ENCS4130 Computer Networks Laboratory

### **EXP#6 Access Control Lists (ACLs)**

Uploaded By: anonymous

Slides By: Eng.Tariq Odeh





### Objectives

- Learn how to configure and verify Access Lists with Cisco routers.
- Introducing to Standard ACL and Extended ACL.





## Introduction to Access Control Lists (ACLs)

- What is an ACL?
  - ACL, or Access Control List, is a set of rules to control network traffic and enhance network security.
- How ACLs Work?
  - ACLs filter network traffic by determining whether routed packets are forwarded or blocked at router interfaces.
- Access List Criteria
  - Source Address
  - Destination Address
  - Upper-layer Protocols (e.g., TCP, UDP)



Uploaded By: ano,





## **Uses & Creating ACLs**

#### • Why Use ACLs?

- Traffic Flow Control: Manages data flow within networks.
- Routing Updates: Restricts the spread of specific route data.
- Network Security: Prevents unauthorized access and controls traffic in/out of the network.

#### • Creating an Access List:

- 1. Specify the Protocol: Choose the protocol to filter, like IP, TCP, or UDP.
- 2. Assign a Unique Identifier: Each ACL has a unique name or number.
- 3. Define Filtering Criteria:
  - Use multiple access control entries (ACEs) to specify source, destination, and ports.
  - Example: Allow TCP traffic from IP 192.168.1.1 to 10.0.0.1 on port 80.

Uploaded By: anonymous





STUDENTS-HUB.com

## Understanding ACLs Processing

- A packet is tested against the ACL statements in sequential order.
- When a statement matches, the rest of the ACL statements are ignored.
- There is an implicit deny any statement at the end of an ACL. If a packet does not match any of the statements in the ACL, it is dropped







#### ENCS4130 - Computer Networks Laboratory

### Example:

Access Control List (ACL) 1- Permit S.IP = 192.168.10.10 D.IP = 192.168.30.30 2- Deny S.IP = 192.168.10.10 D.any 3- Deny S.IP = 192.168.20.20 D.Net = 10.10.10.0/24 D.Port = 80 4- Deny S.any D.any (Hidden)





# Applying ACLs on Interfaces

#### Directional Application:

- ACLs can be applied to an interface for **inbound** or **outbound** traffic.
- Separate ACL needed for each direction.
- Inbound Traffic:
  - Router checks for inbound ACL on the interface before performing a route table lookup.
- Outbound Traffic:

STUDENTS-HUB.com

- Router verifies a route to the destination before applying outbound ACLs.







## Named vs. Numbered Access Control Lists (ACLs)

| Aspect Named ACLs                                                                          |                                                                                      | Numbered ACLs                                                                 |  |  |
|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--|--|
| Identification                                                                             | eferenced by a descriptive name (e.g., "BZU") Identified by a number (e.g., 10, 101, |                                                                               |  |  |
| Modification Flexibility                                                                   | Individual rules can be deleted without affecting the entire list                    | Deleting a rule requires deleting the entire ACL (for extended numbered ACLs) |  |  |
| ManagementProvides better management, ideal for extended<br>access listsLimited management |                                                                                      | Limited management options                                                    |  |  |
| Processing Requirements                                                                    | Requires more processing                                                             | Requires less processing                                                      |  |  |

Uploaded By: anonyp



## Standard Access Control List (ACL)

- Purpose:
  - Controls network traffic based solely on source IP address.
- Key Points:
  - Uses numbers (1-99, 1300-1999).
  - Applies to entire protocol suite (cannot distinguish between specific protocols like TCP, UDP).
  - Commonly applied close to the destination (not always mandatory).
- Configuration Example:
  - Define the ACL:
    - Router(config)# access-list <ACCESS-LIST-NUMBER> <permit|deny> <host|source sourceWildCardMask|any>
  - Apply the ACL to an interface:
    - Router(config)# interface <INTERFACE-NUMBER>
- Router(config-if)# ip access-group <ACCESS-LIST-NUMBER> <in|out> STUDENTS-HUB.com

Uploaded By: anop



## Extended Access Control List (ACL)

- Purpose:
  - Filters traffic using source and destination IP addresses, protocol, and port number.
- Key Points:
  - Uses numbers (100-199, 2000-2699).
  - Allows for granular control over specific traffic types (e.g., allowing HTTP but blocking FTP).
  - Commonly applied close to the source (though placement can vary).
- Configuration Example:
  - Define the ACL:
    - Router(config)# access-list <ACCESS-LIST-NUMBER> <permit|deny> <TRANSPOT-LAYER-PROTOCOL> <host|source sourcewildcardmask|any> <host|destination destinationWildCardMask|any> eq <PORT-NUMBER>
  - Apply the ACL to an interface:
    - Router(config)# interface <INTERFACE-NUMBER>
- Router(config-if)# ip access-group <ACCESS-LIST-NUMBER> <in|out>
  STUDENTS-HUB.com

Uploaded By: and



# The Implied "Deny All Traffic" Criteria Statement

- Overview:
  - Every access list includes an implied rule at the end.
- Key Point:
  - "Deny All Traffic": If a packet does not match any of the criteria specified in the access list, it will be blocked.
- Importance:

STUDENTS-HUB.com

- This default behaviour ensures that all traffic not explicitly permitted by the access list is denied, enhancing network security.







Uploaded By: ano,

#### Standard vs Extended ACLs

#### Standard Access Control List (ACL)

- 1- Permit S.IP = 192.168.10.10
- 2- Deny S.IP = 192.168.20.20
- 3- Deny S.Net = 192.168.10.10/24
- 4- Deny S.any (Hidden)

#### **Extended Access Control List (ACL)**

- 1- Permit S.IP = 192.168.10.10 D.Net = 192.168.5.0/24
- 2- Deny S.Net = 192.168.20.20/24 D.IP = 192.168.25.20
- 3- Deny S.Net = 192.168.10.10/24 D.any D.port 80
- 4-Deny S.any D.any (Hidden)



### Wildcard Masks in ACLs

#### • What is a Wildcard Mask?

- Used in ACLs to control which parts of an IP address to match or ignore.
- Different from subnet masks: 0 = Match exactly, 1 = Ignore.

| CIDR Notation | Subnet Mask     | Wildcard Mask |  |
|---------------|-----------------|---------------|--|
| /8            | 255.0.0.0       | 0.255.255.255 |  |
| /16           | 255.255.0.0     | 0.0.255.255   |  |
| /24           | 255.255.255.0   | 0.0.0.255     |  |
| /25           | 255.255.255.128 | 0.0.0.127     |  |
| /26           | 255.255.255.192 | 0.0.0.63      |  |
| /27           | 255.255.255.224 | 0.0.0.31      |  |
| /28           | 255.255.255.240 | 0.0.0.15      |  |
| /29           | 255.255.255.248 | 0.0.0.7       |  |
| /30           | 255.255.255.252 | 0.0.0.3       |  |
| /32           | 255.255.255.255 | 0.0.0.0       |  |



## **Procedure**



STUDENTS-HUB.com



σ

b



-0

Topology





-0

#### **Networks IPS**

S

| Area   | Network       | Device   | Interface | IP         | Subnet Mask   | Wildcard Mask |
|--------|---------------|----------|-----------|------------|---------------|---------------|
| Area 0 | 192.X.40.0/24 | Router 0 | Se2/0     | 192.X.40.1 | 255.255.255.0 | 0.0.0.255     |
|        |               | Router 1 | Se2/0     | 192.X.40.2 | 255.255.255.0 | 0.0.0.255     |
|        | 192.X.10.0/24 | Router 0 | Fa0/0     | 192.X.10.1 | 255.255.255.0 | 0.0.0.255     |
|        |               | PC 0     | Fa0       | 192.X.10.2 | 255.255.255.0 | 0.0.0.255     |
|        |               | PC 1     | Fa0       | 192.X.10.3 | 255.255.255.0 | 0.0.0.255     |
|        | 192.X.20.0/24 | Router 0 | Fa1/0     | 192.X.20.1 | 255.255.255.0 | 0.0.0.255     |
|        |               | PC 2     | Fa0       | 192.X.20.2 | 255.255.255.0 | 0.0.0.255     |
|        |               | PC 3     | Fa0       | 192.X.20.3 | 255.255.255.0 | 0.0.0.255     |
|        | 192.X.30.0/24 | Router 1 | Fa0/0     | 192.X.30.1 | 255.255.255.0 | 0.0.0.255     |
|        |               | PC 4     | Fa0       | 192.X.30.2 | 255.255.255.0 | 0.0.0.255     |
|        |               | PC 4     | Fa0       | 192.X.30.2 | 255.255.255.0 | 0.0.0.255     |



## **Steps of Configurations**

- 1. Assign the IPs: To Routers & PCs.
- **2.** Connectivity Check: Ensure each PC can reach the Gateway and adjacent routers can communicate.
- **3.** Configuring OSPF Routing: Make Sure that all PCs can ping each other
  - Router(config)# router ospf <PROCESS-ID>
  - Router(config-router)# network <ID-ADDRESS> <WILDCARD-MASK> area <AREA-ID>
- 4. Create couple of copies from the .pkt file





## **Steps of Configurations**

- **5.** Configuring Standard Access Lists
- **6.** Configuring Extended Access Lists
- **7.** Viewing Access Lists
  - Router# show access-list





## Standard Access Control List Example

- Prevent PC0 to access network 192.x.20.0 /24
  - On which Router we need to create the Access List?
  - On Which Interface we need to put the Access List?
  - Type (Input or output)?





## Standard Access Control List Example (Cont.)

- Prevent PC0 to access network 192.x.20.0 /24
  - On which Router we need to create the Access List? Router0
  - On Which Interface we need to put the Access List? Fa1/0
  - Type (Input or output)? out





Uploaded By: anonyp

### Standard Access Control List Example (Cont.)



- Router0(config)#
- Router0(config)#
- Router0(config)#
- Router0(config-if)#



### Standard Access Control List Example (Cont.)



- Router0(config)# access-list 10 deny host 192.168.10.2
- Router0(config)# access-list 10 permit any
- Router0(config)# interface fa1/0
- Router0(config-if)# ip access-group 10 out





## Extended Access Control List Example

- Deny PC4 to make HTTP request via TCP to the Server. (all other traffic is allowed).
  - On which Router we need to create the Access List?
  - On Which Interface we need to put the Access List?
  - Type (Input or output) ?





## Extended Access Control List Example (Cont.)

- Deny PC4 to make HTTP request via TCP to the Server. (all other traffic is allowed).
  - On which Router we need to create the Access List? Router 1
  - On Which Interface we need to put the Access List? Fa0/0
  - Type (Input or output)? IN





## Extended Access Control List Example (Cont.)

- Router0(config)#
- Router0(config)#
- Router0(config)#

STUDENTS-HUB.com

• Router0(config-if)#





## Extended Access Control List Example (Cont.)

- Router0(config)# access-list 101 deny tcp host 192.168.30.2 host 192.168.20.4 eq 80
- Router0(config)# access-list 101 permit ip any any
- Router0(config)# interface fa0/0
- Router0(config-if)# ip access-group 101 in



192.168.40.0 /24



## Saving Configurations

• Don't forget to save the configurations on your router.

→ Router# write
→ Router# copy run start





ENCS4130 - Computer Networks Laboratory

0

## Video explaining the experiment

--Soon--





o

#### References

• Manual for ENCS4130 Computer Networks Laboratory.

