Memory Hierarchy Design -

Cache Optimizations
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Presentation Outline

“* Improving Cache Performance

s Software Optimizations to reduce Miss Rate

*» Hardware Cache Optimizations
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Review Cache Performance Equations

* CPUtime = (CPU execution cycles + Mem stall cycles) * Cycle
time

** Mem stall cycles = Mem accesses * Miss rate * Miss penalty

% CPUtime = IC * (CPI_, . + Mem accesses per instr * Miss rate *
Miss penalty) * Cycle time

** Misses per instr = Mem accesses per instr * Miss rate

<+ CPUtime = IC * (CPI,,, + Misses per instr * Miss penalty) *
Cycle time

STUDENTS-HUB.com Uploaded By: Jibreel Bornat



Classifying Cache Misses - Three Cs

+s» Conditions under which cache misses occur

*» Compulsory: program starts with no block in cache
< Also called cold start misses or first-reference misses
< Misses that would occur even if a cache has infinite size
“ Capacity: misses happen because cache size is small
< Blocks are replaced and then later retrieved
< Misses that would occur even if cache is fully associative
“ Conflict: misses happen because of limited associativity

< Limited number of blocks per set and non-optimal replacement

% 4% C: Coherence misses (discussed later)
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Classifying Cache Misses

Compulsory misses are independent of cache size
Very small for long-running programs

Miss Rate Capacity misses decrease as capacity

14% Increases

1-way

12% Conflict misses decrease as

associativity increases

2-way
10%
4-way

8% Data were collected using

8-way LRU replacement

6% :
Capacity

4% Compulsory

2%
1 2 4 8 16 32 64 128 KB
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Improving Cache Performance

* Average Memory Access Time (AMAT)
AMAT = Hit time + Miss rate x Miss penalty
*» Used as a framework for optimizations

+» Reduce the Hit time

< Small and simple caches

+» Reduce the Miss Rate

< Larger block size, Larger cache size, and Higher associativity

** Reduce the Miss Penalty

<> Multilevel caches, and giving reads priority over writes
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Next . ..

¢ Improving Cache Performance

*» Hardware Cache Optimizations

*» Software Optimizations to reduce Miss Rate
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Hardware Cache Optimizations

Five hardware cache optimizations are considered:
. Small and Simple Caches

. Larger Cache & Higher Associativity

. Multi-level Caches

. Larger Block Size

. Priority to Cache Read Misses over Writes
Hardware Prefetching of Instructions and Data

. Pipelined Cache Access

. Non-Blocking Caches

Multi-Ported and Multi-Banked Caches

© 0O N O O N W N R
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Small and Simple Caches

*» Reduce Hit time and Energy consumption

¢ Hit time Is critical: affects the processor clock cycle
< Indexing a cache represents a time-consuming portion
<> Tag comparison in the tag array (hit or miss)
< Selecting the data (way) in set-associative cache

“ Direct-mapped overlaps tag check with data transfer

< Associative cache uses additional mux and increases hit time

+» Size of L1 caches has not increased much

< I-Cache and D-Cache are about 64KB in recent processors
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Access Time vs Size/Associativity

CACTI, 40 nm technology, Single Bank, 64-Byte blocks
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Cache Size & Associativity

Copyright, Elsevier Inc. All rights reserved.
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Energy Consumption Per Read

CACTI, 40 nm technology, 64-Byte blocks
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Copyright, Elsevier Inc. All rights reserved.
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Reduce Misses via Higher Associativity

**Increasing associativity helps reduce conflict misses

2:1 Cache Rule:

<>The miss rate of a direct mapped cache of size N is about equal to the
miss rate of a 2-way set associative cache of size N/2

**Disadvantages of higher associativity
<>Need to do large number of comparisons
<Need n-to-1 multiplexer for n-way set associative

<-Could increase hit time
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Larger Cache & Higher Associativity

¢ Increasing cache size reduces capacity misses

¢ |t also reduces conflict misses

<> Larger cache size spreads out references to more blocks
*» Drawback: longer hit time and higher cost

¢ Higher associativity also improves miss rates

< Eight-way set associative is as effective as a fully associative
*» Drawback: longer hit time and more energy to access

% Larger caches are popular as 2" and 3" |level caches
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Multilevel Caches

*» Top level cache is kept small to Processor Core

< Reduce hit time Addrv AInst Addrv :: Data
<> Reduce energy per access I-Cache D-Cache
Addrv IBIock Addrv tBIock

<+ Add another cache level to Unified L2 Cache

{- Reduce the memory gap addr | § Block

<> Reduce memory bus loading Main Memory

¢ Multilevel caches can help

< Reduce miss penalty For simplicity,
L3 cache is not included

<> Reduce average memory access time

¢ Large L2 cache can capture many misses in L1 caches

<> Reduce the global miss rate
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Larger Block to Reduce Miss Rate

* Simplest way to reduce miss rate is to increase block size

¢ Large block size takes advantage of spatial locality

DBO0fy reeveerrreeenen s Increased Conflict Misses
Reduced
20% T+ Compulsory —-----eev---- —s— 1K
o Misses .
E 15%< ........................................ —a— 4K 64- yte
" blocks are
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— common in
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= & S Q TS Block Size (bytes)
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Block Size Impact on AMAT

+» Given: miss rates for different cache sizes & block sizes

* Memory latency = 80 cycles + 1 cycle per 8 bytes
< Latency of 16-byte block = 80 + 2 = 82 clock cycles
< Latency of 32-byte block = 80 + 4 = 84 clock cycles
< Latency of 256-byte block = 80 + 32 = 112 clock cycles

+» Which block has smallest AMAT for each cache size?

Block Size Cache=4KB Cache=16KB Cache=64 KB Cache =256 KB

16 bytes 8.57% 3.94% 2.04% 1.09%
32 bytes 7.24% 2.87% 1.35% 0.70%
64 bytes 7.00% 2.64% 1.06% 0.51%
128 bytes 7.78% 2.77% 1.02% 0.49%
256 bytes 9.51% 3.92% 1.15% 0.49%
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» Solution: assume hit time = 1 clock cycle

<> Regardless of block size and cache size

*» Cache Size = 4 KB, Block Size = 16 bytes
< AMAT =1+ 8.57% x 82 = 8.027 clock cycles

¢ Cache Size = 256 KB, Block Size = 256 bytes
< AMAT =1 + 0.49% x 112 = 1.549 clock cycles

Block Size
16 bytes
32 bytes
64 bytes
128 bytes
256 bytes

Cache =4 KB
AMAT = 8.027
AMAT = 7.082
AMAT = 7.160
AMAT = 8.469
AMAT = 11.65
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Cache =16 KB Cache =64 KB

AMAT =4.231
AMAT = 3.411
AMAT = 3.323
AMAT = 3.659
AMAT = 4.685

AMAT = 2.673
AMAT = 2.134
AMAT = 1.933
AMAT =1.979
AMAT = 2.288

Block Size Impact on AMAT

Cache = 256 KB

AMAT = 1.894
AMAT =1.588
AMAT = 1.449
AMAT =1.470
AMAT =1.549
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Summary Increase cache Block Size

* We want to minimize cache miss rate & cache miss penalty at
same time!

¢ Selection of block size depends on latency and bandwidth of
lower-level memory:

< High latency, high bandwidth encourage large block size

= Cache gets many more bytes per miss for a small
Increase in miss penalty

< Low latency, low bandwidth encourage small block size

* Twice the miss penalty of a small block may be close to
the penalty of a block twice the size

» | arger # of small blocks may reduce conflict misses
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Priority to Read Misses over Writes

*» Reduces: Miss Penalty
*» Serve read misses before writes have completed

* Write-Through Cache = Write Buffer
<> Read miss is served before completing writes in write buffer
<> Problem: write buffer might hold updated data on a read miss

= Solution: lookup write buffer and forward data (if buffer hit)

+» Write-Back Cache =» Victim Buffer

<> Read miss is served before writing back modified blocks
<> Modified blocks that are evicted are moved into a victim buffer
< Problem: victim buffer might hold block on a read miss

= Solution: lookup victim buffer and forward block (if buffer hit)
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Hardware Prefetching

s Hardware observes instruction and data access patterns

< Prefetch instruction/data blocks before they are requested

¢ Prefetch two blocks on a cache miss (most common)
< The requested block and the next consecutive block
<> The requested block is placed in the cache

< The prefetched block is placed into a stream buffer
¢ If the requested block is present in the stream buffer

<> Read block from the stream buffer & issue next prefetch request
*» Multiple stream buffers for instruction & data prefetching

< Prefetching utilizes memory bandwidth and consumes energy

< If prefetched data is not used =» negative impact on performance
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Hardware Prefetching

** What is the effective miss rate for the Alpha using instruction
prefetching?

*+ How much larger of an instruction cache would we need if the
Alpha to match the average access time if prefetching was
removed?

< Assume:

= |t takes 1 extra clock cycle if the instruction misses the cache but is found
in the prefetch buffer

The prefetch hit rate is 25%
Miss rate for 8-KB instruction cache is 1.10%

Hit time is 2 clock cycles

Miss penalty is 50 clock cycles
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HW Prefetching of Instruction & Data

We need a revised memory access time formula:

)

*

< Say:. Average memory access timeprefetch =

= Hit time + miss rate * prefetch hit rate * 1 + miss rate * (1 — prefetch hit
rate) * miss penalty

D)

*

Plugging in numbers to the above, we get:
< 2+ (1.10% * 25% * 1) + (1.10% * (1 — 25%) * 50) = 2.415

To find the miss rate with equivalent performance, we start with the original
formula and solve for miss rate:

D)

L)

*%

<> Average memory access timeno prefetching =
= Hit time + miss rate * miss penalty
< Results in: (2.415-2) / 50 = 0.83%
Calculation suggests effective miss rate of prefetching with 8KB cache is 0.83%
Actual miss rates for 16KB = 0.64% and 8KB = 1.10%

o,

%

»
*

*
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Speedup due to Hardware Prefetching
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Copyright, Elsevier Inc. All rights reserved.
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Pipelined Cache Access

* Used mainly in the L1 Instruction and Data caches
¢ L1 cache latency is multiple clock cycles (2 to 4 cycles)
*» However, L2 and L3 cache accesses are not pipelined

*» Advantages of Pipelined Cache Access
< Faster clock rate and higher bandwidth

<> Better for larger associativity

*» Disadvantages
< Increases latency of I-Cache and D-Cache
< Increases branch penalty due to increased I-Cache latency

< Increases load delay due to increased D-Cache latency
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Example of Pipelined Cache Access

s o S | Parallel Access to Tag and
- = | Data Array, Reduces
%—» % | Latency, Good for L1 cache
a a we | .
word
select ks Data 8 S 5
{8 Array S 2 ‘ %
& m ways S J )
a4 ‘
@ < .
m T 1
= : :
O . L - > 3] '
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Decode & Array Access Tag Check & Way Select
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Serial Access to Tag and Data Arrays

*» Tag array is examined first for hit, then only one way is accessed

Serial Access
to Tag and
Data Array,

Reduces

Energy, Good

for L2 and L3

caches
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; Tag Array Access ; Data Array Access
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Non-Blocking Cache

¢ Allows a cache to continue to supply hits under a miss
< The processor need not stall on a cache miss

< Useful for out-of-order execution and multithreaded processors

¢ Hit under a Miss
< Reduces the effective miss penalty

< Increases cache bandwidth

“* Hit under Multiple Misses
<> Multiple outstanding cache misses
< May further lower the effective miss penalty
< Increases the complexity of the cache controller

< Beneficial if the memory system can service multiple misses
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Non-Blocking Cache Timeline

BIocking Cache \LM = Cache Miss = Stall
Execution Time Execution Time
Miss Penalty
Hit Under 1 Miss I\J,,I I; S M = Cache Miss, H = Hit, S = Stall
Execution Time Execution Time
Miss Penalty
Miss Penalty
Hit Under 2 Misses IXI I\f ? i M = Cache Miss, H = Hit, S = Stall
Execution Time Execution Time
Miss Penalty
Miss Penalty
Miss Penalty
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Effectiveness of Non-Blocking Cache
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Hit-under-1-miss reduces the miss penalty by 9% (SPECINT) and 12.5% (SPECFP)
Hit-under-2-misses reduces the miss penalty by 10% (SPECINT) and 16% (SPECFP)

Copyright, Elsevier Inc. All rights reserved.
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Miss Status Holding Register (MSHR)

s Contains the block address of the pending miss
<> Same block can have multiple outstanding load/store misses

<> Can also have multiple outstanding block addresses

*» Misses can be classified into:
< Primary: first miss to a cache block that initiates a fetch request
<> Secondary: subsequent miss to a cache block in transition

< Structural Stall miss: the MSHR hardware resource is fully utilized

V| Type | Offset Destination or Data

V| Block address | <

v _ |V[ Type | Offset Destination or Data
New miss address ﬁ@

Type: LD, SD, LW, SW, etc. Offset: block offset

match Destination register for load or Data for store
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Non-Blocking Cache Operation

+» On Cache Miss, check MSHR for matched block address

< If found: allocate new load/store entry for matched block
< If not found: allocate new MSHR and load/store entry

< If all MSHR resources are allocated then Stall (Structural)

** When cache block is transferred from lower-level memory
< Process the load and store instructions that missed in the block
< Load data from the specified block offset into destination register
<> Store data in the data cache at the specified block offset

< De-allocate MSHR entry after completing all missed loads/stores
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Multi-Banked Cache

*» Banks were originally used in main memory and DRAM chips

¢ They are now commonly used in cache memory (L1, L2, and L3)
¢ The cache is divided into multiple banks

s Multiple banks can be accessed independently and in parallel

¢ Intel core 17 has 4 banks in L1 and 8 banks in L2
< L1 cache banks can support 2 memory accesses per cycle
» To support high instruction execution rate in superscalar processors
<> L2 cache banks can handle multiple outstanding L1 cache misses
» To support non-blocking caches

<> L2 and L3 cache banks also reduce energy per access = smaller arrays
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Multi-Banked Cache (cont'd)

 Partition address space into multiple banks Block Address
4 N\

<> Block-interleaved cache banks Address | Tag | Index [BA| Offset

<> Bank Address (BA) = Block Address mod N banks
< When two requests map to same cache bank = Bank Conflict

<> One request is allowed to proceed, while second request waits

s Example: Sequential interleaving of blocks across 4 cache banks

<> Each cache bank is implemented using a tag array and a data array

Bank O Bank 1 Bank 2 Bank 3
0| BlockO,16,..| 0| Block1,17,... | 0] Block2,18,.. | 0| Block3, 19, ...
é 1| Block4,20,...| 1| Block5,21,...| 1| Block®6,22,... | 1| Block?7, 23, ...
<€ 2| BlockS8,24,.. | 2] Block9, 25,... | 2|Block10,26,...| 2]|Block1l, 27, ...
3 |Block 12, 28, ...| 3 |Block13,29,..| 3|Block14,30,..| 3|Block15, 31, ...
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Multi-Ported, Multi-Banked Cache

*» Example: Dual-Ported Data Cache with four cache banks
<> Two address ports =» Two load / store instructions per cycle

<> Four cache banks to reduce bank conflict

<> Crossbar switches map addresses to cache banks and back to the ports

Cache

_ Bank O
PortO: Inst, Addr, Rd, Data_in —>| —> Port0: Data_ out, Rd

Cache
Bank 1

Cache

Bank 2
Portl: Inst, Addr, Rd, Data_in —>| —> Portl: Data_out, Rd

Cache
Bank 3

2x4 switch
4x2 switch
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Fast hits by Avoiding Address Translation

% Send virtual address to cache? Called Virtually Addressed Cache or just
Virtual Cache vs. Physical Cache

<> Every time process is switched logically must flush the cache; otherwise get
false hits

= Cost is time to flush + “compulsory” misses from empty cache

< Dealing with aliases (sometimes called synonyms);
Two different virtual addresses map to same physical address

< 1/0 must interact with cache, so need virtual address

+» Solution to aliases

< HW guaranteess covers index field & direct mapped, they must be unique;
called page coloring

«» Solution to cache flush

< Add process identifier tag that identifies process as well as address within
process: can’t get a hit if wrong process
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Next . ..

¢ Improving Cache Performance

*» Hardware Cache Optimizations

*» Software Optimizations to reduce Miss Rate
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Software Optimizations

*» Can be done by the programmer or optimizing compiler

¢ Restructuring code affects data access
< Improves spatial locality

< Improves temporal locality
¢ Three optimizations
1. Loop Interchange
2. Loop Fusion
3. Blocking (also called Tiling)

* In addition, software prefetching helps streaming data

< Prefetch array data in advance to eliminate cache misses
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Loop Interchange

Modern compilers optimize loops to reduce cache misses

// Original Code
for (j = 0; j < N; j++)
for (i = 0; i < N; i++)
x[1][3] = 2 * y[1][]J]; // stride

Il
=

Original code traverses matrix by column

// After Loop Interchange
for (i = 0; 1 < N; i++)
for (j = 0; j < N; j++)
x[i][j] = 2 * y[i]l[j]; // stride =1

Revised version takes advantage of spatial locality
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Loop Fusion

// Original Code
for (1 = 0; i < N; i++)
a[i] = b[i] + c[i];
for (i = 0; 1 < N; i++)
d[i] = a[i] + b[i] * c[i];

Blocks are replaced in first loop then accessed in second

// After Loop Fusion
for (i = 0; 1 < N; i++) {
a[i] = b[i] + c[1i];
d[i] = a[i] + b[i] * c[i];
}

Revised version takes advantage of temporal locality
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Blocking (or Tiling)

Original code deals with multiple matrices

Matrix Y is accessed by row, while Z is accessed by column

Loop interchange does not help

// Original Code for Matrix Multiplication
for (i = 0; i < N; i++)
for (j = 0; j < N; j++) {
sum = O;
for (k = 0; k < N; k++) {
sum = sum + y[i][k] * z[k][7];
}
x[1][J] = sum;

}
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Access Pattern for Matrix Multiply

x[1]1[]] y[i][k] z[k][]]
= X
Matrix X is accessed Matrix Y is accessed Matrix Z accessed by
by row. by row. column.

Exploits Rows are reused. No spatial locality.

Spatial locality. If large N then row Matrix Z is reused.
blocks are replaced However, blocks are
=» cache misses. replaced = misses.
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Restructuring Code with Blocking

// Blocking or Tiling (B = Block Size)
for (jj = 05 jj < N; jj = jj + B) {
for (kk = @; kk < N; kk = kk + B) {
for (1 = 0; 1 < N; i++)
for (3 = jj; J < min(jj+B,N); J++) {
sum = O;
for (k = kk; k < min(kk+B,N); k++) {
sum = sum + y[i][k] * z[k][]];
}
x[1][j] = x[1][3] + sum;
} 1}

Matrix X should be initialized to zero

Block size is chosen such that blocks can fit in D-Cache
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Access Pattern with Blocking

x[1][]]

y[1][k]

z[k][3]

Sub-row of Matrix Y (consisting of B elements) is multiplied by a
sub-block of Matrix Z (consisting of BxB elements) to compute

(partially) a sub-row of Matrix X.

Exploits spatial and temporal localities in X, Y, and Z.
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Compiler-Controlled Prefetching

¢ Cache prefetch: load data into the cache only
¢ Processor offers non-faulting cache prefetch instruction
*» Overlap execution with the prefetching of data
*» Goal is to hide the miss penalty & reduce cache misses

s Example:

for (i=0; i<N; i++) {
prefetch(&a[i+P]);
prefetch(&b[i+P]);
sum = sum + a[i] * b[i];

}

¢ Can prefetching be done by hardware transparently?

How to estimate P?
Cost of Prefetch
Instructions?

STUDENTS-HUB.com Uploaded By: Jibreel Bornat



In Summary

** Reducing Hit Time and Energy

<> Smaller and simpler L1 caches, Avoiding Address Translation

** Reducing Miss Rate
< Larger block size, larger capacity, and higher associativity
< Software (and compiler) optimizations

< Software and Hardware prefetching of instructions and data
*+ Reducing Miss Penalty

< Multi-level caches

< Priority to read misses over writes, non-blocking cache
* Increasing Cache Bandwidth

< Pipelined, non-blocking, multi-ported, and multi-banked cache
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