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Preprocess 
Image acquisition, restoration, and enhancement 

Intermediate process 
Feature extraction & Image segmentation 

High level process 
Image interpretation and recognition 
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 Importance of Image Segmentation 
 Image segmentation is used to separate an image into 

constituent parts based on some image attributes. Image 
segmentation is an important step in image analysis 
1. Image segmentation reduces huge amount of unnecessary  data while 

retaining only importance data for image analysis   

2. Image segmentation converts bitmap data into better structured data 
which is easier to be interpreted 
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 Image Attributes for Image Segmentation  
1. Similarity properties of pixels inside the object are used to 

group pixels into the same set. 
2. Discontinuity of pixel properties at the boundary between 

object and background is used to distinguish between pixels 
belonging to the object and those of background. 

 
Discontinuity: 

Intensity change 
at boundary 

Similarity: 
Internal  

pixels share 
the same  
intensity Uploaded By: Jibreel BornatSTUDENTS-HUB.com
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 It is not unusual to find the three types of edges in one image 
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Original image 

Edge 
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Gray level profile 

The 1st derivative 
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The 2nd derivative 

Therefore, for detecting edges, we can apply zero crossing detection  to the 2nd derivative 
image or thresholding the absolute of the 1st derivative image Uploaded By: Jibreel BornatSTUDENTS-HUB.com
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Note: the original image is smoothed by a 5x5 moving average mask first. 
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Effects of noise 

 Consider a single row or column of the image 
 Plotting intensity as a function of position gives a signal 

Where is the edge? 
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AWGN s = 0.1 

AWGN s = 1.0 

AWGN s = 10 

dx

df
2

2

dx

fdf(x) 
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Solution:  smooth first 

Where is the edge?  Look for peaks in  Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Derivative theorem of convolution 

 This saves us one operation: 
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Laplacian of Gaussian 

 Look for zero-crossings of   

Laplacian of Gaussian 

operator 
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2D edge detection filters 

       is the Laplacian operator: 

Laplacian of Gaussian 

Gaussian derivative of Gaussian 
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 The Canny Edge Detector 

 Assume:  

 Linear filtering 

 Additive Gaussian noise  

 Edge detector should have: 

 Good Detection.  Filter responds to edge, not noise. 

 Good Localization: detected edge near true edge. 

 Single Response: one per edge. 
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 Since edge detection is the initial step in object 
recognition, it is important to know the differences 
between edge detection techniques. 

 Gradient-based algorithms such as the Prewitt filter have a 
major drawback of being very sensitive to noise. 

 The size of the kernel filter and coefficients are fixed and cannot 
be adapted to a given image.  

 An adaptive edge-detection algorithm is necessary to provide a 
robust solution that is adaptable to the varying noise levels of 
these images to help distinguish valid image contents from 
visual artifacts introduced by noise. 
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 The performance of the Canny algorithm depends heavily 
on the adjustable parameters, , which is δ and the 
threshold values, ‘T1’ and ‘T2’.  
 The bigger the value for δ, the larger the size of the Gaussian 

filter becomes. This implies more blurring, necessary for noisy 
images, as well as detecting larger edges.  

 However, the larger the scale of the Gaussian, the less accurate 
is the localization of the edge.  

 The user can tailor the algorithm by adjusting these parameters 
to adapt to different environments.  

 Canny’s edge detection algorithm is computationally more 
expensive compared to Sobel, Prewitt and Robert’s operator. 
However, the Canny’s edge detection algorithm performs better 
than all these operators under almost all scenarios 

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Edge Detection Summery 
42 

Original 

Roberts 

Sobel 

Prewitt Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Edge Detection Summery 
43 

Sobel Roberts 

Original Canny 
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(a) Original 
Image with 
Noise  

(b) Sobel 
(c) Robert 
(d) Canny 
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 SOFT COMPUTING APPROACHES 

 Fuzzy based Approach 

 Genetic Algorithm Approach 

 Neural Network Approach 

 

 

 Soft computing approaches, are applied on a real 
life example image of nature scene 
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Original Roberts Sobel 

Fuzzy Genetics Neural Network Uploaded By: Jibreel BornatSTUDENTS-HUB.com
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TM = 30% of 
maximum gradient 
value 
 
A = 90o TA = 45o 

 

K = 25 pixels 

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Regional Edge Linking 
51 

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Regional Edge Linking 
52 

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Regional Edge Linking 
53 

 Algorithm: for a set of ordered distinct points P in a binary image, 
finding a polygonal fit can be done by 
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Example 
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After thresholding 
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An image can be expressed as 

),(),(),( yxryxiyxf 

i(x,y) = illumination component 
r(x,y) = reflectance component 

Reflectance  
Function r(x,y) 

Illumination  
Function i(x,y) 

Histogram 

Image histogram 

f(x,y) 
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     Global thresholding of nonuniform  
illumination image can cause huge 
errors! 

Histogram 

Global threshold level 

Nonuniform illumination 
 image 

Global thresholding 
 result 
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 Niblack’s method  

 local-variance-based method by Sauvola 

 Local adaptive method proposed by Bernsen 

 Entropy-based method By Kapur 

 learning framework for the optimization of the 
binarization methods by Cheriet 
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seed pixel 
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Region Splitting 
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Merging 
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 Merging 
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 Morphological Watersheds 

 Clustering Based Segmentation Methods 

 Graph-based methods (graph--‐cut, random walk) 

 Shape-based methods (level set, active contours) 

 Energy minimization methods (MRF,..) 

 Machine Learning based methods 
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