =3,a5 = 1,50 V7 = 21,1, 1,4].

b. Asin part (a), we find v/11 = [3;3,6].
c. Asinpart (a), we find v23 = [4;1,3,1,8].
d. Asin part (a), we find V47 = [6;1, 5,1, 12].

e. Asin part(a), we find v59 = [7;1,2,7,2,1, 14].

f. Asinpart(a), wefind v94=109;1,2,3,1,1,5,1,8,1,5,1,1,3,2,1, 18].
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12.4.2. a. Asin Exercise 1, we find /101 = [10; 20].

b. Asin Exercise 1, we find +/103 = [10;6,1,2,1,1,9,1,1, 2, 1, 6, 20].

c¢. Asin Exercise 1, we find /107 = [10;2, 1,9, 1, 2, 20].

d. Asin Exercise 1, we find /201 = [14;5,1,1,1,2,1,8,1,2,1,1,1,5,28].

e. Asin Exercise 1, we find v/203 = [14; 4, 28].

f. Asin Exercise 1, we find v/209 = [14;2,5,3,2, 3,5, 2, 28].
12.4.3.a. Asin Exercise 1, we find 1 + /101 = [2;2].

b. Asin Exercise 1, we find (2 +v/5/3 = [1;2,2,2, 1,12, 1].

c. .AsinExercise 1, we find (5 — v/7)/4 = [0;1,1,2, 3,10, 3].

1244.a. ag= (1+v3)/2,a0=1,Ph=1,Q0 =2,P,=1-2—-1=1,Q, = (3—12)/2 = 1,01 = (1+V3)/1,a; =
2,P2=2-1—1: 1,@2 = (3—12)/1:2,&22010,50042 [1,2]

b. ag = (144 V37)/3,a0 = 6,Py = 14,Qp = 3,PL = 6-3 — 14 = 4,Q; = (37 —4%)/3 = 7,01 =
(4+V37)/T,a1 = 1,P, =1-7T—4=3,Qy = (37 —3%)/7 = 4,00 = (3+V37)/4,a0 = 2, P35 =
2:4-3=50Q3=37-5%)/4=3,a3 =(5+V37)/3,a3=3,P,=3-3-5=4,Q, = (37—4%)/3 =
7,04 = (4++37)/7T=a1,50 a = [6;1,2,3].

c. 712—132 soapply Lemma 10.5 to get « = (=13 +v/2)/ — 7 = (=91 + v/98)/ — 49. Then ag =
1,Py = —91,Qo = —49, etc. Then o = [1;1,1,T, 8, 1, 18.

12.4.5.a. Letx = [2;1,5]. Then z = [2;1,y], where y = [5;5]. Since y = [5;y], we have y = 5 + 1/y, so
1
y?> —5y—1 = 0, and since y is positive, y = (5++/29)/2. Then z = 2+m =By+2)/(y+1) =
(23 +v/29)/10.
b. Letz = [2;1,5], thenz = [2;y], wherey = [1;5]. Theny = [1;5,y] = 1+1/(1+1/y),s05y*> —by—1 =
0, and y is positive, so y = (54 3v/5)/10. Thenz = 2+ 1/y = (-1 + 3V/5)/2.

- 1

0. Noting that z is positive gives = = (8 + 1/82)/6.

= (172 +3)/(6x+1),50 622 — 161 — 3 =

12.4.6.a. Lety = [3;3], so thaty = [3,y] = 3 + 1/y, which simplifies to y> — 3y — 1, which has one solution
greater than 3, namely y = (3 + /13)/2. Then [1;2,3] = [1;2,y] = 1 + 1/(2 + (1/y)) = (5 + V/13) /6.

b. Lety = [2;3,2], sothaty = [2;3,y] = 2+ 1/(3+ (1/y)) = (Ty + 2)/(3y + 1), which implies that
3y? — 6y — 2 = 0, which has positive solution y = (3 + v/15)/3. Then [1;2,3] = [L;y] = 1 + 1/y =
(-1++15)/2.

e Lety=[1;2,3=1+

= 2 _ g _a_ .
2+1/3+(1/y) (10y +3)/(Ty + 2), so that Ty* — 8y — 3 = 0, which has
positive solution y = (4 + /37)/7.

12.4.7. a. From Exercise 8, we have [3;6] = v/32 + 1 = /10.

b. From Exercise 8, we have [4;8] = 42 + 1 = /17.
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c. From Exercise 8, we have [5; 10] = v/52 + 1 = /26.
d. From Exercise 8, we have [6; 12] = v/62 + 1 = /37.

12.4.8. a. Wehavea(): \/d2+1,a0: [\/d2+1]:d,P0:O,Q0:1,P1 :d,Ql :((d271)7d2)/1:1,0q =

d+\/d2+1,a17: 2d, P, =2d —d =d, Q2 =d’+1-d2= 1,a9 = 1,80 a1 = as = --- = 2d. Thus,
V&1 =[d:2d).

b. From part(a), we have v/101 = /102 + 1 = [10;20], /290 = /172 + 1 = [17;34], /2210 = V472 + 1 =
[47;94].

12.4.9. a. ap = \/d2 - 1,a() :d—].,P() :07Q0 = ].7P1 = (d—l)(l)—Ozd—l,Ql = ((d2—1)—(d—1)2)/1 =
2 — 2,00 = (d— 1+ V& —1)/(2(d—1)) =1/2+1/2\/[d+ 1)/(d—1),a, = 1,P, = 1(2d — 2) —
d—1)=d—1,Qs=(®—1—(d—1)2)/(2d—2) =1L,a2 = (d — 1 + V& —1)/1,ap = 2d — 2, P; =
2d—1)(1)—(d—1) =d—1=Py,Qs = ((d>—1)—(d—1)?)/1 = 2d—2 = Q1,50 & = [d—1;1,2(d — 1)].

b. ap= V@ —day = [Vi2—d] =d—1,since (d— 1) < d®> —d < d®. Then Py = 0,Qo = 1, P, =
d— ].,Ql—d 1 , 01 = ((d )+\/d2 )/d ]. —1+\/d/(d—1)7a1:27P2:d—1,Q2:1,a2:
((d=1)++Vd?>—d)/1,a2 =2(d — 1), P3s = P1,Q3 = Q1. Therefore,/d?> —d = [d — 1;2,2(d — 1)].

c. Applying parts(a) and (b) we compute v/99 = /102 — 1 = [9; T, 18], V110 = v/112 — 11 = [10; 2, 20],
V272 = V172 — 17 = [16,2,32], and /600 = /252 — 25 = [24;2, 48).

12.4.10.a. Note thatd — 1 < Vd? —2 < d. We compute o9y = Vd? —2,a0 = d—1,P = 0,Qp = L, P,
d—1,Q1=2d—-3,a01 =((d—1)++vd?>—-2)/(2d—3),((d—=1)+(d—1))/(2d—3) < a1 < ((d—1)
d)/(?d—3),soa1:1,P2=d—2,Q2=2,oz2:(d—2+\/d2—2)/2,a2:d—?,Pg:d—Q,Qg,
2d—3,a3:((d—2)+\/d2—2)/(2d—3),a3:1,P4:d—17Q4:17a4:((d—1)+\/d2—2)/1,a4:
2d—2,Ps=d—1=P;,Q5=2d—3=Q;.Soa=[d—-1;1,d—2,1,2d — 2].

=+

b. Note thatd < vVd? +2 < d+ 1. We compute ag = Vd? +2,a0 =d, Py = 0,Qo = 1, P =d,Q1
2,&1 = (d+\/m)/27(d+d)/2 < o < (d+d+1)/2,a0 = d,PQ = d,QQ = 1,0[2 = (d+
\/d2+2)/1,a2=2d,P3=d=P1,Q3=2=Q1.Soa:[d;d,2d].

c. Using parts (a) and (b), we compute v47 = /72 —2 = [6;1,5,1,12],v/51 = V72 +2 = [7;7, 14],
VT = 172 —2 = [16; T, 15,1, 32].

12.4.11. a. Note thatd < vd? +4 < d + 1. We compute ap = vVd? +4,a0 =d, Py =0,Qo =1,P, =d,Q1 =
41 = (d+Vd?>+4)/4,a1 = [2d/4] = (d — 1)/2, since dis odd. Then, P, = d — 2,Q2 = d,an =
(d—2+\/d2+4)/d,((d—2)—|—d)/d < ag < (d—2+d—|—1)/d, soay = 1,P3 = 2,Q03 = d,a3 =
24+ vVd>+4)/das=1,Pi=d—2,Qs =4, a4 =(d—2+Vd?>+4)/4,(d—2+d)/4=(d-1)/2 <
Oé4<(d—2+d+1)/4,50a4:(d—l)/2,P5:d,Q5=1,Oé5=(d+\/d2+4)/1,a5:2d,P6=d:
P,Qs=4=Q1,s0a=[d;(d—1)/2,1,1,(d — 1)/2,2d].

b. Note thatd — 1 < Vd? —4 < d. We compute op = Vd*> —4,a90 = d—1,P) = 0,Qp = 1, P, =
d—1,Q1=2d 5,00 = (d— 1+ VB _—4)/(2d —5),(d—1+d—1)/(2d —5) < ap < (d— 1+
d)/(Qd 5)andd>3soa1—1P2—d 4Q2—4 agz(d—4—|—\/d2—4)/4,a2:(d—3)/2,P3:
d—2Qg-d—2a3—(d—2+\/d2 )/(d—2)a3 =2, =d—2,Qs = 4oy = (d— 2+
\/ )/40,4—(d 3)/2 P5—d 4Q5—2d75,0&5:(d*4+\/d274)/(2d75),a5:1,P6:
d—l,Q6:1,a6:(d—1+\/d2—4)/1,a6=2d—2,P7:d—1=P1,Q7=2d—5=Q1,soa=
[d—1;1,(d—3)/2,2,(d—3)/2,1,2d—2].

12.4.12. Let o = va® + 1. Then by Exercise 4 part (a), we have a = [a; 2a], which has period length one. Con-
versely, suppose the period length of the continued fraction for v/d is one, say v/d = [a; 2a], the form
required for the square root of an integer. Then [a;2a] = [a;x], where x = [2a;2a]. Then z = [2a;2] =
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2a + (1/2), and so 22 — 2ax — 1 = 0. Since x is positive, we have = a + Va2 + 1. Then Vd = [a;2] =
a+(1/z) =vVa2+1.50d=a®+ 1.

12.4.13. Suppose \/d has period length 2. Then v/d = [a; ¢, 2a] from the discussion preceding Example 12.16.
Then vd = [a;y] with y = [¢;2a] = [¢;2a,y] = ¢+ 1/(2a + (1/y)) = (2acy + ¢ + y)/(2ay + 1). Then
2ay? — 2acy — ¢ = 0, and since y is positive, we have y = (2ac + \/(2ac)? + 4(2a)c)/(4a) = (ac +
(ac)? + 2ac)/(2a). Then Vd = [a;y] = a + (1/y) = a + 2a/(ac + /(ac)? + 2ac) = /a2 + 2a/c,s0 d =
a? + 2a/c, and b = 2a/c is an integral divisor of 2a. Conversely, let & = v/a2 + b and b|2a, say kb = 2a.
Then ag = [Va2 +b] = a, since (a? < a®? +b < (a+ 1)%2. Then Py = 0,Qo = 1,P, = a,Q; = b,a; =
(a+ \/a2+b)/b,a1 = 4]{?,P2 = G,QQ = 17Oz2 = (a+ \/a2+b)/1,a2 = 2a,P3 = a = Pl,Qg =b= Ql,SO
a = [a; 4k, 2a], which has period length 2.

12.4.14. a. We have (041 +042), = ((a1+b1\/<§)/cl+(a2+b2\/g)/02)’ = (((alcg +a201)+(b102+b261)\/g)/0102)/ =
((a102 + agcl) — (6162 + bQCl)\/g)/Clcg = (a1 — bl\/E>/Cl + (ag — bg\/g)/CQ = 0/1 + O[l2.

b. Wehave (Oél—OéQ)I = ((al—i—bl\/a)/cl—(ag—i—bgﬂ)/cz)’ = (((a102—a201)+(b102—bgcl)\/g)/clcg)’ =
((0102 — (1201) - (b102 — bgcl)\/&)/clcz = ((11 — blx/g)/cl — (LLQ — bQ\/g)/CQ = Oé'l — O/Q.

C. (041042)I = ((a1 +b1\/3)/cl . (ag +b2\/3)/02)’ = (((a1a2 +b1b2d) + (a1b2 +a2b1)\/(§)/0102)/ = ((a1a2 +
511\7%1) - (a1b2 + ale)\/g)/Cch = (al(az - 52\/E) - b1ﬁ(a2 - b2\/g))/clc2 = (al - bl\/g)/cl : (02 -
baovd)/co = .

12.4.15.a. Wehave 1++/5 > 1, but (1+ \/5)’ =1-—+/5 < —1. Hence, by Theorem 12.21, the continued fraction
of 1 + /5 is not purely periodic.

b. Wehave2++/8>1land —1 < (2++/8) =2 — /8 < 0, so by Theorem 12.21 the continued fraction
expansion of 2 + /8 is purely periodic.

c. Wehave4++/17 > land —1 < (4 +V/17) = 4 — /17 < 0, so by Theorem 12.21 the continued
fraction expansion of 4 + /17 is purely periodic.

d. Wehave (11 — /10)/9 < 1, so by Theorem 12.21, the continued fraction expansion of (11 — v/10)/9
is not purely periodic.

e. Wehave (3+1/23)/2 > 1and —1 < ((3+/23)/2) = (3 — v/23)/2 < 0, so by Theorem 12.21 the
continued fraction expansion of (3 + /23)/2 is purely periodic.

f. We have (17 + v/188)/3 > 1 but ((17 + v/188)/3)" = (17 — v/188)/3 > 0, so by Theorem 12.21 the
continued fraction expansion of (17 4 v/188)/3 is not purely periodic.

12.4.16. If a = (a + Vb)/c is reduced, then 1 < (a + v/b)/cand —1 < (a — v/b)/c < 0. Adding the first two
inequalities gives 0 < 2a/c, so a and ¢ have the same sign. If they were both negative, then (a — v/b)/c
would be positive, contrary to assumption, so a and c are both positive. Then 1 < (a + v/b)/c implies
¢ < a+vb. Also —1 < (a—v/b)/c < 0implies ¢ > vb — a > 0. This gives us all the desired inequalities.
The converse is proved by reversing these steps.

12.4.17. Leta = (a+Vb)/c. Then —1/a’ = —(¢)/(a—Vb) = (ca+Vbc?)/(b—a?) = (A++v/B)/C, say. By Exercise
16,0 < a < Vband vb — a < ¢ < Vb + a < 2v/b. Multiplying by ¢ gives 0 < ca < Vbc? and Vb2 — ca <
¢ < Vbe? + ca < 2v/bc?. Thatis, 0 < A < vVBand VB — A < ¢ < VB + A < 2¢/B. Multiply Vb — a <
cby Vb +atogetC =b—a®> < Vbc®+ca= A+ +/B. Multiply ¢ < Vb +aby vVb—atoget VB — A =
Vb2 —ac<b—a?=C.So, -1 /o satisfies all the inequalities in Exercise 16, and therefore is reduced.

12.4.18. Ify = [24;2,...,2,y] with k 2’s (4 an integer > 1), then the simple continued fraction for y has period
k + 1. Now prove by induction that [0;2,...,2,y] = (ax—1Yy + akx—2)/(ary + agx—1). For the basis steps,
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k = 1and 2, take ag = 1 and a_; = 0. Thus y satisfies the equation y — 24 = (ar_1y + ax—2)/(ary +
ar—1) which simplifies to ary? — 24ayy = 2Aak_1 + ax_2. Define B by 24ay_1 + ar_o = Bay. Then
y?> — 24y = Bor (y — A)? = A2 + B. Thus if B is a positive integer, D = B + A2, and we have VD =
y— A = [A;2,...,2,y] with a simple continued fraction expansion of period k + 1. Now using a;_2 =
ar — 2a,_1, the equation above becomes 2(A — 1)ay—1 = (B — 1)ay. This must be an integer divisible
by 2aj, and ay—_1, so let it be 2taj_1ay, where t is a positive integer. Then we have a solution with B =
1+ 2tag_1, A =1+tay, and D = (1 + tay)? + 1 + 2taj_1. This completes the proof.

12.4.19. Start with ag = /Dy, + 3¥ + 1 (this will have the same period since it differs from /Dy, by an integer)
and use induction. Apply the continued fraction algorithm to show a3; = /Dy, +3F — 2381 4 2/(2.
3F1),i=1,2,...,k, but aspis; = VD +3* —2/(2-3"),i=1,2,...,k—1,and agy = /Dy, +3* +1 =
ayp. Since «; # g for i < 6k we see that the period is 6k.

12.5. Factoring Using Continued Fractions

12.5.1. We have 192 — 22 = (19 — 2)(19 + 2) = 0 (mod 119). Then (19 — 2,119) = (17,119) = 17 and (19 +
2,119) = (21,119) = 7 are factors of 119.

12.5.2. In expanding the continued fraction of v/1537, we have P, = 0,Q¢ = 1,a0 = 39, P = 39,Q; =
16,&1 = 4, PQ = 25,@2 = 57, ag = 1,P3 = 32,@3 = 9,&3 = 7, and P4 = 31,@4 = 64,(14 = 1. Since Q4 =
82 is a square and has even index, we examine the congruence p3 = Q4 (mod 1537). The third conver-
gent of /1537 is 1222, so p; = 1529 and the congruence is 1529? = 8% (mod 1537). This implies that
(15292 — 8%) = (1529 — 8)(1529 + 8) = 0 (mod 1537), which does not lead to a factor, since 1529 + 8 =
1537, so we continue: Ps = 33,Q5 = 7,a5 = 10, Ps = 37,Q¢ = 24,06 = 3, P, = 35,Q7 = 13,a7 =5, Py =
30,Qs = 49,as = 7. Since Q3 = 7? is a square and has even index, we examine the congruencep? =
Qs (mod 1537). Since p; = 309089, we have 309089% = 7% (mod 1537), which implies that (309089% —
72) = (309089 — 7)(309089 + 7) = 0 (mod 1537). Then we find that (309089 — 7, 1537) = 309082, 1537) =
29 and (309089 + 7,1537) = (309096, 1537) = 53 are factors of 1537.

12.5.3. Using a computer to generate lists [k, oy, ak, Py, Qk, vVQk], we have [1,1/13290059, 3645,0, 1, 1],
(3645 + 1/13290059) /4034, 1, 3645, 4034, v/4034], [3, (389 + v/13290059) /3257, 1, 389, 3257, /3257,

2, )

[4, (2868 + +/13290059) /1555, 4, 2868, 1555, /1555,  [5, (3352 + v/13290059) /1321, 5, 3352, 1321, v/1321],
[6, (3253 + +/13290059) /2050, 3, 3253, 2050, 5 /82],  [7, (2897 + /13290059) /2389, 2, 2897, 2389, /2389],
8, (1881 + +/13290059) /4082, 1, 1881, 4082, v/4082],  [9, (2201 + +/13290059) /2069, 2, 2201, 2069, \/2069],
[10, (1937 + /13290059) /4610, 1, 1937, 4610, /4610, [11, (2673 + v/13290059) /1333, 4, 2673, 1333, /1333],
[12, (2659 + +/13290059) /4666, 1, 2659, 4666, v/4666], [13, (2007 + v/13290059) /1985, 2, 2007, 1985, v/1985),
14, (1963 + +/13290059) /4754, 1,1963, 4754, v/4754), [15, (2791 + v/13290059) /1157, 5, 2791, 1157, /1157],
[16, (2994 + +/13290059) /3739, 1, 2994, 3739, v/3739], [17, (745 + v/13290059) /3406, 1, 745, 3406, v/3406],
[18, (2661 + +/13290059)/1823, 3, 2661, 1823, /1823, [19, (2808 + /13290059) /2965, 2, 2808, 2965, \/2965),
[20, (3122 + +/13290059) /1195, 5, 3122, 1195, v/1195), [21, (2853 + v/13290059) /4310, 1, 2853, 4310, v/4310],
22, (1457 4 +/13290059) /2591, 1, 1457, 2591, v/2591], [23, (1134 + /13200059) /4633, 1, 1134, 4633, \/4633],
24, (3499 + /13290059) /226, 31, 3499, 226, v/226],  [25, (3507 + v/13290059) /4385, 1, 3507, 4385, /4385),
[26, (878 + +/13290059) /2855, 1, 878, 2855, v/2855], 27, (1977 + v/13290059) /3286, 1, 1977, 3286, v/3286],
[28, (1309 + +/13290059) /3523, 1, 1309, 3523, v/3523], [29, (2214 + +/13290059) /2381, 2, 2214, 2381, \/2381],
(30, (2548 + +/13290059) /2855, 2, 2548, 2855, v/2855], [31, (3162 + v/13290059) /1153, 5, 3162, 1153, v/1153),
132, (2603 + /13200059) /5630, 1, 2603, 5650, 5 226],  [33, (3047 -+ v/13290059),/709., 9, 3047, 709, /709,
34, (3334 + /13290059) /3067, 2, 3334, 3067, v/3067], [35, (2800 + +/13290059) /1777, 3,2800, 1777, \/1777),
(36, (2531 + +/13290059) /3874, 1, 2531, 3874, v/3874], [37, (1343 + v/13290059) /2965, 1, 1343, 2965, v/2965),
[38, (1622 + +/13290059) /3595, 1, 1622, 3595, v/3595), [39, (1973 + /13290059) /2614, 2, 1973, 2614, \/2614],
[40, (3255 + +/13290059) /1031, 6, 3255, 1031, v/1031), [41, (2931 + /13290059) /4558, 1, 2931, 4558, \/4558],
[42, (1627 + +/13290059) /2335, 2, 1627, 2335, /2335, [43, (3043 + /13290059) /1726, 3, 3043, 1726, \/1726],
44, (2135 + +/13290059) /5059, 1, 2135, 5059, v/5059],  [45, (2924 + /13290059) /937, 7, 2924, 937, /937],
[46, (3635 + +/13290059) /82, 88, 3635, 82, v/32], [47, (3581 + /13290059) /5689, 1, 3581, 5689, v/5689),
(48, (2108 + v/T3290059) /1555, 3, 2108, 1555, v/T555], [49, (2557 + v/13290059) /4342, 1, 2557, 4342, \/A349],

STUDENTS-HUB.com Uploaded By: anonymous



12.5. FACTORING USING CONTINUED FRACTIONS 201

[50, (1785 4+ v/13290059) /2327, 2, 1785, 2327, /2327, [51, (2869 + v/13290059) /2174, 2, 2869, 2174, /2174],
[52, (1479 4+ +/13290059) /5107, 1, 1479, 5107, /5107], [63, (3628 4+ v/13290059) /25, 290, 3628, 25, 5].
So we have Q53 = 52. Using a computer again, we find that psy = 3527010868224812925002106 =
2467124 (mod 13290059). Then (13290059, 2467124 — 5) = 4261 and (13290059, 2467124 + 5) = 3119, so
we have 13290059 = 3119 - 4261.

12.5.4. First, 22 = H;le? = H§:1 ((71)%’ H;’L:lpzw) = (—1)corteoatteor [T ka1+6k2+"'+€kr =

(—=1)%0 [Ti, pa* = y? (mod n). Once x1,z, . . ., , have been found satisfying the r congruences and
the m equations, we can form a solution to 22 = y? (mod n) and finish the factorization process as in

the continued fraction method.

12.5.5. We have 172 = 289 = 3 (mod 143) and 192 = 361 = 3 - 52 (mod 143). Combining these, we have
(17-19)% = 3252 (mod 143). Hence, 3232 = 15? (mod 143). It follows that 3232 — 152 = (323 — 15)(323 +
15) = 0 (mod 143). This produces the two factors (323 — 15, 143) = (308,143) = 11 and (323 + 15, 143) =
(338,143) = 13 of 143.

12.5.6. We have a notational problem, since p; is used for two things. Let p; etc. stand for the primes. Let

7

7y, stand for the “p;’s” in the continued fraction development, as in Theorem 12.22. Then from Theo-

rem 12.22, we have 77 = (—1)*"1Qy41 (mod n), for all k. Then 7y, 1 = (—1)k =2 H p?” (mod n). Then

Jj=1

t 2 ¢ r t v t
i — ki j — 1 = k’i" :
<Hﬂ-ki—1> sz%i_l EH (—1)k: 2Hpj T = (~1)Zi= ki 2l_[]:[pj 7 (mod n) SmceZki =2
i=1 i=1 i=1 j=1 i=1j=1 i=1
t 7 T - T
is even we have the last term congruent to H H p?"'j = H iji:l Y= H p; (mod n) where w is even.
i=1j=1 j=1 j=1

Therefore, this last term is a perfect square, say m?, and the very first expression is also a square, say P
Then we have P? = m? (mod n) and now we may proceed as in Example 12.17.

12.5.7. We use a computer to find pg = 3465,p11 = 1211442, py; = 6764708, ps3 = 6363593, and pyy =
8464787 (mod 12007001). The product of these reduces to P = 9815310 (mod 12007001). Then @ =
VQ1Q12Q28Q31Qu0 = 1247455. Then the factors of 12007001 are (12007001, P — Q) = 3001 and
(12007001, P + Q) = 4001.

12.5.8. We compute @); until we have a subset which has only prime factors of 2,3, and 5, each occurring an
even number of times, in total. We find Q4 = 720 = 24325 and Q¢ = 405 = 3*5. Further p; = 750943 and
p1o = 3143053051. Then, following Exercise 6, (7509432 - 31430530512 = 720 - 405 = 5402 (mod 197209).
Then (750943 - 3143053051 — 540, 197209) = 199, and (750943 - 3143053051 + 540, 197209) = 991, which
gives us 197209 = 199 - 991.
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CHAPTER 13

Some Nonlinear Diophantine Equations

13.1. Pythagorean Triples

13.1.1. a. Since z = m? + n? < 40, we have m < 6. The triples we seek are those in Table 13.1 with z < 40:
(34,5), (5,12,13), (15,8,17), (7,24,25), (21,20,29), and (35,12,37).

b. These would be triples which are multiples of the primitive triples. In addition to those in part (a),
wehave (6,8,10), (9,12,15), (12,16,20), (15,20,25), (18,24,30), (21,28,35), (24,32,40), (10,24,26), (15,36,39),
and (30,16,34).

13.1.2. If3t{zory, thenz? = y? =1 (mod 3). But then 22 = 1 + 1 = 2 (mod 3) which is impossible.
13.1.3. By Lemma 13.1, 5 divides at most one of z,y, and 2. If 5 { z or y, then 2> = 41 (mod 5) and y?

+1 (mod 5). Then, 22 = 0,2, or —2 (mod 5). But £2 is not a quadratic residue modulo 5, so 22
0 (mod 5), whence 5 | z.

13.1.4. From Theorem 13.1, one of m and n must be even, so 2 | mn. Therefore, 4 | 2mn = y.

13.1.5. Let k be an integer > 3. If k = 2n + 1, let m = n + 1. Then m and n have opposite parity, m > n and
m? —n? = 2n + 1 = k, so m and n define the desired triple. If k has an odd divisor d > 1, then use the

construction above for d and multiply the result by k/d. If k has no odd divisors, then k = 2/ for some

integer j > 1. Let m = 2/~ and n = 1. Then k = 2mn, m > n, and m and n have opposite parity, so m
and n define the desired triple.

13.1.6. Proceed by induction. The basis step is 7 = yf = 3% + 42 = 52 = 2}, Assume that z,,, Y, 2, is a
Pythagorean triple. Then
Tpp1 FYner = (Brn 422, +1)° 4 (32, + 22, + 2)°
= 1822 + 822 + 5+ 242y, + 18z, + 122,
= (1622 + 922 + 24w,y + 162, + 122, + 4)
+(222 — 2% + 22, + 1)
= Zngpr (@5 + 2 + (27— 20))
Zogr (0 + 1) =yl
= Zi+1
which completes the induction step.

13.1.7. Substituting y = =+ 1 into the Pythagorean equation gives us 22?4+ 2z +1 = z?, which is equivalent to
m? — 222 = —1 where m = 2z + 1. Dividing by 2? yields m? /2% —2 = —1/22. Note that m/z > 1,1/2% =
2-m?/2? = (V2+m/2)(vV2 —m/z) < 2(vV2 — m/z). So by Theorem 12.18, m /> must be a convergent
of the continued fraction expansion of /2. Further, by the proof of Theorem 12.13, it must be one of the
even-subscripted convergents. Therefore each solution is given by the recurrence my+1 = 3m,, + 2z,,
Zn+41 = 2my+3m,,. (See, e.g., Theorem 13.11.) Substituting x back in yields the recurrences of Exercise 6.

13.1.8. 2y? = 2? — 22 = (2 — x)(2 + z). x and y have the same parity, so (z — x)/2 and (z + x)/2 are integers.
It suffices to assume (x, z) = 1. Then either ((z — z)/2,2 + 2) = 1, and then y? = ((z — 2)/2)(z + z) =
m?n?, and solving (z — x)/2 = m? and z + = n? for z and y gives * = (m? — 2n?)/2,y = mn,z =

203
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204 13. SOME NONLINEAR DIOPHANTINE EQUATIONS
(m? +2n?)/2. Or ((2 + x)/2, 2 — x) = 1 which gives z = (2m? — n?)/2,y = mn, z = (2m? + n?)/2.
13.1.9. See Exercise 15 with p = 3.

13.1.10. All primitive solutions are given as follows: Let r, s, ¢ be arbitrary integers, with (7, s,t) = 1. Then let
xo = 2rt,yg = 2st, 20 =t — %2 — 52, and wy = t2 + r? + s%. Let d = (20, Yo, 20, wo). Then & = x¢/d,y =
yo/d, z = zp/d, w = wp/d is a primitive solution.

13.1.11. We must find all primitive triples containing a divisor of 12: 2, 3, 4, 6, or 12. Such a triple must have
z=m?—n%y=2mn,z=m?+n? and (m,n) = 1. Soonly yiseven. If y = 2mn = 2, thenm =n =1,
and z = 0, which is not allowed. If y = 2mn =4, thenm =2, andn=1,soxr =3 and 2z =5. If y =6 =
2mn then m = 3,n = 1, which are not of opposite parity. If y = 12 = 2mn, then either m =6,n =1,z =
35,and z = 37, orm = 3,n = 2,2 = 5, and z = 13. Now z # 3 since 9 is not the sum of two squares.
Ifz =3=m?-n?=(m+n)(m—n), thenm =2,n =1,y =4, and z = 5. Multiples of these triples
containing 12 are (9,12,15), (35,12,37), (5,12,13), and (12,16,20).

13.1.12. Let m be odd. Then all solutions are given by z = m,y = (22 — 1)/2,2 = (22 + 1)/2.
13.1.13. If m is positive, then all solutions are given by z = 2m,y = m? — 1,z = m? + 1.

13.1.14. Suppose z is odd and has prime factorization z = p{* - - - p?. If x is part a Pythagorean triple, then it
can be factored as @ = def where f is the greatest common divisor of z,y, and z,d = m —n,and e =
m + n, so that de = m? — n? where m and n are given by Theorem 13.1. We need to count the number
of such factorizations. Since (d, ¢) = 1, a prime factor p; of = can only divide one of d and e. Thus, there
are 2a; + 1 ways that the a; factors of p; can be distributed among d, e, and f, namely, either 0,1, 2, ...,
or r of them divide d and the rest divide f or 0,1,2,.. ., or r of them divide e and the rest divide f. This
gives (2a; + 1)(2a2 + 1) -+ (2a, + 1) = 7(x?) ways, except, we can not have f = z, and if d > e then d
and e reverse roles, so we have (7(z?) — 1)/2 different ways. The argument for = even is similar.

13.1.15. Check that if m > /pn then z = (m? — pn?)/2,y = mn, z = (m* + pn?)/2 is a solution. Conversely, if
z,y, z is a primitive solution, then y? = (22 — 22)/p,sop | (z £ z). Take m? = z Fr and n? = (2 £ z) /p.

13.1.16. Rewrite the equation as z2 + y? = (zy/2)?. Then xy/z must be an integer and from Theorem 13.1, we
have z = m? — n% y = 2mn, and zy/z = m? + n?, for some integers m and n. Then z = 2mn(m? —
n?)/(m? +n?), but to ensure that z in an integer, we multiply z, y, and z by (m? 4 n?) and get z = (m? —
n?)(m?+n?) = (m* —n*),y = 2mn(m?+n?), and z = 2mn(m? —n?). This is the form of every solution.

13.1.17. Substituting f,, = fni2 — fot1 and fois = fato + fog1 into (fofots)? + (2fns1 fare)? yields (frqo —

fn+1)2(fn+2+fn+1)2+4fr%+1f721+2 = (f3+2_ r2z+1)2+4f721+1f2+2 = fﬁ+2—2f5+1f5+2+f3+1+4f721+1f721+2 =
22 g+ s 2 (rg + f511)?, which proves the result

13.1.18. Let z, y, and z be the sides of such a triangle. Then (z, y, ) is a Pythagorean triple and there must be
integers (m, n) such that x = m? — n?, y = 2mn and z = m? 4+ n?. Since the triangle is a right triangle
with legs x and y, its area is zy/2. If the area equals the perimeter, we have = + y + z = zy/2. Substi-
tuting the above relations gives us (m? — n?) + 2mn + (m? + n?) = (m? — n?)2mn/2. Simplifying and
dividing through by m gives us 2m + 2n = (m? — n?)n. We factor both sides and divide by m + n to get
2 = (m — n)n, which tells us that n = 1 or 2. If n = 1, then m — n = 2 and so m = 3, which implies that
(x,y,2) = (8,6,10). If n = 2, then m —n = 1 and so m = 3, which implies that (z,y, z) = (5,12, 13) and
these are the only solutions.

13.2. Fermat’s Last Theorem

13.2.1. Assume without loss of generality that z < y. Then 2" + y" = z%2" 2 + y?y" 2 < (22 + y*)y" 2 =

ZZyn72 < 222n72 = ",
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13.2.2. Letn > 3 be an integer and x, y, z be a solution to 2™ + y™ = 2™. If n has an odd prime factor p, say
n = pk, then we have (z*)? + (y*)P = (%), so 2*,y*, 2¥ is a solution to 2P + y? = 2P, a contradiction.
If n has no odd factor, then n is a power of 2. Since n > 2,4 | n, say n = 4k. Now 4 plays the role of p
above to give a solution to z* 4+ y* = 2%, also a contradiction.

13.2.3.a. Ifp|z,y, or z, then certainly p | zyz. If not, then by Fermat’s Little Theorem, zP~! = y?~! = P~ =
1 (mod p). Hence, 1 + 1 = 1 (mod p), which is impossible.

b. Weknow a? = a (mod p) for every integer a. Then z? + y? = 2P (mod p) implies x +y = z (mod p),
sop|lx+y—=z

13.2.4. We have 2% + (y2)? = (22)2. If 4% = 2mn, then m = v?, and n = 2v2. Then 22 = m? — n? = u* —v?,
and u* = m? < m? + n? < 2?2 < 2%, so we have a smaller positive solution. If y> = m? — n?, z = 2mn,

and 22 = m? 4+ n?, then z2y? = m* — n* which is a smaller solution, since m? < z2.

13.2.5. Let z and y be the lengths of the legs and z be the hypotenuse. Then z? + y* = 22. If the area is a
perfect square, we have A = Jay = r%. Then, if = m* — n?, and y = 2mn, we have r? = mn(m? — n?).
All of these factors are relatively prime, so m = a?, n = b2, and m? — n? = ¢?, say. Then, a* — b* = ¢?,
which contradicts Exercise 4.

13.2.6. It suffices to take z and z odd. We have (2%)? + (2y?)? = 22. Then 22 = m? — n? and 2y? = 2mn, so
m =72 and n = s%. Then, 22 = r* — s* which contradicts Exercise 4.

13.2.7. We use the method of infinite descent. Assume there is a nonzero solution with where |z| is mini-
mal. Then (z,y) = 1. Also x and z cannot both be even, because then y would be odd and then 2% =
8 (mod 18), but 8 is not a quadratic residue modulo 16. Therefore x and z are both odd, since 8y* is
even. From here it is easy to check that (z,z) = 1. We may also assume (by negating if necessary) that
z =1 (mod 4) and z = 3 (mod 4). Clearly 2 > |z|. We have 8y* = z? — 22 = (2 — 2)(2% + 2). Since z =
3 (mod 4), we have 2% — 2 = 2 (mod 4), so m = (22 — z) /2 is odd, and n = (22 + z) /4 is an integer. Since
no odd prime can divide both m and n, we have (m,n) =1, m,n > 0 and mn = y*, whence m = r* and
n = st, with (r,s) = 1. So now r* + 2s* = m + 2n = 22. This implies (z,7) = 1, since no odd prime
divides r and x but not s, and r and z are both odd. Also, || > r? > 0. Now consider 2s* = (2% — r%) =
(x —72)(z + r?). Then, s must be even since a difference of squares is not congruent to 2 (mod 4), so s =
2t and 32t* = (x — r?)(z + r?). Recalling z = 1 (mod 4) and r is odd, we have U = (z + r?)/2 is odd
and V = (z — r?)/16 is an integer. Again (U,V) = 1and UV = t*, but we don’t know the sign of z. So
U = +u* and V = £v*, depending on the sign of 2. Now r? = +(u? — 8v%). But since u is odd, the sign
can’t be — (or else 72 = 7 (mod 8).) So the sign is + (hence z is positive), and we have u* — 8v* = r2,
Finally, |v| > 0 because |z +72| > 0. So we haven’t reduced to a trivial case. Then, u* = U < |z +172|/2 <
x, 50 |u| < x, and so |x| was not minimal. This contradiction shows that there are no nontrivial solutions.

13.2.8. For the basis step, note that fo/f1 = 1. Suppose that fr/fr—1 = [1;1,1,..., 1],‘ where there are k — 1
1s in the continued fraction. Then we have fi11/fx = (fx + fe—1)/fe =1+ 1/ 7 “—. Using Exercise 7 of
Section 10.3, we have that fi11/fr = [1;1,1,...,1], where there are k 1s in the continued fraction.

13.2.9. (Solution by John R. Ramsden.) First we mimic the construction of the solutions to the Pythagorean
equation to solve the 2nd-order diophantine equation 2% + 3y? = 22 and find that all solutions are given
by £2°x = m? — 3n?, 2°y = 2mn, 2° = m? + 3n? for relatively prime integers m and n, where (i) = and
y are odd and z is even if and only if e = 1 and m and n are both odd, and (ii) « and z are odd and y is
even if and only if e = 0 and m and n have opposite parity.

Now consider the diophantine equation z* + 3y* = z* modulo 8. If z and y are odd and z is even, we
get a contradiction, so case (i) above doesn’t happen for the 4th-order specialization. Assume we have a
nontrivial solution with z, y and z pairwise relatively prime and z as small as possible. Then as above,
since we must be in case (ii), 22 = +(m? — 3n?), y? = 2mn and 22 = m? + 3n?. If m were even and n odd,

then m? would be divisible by 4 and n* = 1 (mod 4), so that 2> = m?+3n? = 3 (mod 4) a contradiction,
therefore m is odd and n is even. Then if 22 = —(m? — 3n%) = —1 (mod 4), also a contradiction, so we
have 22 = m? — 3n?.
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Now, since (m,n) = 1 and n is even and 3> = 2mn, we have m = U?,n = 2V? and so y = 2UV, for
some integers U and V. Then z? = U% —12V* and 2? = U* + 12V*, both of which are diophantine equa-
tions which can be considered as 2nd-order of the type solved above. If we do, we find integers (p, ¢) =
(r,s) = 1, with p and ¢ of opposite parity and r and s of opposite parity such that U? = p? — 3¢*> =
r? 4+ 3s? and V2 = pq = rs. This last equation shows that p = P?, ¢ = Q%,r = R?, and s = S? for some
integers P, @, R and S. Since (p,q) = (r,s) = 1 and pg = rs, there must be integers (a,d) = (b,c) =1
such that p = ab, ¢ = cd, r = ac, s = bd (this is the so-called “Lucas Lemma”.) Then since p = P? = ab,
we let a = fA%, b = fB? where f is squarefree. Then since r = R? = ac = fA%c, we see that c = fC?
for some C. But since (b,c) = 1, we have that f = 1,50 V2 = pq = rsand (4,D) = (B,C) = 1. So we
have p = A%2B2%, ¢ = C?D?,r = A2C?, and s = B?D?2. When we substitute these in for U? in the two
solutions above we get (A* —3D*)B* = (4% +3D*)C*. Since (B, C) = 1 we must have, for some integer
E, A* = 3D* = EC* and A* + 3D* = EB*. Now, since U? = r? + 3s?, it’s easy to check that (r,6) =
1 and hence (A,6) = 1. If we add and subtract the last two equations we get 24* = E(B* + C*) and
6D*(B* — C*). Since (A, 6) = 1, we see that F divides 2 and 6 and since it’s positive, we conclude E =
Lor 2. If E = 1, then the second equation A* + 3D* = EB* is an equation of the same type but with
smaller positive value for z, completing the descent argument. If E = 2, then we add the equations and
divide by 2 to get A* = B*+(C* and note that Fermat showed this equations has no nontrivial solutions.

13.2.10. We add 1 to both sides of the equation to get y*> + 1 = 2 + 8 Reducing modulo 4 yields y* + 1 = 23
(mod 4). Since y*> = 0 or 1 (mod 4), then z*> = 1 or 2 (mod 4), but the only solution to these last con-
gruences is z = 1 (mod 4). Now 23 + 8 = (z + 2)(22 + 22 + 4) and 22 + 22 + 4 = 3 (mod 4). Therefore
x? + 2z + 4 is divisible by a prime p = 3 (mod 4), since a product of primes congruent to 1 modulo 4 is
again congruent to 1 modulo 4. But then p | y? + 1, which implies that —1 is a quadratic residue modulo
p, which is not possible by Theorem 11.5. Therefore there are no solutions to the equation.

13.2.11. If z were even, the y* = 2% + 23 = 3 (mod 4), which is impossible, so z must be odd, making y even,
say y = 2v. If 2 = 3 (mod 4), then y?> = 3% + 23 = 2 (mod 4) which is also impossible, so z = 1 (mod 4).
Add 4 to both sides of the equation to get y? + 4 = 4v? + 4 = 23 + 27 = (z + 3)(2? — 3z + 9). Then 2z =
22 -32x+9=1-3+9=3 (mod 4),soaprime p = 3 (mod 4) must divide 2. Then 4v?> +4 =0 (mod p)
orv? = —1 (mod p). But this shows that a prime congruent to 3 modulo 4 has —1 as a quadratic residue,
which contradicts Theorem 11.5. Therefore, the equation has no solutions.

13.2.12. If z is even, then modulo 8 the equation becomes y? = 5 (mod 8) which is impossible, since 5 is not a
quadratic residue modulo 8. If z = 1 (mod 4) then y? = 2 (mod 4), which is also impossible, since 2 is
not a quadratic residue modulo 4. Therefore x = 3 or 7 (mod 8). Suppose z = 3 (mod 8). Subtract 72 =
2 - 62 from both sides of the equation to gety — 2 - 62 = 23 — 27 = (z — 3)(2? + 3z + 9). First note that
if 3 | x, then 3 | y so that z = 3a and y = 3b for some integers a and b. Then the equation becomes b? =
3a® + 5, which implies b = 2 (mod 3), but 2 is not a quadratic residue modulo 3. Therefore 3 { z. Now
note that 2% + 3z +9 = 3 (mod 8). The product of integers congruent to 1 or 7 modulo 8 is again congru-
ent to 1 or 7 modulo 8. Therefore, a prime p congruent to 3 or 5 modulo 8 must divide 2 + 3z + 9. Then
the equation becomes y? = 2 - 6% (mod p) (since x — 3 # 0) which implies that 2 is a quadratic residue
modulo p = £3 (mod 8), which is impossible. Therefore z # 3 (mod 8). Now suppose z = 7 (mod 8).
Subtract 18 = 2 - 3% from both sides of the equation to gety = 2 - 3% = 2% + 27 = (z + 3)(2? — 3z + 9).
Then 2% — 3z +9 =5 (mod 8) and, as above, must be divisible by a prime p congruent to 3 or 5 modulo
8. Then we have y? = 2 - 3 which implies that 2 is a quadratic residue modulo p = £3 (mod 8), which
is impossible. Therefore, there are no solutions to the diophantine equation.

13.2.13. If there were two perfect squares in a Pythagorean triple, then we would have a solution of either the
equation in Theorem 13.3 or the equation in Exercise 4, both of which have no nontrivial solutions.

13.2.14. We compute 2% + y* = (3k% — 1)2 + (k(k* —3))2 = k® + 3k* + 3k> + 1 = (k* + 1)3 = 23.
13.2.15. Assume n { xyz, and (z,y,2) = 1. Now (—z)" = y" + 2" = (y + 2)(y" ! —y" 22 +--- + 2" 1), and
these factors are relatively prime, so they are nth powers, say y+z = a", and y" ' —y" 224 -+ 2771 =

a”, whence r = ac. Similarly, z + 2 = 0", and (2" ! — 2" 2z 4+ .- 42" ) = 8", —y = b8, +y =
c",and (z"1 — 2" 2y + .-+ y" 1) = 4", and —z = ¢y. Since 2" + y™ + 2" = 0 (mod p), we have p |
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zyz,say p | . Then 4" = (2" 1 — 2" 2y + .- +y"71) = y"~! (mod p). Also 2z = b" + " + (—a)"
0 (mod p), so by the condition on p, we have p | abe. If p | b then y = —bF = 0 (mod p), but then p |
and y, a contradiction. Similarly, p cannot divide c. Therefore, p | a, so y = —z (mod p), and so a™
(Y=t —yn 2z 4+ 4+ 2" = ny" ! = ny™ (mod p). Let g be the inverse of v (mod p), then (ag)™
n (mod p), which contradicts the condition that there is no solution to w™ = n (mod p).

M s

13.2.16. Let k and 2 be any positive integers. Then substituting the suggested expressions gives us w® + 23 +
B = T20K1223 4+ (1—9k%)° 28 + 27k (1 — 3k3)° 23 = 720K1223 4 23 — 27k323 4 243k623 — T20K92° +
27k3 23 — 243Kk023 + 729k°%23 — 729 k1223 = 23, as desired.

13.2.17. Note that 33 + 4% + 53 = 27 + 64 + 125 = 216 = 6°.

13.2.18. Let m and n be positive integers. Substituting the suggested expressions yields a large, 28th degree
polynomial in m and n on each side of the equation. Inspection reveals both polynomials to be the same.

13.2.19. If m > 3 then modulo 8 we have 3" = —1 (mod 8) which is impossible, so m = 1 or 2. If m = 1, then
3" =2 — 1 = 1 which implies that n = 0 which is not a positive integer, so we have no solutions in this
case. If m = 2, then 3" = 22 — 1 = 3, which implies that n = 1, and this is the only solution.

13.2.20. If m > 3, we have 3" — 1 = 0 (mod 8), which implies that n = 2k for some integer k. Then 3% — 1 =
(3F —1)(3% +1) = 2™, so that 3" — 1 and 3% + 1 must be powers of 2 which differ by 2. Therefore 3* +1 =
4and 3 —1=2andhencek =1,n = 2and m = 3. If m = 2, then 3" = 5 has no solution. If m = 1, then
3" =2+ 1,and so n = 1. So the only solutions are m = 3,n =2and m =1 =n.

13.2.21. a. Substituting the expressions into the left-hand side of the equation yields a? + b? + (3ab — ¢)? =
a? + b? + 9a?b? — 6abe + ¢ = (a® + b% + %) + 9a%b? — 6abc. Since (a, b, ) is a solution to Markoff’s
equation, we substitute a? + b* 4 ¢? = 3abc to get the last expression equal to 3abc + 9a%b* — 6abc =
9a2b? — 3abc = 3ab(3ab — c), which is the right-hand side of Markoff’s equation evaluated at these
expressions.

b. Case 1: If z = y = z, then Markoff’s equations becomes 32? = 3zyz so that 1 = yz. Theny =z =1
and then z = 1 so the only solution in this case is (1,1, 1).

Case 2: If x = y # z, then 222 + 22 = 32?2 which implies that 22|2? or |z, say dz = z. Then
222 + d?2? = 3da3 or 2+ d? = 3dx or 2 = d(3x — d). So d|2, but since x # 2z, we must have d = 2.
Then 3z — d = 1 so that z = 1 = y and z = 2, so the only solution in this case is (1, 1, 2).

Case 3: Assume z < y < z. From 2? — 3zyz + 22 4+ y* + 2? we apply the quadratic formula to get
2z = 3zy + 1/922y? — 4(22 + y2). Note that 8z2y? — 42 — 4y? = 422(y? — 1) + 4y*(2® — 1) > 0 s0
in the “minus” case of the quadratic formula, we have 2z < 3zy — \/922y? — 822y2 = 32y —zy =
2zy, or z < xy. But 3zyz = 22 + y? + 22 < 322 so that zy < z, a contradiction, therefore we must
have the “plus” case in the quadratic formula and 2z = 3zy + 1/922y2 — 4(22 + y2) > 3ay, so that
z > 3xy — z. This last expression is the formula for the generation of z in part (a). Therefore, by
successive use of the formula in part (a), we will reduce the value of  + y + z until it is one of the
solutions in Case 1 or Case 2.

13.2.22. Assume z™ + 1 = y", with z,y, m, m positive integers and m,n > 2. Note that rad(z™ -1 - y") =
rad(zy) < xy < max(22,y?). Then by the abc conjecture, we have z™ < y" = max(z",1,y") <
K (e) max(x?, y?)1+¢. Therefore at least one of the inequalities 2™ < K (e)x?(1T9) and y™ < K(e)y?(1+)
must hold. Suppose the first one holds. Assume m > 3 and sete = 1/4. Thenm —2(1 +¢) =m —5/2 >
m/6. The inequality becomes 2™/6 < x™~2(1+9) < K(1/4), so that 2™ < K(1/4)°. Therefore there can
be only finitely many values of 2™ and hence of 4™ = 2™ + 1. Similarly, if the other inequality holds,
there are only finitely many solutions with n > 3. Therefore, we have shown that, assuming the abc con-
jecture, there can be only finitely many solutions to the Catalan equation with m,n > 3.
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13.2.23. Let € > 0 be given then the abc Conjecture gives us max(|al, b, |c|) < K(e)rad(abc)'T< for integers
(a,b) =land a+b = c. Set M = log K (€)/log 2+ (34 3¢). Suppose x, ¥, 2, a, b, c are positive integers with
(z,y) = land 2% +y" = ¢*, so that we have a solution to Beal’s equation. Assume min(a, b, ¢) > M. From
the abc Conjecture, and since rad(z%y’y°) = rad(zyz), we have max(z?,y®, y¢) < K(e)rad(zyz)'*e <
(zyz)'*e. If max(z,y,z) = z, then we would have 2% < K(e)z?(1+9). Taking log’s of both sides yields
a <logK(e)/logz + (3 + 3¢) < logK(e¢)/log2 + (3 + 3¢) = M, a contradiction. Similarly if the maxi-
mum is y or z. Therefore, if the abc Conjecture is true, there are no solutions to the Beal conjecture for
sufficiently large exponents.

13.2.24. a. Suppose d is a congruent number. Then there is a right triangle with rational legs «, b and rational
hypotenuse ¢, which has area d. Since the triangle is a right triangle, we have, by the Pythagorean
theorem, that a® + b* = ¢®. And since a and b are the legs of the triangle, its area is ab/2 = d. Hence
2d = ab as desired. Conversely, suppose there are rational integers a, b and ¢ such that a? + b* = ¢?
and ab = 2d. Then by the Pythagorean theorem, a, b, c are the lengths of the sides of a right triangle,
with ¢ as the hypotenuse. Its area is ab/2 = d, and so d is a congruent number.

b. By part (a), we note that (3/2)% + (20/3)% = (41/6)? and that (3/2)(20/3) = 10 =2 -5, and so 5 is a
congruent number. Note that 3> + 4> = 52 and 3 - 4 = 2 - 6, and so 6 is a congruent number. Note
that (35/12)? + (24/5)2 = (337/60)? and (35/12)(24/5) = 2-7, and so 7 is a congruent number. Note
that 6% 4+ 82 = 10? and 6 - 8 = 2 - 24, and so 24 is a congruent number. Note that 5% + 122 = 132 and
5-12 =230 and so 30 is a congruent number.

13.2.25. a. If 1 is a congruent number, then there exist rational numbers r, s and ¢ such that r?2 + s% = t? and
rs/2 =1. Letr = a/d, s = b/d and t = ¢/d, where q, b, ¢, and d are integers and d is the least com-
mon denominator of the rational numbers r, s and ¢. Then a? + b> = (rd)? + (sd)? = d?*t*> = ¢?, so
(a, b, c) is a Pythagorean triple and represents a right triangle whose area is ab/2 = (rd)(sd)/2 =
(d?)(rs/2) = d?, a perfect square. Conversely, if there is a right triangle whose area is a perfect
square, d?, then it is represented by a Pythagorean triple (a,b,c), and a® + b* = ¢*. We can di-
vide through by d? to get (a/d)? + (b/d)? = (¢/d)? and so this represents a right triangle with sides
(a/d,b/d,c/d) and area 1/2(a/d)(b/d) = (ab/2)(1/d?) = d*/d* = 1.

b. Suppose 1is a congruent number. Then by part (a), there exist integers a, b, c and d, such that a? +
b* = ¢? and ab/2 = d?. If we add and subtract 4 times the second equation from the first we get
a?+2ab+b* = (a+b)* = ¢® + (2d)? and a* — 2ab + b* = (a — b)? = ¢* — (2d)*. Since the right hand
sides of both equations are squares, then so is their product, and we have (¢ + (2d)?)(c? — (2d)?) =
c* — (2d)* = (a + b)?*(a — b)?, but this is a solution to z* — y* = 22, which contradicts Exercise 4.
Therefore 1 is not a congruent number.

13.2.26.a. If d = 1 or 2, then d/a = 1, so the equations in the preamble become 2?2 + 2ay? + 822 = 1 and
22 + 2ay® + 322% = 1. If either y or z were nonzero, then the left hand sides of both of these equa-
tions would be greater than 1. Therefore, y = z = 0 and we have 2 = 1 in both equations. So the
only solutions to both equations are (+1,0,0) and we have n = m = 2.

b. If d = 3 or 10, then d/a = 3 or 5, which forces z = 0 in both equations. If d = 3, both equations
reduce to 2? + 2y? = 3, which has solutions (+1, £1,0) and so n = m = 4. If d = 10, both equations
reduce to 22 + 4y? = 5 which has solutions (+1,41,0) and son = m = 4.

c. Ifd =11, the first equation becomes 2% + 2y* + 822 = 11, s0 |z| < 2. If z = 0, we have 22 + 2y* = 11,
which has solutions (43, £1,0), which is 4 solutions. If z = 41, we have 22 + 2y? = 3, which has
solutions (£1,+1, £1) which gives us 8 more solutions for a total of n = 12. The second equation
becomes z? + 2y + 322 = 11, which forces z = 0, and we have 22 + 2y? = 11, which has solutions
(£3,+1,0) for a total of m = 4 solutions.

d. If d = 34, the first equation becomes z? + 4y* + 822 = 17,50 |2| < 2. If 2 = 1, we have 2% + 4y? =

9 which gives us the 4 solutions (£3,0, £1). If = = 0, we have z? + 4y* = 17, which gives us the 4
solutions (£1, +2, 0) for a total of n = 8 solutions. The second equation becomes z? + 4y* + 3222 =
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17, which forces z = 0 and we have 2% + 4y? = 17, giving us the m = 4 solutions (£1, £2).

e. If d = 5o0r 7 (mod 8) both equations reduce to 2% + 2y?> = 5 or 7 (mod 8). If y is even, this im-
plies that 5 or 7 is a quadratic residue modulo 8, which is a contradiction. If y is odd, then 22 =2
(mod 8) and so 22 = 3 or 5 (mod 8), which is also a contradiction. Therefore n = m = 0. If d = 6
(mod 8), both equations reduce to 2 + 4y? = 3 or 7 (mod 8). If y is even, this implies that 3 or 7 is
a quadratic residue modulo 8, which is a contradiction. If y is odd then 22 = 7 or 3 (mod 8), also a
contradiction. Therefore n = m = 0.

f. Ifd =1 or 2, part (a) shows that 2m = 4 # 2 = n, so 1 and 2 are not congruent numbers by Tun-
nell’s theorem. If d = 3 or 10, part (b) shows that 2m = 8 # 4 = n, so 3 and 10 are not congruent

numbers. If d = 11, then part (c) shows that 2m = 8 # 12 = n, so 11 is not a congruent number.

g. One solution is (24,17/6,145/6). Another is (15/2,136/15, 353/30).

13.3. Sums of Squares
13.3.1.a. We compute 377 =13-29 = (32 +22)(52 +22) = (3-5+2-2)2+ (3-2—2-5)2 = 192 + 4%

b. We compute 650 = 13-50 = (3% +22)(72 +12)=(3-7+2-1)2 +(3-1-2-7)2 =232 + 112
c. We compute 1450 =29 -50 = (52 +22)(7? +12) = (5-7+2- 1)+ (5-1—2-7)2 =37* + 92
d. We compute 18850 = 377 - 50 = (192 + 42)(7? +1%) = (19-7+4-1)* + (19-1 — 4-7)? = 137% + 9%,

13.3.2. The integers in parts a., g., and h. all have primes = 3 (mod 4) appearing to an odd power in their
factorizations, and therefore can not be written as the sum of two squares.

13.3.3.a. We compute 34 = 52 + 3%
b. . We compute 90 = 3210 = 32(3%2 + 1) = 9 + 32
c.  We compute 100 = 10% + 0%
d. We compute 490 = 7210 = 72(32 + 1) = 212 + 72.

e. We compute 21658 = 72-2-13-17 = 72(12 + 13)(32 + 22)(42 + 1%) = 72(12 + 13)((3- 4+ 2- 1)? +
(3:1-2-4)%) = 72(12+1%) (142 +5%) = 7*((1-14+1-5)*+(1-5—1-14)?) = 73(19*+9%) = 1332+ 63

f. We compute 324608 = 210 - 317 = 32%(142 + 112) = 4482 + 3522,

13.3.4. A square mustbe =1 or 0 (mod 4), so 2% — y*> = £1 or 0 (mod 4). Conversely, let n = 4™k, with 4 { k.
Thenn = 4™ ((k +1)/2)° — 4™ ((k — 1)/2)*, which is the sum of two squares if m > 1 or if k is odd.

13.3.5.a. Wehave 3 =12 + 12 + 12,
b. Wehave 90 = 82 + 5% + 12.
c. Wehave 11 =32 + 12 +12.
d. Wehave 18 = 32 + 32 + 02,
e. There are no solutions since 23 = 7 (mod 8). See Exercise 6.

f. There are no solutions since 28 = 4 - 7. See Exercise 7.
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13.3.6. Since 22 = 0,1, or 4 (mod 8), we have 22 + y? + 22 = 0,1,2,3,4,5, or 6 (mod 8). So there are no solu-
tions to 22 + y? + 22 = 7 (mod 8).

13.3.7. Letn = 2% + 4% + 22 = 4™(8k + 7). If m = 0, see Exercise 6. If m > 1, then n is even, so 0 or 2 of
x,y, z are odd. If 2 are odd, 22 + y? + 22 = 2 or 6 (mod 8), but then 4 { n, a contradiction, so all of z,y, 2
are even. Then 4™~ (8k + 7) = (%)? + (%)% + (%)? is the sum of 3 squares. Repeat until . = 0 and use
Exercise 6 to get a contradiction.

13.3.8. For a counterexample, we have 4 = 22 + 0% + 0%, and 3 = 12 + 12 + 1%, but 3 + 4 = 7, which is not the
sum of 3 squares.

13.3.9.a. Wecompute 105 =7-15= (22 +12+12+1?)(32+22 +12+1%) = (2-34+1-2+1-1+1-1)2 +(2-
2-1-341-1-1-1)2+(2:1-1-1-1-3+1-2)>4+(2-1+1-1-1-2-1-3)2 = 10> + 12 + 0> 4+ 22.

b. Wecompute 510 = 15-34 = (32 +22 4+ 12+ 12)(42 +42 +12+1%) = (3-4+2-4+1-1+1-1)*+(3-
4-24+1-1-1-1)2+(3-1-2-1-1-4+1-4)2+(3-14+1-2—1-4—-1-4)2 =222 + 42 + 12 4+ 32,

c. Wecompute238=7-34=(224+12+124+1?)(42+4>+12°+1%)=(2-4+1-44+1-1+1-1)> 4 (2-
4—1-4+1-1-1-1)?4+(2-1-1-1-1-441-4)?+(2-1+1-1—-1-4-1-4)2 = 142 + 42 + 12 + 52,

d. We compute 3570 = 15-238 = (32 +22+124+12)(142 +42 + 12 +5%) = (3-14+2-4+1-1+1-5)2 +
(3:4—-2-14+1-5-1-1)2+(3-1-5-2—1-1441-4)>+(3-5+2-1-1-4—1-14)2 = 562 + 122 + 172 + 1.

13.3.10. 2. Wehave 6 = 22 + 12 412 + 02.
b. Wehave 12 =22 +22 +22 402 =32+ 12 + 12 + 12
c. Wehave 21 =42 422 +12 + 02,
d. Wehave 89 = 92 + 22 + 22 4 02,
e. Wehave 99 =92 + 4% + 12 + 1%,

f. Wehave555=15-37= (32 +22 +124+13)(62+12+02+0>) = (3-6+2-1+1-0+1-0)2+(3-1—
2:64+1-0-1-024+(3-0-2-0-1-6+1-1)24+(3-0+1-0—1-1—1-6)2=20%2+92+ 5%+ 72

13.3.11. Letm = n—169. Then m is the sum of four squares: m = x?+y?+ 22+ w?. If, say, z, y, z are 0, thenn =
w? 4169 = w?+102+82+22+12. If, say, z,y are 0, then n = 22 +w? +169 = 22 +w?+122+42+32. If, say,
xis 0, thenn = y? + 22 +w? +169 = y? + 22 +w? + 122 + 52, If none are 0, then n = 2% + 5% + 22 + w? + 132,

13.3.12. From Exercise 11, we need only check n < 169. Note that 50 = 72+ 12 = 52442+ 3% = 42+ 42+ 32+ 32,
and 18 =32+ 3% =42+ 12+ 1% = 32+ 22 + 22 + 12, So if n — 50 or n — 18 is the sum of 1,2, or 3 squares,
then 7 is the sum of 5 squares. So we have eliminated the integers with n — 50 or n — 18 = 4™(8k + 7)
(see Exercise 7). This leaves only the integers 1, 2, ...,18, 25, 33, 41, 26, 49, 57, 65, 73, 78, 81, 89, 97, 105,
110, 113,121, 129, 137, 142, 145, 153, 161, 169, which can be checked separately.

13.3.13. If k is odd, then 2 is not the sum of four positive squares. Suppose k > 3, and 2% = 22 + ¢ + 22 + w?.
Then either 0, 2 or 4 of the squares are odd. Modulo 8, we have 0 = 2 + y? + 22 + w?, and since an
odd square is congruent to 1 modulo 8, the only possibility is to have z, y, z, w all even. But then we can
divide by 4 to get 2"72 = (£)? 4 (4)2 + (£)? + (%)2. Either k — 2 > 3 and we can repeat the argument,
or k — 2 = 1, in which case we have 2 equal to the sum of four positive squares, a contradiction.

13.3.14. There are [,/p + 1] integers in the range 0 < u < [,/p)], so there are [,/p + 1]*> > \/p° = p integers of

the form au — v, with u, v in this range. Since there are only p congruence classes, two of these must be
congruent modulo p, say, au1 — v1 = aus — v (mod p). Then a(u; — v1) = v1 —ve (mod p). Letz =
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uy — vy and y = vy — vy, then |z], [y| < \/p as desired.

13.3.15. If p = 2 the theorem is obvious. Else, p = 4k + 1, whence —1 is a quadratic residue modulo p, say
a? = —1 (mod p). Let z and y be as in Thue’s Lemma. Then 22 < p and y? < p and —2? = (ax)? =

y? (mod p). Thus p | 2% + y? < 2p; therefore p = 22 + y? as desired.

13.3.16. Since 3% = 27 > 23, only 0%, 13, and 23 can appear in the sum, and 2? can appear at most twice. There-
fore the smallest possibility is 23 = 23 + 23 + 13 4+ 13 + 13 + 13 4 13 + 13 + 13; nine cubes.

13.3.17. The left sum runs over every pair of integers i < j, for 1 < i < j < 4, so there are six terms. Each
integer subscript 1, 2, 3, and 4 appears in exactly three pairs, so

S it z) (e —a)t= Y (20 + 12032 + 222)

1<i<j<4 1<i<j<4

4 4 2
= Zﬁxﬁ + Z 12:17%:0? =6 <Z xi) .
k=1 k=1

1<i<j<4

13.3.18. If n is a positive integer, then n = 22=1 xi, for some x;.’s. From Exercise 17,

4 2
6n? = 6 <Z xi) = > @itz + (@ —ay)"):
k=1

1<i<j<4

Since there are 6 terms in the last sum, it represents the sum of twelve 4th powers.

13.3.19. If m is positive, then m = S} _, 22, for some x;’s. Then 6m = 63 ;_, 22 = >,_, 623. Each term of
the last sum is the sum of twelve fourth powers by Exercise 18. Therefore 6m is the sum of forty-eight
fourth powers.

13.3.20. Check 81 = 3,16 = 4,17 = 5 (mod 6). Also, 0 = 0*,1 = 14,2 = 1* + 14,81 = 3%,16 = 2%, and 17 =
24 + 1% If n > 81, then write n = 6m + k where k = 0,1, 2, 81, 16, or 17. From Exercise 19, 6m is the sum
of forty-eight 4th powers, and each k-value is the sum of two 4th powers, so n = 6m + k is the sum of
fifty 4th powers.

133.21. Forn = 1,2,...,50,n = Y7 1% Forn = 51,52,...,81, n —48 = n — 3(2%) = Y114, son =
24 424 4 24 4+ S 14 s the sum of (n — 45) 4th powers, and n = 45 < 36 < 50. This result, coupled
with the result from Exercise 20, shows that all positive integers can be written as the sum of 50 or fewer
4th powers. That is, g(4) < 50.

13.3.22. The cubic residues modulo 9 are 0, 1, and —1. Therefore, the only possible residues for the sum of
three cubes modulo 9 are +3, +2, +1, and 0, which excludes +4 (mod 9).

13.3.23. The only quartic residues modulo 16 are 0 and 1. Therefore, the sum of fewer than 15 fourth powers
must have a least nonnegative residue between 0 and 14 (mod 16), which excludes any integer congru-
entto 15 (mod 16).

13.3.24. Suppose that n = 31 - 16™, with m > 1, is the sum of 15 fourth powers, say n = leil z} If an x; is
even then z7 = 0 (mod 16), and if an z; is odd, then z; = 1 (mod 16), so the least nonnegative residue

of 21121 z} counts the number of odd z;’s. But n = 0 (mod 16), so there are no odd numbers among

the z;’s. Then n/16 = 31 - 16™~1 = Z;il(xi/Q)‘l is also the sum of 15 fourth powers. By the method of
descent, this implies that 31 is the sum of 15 fourth powers, which is a contradiction.

13.4. Pell’s Equation
13.4.1.a. Clearly |z| < 2. Checking all possibilities gives (£2,0) and (+1, £1) for solutions.
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212 13. SOME NONLINEAR DIOPHANTINE EQUATIONS
b. Clearly |z| < 3. Checking all possibilities gives no solution.
c¢. Clearly |z| < 4,|y| < 2. Checking all possibilities gives the solutions (+1, +2).

134.2.a. Wehave2?—y? = (z—y)(z+y) =8 = 1-8 = 2-4. The system z —y = 1;x+y = 8 has no integer so-
lution. The system z —y = 2; x+y = 4 has the solution z = 3,y = 1. Then the solutions are (£3, £1).

b. We have 2% — 4y? = (z — 2y)(z +2y) =40 =40-1=2-20 =4-10 = 4 - 8. The system z — 2y =
1;z 4+ 2y = 40 has no solution. The system = — 2y = 2;2 + 2y = 20 has no solution. The system
x — 2y = 4; x 4 2y = 10 has no solution. The system = — 2y = 5; x + 2y = 40 has no solution. There-
fore the equation has no solution.

c. We have 422 — 9y = (22 — 3y)(2z + 3y) = 100 = 1-100 = 2-50 = 4-25 = 5-20 = 10 - 10.
Then2z — 3y = 1; 2z + 3y = 100 has no solution, but 2z — 3y = 2;2x + 3y = 50 has solution z =
13,y = 8. Also 2z — 3y = 4;2x + 3y = 25 has no solution, and 2z — 3y = 5;2x + 3y = 20 has no
solution, but 2z — 3y = 10; 22 + 3y = 10 has solution = 5,y = 0. Therefore all the solutions are
given by (£13, £8) and (£5,0).

13.4.3. We have /31 = [5;1,1,3,5,3, 1, 1, 10], which has period 8. The first few convergents are 5/1, 6/1,
11/2,39/7, .... For part (a), there are solutions by Theorem 13.11. For part (b), there are no solutions
by Theorem 13.11. Trying the convergents p/q in the equation with x = p,y = ¢ gives us the values
—6,5,—3,2,...,s0 we have solutions for parts (c), (d), and (e). Then for part (f), reduce modulo 4 to get
2?2 + y? = 3 (mod 4) which has no solution.

13.4.4.a. We have v29 = [5;2,1,1,2,10] which has period 5. Theorem 13.11 gives the first solution as ps =
70, qq = 13.

b. Using the continued fraction expansion from part (a), Theorem 13.11 gives the first solution as pg =
9801, g9 = 1820.

13.4.5. We have /37 = [6;12] of period 1. Theorem 13.11 gives the first 3 solutions as z = 73,y = 12; z =
10657,y = 1752; o = 1555849, y = 255780.

13.4.6. By Theorem 13.11 there is a solution if and only if the period of the continued fraction for v/d has odd
period. Table E.5 in the text gives us that only (a), (b), (e), (g), and (h) have odd period. The rest have no
solution.

13.4.7. We have z; = 1766319049,y = 226153980. We apply Theorem 13.12 to get x5 + Yo /61 = (27 +
y1\/61)2, which gives o = 6239765965720528801,y2 = 798920165762330040. We used MAPLE to do
these calculations.

13.4.8. The last paragraph of the proof to Theorem 12.15 shows that |p;, — \/Eqk| < 1/qx+1 < 1/qi. Hence we
have [p? — dq?| = |px — Vdai| - |px + Vdar| < 1/qi|pr — Vg + 2Vda| < 1/qi(lps — Vdai| + 2vdgy,) <
1/qx(1+2v/d) <1+ 2v/d, as desired.

13.4.9. Reduce modulo p to get 22 = —1 (mod p). Since —1 is a quadratic nonresidue modulo p if p = 4k + 3,
there is no solution.

13.4.10. a. Weevaluate (X7 +dYs)? —d(Xs+Yr)? = X?r2 £ 2XYdrs + d*Y? — dX?s? F2dXYsr —dY?r? =
X2(r? —ds?) +dY?(ds* —r?) = X2 —dY? =n.

b. Theorem 13.12 gives infinitely many solutions to z? — dy® = 1. If there is one solution to 2% — dy? =

n, then the construction in part (a) gives infinitely many.

13.4.11. Following the hint, we solve a? — 2b> = +1. By Theorem 13.10, we find that every convergent py,/qx
of v/2 is a solution. Note that p; = 0,p1 = 3, pr = 2pk—1 + 2k—2, G0 = 1, 1 = 1, and qx = 2¢r_1 + qr—a.
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13.4. PELL'S EQUATION 213

Then solving s — t = a,t = byields s = a + b = py + q; and t = g, whence z = p? + 2prq + kand y =
2pkqr + 2q3. The first few solutions are py = 1,qp = 1 corresponding toz =12 +2-1-1=3and y =
2:1-14+2-12=4;p; =3,q1 =2 correspondingtor =3>+2-3-2=2landy=2-3-2+2-22 = 20;
p2 = T7,q2 = 5 corresponding toz = 7> +2-7-5=119andy =2-7-5+2- 52 = 120; p3 = 17,¢q3 = 12
corresponding toz = 172 +2-17-12=697and y = 2 - 17- 12 4+ 2 - 122 = 696.

13.4.12. Since z* = 2y*+1, x must be odd. So 2> —1 = 0 (mod 4), 22 +1 = 2 (mod 4), and ged((2* —1)/4, (2% —
1)/2) = 1. Then (y?/2)? = (2* — 1)/8 = ((2® — 1)/4)((z* — 1)/2). Since these last two factors are rela-
tively prime, we must have that 2 — 1 is a perfect square. Hence x = +1 which gives y = 0 as the only
solutions.

13.4.13. Suppose there is a solution (z,y). Then  must be odd. Note that (2% + 1)? = 2% + 222 + 1 = 2y? + 222
and (2% — 1)? = 2% — 222 + 1 = 2y? — 22°. Multiplying these two equations together yields (2% — 1)? =
4(y* —2*), or since z* = 1 (mod 4), ((z* —1)/2)? = y* — 2. But this is a violation of Exercise 4 in Section
13.2.

13.4.14. Making the appropriate substitutions, we have 22 —2y? = (2n+1)2 —8m? = (2n+1)? —8n(n+1)/2 =
4n?+4n+1—4n%—4n = 1 as desired. We must have |z| > 3, and we find that z = 3,y = 1 is a solution, so
this is the smallest positive solution. By Theorem 13.12, all positive solutions are given by x, + yv/8 =
(z1 + y1v8)*, and we find that the smallest 5 solutions. First, (z,y) = (3,1) which corresponds to n =
1,m = 1, and we check that t; = 1 = m?. Second, (z,y) = (17, 6) which gives (n,m) = (8,6) and t5 =
8(8 +1)/2 = 36 = 6. Third, (z,y) = (99,35) which gives (n,m) = (49, 35), and t49 = 49(49 + 1)/2 =
1225 = 352, Fourth, (z,y) = (577,204) which gives (n,m) = (228,204) and t577 = 577(577 + 1)/2 =
41616 = 2042, Fifth, (x,y) = (3363, 1189) which give (n,m) = (1681, 1189) and #1451 = 1681(1681 + 1) =
1413721 = 11892
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CHAPTER 14

The Gaussian Integers

14.1. Gaussian Integers and Gaussian Primes

14.1.1.a. First, (2 +4)(2+i) = 4+ 2i +2i +i2 = 4+ 4i — 1 = 3 + 4i. Then we have (2 +)%(3 + i) =
(3+4i)(3+1) = 9+ 12i + 3i + 4i% = 9+ 15i — 4 = 5 + 15i.

b. First, (2 —3i)(2 —3i) = 4 —6i — 6i + 9> = 4 — 12i — 9 = —5 — 12i. Then we have (2 — 3i)3 =
(=5 —12i)(2 — 3i) = —10 — 244 + 15i + 3662 = —10 — 9i — 36 = —46 — 9i.

c. First, (—i+3)(—i+3) =i2—3i—3i+9 = —1—6i+9 = 8 —6i. Next, —i(—i+3) = i2 —3i = —1 — 3i.
Finally, we have —i(—i+3)3 = (8 — 6i)(—1 — 3i) = —8+ 6i — 24i + 18i2 = —8 — 18i — 18 = —26 — 18i.

14.1.2. a. First we compute (—1+i)(1+i) = —1+i—i+i? = —2. Then we have (—1+i)3(1+14)? = (-2)3 = -8.

b. First, (3 —4)(3—14) =9 — 6i + i2 = 8 — 6i, so that (3 + 2i)(3 — 9)% = (3 + 2)(8 — 6i) = 24 + 16i —
18i — 122 = 36 — 2i.

c. By the Binomial Theorem, we have (5 — i)® = 53 — 3 - 5% + 3 -5i> — i3 = 125 — 75i — 15+ i =
110 — 744. Also (2+14)(2+1) = 4 +4i +i% = 3+ 4i. Therefore, (2+1)2(5 —4)> = (3+44)(110 — 74i) =
330 + 440i — 222i — 296i% = 626 + 218i.

. N 15;
14.1.3. a. We evaluate the fraction s _2F 5‘1 = b+ 5‘1)( +,Z) _ 5+ 1%
a  2—1 (2—19)(2+1) 5

teger. Therefore, o divides 3, since «(1 + 3i) = .

=1 + 3¢, which is a Gaussian in-

8 8(1+1 841
b. We evaluate the fraction - = ( : + ) ~ = rr_ 4 4 44, which is a Gaussian integer. There-
1—i  (1—=4)(1+4) 2

fore 8 = (1 — ¢)(4 + 44) and so « divides S.

c¢. Since N(a) = N(5) =25 and N(B) = N(2+ 3i) = 4+ 9 = 13, we observe that 25 t 13. Therefore, «
can not divide (.
26 26(3 — 21 78 — 524
d. We evaluate the fraction - = ( ) — = ‘- 44, which is a Gaussian inte-
3+2i  (3+29)(3—2i) 13
ger. Therefore, o, divides .

14.14.a. Since N(a) = N(3) =9and N(8) = N(4 + 7i) = 16 + 49 = 65, we observe that 9 1 65, and so a can

not divide S.
15 15(2 —1 30 — 154
b. We evaluate the fraction - = ( ) ~ = L_6-— 3i, which is a Gaussian integer.
244 (2419)(2—-1) 5
Therefore, o divides 3.
30 + 6¢ d9+1)(5— 31 28 — 10z
c¢. We evaluate the fraction o 6 (5 +i) i) =6 Z, which is not a Gaussian integer.

5+ 3¢ (5+3i)(5—3i) 34
Therefore, oz does not divide 3.

215
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216 14. THE GAUSSIAN INTEGERS

. 274 274(11 — 4i) 274(11 — 4i) , o
d. W luate the fract = = = 2(11 — 44) = 22 — 8i, which
e evaluate the fraction ;= —- (1740011 — 1) 137 ( i) i, whic

is a Gaussian integer. Therefore, « divides (.

14.1.5. Since a Gaussian integer must be of the form
a + bi with a and b rational integers, then for a
Gaussian integer « to be divisible by 4 4 31, we "] e
must have a = (4 + 3i)(a + bi) = (4a — 3b) + S
(4b + 3a)i and this gives us a formula for all « ]

Gaussian integers divisible by 4 + 3i in terms ]
of rational integers a and b. To the right is a s ©4
display of the pattern of this set in the plane. . . .

14.1.6. Since a Gaussian integer must be of the form
a + bi with a and b rational integers, then for a
Gaussian integer « to be divisible by 4 — ¢, we . 0
must have o = (4 —4)(a+bi) = (da+0b) + (40— N
a)i and this gives us a formula for all Gaussian .
integers divisible by 4 — 4 in terms of rational o
integers a and b. To the right is a display of the .
pattern of this set in the plane. . .

-10 -5 5 10

14.1.7. Since «|8 and |7, there exist Gaussian integers 1 and v such that pa = 8 and v = ~. Since the prod-
uct of Gaussian integers is again a Gaussian integer, we have that vy is also a Gaussian integer. Then
v =vf = vua and so aly.

14.1.8. Since v | aw and 7y | § there exist Gaussian integers p and o such that @ = py and 8 = o. Then we
have po + v3 = ppy + voy = (up + vo)y. Since (up + vo) is a Gaussian integer, we have 7 | (po + v3).

14.1.9. Consider the equation 2° = x or 2° — x = 0. The left side factors over the Gaussian integers as z(z —
1)(x + 1)(z —i)(x + i) = 0, so the solutions of the equation are 0, 1, —1, ¢, and —¢. Since this includes all

of the units for the Gaussian integers, this proves the result.

14.1.10. If @ is an associate of & = a + bi then we must have @ = ea where € is a unit, so there are 4 cases to

consider. If e = 1, wehave ¢ — bi = a + bi and so b = 0 and o = a is a rational integer. If e = —1, we
have a — bi = —a — bi and so @ = 0 and a = bi is a pure imaginary number. If ¢ = i, we have a — bi =
i(a+bi) = —b+ai from which we deduce a = —b, so a is of the form a — ai = a(1 —i). If e = —i, we have
a —bi = —i(a+ bi) = b — ai from which we deduce a = b, so « is of the form a + ai = a(1 + i). Therefore

if a is an associate of its conjugate it must be of the one of the forms a, ai, a(1 — i), a(1 + i), where a is a
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14.1. GAUSSIAN INTEGERS AND GAUSSIAN PRIMES 217

rational integer.

14.1.11. Since |5 and f|c, there exist Gaussian integers p and v such that apr = § and fv = a. Then o = apv.
Taking norms of both sides yields N(a) = N(apr) = N(a)N(uv) by Theorem 14.1. So that N(u)N(v) =
1. Since i and v are Gaussian integers their norms must be nonnegative rational integers. Therefore
N(p) = N(v) =1, and so p and v are units, and hence, o and [ are associates.

14.1.12. Since « | 3, there exists a Gaussian integer « such that vy = 3. From Theorem 14.1 (ii) we have
N(B) = N(ay) = N(a)N(v), which shows that N(a) | N(B).

14.1.13. Note that N(1+2¢) = N(2+1) = 5, so the condition on norms holds, but (1 +2¢)/(2+1¢) =4/5+3/54,
so this is a counterexample.

14.1.14. Since « | 3, there exists a Gaussian integer - such that 8 = a-y. Taking conjugates of this equation, we
get § = @y = @7, which shows that @ | 3.

14.1.15. First we show existence. If ¢ > 0 and b > 0 we’re done. If ¢ < 0 and b > 0 then we multiply by —i to
get —iac = b—ai = ¢+ di whichhasc > 0and d > 0. If ¢ < 0 and b < 0 then we multiply by —1 to get
—a = —a—bi=c+diwhichhasc>0and d > 0. If a > 0 and b < 0 then we multiply by i to get iav =
—b + ai = ¢+ di which has ¢ > 0 and d > 0. (We have covered the quadrants in the plane in counter-
clockwise order.) Having found the associate ¢ + di in the first quadrant, we observe that it is unique,
since if we multiply by any unit other than one we get, respectively —c — di, which has —c < 0, —d + ¢i,
which has —d < 0, or d — ¢i, which has —¢ < 0.

14.1.16. a. First we divide a = 14 4+ 17i by 8 = 2 + 3i to get a/3 = 79/13 — 8/13i. Rounding to the nearest
rational integer we get v = [79/13 + 1/2] + [-8/13 + 1/2]i = 6 — i. Then we compute p = o — By =
(14+17i)—(2+3i)(6—i) = —1+i. Finally, we note that N(p) = (—1)?+12 =2 < N(3) = 22+3? = 13.

b. Wehave o/3 = (7 —194)/(3 — 4i) = 97/25 — 29/25i. Rounding to the nearest integers in each part
yields v = 4 — i. Then we compute p = o — v = (7 — 19i) — (3 — 44)(4 — i) = —1. Finally, we note
that N(p) = (=1)2 =1 < N(B) = 3% + 42 = 25.

c¢. Wehave a/f = 33/(5+1) = 165/26 — 33/26i. Rounding to the nearest integer in each part yields
~ = 6 — i. Then we compute p = o — 7y = 33 — (5 +4)(6 — i) = 2 — 4. Finally, we note that N(p) =
22 4 (~1)> =5 < N(8) = 52 + 12 = 26.

14.1.17.a. We have a/3 = (24 — 97)/(3 + 3i) = 5/2 — 11/2i. Rounding to the nearest integer in each part, and
going up in each case, since we have half integers, yields v = 3 — 5i. Then p = o — 8y = —3i. Then
N(p)=32+02=9< N(B)=32+32=18.

b. Wehave o/ = (18 + 15¢) /(3 + 4i) = 114/25 — 27/25i. Rounding to the nearest integer in each part
yields v = 5 — i. Then we compute p = a — 7y = —1 — 2i, so that N(p) = (—1)? + (-2)? =5 <
N(B) = 25.

c¢. Wehave o/ =87i/(11 — 2i) = —174/125 4 957/125i. Rounding to the nearest integer in each part
yields v = —1 + 8i. Then we compute p = a — 3y = —5 — 3i, so that N(p) =52+ 32 =34 < N(B) =
11% + 2% = 125.

14.1.18.a. Wehave o/ = (14 + 174) /(2 + 3¢) = 79/13 — 8/13i. Instead of rounding —8/13 to the nearest in-
teger, we choose to round it to 0 which yields v = 6. Then we compute p = o — fy = (14 + 174) —
(2 4 3i)(6) = 2 — i. Finally, we note that N(p) = 2% + (-1)? =5 < N(8) = 2% + 3% = 13.

b. Wehave o/ = (7—197)/(3—44) = 97/25—29/25i. Instead of rounding 97/25 to the nearest integer,

we round it to 3, which yields v = 3 —4. Then we compute p = a— fy = (7—19i) — (3—4:)(3—i) =
2 — 4i. Finally, we note that N(p) = 22 + (—4)? = 20 < N(3) = 3% + 4% = 25.
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c. Wehavea/s =33/(5+1) = 165/26 — 33/26i. Instead of rounding 165/26 to the nearest integer, we
round it to 7, which yields v = 7 — 7. Then we compute p = o — 3y =33 — (5 +4)(7 — i) = —3 — 2.
Finally, we note that N(p) = (=3)? + (—2)? = 13 < N(3) = 5% + 1% = 26.

14.1.19.a. We have a/8 = (24 — 9¢)/(3 + 3¢) = 5/2 — 11/2i. Instead of rounding up in each part, we round
5/2 down to 2, which yields vy = 2 — 5i. Then p = a — 3y = 3. Then N(p) =32 + 0> =9 < N(3) =
32 +32 =18

b. Wehave a/8 = (18 + 15i)/(3 + 4i) = 114/25 — 27/25i. Instead of rounding 114/25 to the nearest
integer, we round it down to 4, which yields v = 4 — i. Then we compute p = o — v = 2 + 2i, so
that N(p) =22 + 22 =8 < N(8) = 25.

c¢. Wehave a/8 = 87i/(11 — 2i) = —174/125 4 957/125i. Instead of rounding 957/125 to the nearest
integer, we round it down to 7, which yields v = —1 + 7i. Then we compute p = o — fy = =3+ 8j,
sothat N(p) = (—=3)? + 82 =73 < N(§) = 112 + 22 = 125.

14.1.20. Suppose that o/ = « + yi. Since 5 { o we know that = + yi is not a Gaussian integer, therefore it
lies in the interior of a unit square with vertices Gaussian integers. (One of these vertices is the Gauss-
ian integer s + ti in the proof of Theorem 14.6.) The diagonals of this square divide it into 4 triangular
regions and x + yi must lie in one of these regions. If it lies on the boundary between regions, then we
may choose either region. Having determined the triangular region in which x 4 yi lies, we see that
two of the vertices of the triangle are Gaussian lattice points, call them 7, and 2. Note that circles of ra-
dius 1 centered at these lattice points contain the entire triangle. Therefore the distance from the lattice
points to x + yi is less than 1. Define py = a — 871. Then N(p1) = N(a — 811) = N((a/8 — 11)B) =
N(z +yi —y1)N(B). Since N (x + yi — 1) is just the distance from 71 to = + iy, we know it is less than 1,
so we have the last expression < N(3) as desired. If we define ps = o — 32, the same calculation holds,
giving us two pairs of Gaussian integers meeting the conditions.

14.1.21. If 8|« then there is only one pair v = «/8 and p = 0. If not, then the complex number «/3 can be
plotted in the complex plane and lies in a unit square whose vertices are lattice points. If o = 3v + p,
then a/3 — v = p/f. Then taking absolute values, we see that |a/3 — v| = |p/8] < 1. We conclude that
the possible values for « are those Gaussian integers inside a unit circle centered at /3, each of which
generates a unique p.

14.1.22. Suppose o = r + si is an algebraic integer. Then it is a root of a monic polynomial f(x) with integer
coefficients. We may assume f(x) has smallest positive degree of all such polynomials. If f(z) = = + b,
then f(«) = r + st + bso that s = 0 and r = b, which are both integers. So assume that deg(f) > 2. Note
that f(x) is necessarily irreducible over the integers, since if f(z) = g(z)h(z) is a nontrivial factorization
of f, then g(a)h(a) = 0 and so « satisfies one of g or h which contradicts the minimality of f.

Note that « is a root of g(z) = (z — a)(x — @) = (2% — 2rz + r? + s?). If we divide f(z) by g(x) we
get f(z) = q(x)g(z) +r(x), with deg(r) < deg(g) = 2 or r(x) = 0. Then we have f(a) = g(a)g(a) + (),
so that 7(a) = 0. But a can not be the root of a polynomial of degree 1 or 0, so r(z) = 0 and we have
f(z) = q(x)g(z), where ¢(x) and g(x) have rational coefficients. We can factor out any common factors
of the coefficients of ¢ and g and write f(x) = (a/b)g1(z)g1(x), where ¢; and g; are primitive integer
polynomials and (a,b) = 1. But by Gauss” Lemma, (see the solution to Exercise 43 part (a) in Section
2) g1 91 is primitive, so no prime factor of b can divide all of the coefficients. Therefore b = 1, and since
f(z) is monic, we have a = 1. Further, since f is irreducible, we must have ¢; = 1 and so f(z) = g(z) =
2?2 — 2rz +r? + s and we know that 2r = b and r? 4 s*> = ¢ for some integers b and c. Then r = b/2 and
52 = (4c — b?)/4 for some integers b and c. So s = ¢/2 for some integer e. Substituting these expressions
in for r and s, we have (b/2)% + (¢/2)? = ¢, or, upon multiplication by 4, b? + e = 4c = 0 (mod 4) which
has solutions only when b and e are even. Therefore r and s are rational integers.

14.1.23. If a and b are both even then the Gaussian integer is divisible by 2. Since (1 + i)(1 — i) = 2, then

1 4 i is a divisor of 2 which is in turn a divisor of a + bi. If a and b are both odd we may write a + bi =
(14+49)+(a—1)+ (b—1)i,and a — 1 and b — 1 are both even. Since both of theses Gaussian integers are
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multiples of 1+ 4, so is there sum. If a is odd and b is even, then a — 1 + bi is a multiple of 1+ ¢ and hence
(a + bi) — (a — 1+ bi) = 1is a multiple of 1 + i if a + bi is, a contradiction. A similar argument shows
that if a is even and b is odd then 1 + i does not divide a + bi.

14.1.24. If 7 = a + bi is a Gaussian prime, then N(7) = a? + b2. There are no solutions to a? + b> = 3 (mod 4)
and the only solutions to a® 4+ b*> = 0 (mod 4) require both a and b to be even, in which case 2 | 7 and
since 2 is not a Gaussian prime, this can not be the case. Therefore the only possibilities are that N (7) =
1 or 2 (mod 4). Then note that N(1 +4) = 124+ 12 = 2 (mod 4) and N(1 + 2i) = 12 + 22 = 1 (mod 4).
Since 1 + i and 1 + 2¢ are Gaussian primes, this shows that both cases can happen.

14.1.25. Let o = a + bi, and suppose a2 + 1 is a Gaussian prime. Since we can factor o® + 1 = (a +i)(a — i) =
(a + (b+ 1)i)(a+ (b — 1)i), we must have one of these factors a unit. One way is for b = 0, so that a =
0 and then the first factor is i. But then the second factor is —i and a? 4+ 1 = 0 which is not prime. The
only other way is for b = +1, which forces a = +1 and leads to a? + 1 = +1 =+ 2i. Since N(+1 £ 2i) =5
is prime, we know that =1 £ 2 are Gaussian primes, and these four are the only ones of this form.

14.1.26. Suppose v | (b+ ai). Then7 | (b — ai), and hence 7 divides its associate 7 | i(b — ai) = a + bi. Since
a+bi is a Gaussian prime, 7 is either an associate of a + bi or unit. Hence, + is either an associate of b+ ai
or a unit. Since v was chosen as an arbitrary divisor of b + ai, this shows that b + «ai is also prime.

14.1.27. Suppose 7 = (a + bi)(c + di) where a + bi and ¢ + di are nonunit Gaussian integers. Taking norms of
both sides yields 49 = (a? + b2)(c? + d?). Since a + bi and ¢ + di are not units, we have that the factors
on the right are not equal to 1, so we must have a? + b?> = 7, a contradiction, since 7 is not the sum of 2
squares.

14.1.28. Suppose p = 3 (mod 4) is a rational prime, and that p = (a+bi)(c+di) in the Gaussian integers, where
neither factor is a unit. Then using part ii of Theorem 14.1, we have p> = N(p) = N(a + bi)N(c + di).
Since neither of these last factors is a unit, their norms can not be 1, so we must have N(a + bi) = a® +
b> = p =3 (mod 4), which is impossible. Therefore p has no such factorization, and is a Gaussian prime.

14.1.29. Since « in not a unit or a prime, it has a nontrivial factors « = @+ with 8 and v nonunits, so that
1 < N(B)and 1 < N(v). Then N(a) = N(B)N(y). If N(B) > +/N(«a) then N(v) = N(a)/N(B) <
N(a)/v/N(a) = /N(a). So if 5 doesn’t satisfy the conditions, then ~ does.

14.1.30. If o is a Gaussian integer which is not prime, then it has nontrivial divisors a = 3y where 5 and ~ are
not units. Then N(a) = N(G)N(v) where 1 < N(5) < N(v). Then N(5) < y/N(«). So if 7 is a Gaussian
prime dividing 5, then N(7) < N(8) < y/N(«). Therefore, we know that every composite Gaussian
integer « is divisible by a Gaussian prime 7 with N(7) < /N ().

Observe that if 7 = a + bi is a Gaussian prime, then so are its associates and their conjugates. So it
suffices to find the primes in the 1/8 plane in the 1st Quadrant on or below the line y = x.

To find all Gaussian primes with norms less than a specified limit M, we plot the Gaussian integers
in the 1st Quadrant, on or below the line y = x, and inside the circle z? + y?> = M, since these are the
Gaussian integers with norm less than M. Since 0, 1 and ¢ are not primes, they are not considered. The
next closest Gaussian integer to the origin in the region is 1 + 4, so it must be prime and we circle it. We
then cross out all other multiples of 1 + 7 in the region and note that they form a pattern of vertices of
squares. Since 1 + ¢ is a multiple of its own conjugate, we are done with this step.

The next closest Gaussian integer to the origin which is not crossed out is 2 + 4, so it is prime and we
circle it and cross out all other multiples. Again, the multiples form a pattern of vertices of squares, so
an easy way to determine the multiples is to see that 2 4 4 and 4 + 2¢ must from one side of a square.
Then 3 — i and 5 must be the other two vertices. Since 5 and 4 + 2i are in the region, they are crossed out.
By repeating the pattern of this square throughout the region, we find all multiples of 2 + i. We must
also consider all multiples of its conjugate 2 — 4, which forms a different lattice squares. We cross these
out also.

The next closest multiple to the origin which is not crossed out is 3, so it is prime and we circle it.
The square with vertices 0, 3, 37, and 3 + 3i establishes the pattern to find all multiples of 3 and we cross
these out.
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We continue in this fashion until every Gaussian integer in our region of norm less than /M is either
circled or crossed out. Then all Gaussian integers in the region which are either circled or not crossed
out are Gaussian primes. We then take their associates and conjugates to get the complete set of all
Gaussian primes up to the specified norm of M.

14.1.31. Following the procedure in Exercise 30, we note that 1 + 4 is a Gaussian prime. Its multiples in the 1st
Quadrant on or below the line y = z are those Gaussian integers a + bi where a and b are both even or
both odd, so we cross these out. The closest integer to the origin not crossed out is 2 + ¢, so we circle it
and cross out its multiples. The new numbers crossed out with norm less than 10 are 5, 6 + 34, 9 + 2i,
and 7 + 6. We also cross out multiples of its conjugate 2 — 4, which eliminates 4 + 3¢, 8 + i and 7 + 4i.
The next closest integer not crossed out is 3 and the only multiple not crossed out is 9, which we cross
out. The next closest number to the origin which is not crossed out is 3 + 2¢, but its norm is 13, which is
greater than 1/100 so we are done with the sieving process. This leaves the following numbers as Gauss-
ian primes with norm less than 100: 3,7, 1 +4,2 44,444,644, 3+ 2{, 5+ 2¢, 7+ 24, 8 + 31, 5+ 4i, 9 + 44,
6 + 5¢, and 8 + 5¢, plus their conjugates and associates.

14.1.32.

® 6 o & 55 o o o o
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14.1.33.a. Notethata —a=0=0-p, so pja — a. Thus, @ = o (mod p).

b. Since a = § (mod p), we have pla — 3, so there exists a Gaussian integer + such that yuy = o — 3.
But then u(—v) = 8 — «, so p|8 — a. Therefore 5 = o (mod p).

c¢. Sincea =/ (mod p)and § =+ (mod pu), there exist Gaussian integers ¢ and e such that 46 = o — 3
and pe=F—~v. Thena—y=a— [+ — v = ud + pe = p(é + €). Therefore & = v (mod p).

14.1.34.a. Sincea = 3 (mod p)andy =§ (mod p), we have p|(a—3) and u|(y—46). Then p| ((ae — 8) + (v — 9)) =
((a+7v) — (B+9)). Therefore, « +v =G+ 6 (mod p).

b. Sincea =/ (mod p)andy =4 (mod ), wehave u|(a—03) and p|(y—3). Then u| (o — B) — (v — 9)) =
((ae =) = (8 —9)). Therefore, « —y = 3 — ¢ (mod p).

c¢. Since @ = 3 (mod p) and v = ¢ (mod u), we have u|(a — 3) and p|(y — §). Note that ay — 86 =
ay—ad+ad—F6 = a(y—3J)+ (a—F)J, which is a linear combination of multiples of p, so p|ay— 30
and hence oy = 36 (mod p).

14.1.35. If o = a3 +iby and 8 = ag + ibe let p = (a1 + b1)(az + b2). Then the real part of a3 is given by the two
multiplications R = ajas — b1b2 and the imaginary part is given by p — R which requires only one more
multiplication. The second way in the hint goes as follows. Let m; = ba(a1 + b1), mo = az(a1 — b1), and
mg = bi(az2 — b2). These are the three multiplications. Then the real part of af is given by ma + ms and
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the imaginary part by m; + ms.

14.1.36. Letz = a+bi. We compute z — {z} = a+bi— {a+bi} = (a+bi) — ({a} +{b}i) = (a —{a}) + (b—{b})i.
Since {a} is the closest integer to a, we have a — {a} < 1/2 and likewise b — {b} < 1/2. Therefore N(z —
{z}) = (a—{a})?+ (b—{b})? < (1/2)%+(1/2)? = 1/2. Suppose v = c+di is a Gaussian integer closer to
z but different from {z}. Then N(z —v) = N((a+bi) — (c+di)) = N((a —c¢) + (b—d)i) = (a — ¢)* + (b—
d)? > (a —{a})? + (b — {b})? since {a} and {b} are the integers nearest a and b. But this last expression
is N(z — {z}), so this shows that the distance from v to z is at least as great as the distance from {z} to z.

14.1.37.a. Wehave Gy =0+14,G1 =144, Goa=1+4+2i,G3 =2+ 3i,G4 =3+ 5i, G5 =5+ 8i.
b. Using the definition of G, and the properties of the Fibonacci sequence we have Gy = fr +ifi+1 =
(fe—1 + fe—2) + (f& + fro—1)i = (fi—1 + fii) + (fo—2 + fa—1i) = Gr—1 + Gr—2.

14.1.38. Note that N(Gy) = N(fx + ifs+1) = f7 + f7,1- We seek to show that this last expression is equal
to for+1 for all nonnegative integers k. We proceed by induction on k. For & = 1 we have f3 = 1 =
3+ f2 =12+ 12 And when k = 2 we have f5 = 5 = 2% + 12 = f2 + f2, so the basis steps hold for
mathematical induction. Now assume, for the strong form of induction, that the identity holds for all
values of k. Then fo,_3 = f7_, + fZ_5and for—1 = fZ + f2_,. Now we calculate for+1 = for + for—1 =
for—1 + for—2 + for—1 = 2fox—1 + (for—1 — for—3) = 3far—1 — far—3. Now substituting in the induction
hypothesis, makes this last expression equal to 3(f2 + fZ2_|) — ff_1 — ff_o = 32 +2f2 o — (fi— fr—1)? =
2fF 4+ fiy+ 2 ufr—1 = 207 + (fosr — fu)? + 2fu(fo41 — fr) = f21 + fi, which completes the induction
step.

14.1.39. We proceed by induction. For the basis step note that GoG1 — G3Go = (1 +24)(1 +14) — (2 + 39)(3) =
2 + 14, so the basis step holds. Now assume the identity holds for values less than n. We compute, using
the identity in Exercise 37, Gy 42Gpi1 — Gni3Gn = (Grg1 + Gp)Gry1 — (Guyo + Gn1)Gn = Gy —
GnJrZGn = G%Jrl - (Gn+1 + Gn)Gn = G%+1 - G% - Gn+1Gn = (Gn+1 + Gn)(Gn+1 - Gn) - Gn+1Gn =
Gni2Gn1 — Gpi1Gp = —(=1)""1(2 +4) = (—1)"(2 + i), which completes the induction step.

14.1.40. Let 3 = —1 + i and note that N(3) = 2. Let a be a Gaussian integer. By Exercise 23, either o or o — 1
is divisible by 1 + ¢ and hence by §, its associate. Let oy = . Then there exists ag = 0 or 1 such that
Bl(ag — ap), so there exists a Gaussian integer a4 such that a1 5 = ag — ao.
We seek to show that if |ag| > /6, then N(a1) < N(ag). If ap = 0 then N(a1)N(B) = N(a1)2 =
N(ayp), so that N(a;) < N(ag). If ag = 1, then note that the lines y = x and y = (x + 1)/+/2 intersect
when z = v/2 4+ 1 < /6. By the Triangle Inequality we have |a1||3] = |ag — 1| < |ao| + 1, 50 |aq| <
(Jao| +1)/v/2 < || by our observation in the previous sentence and the assumption that |ag| > /6.
Given that |ag| > V6, we produce the equation

a3 = ag — ag,ag = 0or 1.
We repeat the process on o to get

Oégﬁ: Qo — A2,02 = Oorl.

And continue in this fashion generation a sequence of «;’s such that N(ag) > N(a1) > N(ag) > --- .
Since this is a decreasing series of positive integers, eventually the norms must decrease to be less than
6. There are 21 Gaussian integers with norm less than 6 and we need to deal with each of these cases,
to show that the process terminates with o, 41 = 0. If ap = 2 + 4, then we note that o, =3 +i— 1 =
(=14 2i)8 — 1, so we take a1 = —1 + 2i and ar4+1 = 1. Note that the norm did not decrease in this
step. Butnow a1 =2i—1 = (1—-14)8 — 1, so we take ajyo = 1 —i. Then a0 = —15 50 a3 = —1
and we can take «44 = 0. This chain accounts for the Gaussian integers 2 + 4, —1 + 2i,1 — 4, and —1.
The other 16 integers are dealt with similarly. So the above sequence of equations continues:

aszfl = as —as,as =0or 1.

anf =ap_1—apn_1,a0 =0o0r1.
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AUpt1 = 0.

Then we have g = (X16+ao = (agﬁ+a1)ﬂ+ao = Oégﬁ2 —|—a16+ao == anﬁ" +an_1ﬂ"_1 + -+
a1 + agp, as desired.

14.1.41. Since the coefficients of the polynomial are real, the other root is » — si, and over the complex numbers
the polynomial must factor as (z — (r + si))(z — (r — si)) = 2% — 2rz + 72 + s%. The z-coefficients, a =
2r and b = r? + s? are integers. Then r = a/2 and s*> = (4b — a?)/4, which shows that s = ¢/2 for some
integer c. Multiplying by 4 we have a? + ¢ = 0 (mod 4) which can be true only if both a and ¢ are even,
hence r and s are integers and r + si is a Gaussian integer.

14.1.42. From Exercise 23, we know that the Gaussian prime 1 + ¢ divides a Gaussian integer ¢ + di if and only
if cand d have the same parity. If 7 = 1 + ¢, then the surrounding 4 Gaussian integers are 2 + 1, 4, 1 + 2i,
and 1, of which only 2 + 4 and 1 + 2 are prime. Similar arguments follow if 7 is one of the associates of
1+

If m = a + bi is not an associate of 1 + ¢, then since it is prime, it is not divisible by 1 + i and so a and
b must have opposite parity. But then all of (a + 1) + bi, (a — 1) + bi, a + (b+ 1)i, and a + (b — 1)i must
have real and imaginary parts of the same parity, and therefore are divisible by 1 + 4. Since one of them
is prime, we conclude that one of them is an associate of 1 + i. Hence, m must be of one of the forms
+1+2i0r £2 £,

14.1.43. Let 8 = 1+ 2i so that N(§) = 5. From the proof of the Division algorithm, we have for a Gaussian
integer «, that there exist Gaussian integers « and p such that & = 73 + p with N(p) < N(5)/2 = 5/2.
Therefore the only possible remainders upon division by 1 4 2i are 0,1, ¢, 1 + ¢ and their associates. Fur-
ther,if « = By + (14+14) = B(v+ 1)+ (L +14) — (1 + 2¢) = B(y+ 1) — i. So we may take the entire set
of remainders to be 0,1, —1,4 and —i. Consider dividing each of the Gaussian primes 71, ..., 74, by 8. If
any two left the same remainder p, then 5 divides the difference between the two primes. But all these
differences are either 2 or 1 + 4, which are not divisible by 5. Further, since these are all prime, none of
the remainders are 0. Therefore, the remainders are exactly the set 1, —1,¢ and —i. Now divide a + bi by
0 and let the remainder be p. If p is not zero, then it is one of 1, —1,7 or —i. But then one of 7y, ..., my
leaves the same remainder upon division by (3, say 7;. Then 3 divides 7, — (a + bi) which is a unit, a
contradiction. Therefore p = 0. Therefore 1 + 2¢ divides a + bi. A similar argument shows that 1 — 2:
also divides a + bi. Therefore the product of these primes (1 — 2)(1 + 2¢) = 5 also divides a + bi, and
hence each of the components.

14.144. LetS =a+bi:a=1,2,...,mb=1,2...,n and let P be the product of the elements of S. Then if
c+di € S, we have (¢ + di)|(P + ¢+ di), and so P + ¢ + di is not a Gaussian prime. So the block of
Gaussian integers with diagonal running from P 4 1 + i to P 4+ m + ni contains no Gaussian primes.

14.1.45. Taking norms of the equation a3+ = 1 shows that all three numbers must be units in the Gaussian in-
tegers, which restricts our choices to 1, —1, 4 and —i. Choosing three of these in the equation a + 3 + v =
1, we have the possible solutions, up to permutation, (1,1, —1), (1,4, —¢), but only the second solution
works in the first equation, leaving (1, ¢, —4) as the only solution.

14.1.46. Letw = a+ bi. Note that (1 +1¢)|4. If N(7) # 2 then (1 + ) t 7 so by Exercise 23, a and b must have op-
posite parity. If 7 = ¢+ di (mod 4) then ¢ and d must have opposite parity also, otherwise, 7 = c + di =
0 (mod 1 + ¢) a contradiction. Further, we can subtract multiples of 4 and 4i from 7 so as to guarantee
that ¢ and d are between 0 and 3, inclusive. If ¢ + di = 1, then the associates of 7 are 7 = 1 (mod 4),
im=1 (mod 4), —m = —1 = 3 (mod 4), and —im = —i = 3i (mod 4). We see that if 7 were congruent to
any of 1, i, 3, or 3i then exactly one of its associates would be congruent to 1 (mod 4). Similarly, if =
¢+ di =34 2i (mod 4), then its associates are 7 = 3+ 2 (mod 4), imr = =2+ 3i =2+ 3i (mod 4), —7
—3—-2i =14 2i (mod 4) and —im =2 — 3i = 2+ 4 (mod 4). We see that if 7 were congruent to any of
3+ 2i, 2+ 34,1+ 2i, or 2 + 4, then exactly one of its associates would be congruent to 3 + 2i. Since the 8
congruence classes represented are all of the classes relatively prime to 4, there are no other cases.
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14.2. Greatest Common Divisors and Unique Factorization

14.2.1. Certainly 1|7; and 1|m2. Suppose é|m and d|m2 Since 71 and 7 are Gaussian primes, § must be either
a unit or an associate of the primes. But since 7; and 7 are not associates, then they can not have an
associate in common, so ¢ is a unit and so J|1. Therefore 1 satisfies the definition of a greatest common
divisor for m; and .

14.2.2. Certainly 1|e¢ and 1|a. Suppose dle and §|a. Then there exists a Gaussian integer 1 such that oy = ¢
and so N(§)N(n) = N(e) = 1, since € is a unit. But then N(¢) is a positive rational integer which divides
1, s0 N(6) = 1 and therefore we know ¢ is a unit and we conclude that ¢|1. Hence 1 is a greatest com-
mon divisor of € and «.

14.2.3. Since 7 is a greatest common divisor of & and 3, we have |« and 7|3, so there exist Gaussian integers
pand v such that iy = a and vy = 3. Sothat iy = 11 - ¥ = @and 7y = v - 7 = 3 so that 7y is a common
divisor of @ and (. Further if §|& and 6|5 then d|a and |3 and so 6|y by the definition of greatest com-
mon divisor. But then 6|7 and 6 = §, which shows that 7 is a greatest common divisor for @ and 3.

14.24.a. Letoi,ag,...,a, be Gaussian integers. A greatest common divisor of o1, avg, . . ., oy, is a Gaussian in-
teger y with the two properties: (i) y|o; for every j = 1,...,n and (ii) if §|c; forevery j =1,...,n,
then d|y.

b. Letd be a greatest common divisor of a, 3, and  as defined in part (a). Then 6|« and §|3,soif o is a
greatest common divisor of o and (3 then d|o. So ¢ is a common divisor of v and o. Let 7 be another
common divisor of v and ¢. Then since ¢ divides « and f3, so does 7. Therefore 7 divides «, (3, and
7, and so must divide §, by definition of greatest common divisor. This shows that ¢ is a greatest
common divisor of v and ¢ also.

14.2.5. Let ey, where € is a unit, be an associate of . Since 7|« there is a Gaussian integer p such that py =
a. Since € is a unit, 1/¢ is also a Gaussian integer. Then (1/€)u(ey) = o, so evy|a. Similarly, ev|5. If §|a
and §|( then ¢y by definition of greatest common divisor, so there exists a Gaussian integer v such that
vé = 7. Then evd = ey, and since ev is a Gaussian integer, we have §|ey, so e satisfies the definition of a
greatest common divisor.

14.2.6. Let 0 be a greatest common divisor of o and . Say a = pd and 3 = vd. Then N (o) = N(p)N(d) and
N(B) = N(v)N(9). Since N(«) and N(f) are relatively prime, we must have N(4) = 1, which shows
that § must be a unit and therefore o and f3 are relatively prime Gaussian integers.

14.2.7. Good examples are the factors of rational primes which factor in the Gaussian integers, such as 13 =
(3 — 2i)(3 + 2i). Then ged(3 + 24,3 — 2i) = 1, but N(3 + 2i) = N (3 — 2i) = 13.

14.2.8. Since v divides o and 3, there exist Gaussian integers 1+ and v such that & = yy and 8 = vy. Then
N(a) = N(p)N(y) and N(B) = N(v)N(y), so we see that N (vy) is a common divisor of N(a) and N(g3).
Therefore N () must divide (N («), N(3)).

14.2.9. Since a and b are relatively prime rational integers, there exist rational integers m and n such that am+
bn = 1. Let § be a greatest common divisor of the Gaussian integers a and b. Then ¢ divides am + bn =
1. Therefore ¢ is a unit in the Gaussian integers and hence a and b are relatively prime Gaussian integers.

14.2.10. Let the prime factorization of v = w7y - - m;. Then the unique prime factorization of y" is v =
iy ---mp = af. For each Gaussian prime 7;, we have 7;|af and so either 7;|a or ;|3 but not
both, since o and S are relatively prime. Therefore either 77|a or 7}'|3. So, after re-indexing if nec-
essary, there is an index r such that 77 ---7'|a and 7}, ---7[3. And since N(y) = N(a)N(B) =
N(rp---m?)N(npy,---7), we see that N(a) = N(n{---7]'), and so o and = --- 7" are associates.
Therefore oo = en} - - - ) = e(mymg - - - 7)™ = €0™ where epsilon is a unit.
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14.2.11.a. We have 44 + 18i = (12 — 16i)(1 + 2i) + 10i. Then 12 — 16i = (10i)(—2 — i) + (2 + 4i). Then 10i =
(24 4i)(2 + 1) + 0. Since the last nonzero remainder is 2 + 43, this is a greatest common divisor.

b. From the equations in part (a) we have 2 + 47 = (12 — 167) — (10¢)(—2 — i) = (12 — 16¢) — ((44 +
181) — (12 — 164) (14 20)) (=2 — i) = (24 1) (44 + 188) + (1 + (1 4+ 2i) (=2 — 0)) (12 — 166) = (2+14)(44 +
18i) + (1 — 5i)(12 — 161). So we take y =2+ iand v = 1 — 5i.

14.2.12. a. Wehave (2 —114)/(7+8i) = —74/113 — 93i/113 and the nearest Gaussian integer to this quotient is
—1 — 4. Then we compute (2 — 11¢) — (7 + 8i)(—1 — i) = (1 + 4i) to get the remainder in the division
algorithm. Now we divide (7 + 8¢)/(1 + 4¢) = 39/17 — 20i/17 the nearest integer to which is 2 — .
Then we compute (7 + 8i) — (1 + 4¢)(2 — i) = (1 + ¢) to get the next remainder. Now we divide
(1+44)/(1+1) = 5/2+ 3i/2, the nearest integer (rounding up) to which is 3 + 2i. Then we compute
(1+4i)—(1+4)(3+2¢) = —i which is a unit, so we deduce that 2— 117 and 7+ 8i are relatively prime.

b. We start with the last equation in part (a) and replace every remainder with its equivalent expres-
sion as needed in the other equations given. —i = (14 44) — (1 +¢)(3+ 2¢) = ((2 — 114) — (7 +
8)(—1—14) —((7T+8i) —(1+4i)(2—1))(3+2i) = (2—-11i) — 2+ ) (7T+8) + (8 +i)(1 + 4i) =
(2—-113) — (2+4)(7T+8i) + (8+14)((2 — 114) — (T+8i)(—1 —14)) = (9+1)(2 — 112) + (5 + 8) (7 + 8i).
Now if we multiply through by ¢ we have 1 = (=1 + 9¢)(2 — 11¢) + (—8 + 5¢)(7 + 8i), so we may
take p = —1+4+9iand v = —8 + bi.

14.2.13. We proceed by induction. We have Gy = i and G; = 1+ 1. Since G| is a unit, these are relatively prime
and this completes the basis step. Assume we know that Gj, and Gj_; are relatively prime. Suppose
§|Gk and §|Gi41. Then §|(Gry1 — Gi) = (G + Gr—1 — Gi) = Gk—1, s0 ¢ is a common divisor of G}, and
Gj—1 which are relatively prime. Hence §|1 and so 1 is a greatest common divisor of Gy4+1 and Gy.

14.2.14. It takes k divisions. We prove this by induction on k. Note that for k = 1, we have G2 = 1- G2 + G
and since Gy = 1, we know the greatest common divisor. Now suppose that it takes k divisions to find
(Gi+1,Gr). We perform the Euclidean algorithm on (Gj2, Gk+1) to get G2 = 1 - Giy1 + Gy, for the
first step. The second step is Gi+1 = Gy, + Gi—1, but this is the first step for finding (Gj+1, Gx), which
takes k steps. Therefore finding (G+2, Gx+1) takes only one additional step, that is, k + 1 steps. This
completes the induction.

14.2.15. Let k be the smallest rational integer such that N(«a) < 2*. Dividing 3 = po by a = p; in the first step
of the Euclidean Algorithm gives us 8 = y2a + p2 with N(ps) < N(a) < 2¥~1. The next step of the Eu-
clidean Algorithm, gives us a = y3p2 + p3 with N(p3) < N(p2) < 2¥~2. Continuing with the algorithm
shows us that N(p;) < 2F~(*~1) = 2, 50 that the Euclidean Algorithm must terminate in no more than
k = [logy N ()] + 1 steps. And thus we have k£ = O(log, (N ().

14.2.16. a. We compute N (9 + 1) = 82 = 2 - 41. Since 1 + ¢ and its associates have norm 2 and since 5 & 4¢ and
their associates have norm 41, we try these and discover that 9 + i = —i(1 + ¢)(4 + 59).

b. Since N(1 + i) = 2, we try factorizations using its associates and find 4 = —(1 +i)%.

c¢. We compute N (22 + 7i) = 533 = 13 - 41. Since N (2 £ 3i) = 13 and N (4 + 5i) = 41, we try the asso-
ciates of these numbers and discover that 22 + 7i = —i(2 + 3i)(4 + 53).

d. Note that 210 + 2100; = 210(1 +10i) =2-3-5- 7(1 + 10i). Note that N(l + 10¢) = 101, which
is a rational prime, and so 1 + 10i is a Gaussian prime. Also, we know that 3 and 7 are Gaussian

primes. It remains to factor 2 and 5. We find that 210+2100i = —1(1+4)%(14-24)(2+4:)(3)(7)(1+107).

14.2.17.a. We compute N(7 + 6i) = 85 = 5 17. Since 1 + 2 and their associates have norm 5 and 1 £ 4i and
their associates have norm 17, we try these and discover that 7+ 6i = (—1)(1 — 2¢)(1 — 41).

b. We compute N(3 — 13i) = 178 = 2-89. Only 1 + i has norm 2 and it divides 3 — 137 only once,
leaving —5 — 8i which has norm 89, which is a rational prime. Therefore 5 + 8i is a Gaussian prime
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and we have 3 — 13i = (—1)(1 +¢)(5 + 8i).

c. By Exercise 7 in Section 1, we know 7 is a Gaussian prime and since 4 = 22 = (i(1+14)%)? = —(1+14)%,
we have 28 = (—1)(1 +4)4(7).

d. Wehave 400i = 16 - 25i = (i(1+1)2)*(52)i = (1 +4)3((1 +2i) (1 — 20))% = i (1 +4)8(1 + 24)%(1 — 20)2.

14.2.18. When k = 1 and 6 we have N(1+6i) = N(6+¢) = 37, which is prime, so 1 + 6i and 6 + ¢ are Gaussian
primes. When k = 2 and 5 we have N (2 + 5i) = N(5 + 2i) = 29, which is prime, so 2 + 5i and 5 + 2i are
Gaussian primes. If k = 3 or 4 we have N (3 + 4i) = N (4 + 3i) = 25, so we seek factorizations involving
2+ i and its associates. We find that 3+ 4i = (2+14)? and 4 + 3i = i(2 — i)2. Finally, when k = 7, we have
k+ (7 — k)i = 7, which is a Gaussian prime.

14.2.19. a. We find that 10 = —i(1 +4)?(1 + 2i)(1 — 24), so a divisor of 10 must have one of the three Gaussian
primes to a power less than or equal to the power to which it appears in this factorization. So the
possible number of factors, ignoring associates is (2 + 1)(1 + 1)(1 + 1) = 12. Since there are 4 units,
when we count associates, there are a total of 4 - 12 = 48 divisors of 10.

b. We have 128 + 256i = i(1 + i)14(1 + 2i), so the number of divisors is 4(14 + 1)(1 + 1) = 120

c.  We have 27000 = i(1 + i)5(1 + 24)3(1 — 2i)3(3)3, so the number of divisors is 4(6 + 1)(3 + 1)(3 +
1)(3+1) = 1792.

d. We have 5040 + 40320 = (1 +

1+ 4)8(1 + 24)(1 — 2i)%(3)%(7)(—3 + 2i), so the number of divisors is
A8+ 1)1+ 1)2+1)2+ 1)1 +1

)(1+1) = 2592.

14.2.20. a. We find 198 = —i(1 + i)%(3)?(11). So a divisor of 198 must have one of these Gaussian primes to
a power less than or equal to the power to which it appears in this factorization. So the possible
number of factors, ignoring associates is (2+1)(2+ 1)(1+ 1) = 18. Since there are 4 units, when we
count associates, there are a total of 4 - 18 = 72 divisors of 198.

b. We have 128 + 2567 = i(1 + 4)'4(1 4 2i), so the number of divisors is 4(14 + 1)(1 + 1) = 120.

c¢. Wehave 169000 = (1+14)%(1+24)3(2+14)3(3+21)%(2+ 3i)?, so the number of divisors is 4(6 +1)(3 +
D3+ 1)(2+1)(2+ 1) = 4032.

d. We have 4004 + 8008i = (1 + i)*(1 + 2i)(3 + 2i)(2 + 34)(7)(11), so the number of divisors is 4(4 +
D+ 1)1+ 1)(1+ 1)1+ 1)(1 +1) = 640.

14.2.21. Assume n and a + bi are relatively prime. Then there exist Gaussian integers 1 and v such that un +
v(a + bi) = 1. If we take conjugates of both sides and recall that the conjugate of a rational integer is
itself, we have fin + 7(a — bi) = 1, so n is also relatively prime to a — bi. Since a — bi is an associate of
b+ ai (multiply by ¢), we have the result. The converse is true by symmetry.

14.2.22. Let o be a Gaussian integer with unique prime factorization, up to associates, o = pip2 - - - p, given
by Theorem 14.10. By Exercise 15 in Section 14.1, each Gaussian prime pj, has exactly one associate 7, =
rt + sgi such that r > 0 and s > 0. Let pp = exmi for k = 1,2,...,t. Then a@ = eymieamy -+ m =
(e1+--€¢)my -+ 7. Lete = €1 -+ - €. Then € is also a unit and we have oo = emr - - - 1, where each 7, satis-
fies our criteria. After we gather like primes into powers, we have, after renumbering o = enp* - - - 75e.

The uniqueness of this expression follows from the uniqueness of the factorization given by Theorem
14.10 and the uniqueness of the associate given by Exercise 15 in Section 14.1.

14.2.23. Suppose that m,m2,...,m; are all of the Gaussian primes and form the Gaussian integer
Q = mmy---m, + 1. From Theorem 14.10, we know that () has a unique factorization into Gaussian
primes, and hence is divisible by some Gaussian prime p. Then p|Q and p|my 72 - - - T, s0 p divides their
difference, which is 1, a contradiction, unless p is a prime different from 7, 72, ..., 7, proving that we
did not have all the Gaussian primes.
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14.2.24. a. A Gaussian integer [ is an inverse for « modulo p if af =1 (mod p).

b. If a and p are relatively prime, then we can use the Euclidean algorithm to find Gaussian integers
0 and v such that a8 + py = 1. Then py =1 — a8, s0 u | 1 — af. Therefore @8 =1 (mod ) and so
[ is an inverse for a modulo .

14.2.25. Since 2+ 3¢ and 1+ 24 are necessarily relatively prime, we perform the Euclidean algorithm to express
1 as a linear combination of the two numbers to get 1 = (2 + 37) — 2i(1 + 2¢). Then we have that —2i is
an inverse for 1 4+ 2 (mod 2 + 3i).

14.2.26. We perform the Euclidean algorithm on 4 and 5 + 2i. We have 5 + 2i = 1(4) + (1 + 2¢). Then 4 =
(1—2i)(142i)—1,s0 that 1 = (1—2i)(1+2i)—4 = (1—20)((54+2i) —4) —4 = (1—21)(5+23) + (—2+2i)(4).
Then (—2 + 2i)4 =1 (mod 5+ 2¢) and so —2 + 2i is an inverse for 4 modulo 5 + 2i.

14.2.27. Since a and p are relatively prime, there exist Gaussian integers ¢ and 7 such that ca + 7 = 1. If we
multiply through by 8 we get foa + ST = (3, so that we know «(fo) = § (mod i) and thus z = o
(mod ) is the solution.

14.2.28. a. Using the Euclidean algorithm we have 4 —i = (1 —4)(2+14)+1,sothat 1 = (4 — i)+ (—144)(2+1),
so that (2 +¢)(—1+4) = 1 (mod 4 — ¢). Multiplying through by 3 gives us (2 + ¢)(—3 + 3i) = 3
(mod 4 —i)andsox = —3+3i =1+ 2 (mod 4 —1).

b. InExercise 26 we found that —2 + 2i is an inverse for 4 modulo 5 + 2i. Therefore x = (—2+ 2i)(—3+
4i) = —2 —14i = —1 — 2i (mod 5 + 2i).

c¢. Since3—2i = (1—1i)2+1, we see that —1+¢ is an inverse for 2 modulo 3—2i. Thenz = (—1+1)(5) =
—54+5i =141 (mod 3 — 2i).

14.2.29. a. From the Euclidean algorithm we get 1 = (—4)3 + (1)13. We multiply by (2 + i) to get 2 + ¢ =
(—4)(2+14)3+ 13(2+ i), so that we see z = —8 — 4i = 5 — 4i (mod 13) is the solution.

b. From the Euclidean algorithm we get 1 = (—1 — 2¢)(5) + (2 + 24)(4 + ¢). Then we must have z =
(~1—2i)(3—2i)=—7—4i=1—2i (mod 4 +1).

¢. From the Euclidean algorithm we get 1 = (1 —4)(3+41¢)+i(2+37). Then we musthave x = 4(1—1i) =
3i (mod 2 + 3i).

14.2.30. a. Since 9 is an inverse for 5 modulo 11, we have x = 9(2 — 3i) = —2(2 — 3i) = —4 + 6¢ (mod 11).

b. Using the Euclidean algorithm, we find 1 = (3 + 2i)(—1 — 2i) + (2¢)4, so that 2i is an inverse for 4
modulo 3 + 2i. Then © = (2¢)(7+4) = -2+ 14i = 1 + 3i (mod 3 + 2i).

c¢. Wehavel = (4 —7i)+ (1+14)(2+ 5¢),s0 1+ ¢ is an inverse for 2 + 5 modulo 4 — 7i. Then z =
(1+i)3=3+3i (mod 4 — 7i).

14.2.31. Statement: Let 1, po, . . ., 4 be pairwise relatively prime Gaussian integers and let a1, as, ..., ;. be
Gaussian integers. Then the system of congruences z = «; (mod ;),7 = 1,...,r has a unique solution
modulo M = pqpg - - - .

Proof: To construct a solution, for each k = 1,...,r, let M} = M/uy. Then M, and pu;, are relatively
prime, since ju, is relatively prime to all of the factors of Mj. Then from Exercise 24, we know M, has
an inverse A\ modulo py, so that M\, = 1 (mod pg). Now let x = oy M1 A + -+ + o.M A.. We will
show z is the solution to the system.

Since px|M; whenever j # k, we have a;M;\;, = 0 (mod py) whenever j # k. Therefore z =
arMiA; (mod py) Also, since Ay, is an inverse for M;, modulo p, we have = aj, (mod py) for every
k, as desired.
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Now suppose there is another solution y to the system. Then x = o, = y (mod py) and so pg|(z —y)
for every k. Since the py, are pairwise relatively prime, no Gaussian prime appears in more than one of
their prime factorizations. Therefore, if a Gaussian prime power 7¢|(z — y) then it divides exactly one of
the ux’s. Therefore, the product M of the p;’s also divides  — y and so # = y (mod M) showing that
is unique modulo M.

14.2.32. Using Exercise 31, we let M = (2 + 3i)(1 + 4i) = —10 + 114, so that M7 = 1+ 4 and My = 2 + 3i.
From the Euclidean algorithm, we have 1 = 2(1 + 4¢) + (—2 — ¢)(2 + 3i), so A\; = 2 is an inverse for M
modulo 2 + 3i and Ay = (—2 — 7) is an inverse for M3 modulo 1 + 47. Then the solution to the system is
o =2(1+4i)2+3(2+3i)(—2 — i) = 1 — 8 (mod — 10+ 117).

14.2.33. Using Exercise 31, we let M = (2 + 53)(3 — 44) = 26 + 7i, so that M; = 3 — 4i and My = 2 + 5i. An
inverse for M1 modulo 2 + 57 is A\; = —1 + 2¢. An inverse for My modulo 3 — 47 is Ay = —2. Then the
solution is # = (1 4 31)(3 — 4i)(—1 4 20) + (2 — i)(2 + 5i)(—2) = —43 + 9i = 9 + 23 (mod 26 + 74).

14.2.34. We seek a solution to the system of congruences z = 1 (mod 11), z =2 (mod 4+ 3i),z =3 (mod 1+
7i). Note that 4+ 3i = —i(142i)? and 1+ 7i = —i(1 +i)(1 + 2i)?, so the moduli are not relatively prime.
Indeed, 1+ 7i = (1+4)(4+ 3i), so if x is a solution to the system, then (14 7i) | (x —3). But then (4+ 37) |
(x —3),s0 x =3 (mod 4 + 3i), a contradiction. Therefore, there are no solutions to the system.

14.2.35. a. Using the construction in the solution to Exercise 37, we note that N(1 —4) =2and (1,1) =1 =4,
so that S = {0, 1} which is a complete residue system.

b. Using the construction in Exercise 37, we note that N(2) = 4 and (2,0) = 2 = d, so that S =
{0,1,4,1 + i}, which is a complete residue system.

c. Using the construction in Exercise 37, we note that N(2 + 3i) = 13 and (2,3) =1 = d, so that § =
{0,1,2,3,4,5,6,7,8,9,10,11,12}. Reducing each of these modulo 2 + 3i gives us {0,1,2,2i, -1 —
i,—i,1—i,—1414,4,1+4,—2i,—2,—1} for a complete residue system.

14.2.36. a. Using the construction in Exercise 37, we note that N(1+2¢) =5and (1,2) =1 =d,s0S = {p+¢i |
0<p<5,0<qg<1}={0,1,2,3,4}. Reducing each of these modulo 1+ 2i gives us {0, 1,4,1+1,2¢}
for a complete residue system.

b. Using the construction in Exercise 37, we note that N(3) = 9,and (3,0) =3 =d,s0 S = {0,1,2,4, 1+
1,2 +1,2i,14 24,2+ 2i}. Reducing each of these modulo 3 gives us {0,1, —-1,¢,1+4,—1+1¢,—4,1 —
i, —1 — i} for a complete residue system.

c¢. Using the construction in Exercise 37, we note that N(4 + i) = 17 and (4,1) = 1 = d, so that
S ={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}. Reducing each of these modulo 4 + i gives us
{0,1,2,-1 —4,—i,1 —4,2 —4,—1 — 24, —24,24,1 4+ 2¢, -2+ ¢,—1 +4,4,1 + i, —2, —1} for a complete
residue system.

14.2.37. Leta = a + bi and d = ged(a, b). We assert that the set S = {p + ¢i|0 < p < N(«)/d,0 < g < d} isa
complete residue system. Note that this represents a rectangle of lattice points in the plane. We create
two multiples of a. First, N(a)/d = a(a/d) is a real number and a multiple of «. Second, there exist
rational integers r and s such that ra + sb = d. So we have the multiple of « given by v = (s + ir)a =
(s +ir)(a+ bi) = (as — br) + di. Now it is clear that any Gaussian integer is congruent modulo « to an
integer in the rectangle S, since first we can add or subtract multiples of v until the imaginary part is
between 0 and d — 1 and then add and subtract multiples of N («)/d until the real part is between 0 and
N(a)/d — 1. It remains to show the elements of S are incongruent to each other modulo a. Suppose
and «y are in S and congruent to each other modulo «. Then the imaginary part of 3 —~ must be divisible
by d, but since these must lie in the interval from 0 to d — 1, they must be equal. Therefore the difference
between (3 and v is real and divisibly by «, hence by @ and hence by a@/d = N(«)/d, which proves they
are equal. Since S has N (o) elements, we are done.
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14.2.38. a. From Exercise 37, we find a complete residue system modulo —1+3i tobe S = {0, 1,2, 3,4,5,6,7,8,9}.
Also, we have —1 + 3i = (1 +4)(1 + 2i) as a product of primes. Since 1 + ¢ divides 2, we know that
no even number is relatively prime to —1 4+ 37, so we remove those, which leaves us with the set
{1,3,5,7,9}. Factoring each of these into Gaussian primes gives us {1, —i,2 — i, 4, —1} respectively.
Note that the 3rd element 2 — i is an associate of 1 + 27 which divides —1 + 33, so it is deleted also.
A reduced residue system, then, is {1, —i,4, —1}

b. From Exercise 37, we find a complete residue system modulo 2 to be S = {0, 1,4,1 + i}. Since (1 +
i,2) = 1+ 4, and the other elements of .S are units, a reduced residue system modulo 2 is {0, 1, i}.

c. From Exercise 37, we find a complete residue system modulo 5 — i tobe S = {0,1,2,...,25}. Also,
we have 5 — ¢ = (1 +4)(2 — 3i), and since 1 + ¢ divides every even integer, we delete those. Re-
ducing the remaining (odd) integers modulo 5 — ¢ gives us {1, -2 +4,4,2 + 4, —1 + 2¢,1 + 2i,3 +
24, -1 —2i,1— 24, —2i,—1i,2 — i, —1}. The seventh entry is not relatively prime to 5 + i, so we delete
it. Since all the rest these have norm less than N (2 — 3¢) = 13, and since (2 — 3i) is prime, we know
that these remaining integers are all relatively prime to 5 — 7, and so a reduced residue system is
{1,-2414,4,244,—14+2i,14+2i, -1 — 2,1 — 2, —2,—i,2 —i,—1}.

14.2.39. a. From Exercise 37, we find a complete residue system modulo 2+ 2i tobe S = {0,4,2¢,3¢,1,1+14,1+
2i,1+ 3i}. Also, we have 2+ 2i = —i(1+ )3, so every element in S with the same parity in real and
imaginary parts is not relatively prime to 2 + 2i. Deleting these gives us {i,37,1,1 + 2i}. Reducing
modulo 2 + 2: gives us {i, —i, 1, —1} for a reduced residue system.

b. From Exercise 37, we find a complete residue system modulo 4 to be S = {0,4,2¢,3¢,1,1 4+ 4,1 +
2i,1+43,2,2 41,2+ 2,2 + 3i,3,3 +14,3 + 2i,3+ 3i}. Also, we have 4 = —(1 +1)*, so every element
in S with the same parity in real and imaginary parts is not relatively prime to 4. Deleting these
gives us {7,3¢,1,1+ 24,2 44,2+ 3¢, 3,3 + 2i}. Reducing modulo 4 gives us {i, —i,1,1+2¢,2 44,2 —
i,—1,—14 2i} for a reduced residue system.

c¢. From Exercise 37, we find a complete residue system modulo 4+2i to be S = {0, 4, 24, 3¢, 44, 51, 64, 74,
8,9i,1,1 4+ 4,1 +2i,1+ 34,1+ 44,1+ 5¢,1 4 6i,1 4+ 7i,1 4 8i,1 + 9i}. Also, we have 4 +2i = (1 +
i)?(1 — 2i), so every element in S with the same parity in real and imaginary parts is not relatively
prime to 4 + 2i. Deleting these gives us {1, 3,57, 7i,9¢,1,1 4+ 24,1 + 4i,1 + 6i,1 + 8i}. Reducing
modulo 4 + 2 gives us {#,2 — 4,2 + 4, -2 + i, —i,1,1 + 2i,—1 — 2i,—1,—1 + 2i}. Note that 2 + ¢
and —1 4+ 21 are associates of 1 — 2¢ which is a prime divisor of 4 + 2i, so we delete them, leaving
{i,2—1i,—241,—1i,1,1+ 2i,—1 — 2i, —1} for a reduced residue system.

14.2.40. If 7 = p is a rational prime, then N(7) = p? and d = (p,0) = p in the solution to Exercise 37, so S =
{a+bi|0<a<p0<b<p}isacomplete residue system modulo 7. Let a + bi € S and suppose
p|la+bi. Thenp =p | a—bi sothatp | (a + bi) + (a — bi) = 2a. Therefore p | a, and similarly p |
b. Since 0 < a < pand 0 < b < p, we must have a = b = 0 as the only multiple of = in S. Therefore a
reduced residue system has |S| — 1 = p? — 1 = N(r) — 1 elements. If 7 is not a rational prime, then 7 =
p + ¢i where p and q are rational integers. Then N(7) = p? + ¢ and (p,q) = 1 = d in the construction
from Exercise 37, so a complete residue system modulo 7is S = {a +bi | 0 < a < p?+4¢%0<b<
1} ={0,1,2,...,p?> + ¢*> — 1}. Suppose 7 divides an element a of S. Then 7 | @, so that p — ¢i | a. Since
(m,7) = 1, we must have 77 = p? + ¢* | a. But a < p? + ¢%, so a = 0 is the only element of S not rela-
tively prime to . Therefore there are |S| —1 = N(7) — 1 elements in a reduced residue system modulo 7.

14.2.41. From the properties of the norm function and Exercise 37, we know that there are N(7¢) = N(m)°
residue classes modulo 7¢. Let 7 = r + si, and d = ged(r, s). Also, by Exercise 37, a complete residue
system modulo 7€ is given by the rectangle S = {p + ¢i|0 < p < N(n°)/d,0 < g < d}, while a complete
residue system modulo 7 is given by the rectangle T' = {p+ ¢i|0 < p < N(m)/d,0 < ¢ < d}. Note thatin
T there is exactly one element not relatively prime to m, and that there are N(r)~* copies of T', congru-
ent modulo 7, inside of S. Therefore, there are exactly N(7)¢~! elements in S not relatively prime to .
Thus there are N ()¢ — N(7)¢~! elements in a reduced residue system modulo 7°.

STUDENTS-HUB.com Uploaded By: anonymous



14.2. GREATEST COMMON DIVISORS AND UNIQUE FACTORIZATION 229

14.2.42.a. Suppose o = r + sv/—3 is an algebraic integer. Then it is a root of a monic polynomial f(z) with
integer coefficients. We may assume f(z) has smallest positive degree of all such polynomials. If
f(z) =z +b,then f(a) =7+ sv/—3+ bso that s = 0 and r = b, which are both integers. So assume
that deg(f) > 2. Note that f(z) is necessarily irreducible over the integers, since if f(x) = g(z)h(x)
is a nontrivial factorization of f, then g(a)h(«) = 0 and so « satisfies one of g or h which contradicts
the minimality of f.

Note that « is a root of g(z) = (z — a)(z — @) = (2% — 2rz + r? + 35?). If we divide f(z) by
g(z) we get f(z) = q(x)g(z) + r(x), with deg(r) < deg(g) = 2 or r(z) = 0. Then we have f(a) =
¢(a)g() + r(a), so that r(a) = 0. But o can not be the root of a polynomial of degree 1 or 0, so
r(z) = 0 and we have f(x) = ¢(z)g(x), where ¢(z) and g(z) have rational coefficients. We can fac-
tor out any common factors of the coefficients of ¢ and g and write f(z) = (a/b)q1(x)g1(x), where
¢1 and g; are primitive integer polynomials and (a, b) = 1. But by Gauss’ Lemma, (see the solution
to Exercise 43 part (a)) ¢i1¢1 is primitive, so no prime factor of b can divide all of the coefficients.
Therefore b = 1, and since f(x) is monic, we have a = 1. Further, since f is irreducible, we must
have ¢g; = 1 and so f(z) = g(z) = 2% — 2ra + 2 + 3s? and we know that 2r = band r? + 3s? = ¢ for
some integers b and ¢. Then r = b/2 and 3s% = (4c — b?) /4 for some integers b and c. So s = ¢/2 for
some integer e. (5 can not appear in the denominator of s, else when we square it, the single factor
of 5 in the expression leaves a remaining factor in the denominator, which does not appear on the
right side of the equation.) We check that if n and m have opposite parity, then f(z) will not have
integer coefficients. Therefore n and m have the same parity and o must be of the form a + bw.

b. Leta=a+by/—3and 3 =c+dy/-3. Thena+p8=(a+c)+ (b+d)vV/-3anda—=(a—c)+ (b—
d)v/—3, and a8 = (ac — 3bd) + (ad + bc)y/—3. Since the rational integers are closed under addition,
subtraction and multiplication, all of the results are again of the form p + gv/—3 with p and ¢ ratio-
nal integers.

c. First we check that w? = (1 — 2/-3 —3)/4 = (-1 — /-3)/2 = W. Also note that -1 —w = —1 —
(-1/24v/=3/2) = —=1/2 — v/=3/2 = w?. By part (a), we have a = a + bw for some integers a and
b. Then@ = a + bw = a + bw? = a + b(—1 — w) = (a — b) — bw, which is an Eisenstein integer, since
a — 1 and b are rational integers.

d. Note that w? = 1 and recall from part (b) that w = w? = —1 — w. Then we compute a@ = (a +
bw)(a + bw) = a? + ab(w + ©) + b*ww = a? + ab(w + (—1 — w)) + b*w - w? = a? —ab+ b? = N(a).

e. First, we seek rational integers a and b such that 1 + 5w = (1 + 2w)(a + bw) = (a — 2b) + (2a — b)w
where we have used the fact that w? = —1 — w. Then we have a — 2b = 1 and 2a — b = 5. We
solve this system to discover that a = 3 and b = 1, which makes 3 + w an Eisenstein integer and so
1+ 2w divides 1 + 5w. Next, we seek rational integers a and b such that 9 + 8w = (3 + w)(a + bw) =
(3a —b) + (a + 2b)w, where we again used the fact that w? = —1 — w. Then we have 3a — b = 9 and
a + 2b = 8. Solving this system shows that b = —15/7 is forced, which makes a + bw not an Eisen-
stein integer, and so 3 + w does not divide 9 + 8w.

f. We check that for the norm defined in part (d), we have, for Eisenstein integers o and 3, N(a) =
N(a)N(B). Let a« = a + bw # 0. Then N(a) = a? — ab + b> = (a — b/2)? + 3b%/4, which shows that
N(«) is non-negative. We conclude that if € is a Eisenstein unit, then N(¢) = 1. If e = ¢ + fw, the
identity above gives us N(e) = (e — f/2)? + 3f2/4 = 1, so that | f| < 2 else N(e) is too large. Then
(e—f/2)>=1-3f%/4<1,s0 |e| < 2 also. This gives us 9 possibilities as e, f = —1,0, and 1. Note
that N(1 —w) = N(—1 4+ w) = 3 and N(0 + Ow) = 0, so none of these three are units. The other six
are l,—1,w, —w,1 + w = —w? and —1 — w = w?. The norms of all six of these are equal to 1, so they
are all units.

g. Asin part (f), we check that, for an Eisenstein integer v, if v = a3, then N(y) = N(a)N(f), so if
N(7) is a rational prime, then one of N (), N(5) equals 1 and implies that one of «, § is a unit, and
hence 1 is an Eisenstein prime. Note that N(1 + 2w) = 1 — 2 + 2% = 3, which is a rational prime.
Therefore 1 + 2w is an Eisenstein prime. Likewise N (3 — 2w) = 3% — 3(—2) + 4 = 19 is a rational

STUDENTS-HUB.com Uploaded By: anonymous



230 14. THE GAUSSIAN INTEGERS

prime, and so 3 — 2w is an Eisenstein prime. Next, note that N (5 + 4w) = 21 = 3 - 7, so we suspect
that 1 + 2w might be a factor of 5 + 4w. We consider (14 2w)(a+bw) = (a —2b) + (2a — b)w = 5 + 4w.
Then we must have @ — 2b = 5 and 2a — b = 4 which implies ¢ = 1 and b = —2. We check that
(14 2w)(1 — 2w) = 5 + 4w, which is therefore not an Eisenstein prime. Next N(—7 — 2w) = 39 =
3 - 13, so we suspect that 1 + 2w is a factor. We consider (1 + 2w)(a + bw) = (a — 2b) + (2¢ — b)w =
—7 + —2w. Then we must have ¢ — 2b = —7 and 2a — b = —2 which impliesa = 1 and b = 4. We
check that (1 + 2w)(1 + 4w) = —7 — 2w, which is therefore not an Eisenstein prime.

h. Note that o/ = af8/38 = r + sw, where, since 83 = N () is an integer, we know that r and s are
rational numbers. Then we can find integers m and n such that [r —m| < 1/2 and |s — n| < 1/2.
Sety = m + nw and p = o — v8. If p = 0 we are done. If not, note that N(p) = N(G(a/8 — 7)) =
N(BN(a/8 =) = N(BN((r —m) + (s — n)w) = N(B)((r —m)? — (r —m)(s — n) + (s —n)?) <
N(B)(1/4+1/4+1/4) = N(B)(3/4). Thus N(p) < N(B) as desired.

i. Theorem 14.9 holds for Eisenstein integers and follows from part (h). Likewise, the proofs of Lem-
mas 14.1 and 14.2 go through unchanged, except for noting that each Eisenstein prime rhas exactly
12 divisors, +1, tw, +w?, £, +7w and +7w?. Then the proof of Theorem 14.10 goes through ver-
batim.

j. Since N(1 + 2w) = 3, we suspect it might divide 6, and we find that 6 = —2(1 + 2w)?. Since 2 and
1 + 2w are primes (see part (g)), this is the prime factorization for 6. Since N (5 + 9w) = 61, which
is a rational prime, we have, by the argument in part (g) that 5 + 9w is an Eisenstein prime, so it is
already factored. Note that 114 = 6- 19. Since N (3 —2w) = 19, we know it is prime. We try dividing
19 by 3 — 2w and find 19 = (3 — 2w)(5 + 2w). And since N (5 + 2w) = 19, which is prime, we have
the prime factorization for 19. Then from our work above, we have 114 = 6 - 19 = —2(1 + 2w)?(3 —
2w)(5 + 2w). Since 37 + 74w = 37(1 + 2w) we try to find an Eisenstein prime with norm 37. We find
N (3 + 7w) = 37 and upon division, that 37 + 74w = (1 + 2w) (3 + Tw)(—4 — Tw).

14.2.43.a. A polynomial is called primitive if the greatest common divisor of its coefficients is 1. We require
a result from algebra called Gauss” Lemma, which states that the product of primitive polynomi-
als is primitive. To prove this, suppose f(z) = ap + a1z + --- + a,2™ and g(z) = by + bz + -+ +
b, x™ are primitive integer polynomials. Let p be any prime. Let a; be the first coefficient of f(x)
which p doesn’t divide. Likewise, let by, be the first coefficient of g(x) which p doesn’t divide. Then
f(@)g(@) =co+erz 4+ cjpr + + Cnyma™ ™, where ¢j i, = boa?TF + braji k1 + - + braj +
-+ -+ bj1rap. Since every term is divisible by p except bia;, we see that ¢, is not divisible by p. We
conclude that no prime can divide all the coefficients of f(z)g(x) and so it is primitive.

Now suppose o = r + sy/—5 is an algebraic integer. Then it is a root of a monic polynomial f(z)
with integer coefficients. We may assume f(z) has smallest positive degree of all such polynomi-
als. If f(z) = x + b, then f(a) = 7 + s/=5 + b so that s = 0 and r = b, which are both integers. So
assume that deg(f) > 2. Note that f(z) is necessarily irreducible over the integers, since if f(z) =
g(x)h(x) is a nontrivial factorization of f, then g(a)h(a) = 0 and so « satisfies one of g or h which
contradicts the minimality of f.

Note that ais aroot of g(z) = (z —a)(z —@) = (2% —2rz+r%+5s%). If we divide f(z) by g(z) we
get f(z) = q(x)g(z) + r(z), with deg(r) < deg(g) = 2 or r(x) = 0. Then we have f(a) = ¢(a)g(a) +
r(a), so that r(«) = 0. But a can not be the root of a polynomial of degree 1 or 0, so r(z) = 0 and
we have f(z) = ¢g(z)g(z), where ¢(z) and g(x) have rational coefficients. We can factor out any
common factors of the coefficients of ¢ and g and write f(z) = (a/b)q1(x)g1(x), where ¢; and ¢, are
primitive integer polynomials and (a,b) = 1. But by Gauss’ Lemma, ¢1 g1 is primitive, so no prime
factor of b can divide all of the coefficients. Therefore b = 1, and since f(z) is monic, we have a = 1.
Further, since f is irreducible, we must have ¢; = 1 and so f(x) = g(x) = 22 —2rz +7? + 552 and we
know that 2r and r? + 5s* are integers. Then r = b/2 and 5s? = (4c — b?)/4 for some integers b and
c. So s = e/2 for some integer e. (5 can not appear in the denominator of s, else when we square
it, the single factor of 5 in the expression leaves a remaining factor in the denominator, which does
not appear on the right side of the equation.) Substituting these expressions in for r and s, we have
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(b/2)% + 5(e/2)? = ¢, or, upon multiplication by 4, b> + 5¢% = 4¢ = 0 (mod 4) which has solutions
only when b and e are even. Therefore r and s are rational integers.

b. Leta=a+by/=5and 8 =c+dy/-5. Thena+8 = (a+c)+ (b+d)v/—Handa—B=(a—c)+ (b—
d)y/=5, and a8 = (ac — 5bd) + (ad + bc)y/—5. Since the rational integers are closed under addition,
subtraction and multiplication, all of the results are again of the form p + ¢y/—5 with p and ¢ ratio-
nal integers.

c. First we seek rational integers a and b such that (2+ 3v/=5)(a+ by/=5) = —9+ 11y/=5. Multiplying
out the left side yields (2a — 15b) + (3a + 2b)yv/—5 = —9 + 114/=5. So we must have 2a — 15b = —9
and 3a + 2b = 11. Solving this system of equations gives us a = 3 and b = 1. Since these are rational
integers, we have (2 + 3v/=5)(3 + 1/—5) = =9 + 11y/-5.

Next, we seek rational integers a and b such that (1 + 4/=5)(a + by/=5) = (a — 20b) + (4a +
b)v/—5 = 8 + 13y/=5. We must have a — 20b = 8 and 4a + b = 13, but this system leads to b =
—19/81, which is not an integer, so we conclude that 1 + 41/=5 does not divide 8 + 13/—5.

d. Leta=a+by—5and 3 = c+dyv/—5. Then N(a)N(B) = (a®+5b%)(c?+5d?) = a?c? +5a2d? +5b%c? +
25b%d?. On the other hand, a3 = (ac — 5bd) + (ad + be)v/—5 and N (ac — 5bd) + (ad + be)y/=5) =
(ac — 5bd)? + 5(ad + be)? = a?c? — 10acbd + 25b°d? + 5(a?d? + 2adbe + b2c?) = a®c? + 5ad? + 5b%c? +
25b%d?, which is equal to the expression above, proving the assertion.

e. If € is a unit in Z[/—5], then there exists an 7 such that en = 1. From part (d) we have N(en) =
N(e)N(n) = N(1) = 1,50 N(¢) = 1. Suppose € = a + by/—5, then N (¢) = a? + 5b> = 1, which shows
that b = 0, and hence a® = 1, so that we know a = +1. Therefore the only units are 1 and —1.

f. If an integer v in Z[y/—5] is not a unit and not prime, then it must have two non unit divisors 5 and
~ such that N(8)N(v) = N(«). To see that 2 is prime, note that a divisor 8 = a + by/—5 has norm
a® + 5b%, while N(2) = 4, which forces b = 0. If 3 is not a unit, then a = 4-2, but then this forces
to be a unit, hence 2 is prime. To see that 3 is prime, we seek divisors of N(3) = 9 among a? + 5b°.
We see that b can be only 0 or %1 or else the norm is too large. And if b = %1, then the only possible
divisor is 9 itself, forcing the other divisor to be a unit. If b = 0 then a = %3, and hence 3 is prime.
To see that 1 & /=5 is prime, note that its norm is 6. A divisor a + bi can have b take on the values 0
and +1 else the norm is too large. If b = 0, then a?|6 a contradiction, so b = +1. But then (a® + 5)|6
forcing a = +1. But N(£1 + /=5) = 6 so the other divisor is a unit, and so 1 + /5 is also prime.
Note then that 2 -3 = 6 and (1 — v/=5)(1 + v/—5) = 6, so that we do not have unique factorization
into primes in Z[/—5].

g. Suppose v and p exist. Note first that (7 — 2v/=5)/(1 + v/=5) = —1/2 — 3/2y/=5, 50 p # 0. Let
v =a+by/=5and p = ¢+ dy/=5. Then from 7 — 2/=5 = (1 + v/=5)(a + by/=5) + (¢ + d\/=5) =
(a—5b+c)+ (a+b+d)v/—bweget7=a—>5b+cand —2 = a + b+ d. If we subtract the second
equation from the first we have 9 = —6b+ ¢ — d or ¢ — d = 6b + 9. Therefore, 3|c — d, and since p #
0,c—d#0,s0|c—d| > 3. We consider N(p) = ¢? +5d%. Ifd = 0, then N(p) > c¢? > 32 > 6. Ifd =
+1, then |c| > 2and N(p) = ¢ +5d> > 4+ 5 > 6. If |[d| > 2, then N(p) > 5d? > 522 =20 > 6, so
in every case the norm of p is greater than 6. So no such v and p exist, and there is no analog for the
division algorithm in Z[v/—5].

h. Suppose u = a + by/=5 and v = ¢ + dy/=5 is a solution to the equation. Then 3(a + b\/=5) + (1 +
V=5)(c + dy/—-5) = (3a+ ¢ — 5d) + (3b + ¢ + d)v/—5 = 1. So we must have 3a + ¢ — 5d = 1 and
3b+ c+ d = 0. If we subtract the second equation from the first, we get 3a — 3b — 6d = 1 which
implies that 3|1, an absurdity. Therefore no such solution exists.
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14.3. Gaussian Integers and Sums of Squares

14.3.1. a. Since the prime factorization for 5 is 5! and 5 = 1 (mod 4), we have, by Theorem 14.13, that the
number of ways to write 5 as the sum of two squares is 4(1 + 1) = 8.

b. The prime factorization of 20 is 225, and 5 = 1 (mod 4). So by Theorem 14.13, the number of ways
to write 20 as the sum of two squares is 4(1 + 1) = 8.

c. We have 120 = 235 - 3, where 5 = 1 (mod 4) but 3 = 3 (mod 4). So by Theorem 14.3, there is no
way to write 120 as the sum of two squares.

d. Wehave 1000 = 2353, so the number of ways to write 1000 as the sum of two squares is 4(3+1) = 16.

14.3.2.a. We have 16 = 2%,s0 e; = f; = 0 for all . Then by Theorem 14.13, we see that there are 4 ways to
write 16 as the sum of two squares.

b. We have 99 = 3%11, and 11 = 3 (mod 4). Since 11 appears to an odd exponent, it is impossible to
write 99 as the sum of two squares.

c. Wehave 650 =2-5%-13,and 5 = 13 = 1 (mod 4), so there are 4(2 + 1)(1 + 1) = 24 ways to write
650 as the sum of 2 squares.

d. We have 1001000 = 23537 - 11 - 13. Since 7 = 11 = 3 (mod 4) and both primes occur to odd powers,
it is impossible to write 1001000 as the sum of two squares.

14.3.3. We first check that a greatest common divisor ¢ of o and § divides 7, otherwise no solution exists. If
a solution exists, we use the Euclidean algorithm and back substitution to express J as a linear combi-
nation of a and §: ap + Bv = 0. Since ¢ divides 7 there is a Gaussian integer 1 such that 0n = v. If we
multiply the last equation by  we have aun + Svn = on = v, so we may take z¢o = pn and yo = vn as
a solution. The set of all solutions is given by « = z¢ + 57/6, y = yo — a7/J, where T ranges over the
Gaussian integers.

14.3.4. a. We perform the Euclidean algorithm on 3 4+ 2i and 5to get 3 +2i =5+ (—2+ 2i) and 5 = —(1 +
i)(—2 + 2i) + 1 and so we find that a greatest common divisor of 3 + 2i and 5 is 1, which divides
7i. Then using back-substitution, we have 1 = 5+ (1 +4)(=2+2¢) =5+ (1 +4)((3+ 2¢) — 5) =
(34 2i)(1 +4) — 5(¢). Multiplying through by 7i gives us 7¢ = (3 + 2i)(—7 + 7i) — 5(—7), so we can
take zo = —7+ 7i and yo = —7 as a solution to the equation. Then the set of all solutions is given by
x = (=T7+7Ti)+ 57,y = =7 — (3 + 2i)7, where 7 ranges over the Gaussian integers. Here we have
followed the method outlined in the solution to Exercise 3.

b. Note that (2+)(2 —¢) = 5, and so 2 — i is a greatest common divisor of 5 and itself. But 2 — ¢ does
not divide 3, so there are no solutions to this equation.

14.3.5. a. We find that a greatest common divisor of 3 4 4i and 3 — i is 2 + i. Then we compute 7i/(2 + i) =
7/5 + 14/5i, which is not a Gaussian integer. Therefore there are no solutions to the diophantine
equation.

b. We find that a greatest common divisor of 7+ ¢ and 7 — ¢ is 1 44 which does not divide 1. Therefore
the diophantine equation has no solutions.

14.3.6. a. First note that z and y must have opposite parity. If z is odd and y even, then we have 22 + 1 =
0 (mod 8), which has no solutions. Therefore x is even and y is odd. Let -y be a greatest common
divisor of x — i and x + 4. Then v | ((x + i) — (x — 7)) = 2i, but the only prime divisors of 2i are
the associates of 1 + i, whose multiples are exactly those Gaussian integers in which the real and
imaginary parts have the same parity. Since = + 14 and x — i are not of this form, we know + is a unit,
and hence  + i and x — i are relatively prime.
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b. Since z + i and x — i are relatively prime and (z — i)(x 4+ i) = 2% + 1 = y3, we can apply Exercise
10 of Section 14.2 and we have z + i = 7> for some unit n and some Gaussian integer J. Note that
13 =1,(-1)® = -1, = —i and (—i)® = i, so that every unit has a cube root in the Gaussian inte-
gers and we can write 7 = € for some unit €. So we have z + i = (€§)3. Let €d = r + si and write
z+1i=(r+si)® =r3+3r?si — 3rs® — s3i. Equating real and imaginary parts give us « = r® — 3rs?

and 1 = 3r2s — s5.

c. Wehavel = 3r%s—s® = 5(3r2 —s?),s0 s | 1 and we know that s = 1. If s = 1, we have 1 = 3r2 — 1
or 3r> = 2, which is impossible. If s = —1, the equation reduces to 37 = 0, and so » = 0. Then
from the other equation we have z = r3 —3rs? = 0, which forces y = 1, and this is the only solution.

14.3.7. Suppose z,y, z is a primitive Pythagorean triple with y even, so that x and z are necessarily odd. Then
2? = 22 +y? = (z +1iy)(x — iy) in the Gaussian integers. If a rational prime p divides z + iy, then it must
divide both z and y, which contradicts the fact that the triple is primitive. Therefore, the only Gaussian
primes which divide z + iy are of the form m + in with n # 0. Also, if 1 + i|z + iy, then we have the
conjugate relationship 1 — iz — iy, which implies that 2 = (1 — 4)(1 + i) divides 22, which is odd, a con-
tradiction. Therefore we conclude that 1 + ¢ does not divide = + iy, and hence neither does 2. Suppose
0 is a common divisor of x + iy and x — iy. Then § divides the sum 2z and the difference 2iy. Since we
know that 2 is not a common factor, 6 must divide both = and y, which we know are relatively prime.
Hence ¢ is a unit and = + iy and = — iy are also relatively prime. Then we know that every prime which
divides = + iy is of the form 7 = u + 7v and so T = u — iv divides « — iy. Since their product equals
a square, each factor is a square. Thus = + iy = (m + in)? and = — iy = (m — in)? for some Gaussian
integer m + in and its conjugate. But then = + iy = m? — n? + 2mni so z = m? — n? and y = 2mn. And
22 = (m+ni)?(m —ni)? = (m? +n?)?, so z = m? + n?. Further, if m and n were both odd or both even,

we would have z even, a contradiction, so we may conclude that m and n have opposite parity. Finally,

having found m and n which work, if m < n we can multiply by ¢ and reverse their roles to get m > n.

The converse is exactly as in Section 13.1.

14.3.8. If p is a prime of the form 4k + 3 which appears in the factorization of z to an odd power, then it also
appears in the factorization of z* to an odd power. Therefore 2% can be written as a sum of two squares if
and only if z can. Suppose z satisfies the hypotheses of Theorem 14.13 so it can be written as z = a® + b%.
Then z = (a+bi)(a—bi) and z* = (a+bi)3(a—bi)3. Likewise 23 satisfies the hypotheses of Theorem 14.13
and so it can be written as 2% = 22 +y? = (z +yi)(z — yi). Since (a + bi)® = (a® — 3ab?) + (3a®b — b®)i, we
can set z = a® — 3ab? and y = 3a?b — b?, so that z = a® + b?. This investigation shows that if we choose
any integers a and b, then a solution of the diophantine equation is given by the last three equations.
Further, by our construction, all solutions must arise in this fashion.

14.3.9. By Lemma 14.3, there is a unique rational prime p such that 7 |p. Let &« = a + bi and consider 3 cases.
Case 1: If p = 2, then 7 is an associate of 1 44 and N(m) — 1 = 1. Since there are only two congruence
classes modulo 1 + i and since « and 1 + i are relatively prime, we have oV (™~! = o =1 (mod 1 + ).
Case 2: If p = 3 (mod 4), then 7 = pand N(r) — 1 = p? — 1. Also (—i)? = —i. By the Binomial
theorem, we have o = (a + bi)P = aP + (bi)? = —ib? = a — bi = « (mod p), using Fermat's little
theorem. Similarly @” = « (mod p), so that ar’
relatively prime, we have oV (™)~ =1 (mod p).
Case 3: If p = 1 (mod 4), then 77 = p, i? = i, and N(7) — 1 = p — 1. By the Binomial theorem, we
have a? = (a + bi)? = a? + (bi)? = a + bi = a (mod p), using Fermat’s little theorem. Cancelling an «
gives us a?~! = 1 (mod p), and since 7|p we have o¥(")=! =1 (mod ), which concludes the proof.

@” = o (mod p) and since p = 7 and « and 7 are

14.3.10. Let r = ¢(v) and {a1,a2,...,a,} be a reduced residue system modulo . We assert that the set
{aay,aaq,. .., aa,} is also a reduced residue system modulo +. To see this, first note that since both
a and oy, are relatively prime to v, for any %, so is aay. Second, suppose ar; = vy, (mod ) for
some j and k. By Exercise 24 of Section 14.2, « must have an inverse modulo v, and we have a4,
a; (mod 7), which shows that ; = a4. This proves our assertion. Then we must have a1z - - - o,
(aaq)(aas) - (aay) = a"(agas - - a,) (mod 7). Since each ay, has an inverse modulo +, we can cancel
them, and we are left with o” =1 (mod ), which is the result.
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14.3.11. Let 7 be a Gaussian prime. If o = 1 (mod 7), then 7|a? — 1 = (a — 1)(a + 1), so that either o =
lora = —1 (mod 7). Therefore only 1 and —1 can be their own inverses modulo 7. Now let a; =
1,a2,...,a,-1,, = —1 be a reduced residue system modulo #. For each ay, k = 2,3,...,r — 1, there
is a multiplicative inverse modulo 7 o, such that ayaj, = 1 (mod 7). If we group all such pairs in the re-
duced residue system together, then the product is easy to evaluate: Qg =
1(agah)(asal) -+ (ar—1)(al._1)(=1) = —1 (mod 7), which proves the theorem.

14.3.12. a. Suppose that 2 = «f is a nontrivial factorization in the Eisenstein integers. Then we have 4 =
N(2) = N(a)N(f), and since neither factor is a unit, we must have N(a) = 2. Let « = a + bw, so
that N(a + bw) = a* — ab+ b* = 2. We can complete the square in a in this last equation to get
(a—b/2)? 4 3b2/4 = 2, from which we see that if |b| > 2, then the left side of the equation is at least
3. Therefore b = 1 or 0. If b = 1, we can solve the equation for a and we get a = (1 4+ /5)/2, which
is not a rational integer. Therefore b = 0 and N (o) = N(a) = a® = 2. But there are no solutions to
this last equation, and we conclude that 2 is an Eisenstein prime.

b. Let p be a rational prime with p = 2 (mod 3), and suppose p = 7p is a nontrivial factorization in
the Eisenstein integers. Then we have p? = N(p) = N(m)N(p), and since neither factor is a unit, we
conclude that N(7) = p. Let 7 = a + bw, so that N(a + bw) = a®> —ab+b* = p. If a = —b (mod 3),
then this equation becomes p = a* — ab + bv? = a? + a? + a? = 3a® = 0 (mod 3), a contradiction,
since 3 { p. Therefore a + b # 0 (mod 3) and so a + b has an inverse modulo 3. Then we can write
p=a’?—ab+b>=(a+b) "t a+b)(a®—ab+b?) = (a®>+b%)(a+b)"' = (a+b)(a+b)~t =1 (mod 3),
where we have used Fermat's little theorem to write a® + b = a + b (mod 3). But this contradicts
the fact that p = 2 (mod 3), and so we conclude that p is an Eisenstein prime.

c. Note that if a rational prime p divides an Eisenstein integer a 4 bw, then we have p(c + dw) = a + bw
for some integers ¢ and d. This implies that ¢ = pc and b = pd. That is, if a rational prime divides
an Eisenstein integer, then it divides the respective parts. Since p odd and of the form 3k + 1, we
know that p = 1 (mod 6) and then from Exercise 3 in Section 11.2, we see that —3 is a quadratic
residue modulo p. So there is a rational integer u such that p | u? + 3 = (u — v/=3)(u + /=3) =
(u—1—-2w)(u+ 1+ 2w). If p were an Eisenstein prime, then p would have to divide one of these
factors, and hence, by our comment above, p would have to divide 2, which it can not. Therefore p
is not an Eisenstein prime, and some Eisenstein integer ¢ + dw divides p nontrivially. Then N (c +
dw) | N(p) = p?, and since the division is nontrivial, we must have N(c + dw) = ¢* — ¢d + d* = p.
We note that p = N(c + dw) = (¢ + dw)(c + dw?), which gives us a factorization for p. It remains
to check that these factors are not associates. If they were associates, then when we divide one by
the other, we would get a unit. But (¢ + dw)/(c + dw?) = (¢ + dw)(c + dw)/((c + dw)(c + dw?)) =
(¢ — d? + (2¢d — d*)w)/p, so that p | ¢ — d? and so ¢ = +d mod p. But also p | 2ed — d?,s0 0 =
2cd — d? = +2d? — d> mod p, from which we conclude p | d and so p | ¢. But then p = N(c + dw) =
N(p(a + bw)) = p?>N(a + bw) > p, a contradiction. Therefore ¢ + dw and ¢ + dw? are not associates.
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APPENDIX A
Axioms for the Set of Integers

A.0.1.a. By the commutative law, a(b+ ¢) = (b + ¢)a. Now, using the distributive law, a(b+ ¢) = (b+ ¢)a =
ba + ca = ab+ ac.

b. By the distributive law, (a + b)? = (a + b)(a + b) = a(a + b) + b(a + b) = a® + ab + ba + b*. By the
law of commutativity, this is equal to a® + 2ab + b%.

c¢. From the commutative law of addition, a + (b + ¢) = a + (¢ + b). This is equal to (a + ¢) + b by
associativity. With a final application of commutativity, we see that a + (b + ¢) = (¢ + a) + b.

d. Using the definition of subtraction and additive commutativity, (b — a)
b) + (=b+ ¢) + (—c + a). By associativity, this is equal to —a + (b — b) +
nition of an additive inverse, this is 0.

+(c=b)+(a—c)=(—a+
(¢ — ¢) + a. Using the defi-

A.0.2.a. Wehave (-1)a+1la=(-1+1)a=0= —a+a = —a+ la. Now cancel the 1a’s from the beginning
and end of this equation.
b. Note that a(—b) + ab = a(—b+b) = 0 = (ab) — (ab). Now cancel the ab’s.
¢. Using part (b), (—a)(—b) + (—a)b = —a(—=b+b) = 0 = ab+ (—a)b. Now cancel the (—a)b’s.
d. Wecompute —(a +b) = —1(a+b) = (a +b)(—1) = a(-1) + b(—1) = —la — 1b = (—a) + (=b).

A.0.3. By the definition of the inverse of an element, 0 + (—0) = 0. But since 0 is an identity element, we
have 0 + (—0) = —0. It follows that —0 = 0.

A.0.4. Suppose that ab = 0. Suppose further that b # 0. We also have 00 = 0 by Example 1.1. Hence ab = 0b.
By the cancellation law it follows that @ = 0. Hence either a = 0 or b = 0.

A.0.5. Letz be a positive integer. Since x = = — 0 is positive, z > 0. Now let z > 0. Then z — 0 = x is positive.
A.0.6.a. Wehave (b+c¢) — (a + ¢) = b — a, which is positive since a < b. Therefore, & + ¢ < b+ c.

b. Ifa =0, thea® =0. Ifa > 0, then a? > 0 by the closure of the positive integers. If a < 0, then by

the trichotomy law, —a is a positive integer. Thus a? = (—a)(—a) > 0 by the closure of the positive

integers.

c¢. Wehave ac — bc = (a — b)c. By part (a) of Exercise 2, (a — b)c is positive since both a — b and ¢ are
negative. Thus, bc < ac.

d. By part (b), ¢* > 0. Thus ¢* < 0since 0 — ¢ = (—c)c? is positive.

A.0.7. Wehavea —c=a+ (-b+0b) —c= (a—b)+ (b— c), which is positive from our hypothesis and the
closure of the positive integers.

A.0.8. Suppose that there are positive integers less than 1. By the well ordering property there is a least such
integer, say a. Since a < 1 and a > 0, Example 1.2 shows that a®> = aa < la = a. Since a? > 0, it follows

235
STUDENTS-HUB.com Uploaded By: anonymous



236 A. AXIOMS FOR THE SET OF INTEGERS

that a? is a positive integer less than a, which is a contradiction.
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APPENDIX B

Binomial Coefficients

B.0.1.a. We have (')°) = 100!/(0!100!) =

50

b. We have = 50!/(149!) = 50.

0

c¢. Wehave 20!/(3!17") = 1140.

111/(56!) = 462.

10

e. Wehave 10!/(7'3!) = 120.

f. We have

(
(7)
(5) =
d. We have (1))
() =
(7o) = 701/(7010!)
B.0.2. Wehave (3) = 84, () = 126, (') = 210, and 84 + 126 = 210.

B.0.3.a. We compute (a + b)® = a® + 5a*b + 10a3b? + 10a%b> + 5ab* + bS.

b. We compute (z+y)' = 219 +102% + 4528y? + 1202 7y3 + 2102%y* 4 25225y5 + 21024y° + 12023y" +
4522y + 102y° + y'°.

c. We compute (m —n)” =m" — Tm®n + 21m°n? — 35mn3 + 35m3nt — 21m?2n® + Tmn® — n".
d. We compute (2a + 3b)* = 16a* + 96a3b + 216a%b? + 216ab® + 81b*.
e. We compute (3z — 4y)5 = 2432° — 16202y + 432023y* — 57602%y> + 3840zy* — 1024y°.

f. We compute (5z + 7)% = 3906252% + 437500027 + 214375002 + 6002500025 + 1050437502 +
1176490002 + 8235430022 + 329417202 + 5764801.

200' 2993101

B.0.4. The coefficient of 29yl in (2 + 3y)?% is (29090) 2993101 — 200,

B.0.5. On the one hand, [1+4(—1)]" = 0" = 0. On the other hand, by the binomial theorem, >";_ (1) (}) =
(L+(=1)"

B.0.6. Wehave) ; ,(}) =2"and }_;_(—1)*(}) = 0. Adding these two equations gives 2 () + (5) + (}) + -+ ) =

2". Hence (5) + (5) + () +--- = 2"~ 1. It follows immediately that (1) + (3) + (%) +--- =2""".

B.0.7. Wehave (1) (;) = nl/(rl(n—r)1)-r1/ (Kl (r—k)!) = nl(n—k)l/ (K(n—k)\(n—r)l(n—k—ntr))) = (1) (:75).

n—r

B.0.8. When n = [m/2], (') is at a maximum. To see this, consider the ratio (})/(,”,) = (m!/(k!(m —

E)))/(m!/((k—1)(m—k+1)!)) = (m—k+1)/k. Therefore, (') > (,,) ifand only if m — k+1 > Fk, that
isif n < (m+1)/2 = [m/2]. Thus, the value of (") increases as n increases to [m /2], and then decreases.

B.0.9. We use Exercise 44 in Section 1.3. o® = a+1and 3* = 3+1, since they are roots of 2° —xz—1 = 0. Then
wehave fa, = (02" = 5)/V5 = (1/VB)((a+1)" = (8+1") = (1/V5) (Sio (e’ - i () #) =
(1/v5 \[ Z ( ) - ) = Z (?) f; since the first term is zero in the second to last sum.
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238 B. BINOMIAL COEFFICIENTS

B.0.10. We proceed by induction. When k = 1, this is clear. For the inductive step, we assume that (}) =
a!/ (kN (x—k)). Then (,7,) = (z—k)/(k+1)(}) = (z—k)/(k+1)-2!/ (k! (x—k)!) = !/ ((k+ 1)/ (z—k—1)").

B.0.11. Using Exercise 10, (%) + (nil) =zl/(nl(x —n))+2!/(n+ Dz —n—-1)1) = (2!(n+1))/((n+ 1)!(x —
)+ (@l(z—n))/(n+ D a—n)!) = (@ @—n-+nt+1))/(n+Dlz-n)) = @+ 1)/ (n+D)lz—n)) = ().

B.0.12. An extremely short combinatorial proof of the binomial theorem can be given. The coefficient of
zFy" =% in (z + y)" is the number of ways to choose z k times from the n factors (z + y), and conse-
quently, y n — k times. This equals the number of subsets with k elements of a set with n elements. (Here
the elements in the subsets are the terms where x is chosen, and the n elements are the n terms.) Hence

the coefficient of z*y"~* is (7). It follows that (z + )" = Y7 _, () z*y"~*.

B.0.13. Let S be a set of n copies of z + y. Consider the coefficient of z¥y"~* in the expansion of (x + y).
Choosing the = from each element of a k—element subset of S, we notice that the coefficient of z*y"~*
is the number of k—element subset of S, (7).

B.0.14. The number of elements that have either property P; or property P is n(P1) + n(P2) — n(P ) since
an element with one, but not both, of these properties, is counted once by the sum n(P;) + n(P) but not
by the term n(P; P;) and an element with both of these properties is counted twice by the sum n(P;) +
n(Py), and the overcount is removed since it is counted once again by n(P; P;). Hence the number of
elements possessing neither property is n — [n(P1) + n(Ps) — n(P1 P2)].

B.0.15. By counting elements with exactly 0, 1, 2, and 3 properties, we see that only elements with 0 proper-
ties are counted in n — [n(Py) + n(Pe) + n(Ps)] + [n(P1, P2) + n(P1, P3) + n(Pa, P3)] — [n(Py, Ps, Ps)], and
those only once.

B.0.16. The hint follows from Exercise 12. Using this, if £ > 1, then an element with k properties isn’t counted.
If k = 0, then it is clearly counted once.

!

k1, ko n!
kilka!l- ko !”

B.0.17. A term of the sum is of the form azy'x5* - - -zFm where k1 + ko + -+ k, =nand a =

B.0.18. Using the formula from Exercise 17 we have 27 +7 2% y+21 2% y2+35 2% y3+35 23 y* +21 22 y° + T2 35 +
Y+ T2 2 +422°y 2+ 10524 2 2 + 14023 92 2 + 10522y 2 + 42295 2 + TS 2 + 21 2° 22 + 105 2% y 22 +
21023 y? 22 + 21022 y3 22 + 1052 y* 22 4+ 2195 22 + 3524 23 + 14023 y 22 + 21022 42 23 + 1402 9> 23 +
35yt 23 + 3523 24 + 10522 y 22 + 1052 y? 24 + 3593 24 + 2122 25 + 422y 2° + 2192 25+ T 20+ Ty 26 + 27

B.0.19. From Exercise 17 it follows that the coefficient is 512L2%(—3%)5% = 27720-8-81-3125 = 56, 133, 000, 000.
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