
Objectives
■■ To declare boolean variables and write Boolean expressions using

relational operators (§3.2).

■■ To implement selection control using one-way if statements (§3.3).

■■ To implement selection control using two-way if-else statements
(§3.4).

■■ To implement selection control using nested if and multi-way if
statements (§3.5).

■■ To avoid common errors and pitfalls in if statements (§3.6).

■■ To generate random numbers using the Math.random() method (§3.7).

■■ To program using selection statements for a variety of examples
(SubtractionQuiz, BMI, ComputeTax) (§§3.7–3.9).

■■ To combine conditions using logical operators (!, &&, ||, and ^)
(§3.10).

■■ To program using selection statements with combined conditions
(LeapYear, Lottery) (§§3.11 and 3.12).

■■ To implement selection control using switch statements (§3.13).

■■ To write expressions using the conditional operator (§3.14).

■■ To examine the rules governing operator precedence and associativity
(§3.15).

■■ To apply common techniques to debug errors (§3.16).

Selections

CHAPTER

3

M03_LIAN9966_12_SE_C03.indd 77 28/09/19 3:54 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

78 Chapter 3   Selections

3.1  Introduction
The program can decide which statements to execute based on a condition.

If you enter a negative value for radius in Listing 2.2, ComputeAreaWithConsoleInput.java,
the program displays an invalid result. If the radius is negative, you don’t want the program to
compute the area. How can you deal with this situation?

Like all high-level programming languages, Java provides selection statements: statements
that let you choose actions with alternative courses. You can use the following selection state-
ment to replace lines 12–17 in Listing 2.2:

if (radius < 0) {
 System.out.println("Incorrect input");
}
else {
 double area = radius * radius * 3.14159;
 System.out.println("Area is " + area);
}

Selection statements use conditions that are Boolean expressions. A Boolean expression is an
expression that evaluates to a Boolean value: true or false. We now introduce the bool-
ean type and relational operators.

3.2  boolean Data Type, Values, and Expressions
The boolean data type declares a variable with the value either true or false.

 How do you compare two values, such as whether a radius is greater than 0, equal to 0,
or less than 0? Java provides six relational operators (also known as comparison opera-
tors), shown in Table 3.1, which can be used to compare two values (assume radius is 5
in the table).

Point
Keyproblem

selection statements

Boolean expression
Boolean value

Point
Key

boolean data type

relational operators

Table 3.1  Relational Operators

Java Operator Mathematics Symbol Name Example (radius is 5) Result

< < Less than radius < 0 false

<= ≤ Less than or equal to radius <= 0 false

> > Greater than radius > 0 true

>= ≥ Greater than or equal to radius >= 0 true

== = Equal to radius == 0 false

!= ≠ Not equal to radius != 0 true

Caution
The equality testing operator is two equal signs (==), not a single equal sign (=). The
latter symbol is for assignment.

The result of the comparison is a Boolean value: true or false. For example, the follow-
ing statement displays true:

double radius = 1;
System.out.println(radius > 0);

A variable that holds a Boolean value is known as a Boolean variable. The boolean
data type is used to declare Boolean variables. A boolean variable can hold one of the two

== vs. =

Boolean variable

M03_LIAN9966_12_SE_C03.indd 78 28/09/19 3:54 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

3.2  boolean Data Type, Values, and Expressions 79

values: true or false. For example, the following statement assigns true to the variable
lightsOn:

boolean lightsOn = true;

true and false are literals, just like a number such as 10. They are not keywords, but are
reserved words and cannot be used as identifiers in the program.

Suppose you want to develop a program to let a first-grader practice addition. The program
randomly generates two single-digit integers, number1 and number2, and displays to the
student a question such as “What is 1 + 7?, ” as shown in the sample run in Listing 3.1. After
the student types the answer, the program displays a message to indicate whether it is true or
false.

There are several ways to generate random numbers. For now, generate the first integer
using System.currentTimeMillis() % 10 (i.e., the last digit in the current time) and the
second using System.currentTimeMillis() / 10 % 10 (i.e., the second last digit in the
current time). Listing 3.1 gives the program. Lines 5–6 generate two numbers, number1 and
number2. Line 14 obtains an answer from the user. The answer is graded in line 18 using a
Boolean expression number1 + number2 == answer.

Listing 3.1  AdditionQuiz.java
 1 import java.util.Scanner;
 2
 3 public class AdditionQuiz {
 4 public static void main(String[] args) {
 5 int number1 = (int)(System.currentTimeMillis() % 10);
 6 int number2 = (int)(System.currentTimeMillis() / 10 % 10);
 7
 8 // Create a Scanner
 9 Scanner input = new Scanner(System.in);
10
11 System.out.print(
12 "What is " + number1 + " + " + number2 + "? ");
13
14 int answer = input.nextInt();
15
16 System.out.println(
17 number1 + " + " + number2 + " = " + answer + " is " +
18 (number1 + number2 == answer));
19 }
20 }

VideoNote

Program addition quiz

generate number1
generate number2

show question

receive answer

display result

What is 1 + 7? 8
1 + 7 = 8 is true

What is 4 + 8? 9
4 + 8 = 9 is false

line# number1 number2 answer output

 5 4

 6 8

14 9

16 4 + 8 = 9 is false

Boolean literals

M03_LIAN9966_12_SE_C03.indd 79 28/09/19 3:54 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

80 Chapter 3   Selections

3.2.1	 List six relational operators.

3.2.2	 Assuming x is 1, show the result of the following Boolean expressions:

(x > 0)
(x < 0)
(x != 0)
(x >= 0)
(x != 1)

3.2.3	 Can the following conversions involving casting be allowed? Write a test program
to verify it.

boolean b = true;
i = (int)b;

int i = 1;
boolean b = (boolean)i;

3.3  if Statements
An if statement is a construct that enables a program to specify alternative paths of execution.

The preceding program displays a message such as “6 + 2 = 7 is false.” If you wish the
message to be “6 + 2 = 7 is incorrect,” you have to use a selection statement to make this
minor change.

Java has several types of selection statements: one-way if statements, two-way if-else
statements, nested if statements, multi-way if-else statements, switch statements, and
conditional operators.

A one-way if statement executes an action if and only if the condition is true. The syntax
for a one-way if statement is as follows:

if (boolean-expression) {
 statement(s);
}

The flowchart in Figure 3.1a illustrates how Java executes the syntax of an if statement.
A flowchart is a diagram that describes an algorithm or process, showing the steps as boxes
of various kinds, and their order by connecting these with arrows. Process operations are
represented in these boxes, and the arrows connecting them represent the flow of control. A
diamond box denotes a Boolean condition, and a rectangle box represents statements.

Point
Check

Point
Key

why if statement?

if statement?

flowchart

Statement(s)

boolean-
expression

true

false

(a)

area = radius * radius * PI;
System.out.println("The area for the circle of"
 + " radius " + radius + " is " + area);

(radius >= 0)

true

false

(b)

Figure 3.1  An if statement executes statements if the boolean-expression evaluates to true.

M03_LIAN9966_12_SE_C03.indd 80 28/09/19 3:54 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

If the boolean-expression evaluates to true, the statements in the block are executed.
As an example, see the following code:

if (radius >= 0) {
 area = radius * radius * PI;
 System.out.println("The area for the circle of radius " +
 radius + " is " + area);
}

The flowchart of the preceding statement is shown in Figure 3.1b. If the value of radius
is greater than or equal to 0, then the area is computed and the result is displayed; otherwise,
the two statements in the block will not be executed.

The boolean-expression is enclosed in parentheses. For example, the code in (a) is
wrong. It should be corrected, as shown in (b).

if i > 0 {
 System.out.println("i is positive");
}

(a) Wrong

if (i > 0) {
 System.out.println("i is positive");
}

(b) Correct

if (i > 0) {
 System.out.println("i is positive");
}

(a)

if (i > 0)
 System.out.println("i is positive");

(b)

Equivalent

The block braces can be omitted if they enclose a single statement. For example, the fol-
lowing statements are equivalent:

Caution
Omitting braces makes the code shorter, but it is prone to errors. It is a common mis-
take to forget the braces when you go back to modify the code that omits the braces.

Listing 3.2 gives a program that prompts the user to enter an integer. If the number is a mul-
tiple of 5, the program displays HiFive. If the number is divisible by 2, it displays HiEven.

Listing 3.2  SimpleIfDemo.java
 1 import java.util.Scanner;
 2
 3 public class SimpleIfDemo {
 4 public static void main(String[] args) {
 5 Scanner input = new Scanner(System.in);
 6 System.out.print("Enter an integer: ");
 7 int number = input.nextInt();
 8
 9 if (number % 5 == 0)
10 System.out.println("HiFive");
11
12 if (number % 2 == 0)
13 System.out.println("HiEven");
14 }
15 }

Omitting braces or not

enter input

check 5

check even

3.3  if Statements 81

M03_LIAN9966_12_SE_C03.indd 81 28/09/19 3:54 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

82 Chapter 3   Selections

The program prompts the user to enter an integer (lines 6–7) and displays HiFive if it is
divisible by 5 (lines 9–10) and HiEven if it is divisible by 2 (lines 12–13).

3.3.1	 Write an if statement that assigns 1 to x if y is greater than 0.

3.3.2	 Write an if statement that increases pay by 3% if score is greater than 90.

3.3.3	 What is wrong in the following code?

if radius >= 0
{
 area = radius * radius * PI;
 System.out.println("The area for the circle of " +
 " radius " + radius + " is " + area);
}

3.4  Two-Way if-else Statements
An if-else statement decides the execution path based on whether the condition is
true or false.

A one-way if statement performs an action if the specified condition is true. If the con-
dition is false, nothing is done. But what if you want to take alternative actions when the
condition is false? You can use a two-way if-else statement. The actions that a two-way
if-else statement specifies differ based on whether the condition is true or false.

Here is the syntax for a two-way if-else statement:

if (boolean-expression) {
 statement(s)-for-the-true-case;
}
else {
 statement(s)-for-the-false-case;
}

The flowchart of the statement is shown in Figure 3.2.

Point
Check

Point
Key

Enter an integer: 4
HiEven

Enter an integer: 30
HiFive
HiEven

Statement(s) for the true case Statement(s) for the false case

boolean-
expression

true false

Figure 3.2  An if-else statement executes statements for the true case if the boolean-
expression evaluates to true; otherwise, statements for the false case are executed.

M03_LIAN9966_12_SE_C03.indd 82 28/09/19 3:54 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

If the boolean-expression evaluates to true, the statement(s) for the true case are
executed; otherwise, the statement(s) for the false case are executed. For example, consider
the following code:

if (radius >= 0) {
 area = radius * radius * PI;
 System.out.println("The area for the circle of radius " +
 radius + " is " + area);
}
else {
 System.out.println("Negative input");
}

If radius >= 0 is true, area is computed and displayed; if it is false, the message
"Negative input" is displayed.

As usual, the braces can be omitted if there is only one statement within them. The braces
enclosing the System.out.println("Negative input") statement can therefore be
omitted in the preceding example.

Here is another example of using the if-else statement. The example checks whether a
number is even or odd, as follows:

if (number % 2 == 0)
 System.out.println(number + " is even.");
else
 System.out.println(number + " is odd.");

3.4.1	 Write an if statement that increases pay by 3% if score is greater than 90, oth-
erwise increases pay by 1%.

3.4.2	 What is the output of the code in (a) and (b) if number is 30? What if number is 35?

two-way if-else statement

Point
Check

 (number % 2 == 0)if
 System.out.println(number
 + "is even.");

System.out.println(number
 + "is odd");

(a)

 (number % 2 == 0)if
 System.out.println(number
 + "is even.");

System.out.println(number
 + "is odd");

(b)

else

3.5  Nested if and Multi-Way if-else Statements
An if statement can be inside another if statement to form a nested if statement.

 The statement in an if or if-else statement can be any legal Java statement, including
another if or if-else statement. The inner if statement is said to be nested inside the outer
if statement. The inner if statement can contain another if statement; in fact, there is no
limit to the depth of the nesting. For example, the following is a nested if statement:

if (i > k) {
 if (j > k)
 System.out.println("i and j are greater than k");
}
else
 System.out.println("i is less than or equal to k");

The if (j > k) statement is nested inside the if (i > k) statement.
The nested if statement can be used to implement multiple alternatives. The statement

given in Figure 3.3a, for instance, prints a letter grade according to the score, with multiple
alternatives.

Point
Key

nested if statement

3.5  Nested if and Multi-Way if-else Statements 83

M03_LIAN9966_12_SE_C03.indd 83 28/09/19 3:54 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

84 Chapter 3   Selections

The execution of this if statement proceeds as shown in Figure 3.4. The first condition
(score >= 90) is tested. If it is true, the grade is A. If it is false, the second condition
(score >= 80) is tested. If the second condition is true, the grade is B. If that condition is
false, the third condition and the rest of the conditions (if necessary) are tested until a
condition is met or all of the conditions prove to be false. If all of the conditions are false,
the grade is F. Note a condition is tested only when all of the conditions that come before it
are false.

if (score >= 90)
 System.out.print("A");
else

if (score >= 80)
 System.out.print("B");

else
if (score >= 70)

 System.out.print("C");
else

if (score >= 60)
 System.out.print("D");

else
 System.out.print("F");

(a)

if (score >= 90)
 System.out.print("A");
else if (score >= 80)
 System.out.print("B");
else if (score >= 70)
 System.out.print("C");
else if (score >= 60)
 System.out.print("D");
else
 System.out.print("F");

(b)

Equivalent

This is better

Figure 3.3  A preferred format for multiple alternatives is shown in (b) using a multi-way
if-else statement.

grade is A

true

false

false

false

false

grade is B

(score >= 80)

true

grade is C

(score >= 70)

true

grade is D

(score >= 60)

true

grade is F

(score >= 90)

Figure 3.4  You can use a multi-way if-else statement to assign a grade.

M03_LIAN9966_12_SE_C03.indd 84 28/09/19 3:54 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

3.6  Common Errors and Pitfalls 85

The if statement in Figure 3.3a is equivalent to the if statement in Figure 3.3b. In fact,
Figure 3.3b is the preferred coding style for multiple alternative if statements. This style,
called multi-way if-else statements, avoids deep indentation and makes the program easy
to read.

3.5.1	 Suppose x = 3 and y = 2; show the output, if any, of the following code. What
is the output if x = 3 and y = 4? What is the output if x = 2 and y = 2? Draw
a flowchart of the code.

if (x > 2) {
 if (y > 2) {
 z = x + y;
 System.out.println("z is " + z);
 }
}
else
 System.out.println("x is " + x);

3.5.2	 �Suppose x = 2 and y = 3. Show the output, if any, of the following code. What is
the output if x = 3 and y = 2? What is the output if x = 3 and y = 3?

if (x > 2)
 if (y > 2) {
 int z = x + y;
 System.out.println("z is " + z);
 }
else
 System.out.println("x is " + x);

3.5.3	 What is wrong in the following code?

if (score >= 60)
 System.out.println("D");
else if (score >= 70)
 System.out.println("C");
else if (score >= 80)
 System.out.println("B");
else if (score >= 90)
 System.out.println("A");
else
 System.out.println("F");

3.6  Common Errors and Pitfalls
Forgetting necessary braces, ending an if statement in the wrong place, mistaking
== for =, and dangling else clauses are common errors in selection statements.
Duplicated statements in if-else statements and testing equality of double values
are common pitfalls.

The following errors are common among new programmers.

Common Error 1: Forgetting Necessary Braces

The braces can be omitted if the block contains a single statement. However, forgetting the
braces when they are needed for grouping multiple statements is a common programming
error. If you modify the code by adding new statements in an if statement without braces,
you will have to insert the braces. For example, the following code in (a) is wrong. It should
be written with braces to group multiple statements, as shown in (b).

multi-way if statement

Point
Check

Point
Key

M03_LIAN9966_12_SE_C03.indd 85 28/09/19 3:54 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

86 Chapter 3   Selections

Regardless of the condition in the if statement, the console output statement is always
executed.

Common Error 2: Wrong Semicolon at the if Line

Adding a semicolon at the end of an if line, as shown in (a) below, is a common mistake.

if (radius >= 0)
 area = radius * radius * PI;
 System.out.println("The area "
 + " is " + area);

(a) Wrong

if (radius >= 0)
 area = radius * radius * PI;
 System.out.println("The area "
 + " is " + area);
}

{

(b) Correct

In (a), the console output statement is not part of the if statement. It is the same as the
following code:

if (radius >= 0)
 area = radius * radius * PI;

System.out.println(“The area "
 + “ is " + area);

Logic error

if (radius >= 0);
{
 area = radius * radius * PI;
 System.out.println("The area "
 + " is " + area);
}

(a)

if (radius >= 0) { };
{
 area = radius * radius * PI;
 System.out.println("The area "
 + " is " + area);
}

(b)

Equivalent

Empty block

This mistake is hard to find, because it is neither a compile error nor a runtime error; it is a
logic error. The code in (a) is equivalent to that in (b) with an empty block.

This error often occurs when you use the next-line block style. Using the end-of-line block
style can help prevent this error.

Common Error 3: Redundant Testing of Boolean Values

To test whether a boolean variable is true or false in a test condition, it is redundant to
use the equality testing operator like the code in (a):

(a)

if (even == true)
 System.out.println(

"It is even.");

if (even)
 System.out.println(

"It is even.");

Equivalent

This is better
(b)

Instead, it is better to test the boolean variable directly, as shown in (b). Another good
reason for doing this is to avoid errors that are difficult to detect. Using the = operator instead
of the == operator to compare the equality of two items in a test condition is a common error.
It could lead to the following erroneous statement:

if (even = true)
 System.out.println("It is even.");

This statement does not have compile errors. It assigns true to even, so even is always
true.

M03_LIAN9966_12_SE_C03.indd 86 28/09/19 3:54 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

3.6  Common Errors and Pitfalls 87

Common Error 4: Dangling else Ambiguity

The code in (a) below has two if clauses and one else clause. Which if clause is matched
by the else clause? The indentation indicates that the else clause matches the first if clause.
However, the else clause actually matches the second if clause. This situation is known as
the dangling else ambiguity. The else clause always matches the most recent unmatched if
clause in the same block. Therefore, the statement in (a) is equivalent to the code in (b).

int i = 1, j = 2, k = 3;

if (i > j)
 if (i > k)
 System.out.println("A");
else
 System.out.println("B");

(a)

Equivalent

This is better
with correct
indentation

int i = 1, j = 2, k = 3;

if (i > j)
 if (i > k)
 System.out.println("A");
 else
 System.out.println("B");

(b)

Since (i > j) is false, nothing is displayed from the statements in (a) and (b). To force
the else clause to match the first if clause, you must add a pair of braces:

int i = 1, j = 2, k = 3;

if (i > j) {
 if (i > k)
 System.out.println("A");
}
else
 System.out.println("B");

This statement displays B.

Common Error 5: Equality Test of Two Floating-Point Values

As discussed in Common Error 3 in Section 2.19, floating-point numbers have a limited pre-
cision and calculations; involving floating-point numbers can introduce round-off errors.
Therefore, equality test of two floating-point values is not reliable. For example, you expect
the following code to display true, but surprisingly, it displays false:

double x = 1.0 − 0.1 − 0.1 − 0.1 − 0.1 − 0.1;
System.out.println(x == 0.5);

Here, x is not exactly 0.5, but is 0.5000000000000001. You cannot reliably test equality
of two floating-point values. However, you can compare whether they are close enough by
testing whether the difference of the two numbers is less than some threshold. That is, two
numbers x and y are very close if � x - y � 6 e, for a very small value, e. e, a Greek letter
pronounced "epsilon", is commonly used to denote a very small value. Normally, you set e to
10-14 for comparing two values of the double type, and to 10-7 for comparing two values of
the float type. For example, the following code

final double EPSILON = 1E−14;
double x = 1.0 − 0.1 − 0.1 − 0.1 − 0.1 − 0.1;
if (Math.abs(x − 0.5) < EPSILON)
 System.out.println(x + " is approximately 0.5");

will display

0.5000000000000001 is approximately 0.5.

The Math.abs(a) method can be used to return the absolute value of a.

dangling else ambiguity

M03_LIAN9966_12_SE_C03.indd 87 28/09/19 3:54 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

88 Chapter 3   Selections

Common Pitfall 1: Simplifying Boolean Variable Assignment

Often, new programmers write the code that assigns a test condition to a boolean variable
like the code in (a):

if (number % 2 == 0)
 even = true;
else
 even = false;

boolean even
 = number % 2 == 0;Equivalent

This is better

(a) (b)

if (i > 0) if
(j > 0)
x = 0; else
if (k > 0) y = 0;
else z = 0;

(a)

if (i > 0) {
if (j > 0)

 x = 0;
else if (k > 0)

 y = 0;
}
else
 z = 0;

(b)

if (i > 0)
if (j > 0)

 x = 0;
else if (k > 0)

 y = 0;
else
 z = 0;

(d)

if (i > 0)
if (j > 0)

 x = 0;
else if (k > 0)

 y = 0;
else

 z = 0;

(c)

This is not an error, but it should be better written as shown in (b).

Common Pitfall 2: Avoiding Duplicate Code in Different Cases

Often, new programmers write the duplicate code in different cases that should be combined
in one place. For example, the highlighted code in the following statement is duplicated:

if (inState) {
 tuition = 5000;
 System.out.println("The tuition is " + tuition);
}
else {
 tuition = 15000;
 System.out.println("The tuition is " + tuition);
}

This is not an error, but it should be better written as follows:

if (inState) {
 tuition = 5000;
}
else {
 tuition = 15000;
}
System.out.println("The tuition is " + tuition);

The new code removes the duplication and makes the code easy to maintain, because you
only need to change in one place if the print statement is modified.

3.6.1	 Which of the following statements are equivalent? Which ones are correctly
indented?Point

Check

3.6.2	 Rewrite the following statement using a Boolean expression:

if (count % 10 == 0)
 newLine = true;
else
 newLine = false;

M03_LIAN9966_12_SE_C03.indd 88 28/09/19 3:54 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

3.7  Generating Random Numbers 89

3.6.3	 Are the following statements correct? Which one is better?

3.6.4	 What is the output of the following code if number is 14, 15, or 30?

3.7  Generating Random Numbers
You can use Math.random() to obtain a random double value between 0.0 and 1.0,
excluding 1.0.

 Suppose you want to develop a program for a first-grader to practice subtraction. The pro-
gram randomly generates two single-digit integers, number1 and number2, with number1
>= number2, and it displays to the student a question such as “What is 9 - 2?” After the
student enters the answer, the program displays a message indicating whether it is correct.

The previous programs generate random numbers using System.currentTimeMillis().
A better approach is to use the random() method in the Math class. Invoking this method re-
turns a random double value d such that 0.0 … d 6 1.0. Thus, (int)(Math.random() *
10) returns a random single-digit integer (i.e., a number between 0 and 9).

The program can work as follows:

1.	 Generate two single-digit integers into number1 and number2.

2.	 If number1 < number2, swap number1 with number2.

3.	 Prompt the student to answer, "What is number1 − number2?"

4.	 Check the student’s answer and display whether the answer is correct.

The complete program is given in Listing 3.3.

Listing 3.3  SubtractionQuiz.java
 1 import java.util.Scanner;
 2
 3 public class SubtractionQuiz {
 4 public static void main(String[] args) {
 5 // 1. Generate two random single-digit integers
 6 int number1 = (int)(Math.random() * 10);
 7 int number2 = (int)(Math.random() * 10);
 8
 9 // 2. If number1 < number2, swap number1 with number2
10 if (number1 < number2) {
11 int temp = number1;

Point
Key

VideoNote

Program subtraction quiz

random() method

random number

if (age < 16)
 System.out.println
 ("Cannot get a driver’s license");
if (age >= 16)
 System.out.println
 ("Can get a driver’s license");

if (age < 16)
 System.out.println
 ("Cannot get a driver’s license");
else
 System.out.println
 ("Can get a driver’s license");

(a) (b)

if (number % 2 == 0)
 System.out.println
 (number + " is even");
if (number % 5 == 0)
 System.out.println
 (number + " is multiple of 5");

if (number % 2 == 0)
 System.out.println
 (number + " is even");
else if (number % 5 == 0)
 System.out.println
 (number + " is multiple of 5");

(a) (b)

M03_LIAN9966_12_SE_C03.indd 89 28/09/19 3:54 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

90 Chapter 3   Selections

12 number1 = number2;
13 number2 = temp;
14 }
15
16 // 3. Prompt the student to answer "What is number1 – number2?"
17 System.out.print
18 ("What is " + number1 + " − " + number2 + "? ");
19 Scanner input = new Scanner(System.in);
20 int answer = input.nextInt();
21
22 // 4. Grade the answer and display the result
23 if (number1 − number2 == answer)
24 System.out.println("You are correct!");
25 else {
26 System.out.println("Your answer is wrong.");
27 System.out.println(number1 + " − " + number2 +
28 " should be " + (number1 − number2));
29 }
30 }
31 }

get answer

check the answer

What is 6 − 6? 0
You are correct!

What is 9 − 2? 5
Your answer is wrong
9 − 2 is 7

line# number1 number2 temp answer output

 6 2

 7 9

11 2

12 9

13 2

20 5

26 Your answer is wrong

9 − 2 should be 7

To swap two variables number1 and number2, a temporary variable temp (line 11) is used
to first hold the value in number1. The value in number2 is assigned to number1 (line 12),
and the value in temp is assigned to number2 (line 13).

3.7.1	 Which of the following is a possible output from invoking Math.random()?

323.4, 0.5, 34, 1.0, 0.0, 0.234

3.7.2	 a.  How do you generate a random integer i such that 0 … i 6 20?

b.	 How do you generate a random integer i such that 10 … i 6 20?

c.	 How do you generate a random integer i such that 10 … i … 50?

d.	 Write an expression that returns 0 or 1 randomly.

Point
Check

M03_LIAN9966_12_SE_C03.indd 90 28/09/19 3:54 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

3.8  Case Study: Computing Body Mass Index 91

3.8  Case Study: Computing Body Mass Index
You can use nested if statements to write a program that interprets body mass index.

 Body mass index (BMI) is a measure of health based on height and weight. It can be cal-
culated by taking your weight in kilograms and dividing it by the square of your height in
meters. The interpretation of BMI for people 20 years or older is as follows:

Point
Key

BMI Interpretation

BMI 6 18.5 Underweight

18.5 … BMI 6 25.0 Normal

25.0 … BMI 6 30.0 Overweight

30.0 … BMI Obese

Write a program that prompts the user to enter a weight in pounds and height in inches and
displays the BMI. Note that one pound is 0.45359237 kilograms, and one inch is 0.0254
meters. Listing 3.4 gives the program.

Listing 3.4  ComputeAndInterpretBMI.java
 1 import java.util.Scanner;
 2
 3 public class ComputeAndInterpretBMI {
 4 public static void main(String[] args) {
 5 Scanner input = new Scanner(System.in);
 6
 7 // Prompt the user to enter weight in pounds
 8 System.out.print("Enter weight in pounds: ");
 9 double weight = input.nextDouble();
10
11 // Prompt the user to enter height in inches
12 System.out.print("Enter height in inches: ");
13 double height = input.nextDouble();
14
15 final double KILOGRAMS_PER_POUND = 0.45359237; // Constant
16 final double METERS_PER_INCH = 0.0254; // Constant
17
18 // Compute BMI
19 double weightInKilograms = weight * KILOGRAMS_PER_POUND;
20 double heightInMeters = height * METERS_PER_INCH;
21 double bmi = weightInKilograms /
22 (heightInMeters * heightInMeters);
23
24 // Display result
25 System.out.println("BMI is " + bmi);
26 if (bmi < 18.5)
27 System.out.println("Underweight");
28 else if (bmi < 25)
29 System.out.println("Normal");
30 else if (bmi < 30)
31 System.out.println("Overweight");
32 else
33 System.out.println("Obese");
34 }
35 }

input weight

input height

compute bmi

display output

M03_LIAN9966_12_SE_C03.indd 91 28/09/19 3:54 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

92 Chapter 3   Selections

Enter weight in pounds: 146

Enter height in inches: 70

BMI is 20.948603801493316
Normal

line# weight height weightInKilograms heightInMeters bmi output

  9 146

13 70

19 66.22448602

20 1.778

21 20.9486

25 BMI is

20.95

29 Normal

The constants KILOGRAMS_PER_POUND and METERS_PER_INCH are defined in lines
15–16. Using constants here makes programs easy to read.

You should test the input that covers all possible cases for BMI to ensure that the program
works for all cases.

3.9  Case Study: Computing Taxes
You can use nested if statements to write a program for computing taxes.

 The U.S. federal personal income tax is calculated based on filing status and taxable income.
There are four filing statuses: single filers, married filing jointly or qualified widow(er), mar-
ried filing separately, and head of household. The tax rates vary every year. Table 3.2 shows
the rates for 2009. If you are single with a taxable income of $10,000, for example, the first
$8,350 is taxed at 10% and the other $1,650 is taxed at 15%, so your total tax is $1,082.50.

Point
Key

VideoNote

Use multi-way if-else
statements

Table 3.2  2009 U.S. Federal Personal Tax Rates

Marginal
Tax Rate Single

Married Filing Jointly or
Qualifying Widow(er) Married Filing Separately Head of Household

10% $0–$8,350 $0–$16,700 $0–$8,350 $0–$11,950

15% $8,351–$33,950 $16,701–$67,900 $8,351–$33,950 $11,951–$45,500

25% $33,951–$82,250 $67,901–$137,050 $33,951–$68,525 $45,501–$117,450

28% $82,251–$171,550 $137,051–$208,850 $68,526–$104,425 $117,451–$190,200

33% $171,551–$372,950 $208,851–$372,950 $104,426–$186,475 $190,201–$372,950

35% +372,951+ +372,951+ +186,476+ +372,951+

You are to write a program to compute personal income tax. Your program should prompt the
user to enter the filing status and taxable income and compute the tax. Enter 0 for single filers, 1
for married filing jointly or qualified widow(er), 2 for married filing separately, and 3 for head
of household.

M03_LIAN9966_12_SE_C03.indd 92 28/09/19 3:54 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

3.9  Case Study: Computing Taxes 93

Your program computes the tax for the taxable income based on the filing status. The fil-
ing status can be determined using if statements outlined as follows:

if (status == 0) {
 // Compute tax for single filers
}
else if (status == 1) {
 // Compute tax for married filing jointly or qualifying widow(er)
}
else if (status == 2) {
 // Compute tax for married filing separately
}
else if (status == 3) {
 // Compute tax for head of household
}
else {
 // Display wrong status
}

For each filing status there are six tax rates. Each rate is applied to a certain amount of tax-
able income. For example, of a taxable income of $400,000 for single filers, $8,350 is taxed
at 10%, (33,950 - 8,350) at 15%, (82,250 - 33,950) at 25%, (171,550 - 82,250) at 28%,
(372,950 - 171,550) at 33%, and (400,000 - 372,950) at 35%.

Listing 3.5 gives the solution for computing taxes for single filers. The complete solution
is left as an exercise.

Listing 3.5  ComputeTax.java
 1 import java.util.Scanner;
 2
 3 public class ComputeTax {
 4 public static void main(String[] args) {
 5 // Create a Scanner
 6 Scanner input = new Scanner(System.in);
 7
 8 // Prompt the user to enter filing status
 9 System.out.print("(0-single filer, 1-married jointly or " +
10 "qualifying widow(er), 2-married separately, 3-head of " +
11 "household) Enter the filing status: ");
12
13 int status = input.nextInt();
14
15 // Prompt the user to enter taxable income
16 System.out.print("Enter the taxable income: ");
17 double income = input.nextDouble();
18
19 // Compute tax
20 double tax = 0;
21
22 if (status == 0) { // Compute tax for single filers
23 if (income <= 8350)
24 tax = income * 0.10;
25 else if (income <= 33950)
26 tax = 8350 * 0.10 + (income − 8350) * 0.15;
27 else if (income <= 82250)
28 tax = 8350 * 0.10 + (33950 − 8350) * 0.15 +
29 (income − 33950) * 0.25;
30 else if (income <= 171550)
31 tax = 8350 * 0.10 + (33950 − 8350) * 0.15 +
32 (82250 − 33950) * 0.25 + (income − 82250) * 0.28;

input status

input income

compute tax

M03_LIAN9966_12_SE_C03.indd 93 28/09/19 3:54 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

94 Chapter 3   Selections

33 else if (income <= 372950)
34 tax = 8350 * 0.10 + (33950 − 8350) * 0.15 +
35 (82250 − 33950) * 0.25 + (171550 − 82250) * 0.28 +
36 (income − 171550) * 0.33;
37 else
38 tax = 8350 * 0.10 + (33950 − 8350) * 0.15 +
39 (82250 − 33950) * 0.25 + (171550 − 82250) * 0.28 +
40 (372950 − 171550) * 0.33 + (income − 372950) * 0.35;
41 }
42 else if (status == 1) { // Left as an exercise
43 // Compute tax for married file jointly or qualifying widow(er)
44 }
45 else if (status == 2) { // Compute tax for married separately
46 // Left as an exercise in Programming Exercise 3.13
47 }
48 else if (status == 3) { // Compute tax for head of household
49 // Left as an exercise in Programming Exercise 3.13
50 }
51 else {
52 System.out.println("Error: invalid status");
53 System.exit(1);
54 }
55
56 // Display the result
57 System.out.println("Tax is " + (int)(tax * 100) / 100.0);
58 }
59 }

exit program

display output

(0-single filer, 1-married jointly or qualifying widow(er),
2-married separately, 3-head of household)
Enter the filing status: 0
Enter the taxable income: 400000
Tax is 117683.5

line# status income Tax output

13 0

17 400000

20 0

38 117683.5

57 Tax is 117683.5

The program receives the filing status and taxable income. The multi-way if-else state-
ments (lines 22, 42, 45, 48, and 51) check the filing status and compute the tax based on the
filing status.

System.exit(status) (line 53) is defined in the System class. Invoking this method
terminates the program. The status 0 indicates that the program is terminated normally. A
nonzero status code indicates abnormal termination.

An initial value of 0 is assigned to tax (line 20). A compile error would occur if it had no
initial value, because all of the other statements that assign values to tax are within the if
statement. The compiler thinks these statements may not be executed, and therefore reports a
compile error.

System.exit(status)

M03_LIAN9966_12_SE_C03.indd 94 28/09/19 3:54 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

3.10  Logical Operators 95

To test a program, you should provide the input that covers all cases. For this program,
your input should cover all statuses (0, 1, 2, 3). For each status, test the tax for each of the six
brackets. Thus, there are a total of 24 cases.

Tip
For all programs, you should write a small amount of code and test it before moving on
to add more code. This is called incremental development and testing. This approach
makes testing easier, because the errors are likely in the new code you just added.

3.9.1	 Are the following two statements equivalent?

test all cases

incremental development and
testing

Point
Check

if (income <= 10000)
 tax = income * 0.1;
else if (income <= 20000)
 tax = 1000 +
 (income − 10000) * 0.15;

if (income <= 10000)
 tax = income * 0.1;
else if (income > 10000 &&
 income <= 20000)
 tax = 1000 +
 (income − 10000) * 0.15;

3.10  Logical Operators
The logical operators !, &&, ||, and ^ can be used to create a compound Boolean
expression.

 Sometimes, whether a statement is executed is determined by a combination of several condi-
tions. You can use logical operators to combine these conditions to form a compound Boolean
expression. Logical operators, also known as Boolean operators, operate on Boolean values
to create a new Boolean value. Table 3.3 lists the Boolean operators. Table 3.4 defines the
not (!) operator, which negates true to false and false to true. Table 3.5 defines the and
(&&) operator. The and (&&) of two Boolean operands is true if and only if both the operands
are true. Table 3.6 defines the or (||) operator. The or (||) of two Boolean operands is
true if at least one of the operands is true. Table 3.7 defines the exclusive or (^) operator.
The exclusive or (^) of two Boolean operands is true if and only if the two operands have
different Boolean values. Note p1 ^ p2 is the same as p1 != p2.

Point
Key

Table 3.3 Boolean Operators

Operator Name Description

! not Logical negation

&& and Logical conjunction

|| or Logical disjunction

^ exclusive or Logical exclusion

Table 3.4  Truth Table for Operator !

p !p Example (assume age = 24, weight = 140)

true false !(age > 18) is false, because (age > 18) is true.

false true !(weight == 150) is true, because (weight == 150)
is false.

M03_LIAN9966_12_SE_C03.indd 95 28/09/19 3:54 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

96 Chapter 3   Selections

Listing 3.6 gives a program that checks whether a number is divisible by 2 and 3, by 2 or
3, and by 2 or 3 but not both.

Listing 3.6  TestBooleanOperators.java
 1 import java.util.Scanner;
 2
 3 public class TestBooleanOperators {
 4 public static void main(String[] args) {
 5 // Create a Scanner
 6 Scanner input = new Scanner(System.in);
 7
 8 // Receive an input
 9 System.out.print("Enter an integer: ");
10 int number = input.nextInt();
11
12 if (number % 2 == 0 && number % 3 == 0)
13 System.out.println(number + " is divisible by 2 and 3.");
14

import class

input

and

Table 3.5  Truth Table for Operator &&

p1 p2 p1 && p2 Example (assume age = 24, weight = 140)

false false false

false true false (age > 28) && (weight <= 140) is false, because (age >
28) is false.

true false false

true true true (age > 18) && (weight >= 140) is true, because (age > 18)
and (weight >= 140) are both true.

Table 3.6  Truth Table for Operator ||

p1 p2 p1 || p2 Example (assume age = 24, weight = 140)

false false false (age > 34) || (weight >= 150) is false, because (age >
34) and (weight >= 150) are both false.

false true true

true false true (age > 18) || (weight < 140) is true, because (age > 18)
is true.

true true true

Table 3.7  Truth Table for Operator ^

p1 p2 p1 ^ p2 Example (assume age = 24, weight = 140)

false false false (age > 34) ^ (weight > 140) is false, because (age > 34)
and (weight > 140) are both false.

false true true (age > 34) ^ (weight >= 140) is true, because (age > 34)
is false but (weight >= 140) is true.

true false true

true true false

M03_LIAN9966_12_SE_C03.indd 96 28/09/19 3:54 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

3.10  Logical Operators 97

15 if (number % 2 == 0 || number % 3 == 0)
16 System.out.println(number + " is divisible by 2 or 3.");
17
18 if (number % 2 == 0 ^ number % 3 == 0)
19 System.out.println(number +
20 " is divisible by 2 or 3, but not both.");
21 }
22 }

Enter an integer: 4
4 is divisible by 2 or 3.
4 is divisible by 2 or 3, but not both.

Enter an integer: 18
18 is divisible by 2 and 3.
18 is divisible by 2 or 3.

(number % 2 == 0 && number % 3 == 0) (line 12) checks whether the number is
divisible by both 2 and 3. (number % 2 == 0 || number % 3 == 0) (line 15) checks
whether the number is divisible by 2 or by 3. (number % 2 == 0 ^ number % 3 == 0)
(line 18) checks whether the number is divisible by 2 or 3, but not both.

Caution
In mathematics, the expression

28 <= numberOfDaysInAMonth <= 31
is correct. However, it is incorrect in Java, because 28 <= numberOfDaysInA-
Month is evaluated to a boolean value, which cannot be compared with 31. Here,
two operands (a boolean value and a numeric value) are incompatible. The correct
expression in Java is

28 <= numberOfDaysInAMonth && numberOfDaysInAMonth <= 31

Note
De Morgan’s law, named after Indian-born British mathematician and logician Augustus
De Morgan (1806–1871), can be used to simplify Boolean expressions. The law states
the following:

!(condition1 && condition2) is the same as
 !condition1 || !condition2
!(condition1 || condition2) is the same as
 !condition1 && !condition2

For example,

!(number % 2 == 0 && number % 3 == 0)

can be simplified using an equivalent expression:

number % 2 != 0 || number % 3 != 0

As another example,

!(number == 2 || number == 3)

is better written as

number != 2 && number != 3

or

exclusive or

incompatible operands

De Morgan’s law

M03_LIAN9966_12_SE_C03.indd 97 28/09/19 3:54 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

98 Chapter 3   Selections

If one of the operands of an && operator is false, the expression is false; if one of the
operands of an || operator is true, the expression is true. Java uses these properties to im-
prove the performance of these operators. When evaluating p1 && p2, Java first evaluates p1
then, if p1 is true, evaluates p2; if p1 is false, it does not evaluate p2. When evaluating p1
|| p2, Java first evaluates p1 then, if p1 is false, evaluates p2; if p1 is true, it does not
evaluate p2. In programming language terminology, && and || are known as the short-circuit
or lazy operators. Java also provides the & and | operators, which are covered in Supplement
III.C for advanced readers.

3.10.1	 Assuming that x is 1, show the result of the following Boolean expressions:

 (true) && (3 > 4)
 !(x > 0) && (x > 0)
 (x > 0) || (x < 0)
 (x != 0) || (x == 0)
 (x >= 0) || (x < 0)
 (x != 1) == !(x == 1)

3.10.2	 (a) Write a Boolean expression that evaluates to true if a number stored in vari-
able num is between 1 and 100. (b) Write a Boolean expression that evaluates to
true if a number stored in variable num is between 1 and 100 or the number is
negative.

3.10.3	 (a) Write a Boolean expression for � x - 5 � 6 4.5. (b) Write a Boolean expres-
sion for � x - 5 � 7 4.5.

3.10.4	 Assume x and y are int type. Which of the following are legal Java expressions?

x > y > 0
x = y && y
x /= y
x or y
x and y
(x != 0) || (x = 0)

3.10.5	 Are the following two expressions the same?

(a)	 x % 2 == 0 && x % 3 == 0

(b)	 x % 6 == 0

3.10.6	 What is the value of the expression x >= 50 && x <= 100 if x is 45, 67, or 101?

3.10.7	 Suppose, when you run the following program, you enter the input 2 3 6 from
the console. What is the output?

public class Test {
 public static void main(String[] args) {
 java.util.Scanner input = new java.util.Scanner(System.in);
 double x = input.nextDouble();
 double y = input.nextDouble();
 double z = input.nextDouble();

 System.out.println("(x < y && y < z) is " + (x < y && y < z));
 System.out.println("(x < y || y < z) is " + (x < y || y < z));
 System.out.println("!(x < y) is " + !(x < y));
 System.out.println("(x + y < z) is " + (x + y < z));
 System.out.println("(x + y > z) is " + (x + y > z));
 }
}

3.10.8	 Write a Boolean expression that evaluates to true if age is greater than 13 and
less than 18.

short-circuit operator

lazy operator

Point
Check

M03_LIAN9966_12_SE_C03.indd 98 28/09/19 3:54 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

3.11  Case Study: Determining Leap Year 99

  3.10.9	 Write a Boolean expression that evaluates to true if weight is greater than 50
pounds or height is greater than 60 inches.

3.10.10	 Write a Boolean expression that evaluates to true if weight is greater than 50
pounds and height is greater than 60 inches.

3.10.11	 Write a Boolean expression that evaluates to true if either weight is greater than
50 pounds or height is greater than 60 inches, but not both.

3.11  Case Study: Determining Leap Year
A year is a leap year if it is divisible by 4 but not by 100, or if it is divisible by 400.

A leap year has 366 days. The February of a leap year has 29 days. You can use the following
Boolean expressions to check whether a year is a leap year:

// A leap year is divisible by 4
boolean isLeapYear = (year % 4 == 0);

// A leap year is divisible by 4 but not by 100
isLeapYear = isLeapYear && (year % 100 != 0);

// A leap year is divisible by 4 but not by 100 or divisible by 400
isLeapYear = isLeapYear || (year % 400 == 0);

Or you can combine all these expressions into one as follows:

isLeapYear = (year % 4 == 0 && year % 100 != 0) || (year % 400 == 0);

Listing 3.7 gives the program that lets the user enter a year and checks whether it is a leap
year.

Listing 3.7  LeapYear.java
 1 import java.util.Scanner;
 2
 3 public class LeapYear {
 4 public static void main(String[] args) {
 5 // Create a Scanner
 6 Scanner input = new Scanner(System.in);
 7 System.out.print("Enter a year: ");
 8 int year = input.nextInt();
 9
10 // Check if the year is a leap year
11 boolean isLeapYear =
12 (year % 4 == 0 && year % 100 != 0) || (year % 400 == 0);
13
14 // Display the result
15 System.out.println(year + " is a leap year? " + isLeapYear);
16 }
17 }

Point
Key

input

leap year?

display result

Enter a year: 2008

2008 is a leap year? true

Enter a year: 1900

1900 is a leap year? false

M03_LIAN9966_12_SE_C03.indd 99 28/09/19 3:54 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

100 Chapter 3   Selections

Enter a year: 2002

2002 is a leap year? false

3.11.1	 How many days in the February of a leap year? Which of the following is a leap
year? 500, 1000, 2000, 2016, and 2020?

3.12  Case Study: Lottery
The lottery program involves generating random numbers, comparing digits, and
using Boolean operators.

 Suppose you want to develop a program to play lottery. The program randomly generates a
lottery of a two-digit number, prompts the user to enter a two-digit number, and determines
whether the user wins according to the following rules:

1.	 If the user input matches the lottery number in the exact order, the award is $10,000.

2.	 If all digits in the user input match all digits in the lottery number, the award is $3,000.

3.	 If one digit in the user input matches a digit in the lottery number, the award is $1,000.

Note the digits of a two-digit number may be 0. If a number is less than 10, we assume that
the number is preceded by a 0 to form a two-digit number. For example, number 8 is treated
as 08, and number 0 is treated as 00 in the program. Listing 3.8 gives the complete program.

Listing 3.8  Lottery.java
 1 import java.util.Scanner;
 2
 3 public class Lottery {
 4 public static void main(String[] args) {
 5 // Generate a lottery number
 6 int lottery = (int)(Math.random() * 100);
 7
 8 // Prompt the user to enter a guess
 9 Scanner input = new Scanner(System.in);
10 System.out.print("Enter your lottery pick (two digits): ");
11 int guess = input.nextInt();
12
13 // Get digits from lottery
14 int lotteryDigit1 = lottery / 10;
15 int lotteryDigit2 = lottery % 10;
16
17 // Get digits from guess
18 int guessDigit1 = guess / 10;
19 int guessDigit2 = guess % 10;
20
21 System.out.println("The lottery number is " + lottery);
22
23 // Check the guess
24 if (guess == lottery)
25 System.out.println("Exact match: you win $10,000");
26 else if (guessDigit2 == lotteryDigit1
27 && guessDigit1 == lotteryDigit2)
28 System.out.println("Match all digits: you win $3,000");
29 else if (guessDigit1 == lotteryDigit1
30 || guessDigit1 == lotteryDigit2
31 || guessDigit2 == lotteryDigit1
32 || guessDigit2 == lotteryDigit2)

Point
Check

Point
Key

generate a lottery number

enter a guess

exact match?

match all digits?

match one digit?

M03_LIAN9966_12_SE_C03.indd 100 28/09/19 3:54 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

3.12  Case Study: Lottery 101

33 System.out.println("Match one digit: you win $1,000");
34 else
35 System.out.println("Sorry, no match");
36 }
37 }

Enter your lottery pick (two digits): 15
The lottery number is 15
Exact match: you win $10,000

Enter your lottery pick (two digits): 45
The lottery number is 54
Match all digits: you win $3,000

Enter your lottery pick: 23
The lottery number is 34
Match one digit: you win $1,000

Enter your lottery pick: 23
The lottery number is 14
Sorry: no match

line# 6 11 14 15 18 19 33

variable
lottery 34

guess 23

lotteryDigit1 3

lotteryDigit2 4

guessDigit1 2

guessDigit2 3

Output Match one digit:

you win $1,000

The program generates a lottery using the random() method (line 6) and prompts the user
to enter a guess (line 11). Note guess % 10 obtains the last digit from guess and guess
/10 obtains the first digit from guess, since guess is a two-digit number (lines 18 and 19).

The program checks the guess against the lottery number in this order:

1.	 First, check whether the guess matches the lottery exactly (line 24).

2.	 If not, check whether the reversal of the guess matches the lottery (lines 26 and 27).

3.	 If not, check whether one digit is in the lottery (lines 29–32).

4.	 If not, nothing matches and display "Sorry, no match" (lines 34 and 35).

3.12.1	 What happens if you enter an integer as 05? Point
Check

M03_LIAN9966_12_SE_C03.indd 101 28/09/19 3:54 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

102 Chapter 3   Selections

3.13  switch Statements
A switch statement executes statements based on the value of a variable or an
expression.

 The if statement in Listing 3.5, ComputeTax.java, makes selections based on a single true
or false condition. There are four cases for computing taxes, which depend on the value
of status. To fully account for all the cases, nested if statements were used. Overuse of
nested if statements makes a program difficult to read. Java provides a switch statement
to simplify coding for multiple conditions. You can write the following switch statement to
replace the nested if statement in Listing 3.5:

switch (status) {
 case 0: compute tax for single filers;
 break;
 case 1: compute tax for married jointly or qualifying widow(er);
 break;
 case 2: compute tax for married filing separately;
 break;
 case 3: compute tax for head of household;
 break;
 default: System.out.println("Error: invalid status");
 System.exit(1);
}

The flowchart of the preceding switch statement is shown in Figure 3.5.

Point
Key

Compute tax for single filer

Compute tax for married jointly or qualified widow(er)

Compute tax for head of household

Default actions

status is 0

status is 1

status is 2

status is 3

default

break

break

break

break

Compute tax for married filing separately

break

Figure 3.5  The switch statement checks all cases and executes the statements in the
matched case.

This statement checks to see whether the status matches the value 0, 1, 2, or 3, in that
order. If matched, the corresponding tax is computed; if not matched, a message is displayed.
Here is the full syntax for the switch statement:

switch (switch-expression) {
 case value1: statement(s)1;
 break;

switch statement

M03_LIAN9966_12_SE_C03.indd 102 28/09/19 3:54 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

 case value2: statement(s)2;
 break;
...

 case valueN: statement(s)N;
 break;
 default: statement(s)-for-default;
}

The switch statement observes the following rules:

■■ The switch-expression must yield a value of char, byte, short, int, or
String type and must always be enclosed in parentheses. (The char and String
types will be introduced in Chapter 4.)

■■ The value1, ..., and valueN must have the same data type as the value of the
switch-expression. Note that value1, ..., and valueN are constant expressions,
meaning they cannot contain variables, such as 1 + x.

■■ When the value in a case statement matches the value of the switch-expression,
the statements starting from this case are executed until either a break statement or
the end of the switch statement is reached.

■■ The default case, which is optional, can be used to perform actions when none of
the specified cases matches the switch-expression.

■■ The keyword break is optional. The break statement immediately ends the switch
statement.

Caution
Do not forget to use a break statement when one is needed. Once a case is matched,
the statements starting from the matched case are executed until a break statement
or the end of the switch statement is reached. This is referred to as fall-through
behavior. For example, the following code displays Weekday for days 1–5 and
Weekend for day 0 and day 6.

without break

fall-through behavior

Tip
To avoid programming errors and improve code maintainability, it is a good idea to put
a comment in a case clause if break is purposely omitted.

Now let us write a program to find out the Chinese Zodiac sign for a given year. The
Chinese Zodiac is based on a 12-year cycle, with each year represented by an animal—
monkey, rooster, dog, pig, rat, ox, tiger, rabbit, dragon, snake, horse, or sheep—in this cycle,
as shown in Figure 3.6.

Note year % 12 determines the Zodiac sign. 1900 is the year of the rat because 1900
% 12 is 4. Listing 3.9 gives a program that prompts the user to enter a year and displays the
animal for the year.

switch (day) {
 case 1:
 case 2:
 case 3:
 case 4:
 case 5: System.out.println(“Weekday"); break;
 case 0:
 case 6: System.out.println(“Weekend");
}

3.13  switch Statements 103

M03_LIAN9966_12_SE_C03.indd 103 28/09/19 3:54 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

104 Chapter 3   Selections

Listing 3.9  ChineseZodiac.java
 1 import java.util.Scanner;
 2
 3 public class ChineseZodiac {
 4 public static void main(String[] args) {
 5 Scanner input = new Scanner(System.in);
 6
 7 System.out.print("Enter a year: ");
 8 int year = input.nextInt();
 9
10 switch (year % 12) {
11 case 0: System.out.println("monkey"); break;
12 case 1: System.out.println("rooster"); break;
13 case 2: System.out.println("dog"); break;
14 case 3: System.out.println("pig"); break;
15 case 4: System.out.println("rat"); break;
16 case 5: System.out.println("ox"); break;
17 case 6: System.out.println("tiger"); break;
18 case 7: System.out.println("rabbit"); break;
19 case 8: System.out.println("dragon"); break;
20 case 9: System.out.println("snake"); break;
21 case 10: System.out.println("horse"); break;
22 case 11: System.out.println("sheep");
23 }
24 }
25 }

enter year

determine Zodiac sign

rat

0: monkey
1: rooster
2: dog
3: pig
4: rat
5: ox
6: tiger
7: rabbit
8: dragon
9: snake
10: horse
11: sheep

ox

tiger

rabbit

dragon

snakehorse

sheep

monkey

rooster

dog

pig

year % 12 5

Figure 3.6  The Chinese Zodiac is based on a 12-year cycle.

Enter a year: 1963
rabbit

Enter a year: 1877
ox

M03_LIAN9966_12_SE_C03.indd 104 28/09/19 3:54 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

3.14  Conditional Operators 105

3.13.1	 What data types are required for a switch variable? If the keyword break is not
used after a case is processed, what is the next statement to be executed? Can you
convert a switch statement to an equivalent if statement, or vice versa? What are
the advantages of using a switch statement?

3.13.2	 What is y after the following switch statement is executed? Rewrite the code
using an if-else statement.

x = 3; y = 3;
switch (x + 3) {
 case 6: y = 1;
 default: y += 1;
}

3.13.3	 What is x after the following if-else statement is executed? Use a switch state-
ment to rewrite it and draw the flowchart for the new switch statement.

int x = 1, a = 3;
if (a == 1)
 x += 5;
else if (a == 2)
 x += 10;
else if (a == 3)
 x += 16;
else if (a == 4)
 x += 34;

3.13.4	 Write a switch statement that displays Sunday, Monday, Tuesday, Wednesday,
Thursday, Friday, Saturday, if day is 0, 1, 2, 3, 4, 5, 6, respectively.

3.13.5	 Rewrite Listing 3.9 using an if-else statement.

3.14  Conditional Operators
A conditional operator evaluates an expression based on a condition.

You might want to assign a value to a variable that is restricted by certain conditions. For
example, the following statement assigns 1 to y if x is greater than 0 and −1 to y if x is less
than or equal to 0:

if (x > 0)
 y = 1;
else
 y = −1;

Alternatively, as in the following example, you can use a conditional operator to achieve
the same result.

y = (x > 0)? 1: −1;

The symbols? and: appearing together is called a conditional operator (also known as a
ternary operator because it uses three operands. It is the only ternary operator in Java. The
conditional operator is in a completely different style, with no explicit if in the statement.
The syntax to use the operator is as follows:

boolean-expression? expression1: expression2

The result of this expression is expression1 if boolean-expression is true; otherwise
the result is expression2.

Suppose you want to assign the larger number of variable num1 and num2 to max. You can
simply write a statement using the conditional operator:

max = (num1 > num2)? num1: num2;

Point
Check

Point
Key

conditional operator

ternary operator

M03_LIAN9966_12_SE_C03.indd 105 28/09/19 3:54 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

106 Chapter 3   Selections

For another example, the following statement displays the message “num is even” if num
is even, and otherwise displays “num is odd.”

System.out.println((num % 2 == 0)? "num is even": "num is odd");

As you can see from these examples, the conditional operator enables you to write short
and concise code.

Conditional expressions can be embedded. For example, the following code assigns 1, 0,
or −1 to status if n1 > n1, n1 == n2, or n1 < n2:

status = n1 > n2? 1: (n1 == n2? 0: −1);

3.14.1	 Suppose when you run the following program, you enter the input 2 3 6 from the
console. What is the output?

public class Test {
 public static void main(String[] args) {
 java.util.Scanner input = new java.util.Scanner(System.in);
 double x = input.nextDouble();
 double y = input.nextDouble();
 double z = input.nextDouble();

 System.out.println((x < y && y < z)? "sorted": "not sorted");
 }
}

3.14.2	 Rewrite the following if statements using the conditional operator.

Point
Check

if (ages >= 16)
 ticketPrice = 20;
else
 ticketPrice = 10;

3.14.3	 Rewrite the following codes using if-else statements.

a.	 score = (x > 10)? 3 * scale: 4 * scale;
b.	 tax = (income > 10000)? income * 0.2: income * 0.17 + 1000;
c.	 System.out.println((number % 3 == 0)? i: j);

3.14.4	 Write an expression using a conditional operator that returns randomly −1 or 1.

3.15  Operator Precedence and Associativity
Operator precedence and associativity determine the order in which operators are
evaluated.

Section 2.11 introduced operator precedence involving arithmetic operators. This section dis-
cusses operator precedence in more detail. Suppose you have this expression:

3 + 4 * 4 > 5 * (4 + 3) – 1 && (4 – 3 > 5)

What is its value? What is the execution order of the operators?
The expression within parentheses is evaluated first. (Parentheses can be nested, in which case

the expression within the inner parentheses is executed first.) When evaluating an expression without
parentheses, the operators are applied according to the precedence rule and the associativity rule.

The precedence rule defines precedence for operators, as shown in Table 3.8, which con-
tains the operators you have learned so far. Operators are listed in decreasing order of pre-
cedence from top to bottom. The logical operators have lower precedence than the relational
operators, and the relational operators have lower precedence than the arithmetic operators.
Operators with the same precedence appear in the same group. (See Appendix C, Operator
Precedence Chart, for a complete list of Java operators and their precedence.)

Point
Key

operator precedence

M03_LIAN9966_12_SE_C03.indd 106 28/09/19 3:54 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

3.15  Operator Precedence and Associativity 107

If operators with the same precedence are next to each other, their associativity determines
the order of evaluation. All binary operators except assignment operators are left associative.
For example, since + and − are of the same precedence and are left associative, the expression operator associativity

Assignment operators are right associative. Therefore, the expression

Suppose a, b, and c are 1 before the assignment; after the whole expression is evaluated,
a becomes 6, b becomes 6, and c becomes 5. Note that left associativity for the assignment
operator would not make sense.

Note
Java has its own way to evaluate an expression internally. The result of a Java evalua-
tion is the same as that of its corresponding arithmetic evaluation. Advanced readers
may refer to Supplement III.B for more discussions on how an expression is evaluated
in Java behind the scenes.

3.15.1	 List the precedence order of the Boolean operators. Evaluate the following expressions:

true || true && false
true && true || false

3.15.2	 True or false? All the binary operators except = are left associative.

3.15.3	 Evaluate the following expressions:

2 * 2 – 3 > 2 && 4 – 2 > 5
2 * 2 – 3 > 2 || 4 – 2 > 5

3.15.4	 Is (x > 0 && x < 10) the same as ((x > 0) && (x < 10))?

	 Is (x > 0 || x < 10) the same as ((x > 0) || (x < 10))?

	 Is (x > 0 || x < 10 && y < 0) the same as (x > 0 ||
  (x < 10 && y < 0))?

behind the scenes

Point
Check

Table 3.8  Operator Precedence Chart

Precedence Operator

var++ and var−− (Postfix)

+, − (Unary plus and minus), ++var and −−var (Prefix)

(type) (Casting)

!(Not)

*, /, % (Multiplication, division, and remainder)

+, − (Binary addition and subtraction)

<, <=, >, >= (Relational)

==, != (Equality)

^ (Exclusive OR)

&& (AND)

|| (OR)

?: (Ternary operator)

=, +=, −=, *=, /=, %= (Assignment operators)

a - b + c - d ((a - b) + c) - d
is equivalent to

a = b += c = 5 a = (b += (c = 5))
is equivalent to

M03_LIAN9966_12_SE_C03.indd 107 28/09/19 3:54 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

108 Chapter 3   Selections

3.16  Debugging
Debugging is the process of finding and fixing errors in a program.

As mentioned in Section 1.10, syntax errors are easy to find and easy to correct because
the compiler gives indications as to where the errors came from and why they are there.
Runtime errors are not difficult to find either, because the Java interpreter displays them on
the console when the program aborts. Finding logic errors, on the other hand, can be very
challenging.

Logic errors are called bugs. The process of finding and correcting errors is called debug-
ging. A common approach to debugging is to use a combination of methods to help pinpoint
the part of the program where the bug is located. You can hand-trace the program (i.e., catch
errors by reading the program), or you can insert print statements in order to show the val-
ues of the variables or the execution flow of the program. These approaches might work for
debugging a short, simple program, but for a large, complex program, the most effective
approach is to use a debugger utility.

JDK includes a command-line debugger, jdb, which is invoked with a class name. jdb is
itself a Java program, running its own copy of Java interpreter. All the Java IDE tools, such
as Eclipse and NetBeans, include integrated debuggers. The debugger utilities let you follow
the execution of a program. They vary from one system to another, but they all support most
of the following helpful features.

■■ Executing a single statement at a time: The debugger allows you to execute one
statement at a time so that you can see the effect of each statement.

■■ Tracing into or stepping over a method: If a method is being executed, you can
ask the debugger to enter the method and execute one statement at a time in the
method, or you can ask it to step over the entire method. You should step over the
entire method if you know that the method works. For example, always step over
system-supplied methods, such as System.out.println.

■■ Setting breakpoints: You can also set a breakpoint at a specific statement. Your
program pauses when it reaches a breakpoint. You can set as many breakpoints as
you want. Breakpoints are particularly useful when you know where your program-
ming error starts. You can set a breakpoint at that statement, and have the program
execute until it reaches the breakpoint.

■■ Displaying variables: The debugger lets you select several variables and display
their values. As you trace through a program, the content of a variable is continu-
ously updated.

■■ Displaying call stacks: The debugger lets you trace all of the method calls. This fea-
ture is helpful when you need to see a large picture of the program-execution flow.

■■ Modifying variables: Some debuggers enable you to modify the value of a variable
when debugging. This is convenient when you want to test a program with different
samples, but do not want to leave the debugger.

Tip
If you use an IDE such as Eclipse or NetBeans, please refer to Learning Java Effectively with
Eclipse/NetBeans in Supplements II.C and II.E on the Companion Website. The supplement
shows you how to use a debugger to trace programs, and how debugging can help in learning
Java effectively.

Point
Key

bugs

debugging

hand-traces

debugging in IDE

M03_LIAN9966_12_SE_C03.indd 108 28/09/19 3:54 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

Chapter Summary   109

Key Terms

boolean data type, 78
Boolean expression, 78
Boolean value, 78
conditional operator, 105
dangling else ambiguity, 87
debugging, 108
fall-through behavior, 103

flowchart, 80
lazy operator, 98
operator associativity, 107
operator precedence, 106
selection statement, 78
short-circuit operator, 98

Chapter Summary

1.	 A boolean-type variable can store a true or false value.

2.	 The relational operators (<, <=, ==, !=, >, and >=) yield a Boolean value.

3.	 Selection statements are used for programming with alternative courses of actions.
There are several types of selection statements: one-way if statements, two-way if-
else statements, nested if statements, multi-way if-else statements, switch state-
ments, and conditional operators.

4.	 The various if statements all make control decisions based on a Boolean expression.
Based on the true or false evaluation of the expression, these statements take one of
the two possible courses.

5.	 The Boolean operators &&, ||, !, and ^ operate with Boolean values and variables.

6.	 When evaluating p1 && p2, Java first evaluates p1 then evaluates p2 if p1 is true; if
p1 is false, it does not evaluate p2. When evaluating p1 || p2, Java first evaluates
p1 then evaluates p2 if p1 is false; if p1 is true, it does not evaluate p2. Therefore,
&& is referred to as the short-circuit or lazy AND operator, and || is referred to as the
short-circuit or lazy OR operator.

7.	 The switch statement makes control decisions based on a switch expression of type
char, byte, short, int, or String.

8.	 The keyword break is optional in a switch statement, but it is normally used at the
end of each case in order to skip the remainder of the switch statement. If the break
statement is not present, the next case statement will be executed.

9.	 The operators in expressions are evaluated in the order determined by the rules of pa-
rentheses, operator precedence, and operator associativity.

10.	 Parentheses can be used to force the order of evaluation to occur in any sequence.

11.	 Operators with higher precedence are evaluated earlier. For operators of the same prece-
dence, their associativity determines the order of evaluation.

12.	 All binary operators except assignment operators are left associative; assignment oper-
ators are right associative.

M03_LIAN9966_12_SE_C03.indd 109 28/09/19 3:54 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

110 Chapter 3   Selections

Quiz

Answer the quiz for this chapter online at the Companion Website.

Programming Exercises

Pedagogical Note
For each exercise, carefully analyze the problem requirements and design strategies for solving
the problem before coding.

Debugging Tip
Before you ask for help, read and explain the program to yourself, and trace it using several
representative inputs by hand or using an IDE debugger. You learn how to program by debugging
your own mistakes.

Section 3.2
	 *3.1	 (Algebra: solve quadratic equations) The two roots of a quadratic equation

ax2 + bx + c = 0 can be obtained using the following formula:

r1 =
-b + 2b2 - 4ac

2a
 and r2 =

-b - 2b2 - 4ac
2a

b2 - 4ac is called the discriminant of the quadratic equation. If it is positive, the
equation has two real roots. If it is zero, the equation has one root. If it is nega-
tive, the equation has no real roots.
Write a program that prompts the user to enter values for a, b, and c and displays
the result based on the discriminant. If the discriminant is positive, display two
roots. If the discriminant is 0, display one root. Otherwise, display “The equation
has no real roots.”

Note you can use Math.pow(x, 0.5) to compute 2x. Here are some sample
runs:

think before coding

learn from mistakes

Enter a, b, c: 1.0 3 1
The equation has two roots −0.381966 and −2.61803

Enter a, b, c: 1 2.0 1
The equation has one root −1.0

Enter a, b, c: 1 2 3
The equation has no real roots

	 3.2	 (Game: add three numbers) The program in Listing 3.1, AdditionQuiz.java, gen-
erates two integers and prompts the user to enter the sum of these two integers.
Revise the program to generate three single-digit integers and prompt the user to
enter the sum of these three integers.

M03_LIAN9966_12_SE_C03.indd 110 28/09/19 3:54 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

Programming Exercises   111

Sections 3.3–3.7
	 *3.3	 (Algebra: solve 2 * 2 linear equations) A linear equation can be solved using

Cramer’s rule given in Programming Exercise 1.13. Write a program that prompts
the user to enter a, b, c, d, e, and f and displays the result. If ad - bc is 0, report
that “The equation has no solution.”

Enter a, b, c, d, e, f: 9.0 4.0 3.0 −5.0 −6.0 −21.0

x is −2.0 and y is 3.0

Enter a, b, c, d, e, f: 1.0 2.0 2.0 4.0 4.0 5.0

The equation has no solution

	 **3.4	 (Random month) Write a program that randomly generates an integer between 1
and 12 and displays the English month names January, February, . . . , December
for the numbers 1, 2, . . . , 12, accordingly.

	 *3.5	 (Find future dates) Write a program that prompts the user to enter an integer for
today’s day of the week (Sunday is 0, Monday is 1, . . . , and Saturday is 6). Also
prompt the user to enter the number of days after today for a future day and dis-
play the future day of the week. Here is a sample run:

Enter today’s day: 1

Enter the number of days elapsed since today: 3

Today is Monday and the future day is Thursday

Enter today’s day: 0

Enter the number of days elapsed since today: 31

Today is Sunday and the future day is Wednesday

	 *3.6	 (Health application: BMI) Revise Listing 3.4, ComputeAndInterpretBMI.java, to
let the user enter weight, feet, and inches. For example, if a person is 5 feet and
10 inches, you will enter 5 for feet and 10 for inches. Here is a sample run:

Enter weight in pounds: 140

Enter feet: 5

Enter inches: 10

BMI is 20.087702275404553

Normal

	 3.7	 (Financial application: monetary units) Modify Listing 2.10, ComputeChange.
java, to display the nonzero denominations only, using singular words for single
units such as 1 dollar and 1 penny, and plural words for more than one unit such
as 2 dollars and 3 pennies.

M03_LIAN9966_12_SE_C03.indd 111 28/09/19 3:54 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

112 Chapter 3   Selections

	 *3.8	 (Sort three integers) Write a program that prompts the user to enter three integers
and display the integers in non-decreasing order.

	 **3.9	 (Business: check ISBN-10) An ISBN-10 (International Standard Book Number)
consists of 10 digits: d1d2d3d4d5d6d7d8d9d10. The last digit, d10, is a checksum,
which is calculated from the other 9 digits using the following formula:

(d1 * 1 + d2 * 2 + d3 * 3 + d4 * 4 + d5 * 5 +

d6 * 6 + d7 * 7 + d8 * 8 + d9 * 9),11

If the checksum is 10, the last digit is denoted as X according to the ISBN-10
convention. Write a program that prompts the user to enter the first 9 digits and
displays the 10-digit ISBN (including leading zeros). Your program should read
the input as an integer. Here are sample runs:

VideoNote

Sort three integers

Enter the first 9 digits of an ISBN as integer: 013601267

The ISBN-10 number is 0136012671

Enter the first 9 digits of an ISBN as integer: 013031997

The ISBN-10 number is 013031997X

	 3.10	 (Game: addition quiz) Listing 3.3, SubtractionQuiz.java, randomly generates a
subtraction question. Revise the program to randomly generate an addition ques-
tion with two integers less than 100.

Sections 3.8–3.16
	 *3.11	 (Find the number of days in a month) Write a program that prompts the user

to enter the month and year and displays the number of days in the month. For
example, if the user entered month 2 and year 2012, the program should display
that February 2012 has 29 days. If the user entered month 3 and year 2015, the
program should display that March 2015 has 31 days.

	 3.12	 (Palindrome integer) Write a program that prompts the user to enter a three-digit
integer and determines whether it is a palindrome integer. An integer is palindrome
if it reads the same from right to left and from left to right. A negative integer is
treated the same as a positive integer. Here are sample runs of this program:

Enter a three-digit integer: 121
121 is a palindrome

Enter a three-digit integer: 123
123 is not a palindrome

	 *3.13	 (Financial application: compute taxes) Listing 3.5, ComputeTax.java, gives the
source code to compute taxes for single filers. Complete this program to compute
taxes for all filing statuses.

	 3.14	 (Game: heads or tails) Write a program that lets the user guess whether the flip
of a coin results in heads or tails. The program randomly generates an integer
0 or 1, which represents head or tail. The program prompts the user to enter a
guess, and reports whether the guess is correct or incorrect.

M03_LIAN9966_12_SE_C03.indd 112 28/09/19 3:54 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

Programming Exercises   113

	**3.15	 (Game: lottery) Revise Listing 3.8, Lottery.java, to generate a lottery of a three-
digit integer. The program prompts the user to enter a three-digit integer and
determines whether the user wins according to the following rules:

1.	 If the user input matches the lottery number in the exact order, the award is
$10,000.

2.	 If all digits in the user input match all digits in the lottery number, the award
is $3,000.

3.	 If one digit in the user input matches a digit in the lottery number, the award
is $1,000.

	 3.16	 (Random point) Write a program that displays a random coordinate in a rectan-
gle. The rectangle is centered at (0, 0) with width 100 and height 200.

	 *3.17	 (Game: scissor, rock, paper) Write a program that plays the popular scissor–
rock–paper game. (A scissor can cut a paper, a rock can knock a scissor, and
a paper can wrap a rock.) The program randomly generates a number 0, 1, or
2 representing scissor, rock, and paper. The program prompts the user to enter
a number 0, 1, or 2 and displays a message indicating whether the user or the
computer wins, loses, or draws. Here are sample runs:

scissor (0), rock (1), paper (2): 1

The computer is scissor. You are rock. You won

scissor (0), rock (1), paper (2): 2

The computer is paper. You are paper too. It is a draw

	 *3.18	 (Cost of shipping) A shipping company uses the following function to calculate
the cost (in dollars) of shipping based on the weight of the package (in pounds).

c(w) = d 3.5, if 0 6 w 6 = 1
5.5, if 1 6 w 6 = 3
8.5, if 3 6 w 6 = 10
10.5, if 10 6 w 6 = 20

Write a program that prompts the user to enter the weight of the package and
displays the shipping cost. If the weight is negative or zero, display a message
“Invalid input.” If the weight is greater than 20, display a message “The package
cannot be shipped.”

	**3.19	 (Compute the perimeter of a triangle) Write a program that reads three edges for
a triangle and computes the perimeter if the input is valid. Otherwise, display
that the input is invalid. The input is valid if the sum of every pair of two edges is
greater than the remaining edge.

	 *3.20	 (Science: wind-chill temperature) Programming Exercise 2.17 gives a formula to
compute the wind-chill temperature. The formula is valid for temperatures in the
range between -58°F and 41°F and wind speed greater than or equal to 2. Write
a program that prompts the user to enter a temperature and a wind speed. The
program displays the wind-chill temperature if the input is valid; otherwise, it dis-
plays a message indicating whether the temperature and/or wind speed is invalid.

M03_LIAN9966_12_SE_C03.indd 113 28/09/19 3:54 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

114 Chapter 3   Selections

Comprehensive
	**3.21	 (Science: day of the week) Zeller’s congruence is an algorithm developed by

Christian Zeller to calculate the day of the week. The formula is

h = aq +
26(m + 1)

10
+ k +

k
4

+
j

4
+ 5jb,7

where

■■ h is the day of the week (0: Saturday, 1: Sunday, 2: Monday, 3: Tuesday, 4:
Wednesday, 5: Thursday, and 6: Friday).

■■ q is the day of the month.
■■ m is the month (3: March, 4: April, ..., 12: December). January and February

are counted as months 13 and 14 of the previous year.

■■ j is
year

100
.

■■ k is the year of the century (i.e., year % 100).

Note all divisions in this exercise perform an integer division. Write a program
that prompts the user to enter a year, month, and day of the month, and displays
the name of the day of the week. Here are some sample runs:

Enter year: (e.g., 2012): 2015

Enter month: 1−12: 1

Enter the day of the month: 1−31: 25

Day of the week is Sunday

Enter year: (e.g., 2012): 2012

Enter month: 1−12: 5

Enter the day of the month: 1−31: 12

Day of the week is Saturday

(Hint: January and February are counted as 13 and 14 in the formula, so you need
to convert the user input 1 to 13 and 2 to 14 for the month and change the year to
the previous year. For example, if the user enters 1 for m and 2015 for year, m will
be 13 and year will be 2014 used in the formula.)

**3.22		 (Geometry: point in a circle?) Write a program that prompts the user to enter a
point (x, y) and checks whether the point is within the circle centered at (0, 0)
with radius 10. For example, (4, 5) is inside the circle and (9, 9) is outside the
circle, as shown in Figure 3.7a.

(Hint: A point is in the circle if its distance to (0, 0) is less than or equal to 10.
The formula for computing the distance is 2(x2 - x1)

2 + (y2 - y1)
2. Test your

program to cover all cases.) Two sample runs are shown below:

Enter a point with two coordinates: 4 5

Point (4.0, 5.0) is in the circle

Enter a point with two coordinates: 9 9

Point (9.0, 9.0) is not in the circle

VideoNote

Check point location

M03_LIAN9966_12_SE_C03.indd 114 28/09/19 3:54 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

Programming Exercises   115

**3.23		 (Geometry: point in a rectangle?) Write a program that prompts the user to enter
a point (x, y) and checks whether the point is within the rectangle centered at
(0, 0) with width 10 and height 5. For example, (2, 2) is inside the rectangle and
(6, 4) is outside the rectangle, as shown in Figure 3.7b. (Hint: A point is in the
rectangle if its horizontal distance to (0, 0) is less than or equal to 10 / 2 and its
vertical distance to (0, 0) is less than or equal to 5.0 / 2. Test your program to
cover all cases.) Here are two sample runs:

x-axis(0, 0)

(a) (b)

y-axis

(4, 5)

(9, 9)

(2, 2)
(6, 4)

x-axis

y-axis

(0, 0)

Figure 3.7  (a) Points inside and outside of the circle. (b) Points inside and outside of the
rectangle.

Enter a point with two coordinates: −4.9 2.49
Point (−4.9, 2.49) is in the rectangle

Enter a point with two coordinates: −5.1 −2.4
Point (−5.1, −2.4) is not in the rectangle

**3.24		 (Game: pick a card) Write a program that simulates picking a card from a deck
of 52 cards. Your program should display the rank (Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10,
Jack, Queen, King) and suit (Clubs, Diamonds, Hearts, Spades) of the card.
Here is a sample run of the program:

The card you picked is Jack of Hearts

*3.25		 (Geometry: intersecting point) Two points on line 1 are given as (x1, y1) and
(x2, y2) and on line 2 as (x3, y3) and (x4, y4), as shown in Figure 3.8a and b.

The intersecting point of the two lines can be found by solving the following
linear equations:

 (y1 - y2)x - (x1 - x2)y = (y1 - y2)x1 - (x1 - x2)y1

 (y3 - y4)x - (x3 - x4)y = (y3 - y4)x3 - (x3 - x4)y3

This linear equation can be solved using Cramer’s rule (see Programming
Exercise 3.3). If the equation has no solutions, the two lines are parallel (see

M03_LIAN9966_12_SE_C03.indd 115 28/09/19 3:54 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

116 Chapter 3   Selections

Figure 3.8c). Write a program that prompts the user to enter four points and dis-
plays the intersecting point. Here are sample runs:

(x1, y1)

(x2, y2) (x3, y3)

(x4, y4)

(a) (b) (c)

(x1, y1)

(x2, y2)

(x3, y3)

(x4, y4)
(x1, y1)

(x2, y2)

(x3, y3)

(x4, y4)

Figure 3.8  Two lines intersect in (a and b) and two lines are parallel in (c).

(0, 100)

(0, 0) (200, 0)

p2

p1

Enter x1, y1, x2, y2, x3, y3, x4, y4: 2 2 5 −1.0 4.0 2.0 −1.0 −2.0

The intersecting point is at (2.88889, 1.1111)

Enter x1, y1, x2, y2, x3, y3, x4, y4: 2 2 7 6.0 4.0 2.0 −1.0 −2.0

The two lines are parallel

	 3.26	 (Use the &&, ||, and ^ operators) Write a program that prompts the user to
enter an integer and determines whether it is divisible by 5 and 6, whether it is
divisible by 5 or 6, and whether it is divisible by 5 or 6, but not both. Here is a
sample run of this program:

Enter an integer: 10

Is 10 divisible by 5 and 6? false

Is 10 divisible by 5 or 6? true
Is 10 divisible by 5 or 6, but not both? true

**	3.27	 (Geometry: points in triangle?) Suppose a right triangle is placed in a plane as
shown below. The right-angle point is placed at (0, 0), and the other two points
are placed at (200, 0) and (0, 100). Write a program that prompts the user to enter
a point with x- and y-coordinates and determines whether the point is inside the
triangle. Here are the sample runs:

Enter a point’s x- and y-coordinates: 100.5 25.5

The point is in the triangle

M03_LIAN9966_12_SE_C03.indd 116 28/09/19 3:54 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

Programming Exercises   117

Enter a point’s x- and y-coordinates: 100.5 50.5
The point is not in the triangle

**3.28		 (Geometry: two rectangles) Write a program that prompts the user to enter the
center x-, y-coordinates, width, and height of two rectangles and determines
whether the second rectangle is inside the first or overlaps with the first, as
shown in Figure 3.9. Test your program to cover all cases.

(a)

w1

(x1, y1)
(x2, y2)

w2

h2h1

(b)

w1

(x1, y1)

(x2, y2)

w2

h2

h1

Figure 3.9  (a) A rectangle is inside another one. (b) A rectangle overlaps another one.

Here are the sample runs:

Enter r1’s center x-, y-coordinates, width, and height: 2.5 4 2.5 43

Enter r2’s center x-, y-coordinates, width, and height: 1.5 5 0.5 3

r2 is inside r1

Enter r1’s center x-, y-coordinates, width, and height: 1 2 3 5.5

Enter r2’s center x-, y-coordinates, width, and height: 3 4 4.5 5

r2 overlaps r1

Enter r1’s center x-, y-coordinates, width, and height: 1 2 3 3

Enter r2’s center x-, y-coordinates, width, and height: 40 45 3 2

r2 does not overlap r1

**3.29		 (Geometry: two circles) Write a program that prompts the user to enter the center
coordinates and radii of two circles and determines whether the second circle
is inside the first or overlaps with the first, as shown in Figure 3.10. (Hint: cir-
cle2 is inside circle1 if the distance between the two centers 6 = r1 − r2
and circle2 overlaps circle1 if the distance between the two centers 6 =
r1 + r2. Test your program to cover all cases.)

Here are the sample runs:

Enter circle1’s center x-, y-coordinates, and radius: 0.5 5.1 13

Enter circle2’s center x-, y-coordinates, and radius: 1 1.7 4.5

circle2 is inside circle1

M03_LIAN9966_12_SE_C03.indd 117 28/09/19 3:54 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

118 Chapter 3   Selections

Enter circle1’s center x-, y-coordinates, and radius: 3.4 5.7 5.5

Enter circle2’s center x-, y-coordinates, and radius: 6.7 3.5 3

circle2 overlaps circle1

(a) (b)

(x1, y1)

(x2, y2)

r2

r1

(x1, y1)

r1

(x2, y2)

r2

Figure 3.10  (a) A circle is inside another circle. (b) A circle overlaps another circle.

Enter circle1’s center x-, y-coordinates, and radius: 3.4 5.5 1

Enter circle2’s center x-, y-coordinates, and radius: 5.5 7.2 1

circle2 does not overlap circle1

	 *3.30	 (Current time) Revise Programming Exercise 2.8 to display the hour using a
12-hour clock. Here is a sample run:

Enter the time zone offset to GMT: −5

The current time is 4:50:34 AM

	 *3.31	 (Financials: currency exchange) Write a program that prompts the user to enter
the exchange rate from currency in U.S. dollars to Chinese RMB. Prompt the
user to enter 0 to convert from U.S. dollars to Chinese RMB and 1 to convert
from Chinese RMB to U.S. dollars. Prompt the user to enter the amount in U.S.
dollars or Chinese RMB to convert it to Chinese RMB or U.S. dollars, respec-
tively. Here are the sample runs:

Enter the exchange rate from dollars to RMB: 6.81
Enter 0 to convert dollars to RMB and 1 vice versa: 0
Enter the dollar amount: 100
$100.0 is 681.0 yuan

Enter the exchange rate from dollars to RMB: 6.81

Enter 0 to convert dollars to RMB and 1 vice versa: 1

Enter the RMB amount: 10000

10000.0 yuan is $1468.43

M03_LIAN9966_12_SE_C03.indd 118 28/09/19 3:54 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

Programming Exercises   119

Enter the exchange rate from dollars to RMB: 6.81

Enter 0 to convert dollars to RMB and 1 vice versa: 5

CIncorrect input

	 *3.32	 (Geometry: point position) Given a directed line from point p0(x0, y0) to p1(x1,
y1), you can use the following condition to decide whether a point p2(x2, y2) is
on the left of the line, on the right, or on the same line (see Figure 3.11):

(x1 - x0)*(y2 - y0) - (x2 - x0)*(y1 - y0) c 70 p2 is on the left side of the line
=0 p2 is on the same line
60 p2 is on the right side of the line

p0

p2
p1

p0

p2

p1

p0

p2

p1

(c)(b)(a)

Figure 3.11  (a) p2 is on the left of the line. (b) p2 is on the right of the line. (c) p2 is on
the same line.

Write a program that prompts the user to enter the three points for p0, p1, and p2
and displays whether p2 is on the left of the line from p0 to p1, to the right, or on
the same line. Here are some sample runs:

Enter three points for p0, p1, and p2: 4.4 2 6.5 9.5 −5 4

p2 is on the left side of the line

Enter three points for p0, p1, and p2: 1 1 5 5 2 2

p2 is on the same line

Enter three points for p0, p1, and p2: 3.4 2 6.5 9.5 5 2.5

p2 is on the right side of the line

	 *3.33	 (Financial: compare costs) Suppose you shop for rice in two different packages.
You would like to write a program to compare the cost. The program prompts the
user to enter the weight and price of each package and displays the one with the
better price. Here is a sample run:

Enter weight and price for package 1: 50 24.59

Enter weight and price for package 2: 25 11.99

Package 2 has a better price.

M03_LIAN9966_12_SE_C03.indd 119 28/09/19 3:54 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

120 Chapter 3   Selections

Enter weight and price for package 1: 50 25

Enter weight and price for package 2: 25 12.5

Two packages have the same price.

	 *3.34	 (Geometry: point on line segment) Exercise 3.32 shows how to test whether a
point is on an unbounded line. Revise Exercise 3.32 to test whether a point is on
a line segment. Write a program that prompts the user to enter the three points for
p0, p1, and p2 and displays whether p2 is on the line segment from p0 to p1. Here
are some sample runs:

Enter three points for p0, p1, and p2: 1 1 2.5 2.5 1.5 1.5

(1.5, 1.5) is on the line segment from (1.0, 1.0) to (2.5, 2.5)

Enter three points for p0, p1, and p2: 1 1 2 2 3.5 3.5

(3.5, 3.5) is not on the line segment from (1.0, 1.0) to (2.0, 2.0)

Note
More than 200 additional programming exercises with solutions are provided to the
instructors on the Instructor Resource Website.

M03_LIAN9966_12_SE_C03.indd 120 28/09/19 3:54 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

