P et
: 1 - -

-y

BIRZEIT UNIVERSITY

Thinking
in Objects

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc_ All

S-HUB.com Uploaded By: Jibreel Bornat

Class Abstraction and Encapsulation

¢ Class abstraction means to separate class
implementation from the use of the class.

** The creator of the class provides a description of the
class and let the user know how the class can be used.

¢ The user of the class does not need to know how the
class is implemented.

¢ The detail of implementation is encapsulated and
hidden from the user.

Class implementation
is like a black box Class Contract Clients use the
hidden_ from the (Signatures of public class through
clients methods and public the contract of

constants) the class
TS-HUB.com Uploaded By: Jibreel Bornat

Case Study: The BMI Class

¢ get methods for these data fields are
provided in the class, but omitted in the
UML diagram for brevity.

BMI
-name: String The name of the person.
-age: int The age of the person.
-weight: double The weight of the person in pounds.
-height: double The height of the person in inches.

+BMI(name: String, age: int, weight: | Creates a BMI object with the specified

double, height: double) name, age, weight, and height.
+BMI(name: String, weight: double, Creates a BMI object with the specified
height: double) name, weight, height, and a default age
20.
+getBMI(): double Returns the BMI
+getStatus(): String Returns the BMI status (e.g., normal,

overweight, efc.)
TS-HUB.com Uploaded By: Jibreel Bornat

Object Composition

% Aggregation models has-a relationships and represents
an ownership relationship between two objects.

T
its
0T

its

ass an aggregating class.

ass an aggregated class.

he owner object is called an aggregating object and

ne subject object is called an aggregated object and

** Composition is actually a special case of the aggregation
relationship.

%Tc B |EE:IEE q Student |O

Composition Aggregation

N/

1..3

Uploade

Address ‘
—H t

Class Representation

** An aggregation relationship is usually
represented as a data field in the aggregating class.

** For example, the relationship in the previous
Figure can be represented as follows:

public class Name | public class sStudent { public class Address {

private lame nane;

1 private Address address; }

%TS—HUB.com Uploaded By: Jibre€l Bornat

Aggregation Between Same Class

*»» Aggregation may exist between objects of the

same class.

¢ For example, a person may have a supervisor:

Person

1

Q

%TS—HUB.com

Supervisor

public class Person {

// The type for the data is the class itself

private Person supervisor;

} Uploaded By: Jibreel Bornat

Aggregation Between Same Class

*** What happens if a person has several

supervisors?

Person

1

0

i

Supervisor

public class Person {

private Person[]| supervisors;

o
TS-HUB.com

Uploaded By: Jibreel Bornat

Example: The Course Class

Course

—courseName: String

-students: Stringl]

-tmmber0fStudents: int

+Coursef{courselName: String)

+getCourseNane () @ String

tgetStudents() @ Stringl]

tgetNumbe rOfStudents () ¢ 1nt

+addStudent (student: String):
+dropStudent{student: String) :

vold

vold

%TS—HUB.com

Thename of th € course.
An array to store the students for the course.
The number of students {(default: 0).

Creates acoursewith the specified name.
Returns the coursename.

Adds anew student to the course.

Drops a student from the course.

Returns the students in the course.

Returns the number of students m the course

Uploaded By: Jibreel Bornat

Designing a Class

< (Coherence) A class should describe a
single entity, and all the class operations

should logica
coherent pur

ly fit together to support a
00oSe.

¢ You can use a class for students, for

example, but

yvou should not combine

students and staff in the same class, because

students and

%TS—HUB.com

staff have different entities.

Uploaded By: Jibreel Bornat

Designing a Class cont.

< (Separating responsibilities) A single entity

with too many responsibilities can be broken into

severa

 Examp

classes to separate responsibilities.

e: the classes String, StringBuilder, and

StringBuffer all deal with strings, for example, but have
different responsibilities:

= String class deals with immutable strings.

= StringBuilder class is for creating mutable strings.

= StringBuffer class is similar to StringBuilder except that
StringBuffer contains synchronized methods for updating strings.

%TS—HUB.Com Uploaded By: Jibre#l Bornat

Designing a Class cont.

»* Classes are designed for reuse.

¢ Users can incorporate classes in many different
combinations, orders, and environments. Therefore,

you should design a class that imposes no
restrictions on what or when the user can do with it:

= Design the properties to ensure that the user can set
properties in any order, with any combination of

values.

= Design methods to function independently of their
order of occurrence.

%TS—HUB.com Uploaded By: Jibre€!l Bornat

Designing a Class cont.

“ Follow standard Java programming style
and naming conventions:

= Choose informative names for classes, data
fields, and methods.

= Always place the data declaration before the
constructor, and place constructors before
methods.

" Always provide a constructor and initialize
variables to avoid programming errors.

%TS—HUB.com Uploaded By: Jibre®l Bornat

Wrapper Classes

= Boolean
NOTE:
= Character
= Short (1) The wrapper classes dO not
have no-arg constructors.
= Byte
(2) The instances of all wrapper
" Integer . |
classes are immutable, i.e.,
- Long their internal values cannot be
= Float changed once the objects are
created.
=" Double

%TS—HUB.Com Uploaded By: Jibretl Bornat

The Integer and Double Classes

java.lang.Integer

java.lang.Double

-value: int
+MAX VALUE: int
+MIN VALUE: int

-value: double
+MAX VALUE: double
+MIN VALUE: double

+Integer(value: int)
+Integer(s: String)
+byteValue(): byte
+shortValue(): short
+intValue(): int
+longVlaue(): long
+floatValue(): float
+doubleValue():double
+compareTo{o: Integer): int
+toString(): String
+valueOf(s: String): Integer

+valueOf{s: String, radix: int): Integer

+parselnt(s: String): int

:*_'Eﬂ_rﬁtﬁl.ﬂ.liﬁf String, radix: int): int

+Double(value: double)
+Double(s: String)
+byteValue(): byte
+shortValue(): short
+intValue(): int
+longVlaue(): long
+floatValue(): float
+doubleValue():double
+compareTo(o: Double): int
+toString(): String
+valueOf(s: String): Double

+valueOf{s: String, radix: int): Double

+parseDouble(s: String): double

+parseDouble(s: String, raLchiji:UintF: g%bl%ib

re€l Bornat

Numeric Wrapper Class Constructors

+*¢* You can construct a wrapper object either from
a primitive data type value or from a string
representing the numeric value.

** The constructors for Integer and Double are:
public Integer(int value)
public Integer(String s)
public Double(double value)
public Double(String s)

%TS—HUB.com Uploaded By: Jibre&l Bornat

Numeric Wrapper Class Constants

¢ Each numerical wrapper class has the constants
MAX_VALUE and MIN_VALUE.

*** MAX_VALUE represents the maximum value of
the corresponding primitive data type.

¢ For Byte, Short, Integer, and Long, MIN_VALUE
represents the minimum byte, short, int, and long
values.

** For Float and Double, MIN_VALUE represents
the minimum positive float and double values.

TS-HUB.com Uploaded By: Jibre® Bornat

Conversion Methods

¢ Each numeric wrapper class implements
the abstract methods doubleValue,
floatValue, intValue, longValue, and

shortValue, which are defined in the Number
class.

** These methods “convert” objects into
primitive type values.

%TS—HUB.com Uploaded By: Jibreel Bornat

The Static valueOf Methods

** The numeric wrapper classes have a
useful class method, valueOf(String s).

¢ This method creates a new object
initialized to the value represented by the
specified string.
*** For example:

Double doubleObject = Double.valueOf("12.4");

Integer integerObject = Integer.valueOf("12");

%TS—HUB.com Uploaded By: Jibretl Bornat

The Methods for Parsing Strings into Numbers

*** You have used the parselnt method in the
Integer class to parse a numeric string into
an int value and the parseDouble method in
the Double class to parse a numeric string

into a double value.

¢ Each numeric wrapper class has two

overloaded parsing met
numeric string into an a
value.

TS-HUB.com

nods to parse a

opropriate numeric

Uploaded By: Jibre# Bornat

Automatic Conversion Between Primitive
Types and Wrapper Class Types

** JDK 1.5 allows primitive type and wrapper classes
to be converted automatically. For example, the
following statement in (a) can be simplified as in (b):

Integer[] intArray = {new Integer(Z), Equivalent Integer([] intArray =JZ, 4, 3};
new Integer(4), new Integeri{3)}:

(a) New JDK 1.5boxing (b)

Integer[] arr = {1, 2, 3};

System.out.printin(arr[0] + arr[1] + arr[2]);

%TS—HUB.com Unboxing Uploaded By: Jibreel Bornat

Biginteger and BigDecimal

*** If you need to compute with very
large integers or high precision floating-
point values, you can use the Biglnteger
and BigDecimal classes in the java.math
package.

** Both are immutable.

%TS—HUB.com Uploaded By: Jibre&l Bornat

Biginteger and BigDecimal

Biginteger a = new Biglnteger("9223372036854775807");
Biginteger b = new Biginteger("2");

Biginteger c = a.multiply(b); // 9223372036854775807 * 2
System.out.printin(c);

BigDecima
BigDecima
BigDecima

a = new BigDecimal(1.0);
b = new BigDecimal(3);
¢ = a.divide(b, 20, BigDecimal.ROUND_UP);

System.out.println(c);

*TS—HUB.com Uploaded By: Jibré& Bornat

