Jacobian Linearizations, equilibrium points

In modeling systems, we see that nearly all systems are nonlinear, in that the dif-
ferential equations governing the evolution of the system’s variables are nonlinear.
However, most of the theory we have developed has centered on linear systems.
So, a question arises: “In what limited sense can a nonlinear system be viewed as
a linear system?” In this section we develop what is called a “Jacobian lineariza-
tion of a nonlinear system,” about a specific operating point, called an equilibrium
point.

Equilibrium Points

Consider a nonlinear differential equation

(t) = f(z(t), ut)) (1)

where f is a function mapping R™ x R' — R™. A point Z € R" is called an
equilibrium point if there is a specific @ € R (called the equilibrium input)
such that

_f(:‘f, ﬁ) =0,

Suppose Z is an equilibrium point (with equilibrium input @). Consider starting
the system (1) from initial condition x(t¢) = Z, and applying the input u(t) = @
for all ¢ > £5. The resulting solution x(t) satisfies

z(t) =%
for all ¢ > ¢,. That is why it is called an equilibrium point.

Example 1:

Find the Equilibrium points for the following system?

b=2v+v:v+vu—8

Let the states as:
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Based on that:

z=f(z,u) 1
21222
22 = 2Z1 +Z%Z2 +Z2u_8

To find the Equilibrium point:
0=f(z,u) 3
0 = Z_Z
Letu=0
Therefore: 2« z; = 8 so z; =4

So the Equilibrium point is z(4,0) and u=0

Deviation Variables

Suppose (Z,@) is an equilibrium point and input. We know that if we start the
system at z(tp) = Z, and apply the constant input u(¢) = @, then the state of the
system will remain fixed at z(t) = Z for all £. What happens if we start a little
bit away from Z, and we apply a slightly different input from #7 Define deviation
variables to measure the difference.

5o(t) = x(t)—%
Su(t) = u(t)—a

In this way, we are simply relabling where we call 0. Now, the variables x(¢) and
u(t) are related by the differential equation

i(t) = f(x(t), u(?))
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Substituting in, using the constant and deviation variables, we get
5:!:@) = f(Z + 6(t), T+ 6u(t))

This is exact. Now however, let’s do a Taylor expansion of the right hand side,
and neglect all higher (higher than 1st) order terms

0c(t) =~ f(Z,u) + ai eeg 0a(8)  + a@{ g Oul®)
But f(#,%) = 0, leaving
: af af
6.() = — S (t e S (¢
(%) B |z= ()  + Buz= (1)

“This differential equation approximately governs (we are neglecting 2nd order and
higher terms) the deviation variables d,(¢) and 4,(t), as long as they remain
small. It is a linear, time-invariant, differential equation, since the derivatives of
0, are linear combinations of the §, variables and the deviation inputs, §,. The

matrices
0 d .
a=gll erm =Sl eme (2)
z u;ﬁ u u;ﬁ
axq dxra O dua dus durp
. a a dx, . a V] o
Ay =| 0 . By=| " T r
Ofn  Bfn .. Bfn - Ofn  Ofn ... B _
L dxa dz, T = ‘E(t) L duy Aduz du z = z(t)
u = G(t) r u = u(t)

are constant matrices. With the matrices A and B as defined in ('2), the linear
system

5.(t) = Ad,(t) + B, (t)

is called the Jacobian Linearization of the original nonlinear system (1 ), about
the equilibrium point (Z,%). For “small” values of §, and §,, the linear equation
approximately governs the exact relationship between the deviation variables 4,
and J,.

For “small” §, (ie., while u(t) remains close to @), and while d, remains “small”
(ie., while z(¢) remains close to ), the variables d, and 4, are related by the
differential equation

5.(t) = Ad,(t) + B, (1)
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If we design a controller that effectively controls the deviations 4., then we have
designed a controller that works well when the system is operating near the equi-
librium point (Z,u#). We will cover this idea in greater detail later. This is a
common, and somewhat effective way to deal with nonlinear systems in a linear
manner.

This equation represents a linear system, and is the linearized system around Z(t), @(t). Similarly
h in the output equation ( 3 ) can be expanded in Taylor series around Z(t), %(t), obtaining

y(t) = bl 2(t),ult) (3)
= h(&(0), (1)) + C(0)(alt) - (1)) + Dt)(u(t) - a(t)) )

where C(t), D(t) are the Jacobians of h:

[ Ok O . Ok T - Oy Ohy 0 Oy A
dz1 BT Ozn duy dus duy
ghy  Bhy  Ohy g_hz g_hz ... _2_85"’1
ad a Oy, . u u u
C(t)i :-:1 T3 : .D(t)= 1 ‘2 T
6-”:p ah‘P N (')h.p _ Bh.p (')h..p Bhp
L Dzi Oz Jen | =) L Pur w B z = &(f)
u = %(t) T u = a(t)
(4)
Since h( Z(t),@(t)) = F(t), we have
y3(t) = C(t)z5(t) + D(t)us(t) (5]
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19.3 Tank Example

Consider a mixing tank, with constant supply temperatures 7 and Ty. Let the
inputs be the two flow rates qc(t) and ¢y (t). The equations for the tank are

) = 2= (ac@®) + qu(t) — cpAay/2gh(2))

Tr(t) = sgay (@c®) [Tec —Tr)] + au (@) [Ta — Tr(t)])
Let the state vector  and input vector « be defined as
z(t) 1= h(%) w(t) = gc(t)
C L Tr(®) ’ © | ga(?)
fi(z,u) = fT (ul + ug — CDAO\/QQ.’L‘l)
folz,u) = 2 (un [To — 22] + us [Ta — x2])

Intuitively, any height A > 0 and any tank temperature T satisfying
To <Tr <Tg

should be a possible equilibrium point (after specifying the correct values of the
equilibrium inputs). In fact, with A and Tr chosen, the equation f(Z,%) = 0 can
be written as

E e I

Te—Ts Tyg—Ts o

The 2 X 2 matrix is invertible if and only if T # Ty. Hence, as long as Te # Ty,
there is a unique equilibrium input for any choice of Z. It is given by

u | _ 1 Tg—T2 —1 cp Aoy 297,
B TH —_ TC 52 - TC 1 0
This is simply

— cpAoy/29%1 (Ty — Tg) — epAo/2971 (Z2 — T)
' Ty —To : 2 Ty — To

Since the wu; represent flow rates into the tank, physical considerations restrict
them to be nonegative real numbers. This implies that #; > 0 and T < Ty < T
Looking at the differential equation for Ty, we see that its rate of change is inversely
related to h. Hence, the differential equation model is valid while h(t) > 0, so
we further restrict ; > 0. Under those restrictions, the state z is indeed an
equilibrium point, and there is a unique equilibrium input given by the equations
above.
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The linearization requires that the matrices of partial derivatives be evaluated at
the equilibrium points. Let’s pick some realistic numbers, and see how things
vary with different equilibrium points. Suppose that Tz = 10°, Ty = 90°, Ar =
3m2, A, = 0.05m,cp = 0.7. Try A = Im and A = 3m, and for Trp, try Tp = 25° and
Ty = 75°. That gives 4 combinations. Plugging into the formulae give the 4 cases

1. (}_z, TT) = (1m, 25°). The equilibrium inputs are
U = qc = 0.126 | s = qg = 0.029

The linearized matrices are

A [ —-0.0258 0 } B [ 0.333 0.333 }
0 —0.517 ’ —5.00 21.67
2. (}_z, TT) = (1m, 75°). The equilibrium inputs are
1 =q4c =0.029 |, =gy =0.126
The linearized matrices are
A [ —-0.0258 0 } B [ 0.333 0.333
0 —0.0517 ’ —21.67 5.00
3. (}_z, TT) = (3m, 25°). The equilibrium inputs are
1 = gc = 0.218 | @ = gy = 0.0503
The linearized matrices are
A { —0.0149 0 } B [ 0.333  0.333
0 —0.0298 ’ —1.667 7.22
4. (}_z, TT) = (3m, 75°). The equilibrium inputs are
1 = gJc = 0.0503 , e =gy = 0.2181
The linearized matrices are
A— { —0.0149 0 } B [ 0.333 0.333
0 —0.0298 ’ —7.22 1.667
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