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Presentation Outline

❖ Improving Cache Performance

❖ Software Optimizations to reduce Miss Rate

❖ Hardware Cache Optimizations
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Review Cache Performance Equations

❖ CPUtime = (CPU execution cycles + Mem stall cycles) * Cycle 

time

❖ Mem stall cycles = Mem accesses * Miss rate * Miss penalty

❖ CPUtime = IC * (CPIexe + Mem accesses per instr * Miss rate * 

Miss penalty) * Cycle time

❖ Misses per instr = Mem accesses per instr * Miss rate

❖ CPUtime = IC * (CPIexe + Misses per instr * Miss penalty) * 

Cycle time
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Classifying Cache Misses – Three Cs

❖ Conditions under which cache misses occur

❖ Compulsory: program starts with no block in cache

 Also called cold start misses or first-reference misses

 Misses that would occur even if a cache has infinite size

❖ Capacity: misses happen because cache size is small

 Blocks are replaced and then later retrieved

 Misses that would occur even if cache is fully associative

❖ Conflict: misses happen because of limited associativity

 Limited number of blocks per set and non-optimal replacement

❖ 4th C: Coherence misses (discussed later)
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Classifying Cache Misses

Compulsory misses are independent of cache size

Very small for long-running programs

Conflict misses decrease as 

associativity increases

Data were collected using 

LRU replacement

Capacity misses decrease as capacity 

increases
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Improving Cache Performance

❖ Average Memory Access Time (AMAT)

AMAT = Hit time + Miss rate × Miss penalty

❖ Used as a framework for optimizations

❖ Reduce the Hit time

 Small and simple caches

❖ Reduce the Miss Rate

 Larger block size, Larger cache size, and Higher associativity

❖ Reduce the Miss Penalty

 Multilevel caches, and giving reads priority over writes
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Next . . .

❖ Improving Cache Performance

❖ Hardware Cache Optimizations

❖ Software Optimizations to reduce Miss Rate
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Hardware Cache Optimizations

Five hardware cache optimizations are considered:

1. Small and Simple Caches

2. Larger Cache & Higher Associativity

3. Multi-level Caches

4. Larger Block Size

5. Priority to Cache Read Misses over Writes

6. Hardware Prefetching of Instructions and Data

7. Pipelined Cache Access

8. Non-Blocking Caches

9. Multi-Ported and Multi-Banked Caches
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Small and Simple Caches

❖ Reduce Hit time and Energy consumption

❖ Hit time is critical: affects the processor clock cycle

 Indexing a cache represents a time-consuming portion

 Tag comparison in the tag array (hit or miss)

 Selecting the data (way) in set-associative cache

❖ Direct-mapped overlaps tag check with data transfer

 Associative cache uses additional mux and increases hit time

❖ Size of L1 caches has not increased much

 I-Cache and D-Cache are about 64KB in recent processors
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Access Time vs Size/Associativity
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Cache Size & Associativity

CACTI, 40 nm technology, Single Bank, 64-Byte blocks

Results 

depend on 

technology 

and detailed 

design 

assumptions
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Energy Consumption Per Read
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Cache Size & Associativity

CACTI, 40 nm technology, 64-Byte blocks

Tags + Data 

are read in 

parallel.

Energy per 

read is higher 

for multi-way 

set-associative 

caches
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❖Increasing associativity helps reduce conflict misses

❖2:1 Cache Rule: 

The miss rate of a direct mapped cache of size N is about equal to the 

miss rate of a 2-way set associative cache of size N/2

❖Disadvantages of higher associativity

Need to do large number of comparisons

Need n-to-1 multiplexer for n-way set associative

Could increase hit time

Reduce Misses via Higher Associativity
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Larger Cache & Higher Associativity

❖ Increasing cache size reduces capacity misses

❖ It also reduces conflict misses

 Larger cache size spreads out references to more blocks

❖ Drawback: longer hit time and higher cost

❖ Higher associativity also improves miss rates

 Eight-way set associative is as effective as a fully associative

❖ Drawback: longer hit time and more energy to access

❖ Larger caches are popular as 2nd and 3rd level caches
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Multilevel Caches

❖ Top level cache is kept small to

 Reduce hit time

 Reduce energy per access

❖ Add another cache level to

 Reduce the memory gap

 Reduce memory bus loading

❖Multilevel caches can help

 Reduce miss penalty

 Reduce average memory access time

❖ Large L2 cache can capture many misses in L1 caches

 Reduce the global miss rate

Unified L2 Cache

I-Cache D-Cache

Main Memory

Processor Core

Addr DataInstAddr

Addr BlockAddr Block

Addr Block

For simplicity,

L3 cache is not included
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Larger Block to Reduce Miss Rate

❖ Simplest way to reduce miss rate is to increase block size

❖ Large block size takes advantage of spatial locality

Block Size (bytes)
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Block Size Impact on AMAT

❖ Given: miss rates for different cache sizes & block sizes

❖Memory latency = 80 cycles + 1 cycle per 8 bytes

 Latency of 16-byte block = 80 + 2 = 82 clock cycles

 Latency of 32-byte block = 80 + 4 = 84 clock cycles

 Latency of 256-byte block = 80 + 32 = 112 clock cycles

❖Which block has smallest AMAT for each cache size?

Block Size Cache = 4 KB Cache = 16 KB Cache = 64 KB Cache = 256 KB

16 bytes 8.57% 3.94% 2.04% 1.09%

32 bytes 7.24% 2.87% 1.35% 0.70%

64 bytes 7.00% 2.64% 1.06% 0.51%

128 bytes 7.78% 2.77% 1.02% 0.49%

256 bytes 9.51% 3.92% 1.15% 0.49%
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Block Size Impact on AMAT

❖ Solution: assume hit time = 1 clock cycle

 Regardless of block size and cache size

❖ Cache Size = 4 KB, Block Size = 16 bytes

 AMAT = 1 + 8.57% × 82 = 8.027 clock cycles

❖ Cache Size = 256 KB, Block Size = 256 bytes

 AMAT = 1 + 0.49% × 112 = 1.549 clock cycles

Block Size Cache = 4 KB Cache = 16 KB Cache = 64 KB Cache = 256 KB

16 bytes AMAT = 8.027 AMAT = 4.231 AMAT = 2.673 AMAT = 1.894

32 bytes AMAT = 7.082 AMAT = 3.411 AMAT = 2.134 AMAT = 1.588

64 bytes AMAT = 7.160 AMAT = 3.323 AMAT = 1.933 AMAT = 1.449

128 bytes AMAT = 8.469 AMAT = 3.659 AMAT = 1.979 AMAT = 1.470

256 bytes AMAT = 11.65 AMAT = 4.685 AMAT = 2.288 AMAT = 1.549
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Summary Increase cache Block Size

❖We want to minimize cache miss rate & cache miss penalty at 

same time!

❖ Selection of block size depends on latency and bandwidth of 

lower-level memory:

 High latency, high bandwidth encourage large block size

▪ Cache gets many more bytes per miss for a small 

increase in miss penalty

 Low latency, low bandwidth encourage small block size

▪ Twice the miss penalty of a small block may be close to 

the penalty of a block twice the size

▪ Larger # of small blocks may reduce conflict misses
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Priority to Read Misses over Writes

❖ Reduces: Miss Penalty

❖ Serve read misses before writes have completed

❖Write-Through Cache ➔ Write Buffer

 Read miss is served before completing writes in write buffer

 Problem: write buffer might hold updated data on a read miss

▪ Solution: lookup write buffer and forward data (if buffer hit)

❖Write-Back Cache ➔ Victim Buffer

 Read miss is served before writing back modified blocks

 Modified blocks that are evicted are moved into a victim buffer

 Problem: victim buffer might hold block on a read miss

▪ Solution: lookup victim buffer and forward block (if buffer hit)

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Hardware Prefetching

❖ Hardware observes instruction and data access patterns

 Prefetch instruction/data blocks before they are requested 

❖ Prefetch two blocks on a cache miss (most common)

 The requested block and the next consecutive block

 The requested block is placed in the cache

 The prefetched block is placed into a stream buffer

❖ If the requested block is present in the stream buffer

 Read block from the stream buffer & issue next prefetch request

❖Multiple stream buffers for instruction & data prefetching

 Prefetching utilizes memory bandwidth and consumes energy

 If prefetched data is not used ➔ negative impact on performance
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❖What is the effective miss rate for the Alpha using instruction 
prefetching?

❖ How much larger of an instruction cache would we need if the 
Alpha to match the average access time if prefetching was 
removed?

 Assume:

▪ It takes 1 extra clock cycle if the instruction misses the cache but is found 
in the prefetch buffer

▪ The prefetch hit rate is 25%

▪ Miss rate for 8-KB instruction cache is 1.10%

▪ Hit time is 2 clock cycles

▪ Miss penalty is 50 clock cycles

Hardware Prefetching
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HW Prefetching of Instruction & Data
❖ We need a revised memory access time formula:

 Say:  Average memory access timeprefetch =

▪ Hit time + miss rate * prefetch hit rate * 1 + miss rate * (1 – prefetch hit 
rate) * miss penalty

❖ Plugging in numbers to the above, we get:

 2 + (1.10% * 25% * 1) + (1.10% * (1 – 25%) * 50) = 2.415

❖ To find the miss rate with equivalent performance, we start with the original 
formula and solve for miss rate:

 Average memory access timeno prefetching = 

▪ Hit time + miss rate * miss penalty

 Results in: (2.415 – 2) / 50 = 0.83%

❖ Calculation suggests effective miss rate of prefetching with 8KB cache is 0.83%

❖ Actual miss rates for 16KB = 0.64% and 8KB = 1.10%
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Speedup due to Hardware Prefetching

Copyright, Elsevier Inc. All rights reserved.

Hardware Prefetching Turned ON

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Pipelined Cache Access

❖ Used mainly in the L1 Instruction and Data caches

❖ L1 cache latency is multiple clock cycles (2 to 4 cycles)

❖ However, L2 and L3 cache accesses are not pipelined

❖ Advantages of Pipelined Cache Access

 Faster clock rate and higher bandwidth

 Better for larger associativity

❖ Disadvantages

 Increases latency of I-Cache and D-Cache

 Increases branch penalty due to increased I-Cache latency

 Increases load delay due to increased D-Cache latency
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Example of Pipelined Cache Access

In
d

e
x

O
ff
s
e
t

T
a
g

D
a
ta

-i
n

A
d
d
re

s
s Tag

Array

m waysD
e
c
o
d
e
r

T
a
g
 C

h
e
c
k

Data

Array

m waysD
e
c
o
d
e
r

m
 t

a
g
s

m
 w

o
rd

s

D
a
ta

-i
n

w
r

w
r

h
it

D
a
ta

-o
u

t

w
a
y
 

s
e
le

c
t

Tag Check & Way Select

we

word 

select

T
a
g

m
u
x

Decode & Array Access

Parallel Access to Tag and 

Data Array, Reduces 
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Serial Access 

to Tag and 

Data Array, 

Reduces 

Energy, Good 

for L2 and L3 

caches

Serial Access to Tag and Data Arrays
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❖ Tag array is examined first for hit, then only one way is accessed
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Non-Blocking Cache

❖ Allows a cache to continue to supply hits under a miss

 The processor need not stall on a cache miss

 Useful for out-of-order execution and multithreaded processors

❖ Hit under a Miss

 Reduces the effective miss penalty 

 Increases cache bandwidth

❖ Hit under Multiple Misses

 Multiple outstanding cache misses

 May further lower the effective miss penalty

 Increases the complexity of the cache controller

 Beneficial if the memory system can service multiple misses
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Non-Blocking Cache Timeline

Miss Penalty

Execution TimeExecution Time

Blocking Cache M = Cache Miss = Stall

M

Miss Penalty

Execution TimeExecution Time

Hit Under 1 Miss M = Cache Miss, H = Hit, S = StallH S

Miss Penalty

Miss Penalty

Execution TimeExecution Time

Hit Under 2 Misses M M H S

Miss Penalty

M = Cache Miss, H = Hit, S = Stall

Miss Penalty
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Effectiveness of Non-Blocking Cache

Copyright, Elsevier Inc. All rights reserved.

Hit-under-1-miss reduces the miss penalty by 9% (SPECINT) and 12.5% (SPECFP)

Hit-under-2-misses reduces the miss penalty by 10% (SPECINT) and 16% (SPECFP)
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Miss Status Holding Register (MSHR)

❖ Contains the block address of the pending miss

 Same block can have multiple outstanding load/store misses

 Can also have multiple outstanding block addresses

❖Misses can be classified into:

 Primary: first miss to a cache block that initiates a fetch request

 Secondary: subsequent miss to a cache block in transition

 Structural Stall miss: the MSHR hardware resource is fully utilized

V Block address

=New miss address

match

V Type Offset Destination or Data

V Type Offset Destination or Data

. . .

Type: LD, SD, LW, SW, etc. Offset: block offset

Destination register for load or Data for store
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Non-Blocking Cache Operation

❖ On Cache Miss, check MSHR for matched block address

 If found: allocate new load/store entry for matched block

 If not found: allocate new MSHR and load/store entry

 If all MSHR resources are allocated then Stall (Structural)

❖When cache block is transferred from lower-level memory

 Process the load and store instructions that missed in the block

 Load data from the specified block offset into destination register

 Store data in the data cache at the specified block offset

 De-allocate MSHR entry after completing all missed loads/stores
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Multi-Banked Cache

❖ Banks were originally used in main memory and DRAM chips

❖ They are now commonly used in cache memory (L1, L2, and L3)

❖ The cache is divided into multiple banks

❖Multiple banks can be accessed independently and in parallel

❖ Intel core i7 has 4 banks in L1 and 8 banks in L2

 L1 cache banks can support 2 memory accesses per cycle

▪ To support high instruction execution rate in superscalar processors

 L2 cache banks can handle multiple outstanding L1 cache misses

▪ To support non-blocking caches

 L2 and L3 cache banks also reduce energy per access ➔ smaller arrays
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Multi-Banked Cache (cont'd)

❖ Partition address space into multiple banks

 Block-interleaved cache banks

 Bank Address (BA) = Block Address mod N banks

 When two requests map to same cache bank ➔ Bank Conflict

 One request is allowed to proceed, while second request waits

❖ Example: Sequential interleaving of blocks across 4 cache banks

 Each cache bank is implemented using a tag array and a data array
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3
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Block 0, 16, … 
Block 4, 20, …
Block 8, 24, …

Block 12, 28, …

In
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ex
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Bank 1

Block 1, 17, … 
Block 5, 21, …
Block 9, 25, …

Block 13, 29, …

0
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Bank 2

Block 2, 18, … 
Block 6, 22, …

Block 10, 26, …
Block 14, 30, …

0
1
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3

Bank 3

Block 3, 19, … 
Block 7, 23, …

Block 11, 27, …
Block 15, 31, …

OffsetBAIndexTag

Block Address

Address
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Multi-Ported, Multi-Banked Cache

❖ Example: Dual-Ported Data Cache with four cache banks

 Two address ports ➔ Two load / store instructions per cycle

 Four cache banks to reduce bank conflict

 Crossbar switches map addresses to cache banks and back to the ports
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❖ Send virtual address to cache? Called Virtually Addressed Cache or just 

Virtual Cache vs.  Physical Cache

 Every time process is switched logically must flush the cache; otherwise get 

false hits

▪ Cost is time to flush + “compulsory” misses from empty cache

 Dealing with aliases (sometimes called synonyms); 

Two different virtual addresses map  to same physical address

 I/O must interact with cache, so need virtual address

❖ Solution to aliases

 HW guaranteess covers index field & direct mapped, they must be unique;

called page coloring

❖ Solution to cache flush

 Add process identifier tag that identifies process as well as address within 

process: can’t get a hit if wrong process

Fast hits by Avoiding Address Translation
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Next . . .

❖ Improving Cache Performance

❖ Hardware Cache Optimizations

❖ Software Optimizations to reduce Miss Rate
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Software Optimizations

❖ Can be done by the programmer or optimizing compiler

❖ Restructuring code affects data access

 Improves spatial locality

 Improves temporal locality

❖ Three optimizations

1. Loop Interchange

2. Loop Fusion

3. Blocking (also called Tiling)

❖ In addition, software prefetching helps streaming data

 Prefetch array data in advance to eliminate cache misses
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Loop Interchange

Modern compilers optimize loops to reduce cache misses

// Original Code

for (j = 0; j < N; j++)

for (i = 0; i < N; i++)

x[i][j] = 2 * y[i][j]; // stride = N

Original code traverses matrix by column

// After Loop Interchange

for (i = 0; i < N; i++)

for (j = 0; j < N; j++)

x[i][j] = 2 * y[i][j]; // stride = 1

Revised version takes advantage of spatial locality
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Loop Fusion

// Original Code

for (i = 0; i < N; i++)

a[i] = b[i] + c[i];

for (i = 0; i < N; i++)

d[i] = a[i] + b[i] * c[i];

Blocks are replaced in first loop then accessed in second

// After Loop Fusion

for (i = 0; i < N; i++) {

a[i] = b[i] + c[i];

d[i] = a[i] + b[i] * c[i];

}

Revised version takes advantage of temporal locality
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Blocking (or Tiling)

Original code deals with multiple matrices

Matrix Y is accessed by row, while Z is accessed by column

Loop interchange does not help

// Original Code for Matrix Multiplication

for (i = 0; i < N; i++)

for (j = 0; j < N; j++) {

sum = 0;

for (k = 0; k < N; k++) {

sum = sum + y[i][k] * z[k][j];

}

x[i][j] = sum;

}
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Access Pattern for Matrix Multiply

×=

x[i][j] y[i][k] z[k][j]

Matrix X is accessed 

by row.

Exploits

Spatial locality.

Matrix Y is accessed 

by row.

Rows are reused.

If large N then row 

blocks are replaced

➔ cache misses.

Matrix Z accessed by 

column.

No spatial locality.

Matrix Z is reused.

However, blocks are 

replaced ➔ misses.
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Restructuring Code with Blocking

// Blocking or Tiling (B = Block Size)
for (jj = 0; jj < N; jj = jj + B) {
for (kk = 0; kk < N; kk = kk + B) {
for (i = 0; i < N; i++)

for (j = jj; j < min(jj+B,N); j++) {
sum = 0;
for (k = kk; k < min(kk+B,N); k++) {

sum = sum + y[i][k] * z[k][j];
}
x[i][j] = x[i][j] + sum;

} } }

Matrix X should be initialized to zero

Block size is chosen such that blocks can fit in D-Cache
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Access Pattern with Blocking

×=

x[i][j] y[i][k] z[k][j]

Sub-row of Matrix Y (consisting of B elements) is multiplied by a 

sub-block of Matrix Z (consisting of B×B elements) to compute 

(partially) a sub-row of Matrix X.

Exploits spatial and temporal localities in X, Y, and Z.
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Compiler-Controlled Prefetching

❖ Cache prefetch: load data into the cache only

❖ Processor offers non-faulting cache prefetch instruction

❖ Overlap execution with the prefetching of data

❖ Goal is to hide the miss penalty & reduce cache misses

❖ Example:

for (i=0; i<N; i++) {

prefetch(&a[i+P]);

prefetch(&b[i+P]);

sum = sum + a[i] * b[i];

}

❖ Can prefetching be done by hardware transparently?

How to estimate P?

Cost of Prefetch

Instructions?
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In Summary

❖ Reducing Hit Time and Energy

 Smaller and simpler L1 caches, Avoiding Address Translation

❖ Reducing Miss Rate

 Larger block size, larger capacity, and higher associativity

 Software (and compiler) optimizations

 Software and Hardware prefetching of instructions and data 

❖ Reducing Miss Penalty

 Multi-level caches

 Priority to read misses over writes, non-blocking cache

❖ Increasing Cache Bandwidth

 Pipelined, non-blocking, multi-ported, and multi-banked cache
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