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Presentation Outline

❖ Improving Cache Performance

❖ Software Optimizations to reduce Miss Rate

❖ Hardware Cache Optimizations
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Review Cache Performance Equations

❖ CPUtime = (CPU execution cycles + Mem stall cycles) * Cycle 

time

❖ Mem stall cycles = Mem accesses * Miss rate * Miss penalty

❖ CPUtime = IC * (CPIexe + Mem accesses per instr * Miss rate * 

Miss penalty) * Cycle time

❖ Misses per instr = Mem accesses per instr * Miss rate

❖ CPUtime = IC * (CPIexe + Misses per instr * Miss penalty) * 

Cycle time
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Classifying Cache Misses – Three Cs

❖ Conditions under which cache misses occur

❖ Compulsory: program starts with no block in cache

 Also called cold start misses or first-reference misses

 Misses that would occur even if a cache has infinite size

❖ Capacity: misses happen because cache size is small

 Blocks are replaced and then later retrieved

 Misses that would occur even if cache is fully associative

❖ Conflict: misses happen because of limited associativity

 Limited number of blocks per set and non-optimal replacement

❖ 4th C: Coherence misses (discussed later)
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Classifying Cache Misses

Compulsory misses are independent of cache size

Very small for long-running programs

Conflict misses decrease as 

associativity increases

Data were collected using 

LRU replacement

Capacity misses decrease as capacity 

increases
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Improving Cache Performance

❖ Average Memory Access Time (AMAT)

AMAT = Hit time + Miss rate × Miss penalty

❖ Used as a framework for optimizations

❖ Reduce the Hit time

 Small and simple caches

❖ Reduce the Miss Rate

 Larger block size, Larger cache size, and Higher associativity

❖ Reduce the Miss Penalty

 Multilevel caches, and giving reads priority over writes
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Next . . .

❖ Improving Cache Performance

❖ Hardware Cache Optimizations

❖ Software Optimizations to reduce Miss Rate
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Hardware Cache Optimizations

Five hardware cache optimizations are considered:

1. Small and Simple Caches

2. Larger Cache & Higher Associativity

3. Multi-level Caches

4. Larger Block Size

5. Priority to Cache Read Misses over Writes

6. Hardware Prefetching of Instructions and Data

7. Pipelined Cache Access

8. Non-Blocking Caches

9. Multi-Ported and Multi-Banked Caches
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Small and Simple Caches

❖ Reduce Hit time and Energy consumption

❖ Hit time is critical: affects the processor clock cycle

 Indexing a cache represents a time-consuming portion

 Tag comparison in the tag array (hit or miss)

 Selecting the data (way) in set-associative cache

❖ Direct-mapped overlaps tag check with data transfer

 Associative cache uses additional mux and increases hit time

❖ Size of L1 caches has not increased much

 I-Cache and D-Cache are about 64KB in recent processors
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Access Time vs Size/Associativity
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Copyright, Elsevier Inc. All rights reserved.

Cache Size & Associativity

CACTI, 40 nm technology, Single Bank, 64-Byte blocks

Results 

depend on 

technology 

and detailed 

design 

assumptions
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Energy Consumption Per Read
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Cache Size & Associativity

CACTI, 40 nm technology, 64-Byte blocks

Tags + Data 

are read in 

parallel.

Energy per 

read is higher 

for multi-way 

set-associative 

caches
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❖Increasing associativity helps reduce conflict misses

❖2:1 Cache Rule: 

The miss rate of a direct mapped cache of size N is about equal to the 

miss rate of a 2-way set associative cache of size N/2

❖Disadvantages of higher associativity

Need to do large number of comparisons

Need n-to-1 multiplexer for n-way set associative

Could increase hit time

Reduce Misses via Higher Associativity
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Larger Cache & Higher Associativity

❖ Increasing cache size reduces capacity misses

❖ It also reduces conflict misses

 Larger cache size spreads out references to more blocks

❖ Drawback: longer hit time and higher cost

❖ Higher associativity also improves miss rates

 Eight-way set associative is as effective as a fully associative

❖ Drawback: longer hit time and more energy to access

❖ Larger caches are popular as 2nd and 3rd level caches
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Multilevel Caches

❖ Top level cache is kept small to

 Reduce hit time

 Reduce energy per access

❖ Add another cache level to

 Reduce the memory gap

 Reduce memory bus loading

❖Multilevel caches can help

 Reduce miss penalty

 Reduce average memory access time

❖ Large L2 cache can capture many misses in L1 caches

 Reduce the global miss rate

Unified L2 Cache

I-Cache D-Cache

Main Memory

Processor Core

Addr DataInstAddr

Addr BlockAddr Block

Addr Block

For simplicity,

L3 cache is not included
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Larger Block to Reduce Miss Rate

❖ Simplest way to reduce miss rate is to increase block size

❖ Large block size takes advantage of spatial locality
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Block Size Impact on AMAT

❖ Given: miss rates for different cache sizes & block sizes

❖Memory latency = 80 cycles + 1 cycle per 8 bytes

 Latency of 16-byte block = 80 + 2 = 82 clock cycles

 Latency of 32-byte block = 80 + 4 = 84 clock cycles

 Latency of 256-byte block = 80 + 32 = 112 clock cycles

❖Which block has smallest AMAT for each cache size?

Block Size Cache = 4 KB Cache = 16 KB Cache = 64 KB Cache = 256 KB

16 bytes 8.57% 3.94% 2.04% 1.09%

32 bytes 7.24% 2.87% 1.35% 0.70%

64 bytes 7.00% 2.64% 1.06% 0.51%

128 bytes 7.78% 2.77% 1.02% 0.49%

256 bytes 9.51% 3.92% 1.15% 0.49%
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Block Size Impact on AMAT

❖ Solution: assume hit time = 1 clock cycle

 Regardless of block size and cache size

❖ Cache Size = 4 KB, Block Size = 16 bytes

 AMAT = 1 + 8.57% × 82 = 8.027 clock cycles

❖ Cache Size = 256 KB, Block Size = 256 bytes

 AMAT = 1 + 0.49% × 112 = 1.549 clock cycles

Block Size Cache = 4 KB Cache = 16 KB Cache = 64 KB Cache = 256 KB

16 bytes AMAT = 8.027 AMAT = 4.231 AMAT = 2.673 AMAT = 1.894

32 bytes AMAT = 7.082 AMAT = 3.411 AMAT = 2.134 AMAT = 1.588

64 bytes AMAT = 7.160 AMAT = 3.323 AMAT = 1.933 AMAT = 1.449

128 bytes AMAT = 8.469 AMAT = 3.659 AMAT = 1.979 AMAT = 1.470

256 bytes AMAT = 11.65 AMAT = 4.685 AMAT = 2.288 AMAT = 1.549
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Summary Increase cache Block Size

❖We want to minimize cache miss rate & cache miss penalty at 

same time!

❖ Selection of block size depends on latency and bandwidth of 

lower-level memory:

 High latency, high bandwidth encourage large block size

▪ Cache gets many more bytes per miss for a small 

increase in miss penalty

 Low latency, low bandwidth encourage small block size

▪ Twice the miss penalty of a small block may be close to 

the penalty of a block twice the size

▪ Larger # of small blocks may reduce conflict misses
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Priority to Read Misses over Writes

❖ Reduces: Miss Penalty

❖ Serve read misses before writes have completed

❖Write-Through Cache ➔ Write Buffer

 Read miss is served before completing writes in write buffer

 Problem: write buffer might hold updated data on a read miss

▪ Solution: lookup write buffer and forward data (if buffer hit)

❖Write-Back Cache ➔ Victim Buffer

 Read miss is served before writing back modified blocks

 Modified blocks that are evicted are moved into a victim buffer

 Problem: victim buffer might hold block on a read miss

▪ Solution: lookup victim buffer and forward block (if buffer hit)
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Hardware Prefetching

❖ Hardware observes instruction and data access patterns

 Prefetch instruction/data blocks before they are requested 

❖ Prefetch two blocks on a cache miss (most common)

 The requested block and the next consecutive block

 The requested block is placed in the cache

 The prefetched block is placed into a stream buffer

❖ If the requested block is present in the stream buffer

 Read block from the stream buffer & issue next prefetch request

❖Multiple stream buffers for instruction & data prefetching

 Prefetching utilizes memory bandwidth and consumes energy

 If prefetched data is not used ➔ negative impact on performance

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



❖What is the effective miss rate for the Alpha using instruction 
prefetching?

❖ How much larger of an instruction cache would we need if the 
Alpha to match the average access time if prefetching was 
removed?

 Assume:

▪ It takes 1 extra clock cycle if the instruction misses the cache but is found 
in the prefetch buffer

▪ The prefetch hit rate is 25%

▪ Miss rate for 8-KB instruction cache is 1.10%

▪ Hit time is 2 clock cycles

▪ Miss penalty is 50 clock cycles

Hardware Prefetching
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HW Prefetching of Instruction & Data
❖ We need a revised memory access time formula:

 Say:  Average memory access timeprefetch =

▪ Hit time + miss rate * prefetch hit rate * 1 + miss rate * (1 – prefetch hit 
rate) * miss penalty

❖ Plugging in numbers to the above, we get:

 2 + (1.10% * 25% * 1) + (1.10% * (1 – 25%) * 50) = 2.415

❖ To find the miss rate with equivalent performance, we start with the original 
formula and solve for miss rate:

 Average memory access timeno prefetching = 

▪ Hit time + miss rate * miss penalty

 Results in: (2.415 – 2) / 50 = 0.83%

❖ Calculation suggests effective miss rate of prefetching with 8KB cache is 0.83%

❖ Actual miss rates for 16KB = 0.64% and 8KB = 1.10%
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Speedup due to Hardware Prefetching

Copyright, Elsevier Inc. All rights reserved.

Hardware Prefetching Turned ON
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Pipelined Cache Access

❖ Used mainly in the L1 Instruction and Data caches

❖ L1 cache latency is multiple clock cycles (2 to 4 cycles)

❖ However, L2 and L3 cache accesses are not pipelined

❖ Advantages of Pipelined Cache Access

 Faster clock rate and higher bandwidth

 Better for larger associativity

❖ Disadvantages

 Increases latency of I-Cache and D-Cache

 Increases branch penalty due to increased I-Cache latency

 Increases load delay due to increased D-Cache latency
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Example of Pipelined Cache Access
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Parallel Access to Tag and 

Data Array, Reduces 

Latency, Good for L1 cache
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Serial Access 

to Tag and 

Data Array, 

Reduces 

Energy, Good 

for L2 and L3 

caches

Serial Access to Tag and Data Arrays

Tag

Array

m ways

Data

Array

m ways

In
d

e
x

O
ff
s
e
t

T
a
g

D
a
ta

-i
n

A
d
d
re

s
s

D
e
c
o
d
e
r

T
a
g
 C

h
e
c
k

D
e
c
o
d
e
r

w
a
y

h
it

In
d

e
x

O
ff
s
e
t

D
a
ta

-i
n

w
r

w
r

h
it

D
a
ta

-o
u

t

way select

Tag Array Access

& Tag Check

Data Array Access

Read & Write

Only one way

is accessed

we

❖ Tag array is examined first for hit, then only one way is accessed
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Non-Blocking Cache

❖ Allows a cache to continue to supply hits under a miss

 The processor need not stall on a cache miss

 Useful for out-of-order execution and multithreaded processors

❖ Hit under a Miss

 Reduces the effective miss penalty 

 Increases cache bandwidth

❖ Hit under Multiple Misses

 Multiple outstanding cache misses

 May further lower the effective miss penalty

 Increases the complexity of the cache controller

 Beneficial if the memory system can service multiple misses
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Non-Blocking Cache Timeline

Miss Penalty

Execution TimeExecution Time

Blocking Cache M = Cache Miss = Stall

M

Miss Penalty

Execution TimeExecution Time

Hit Under 1 Miss M = Cache Miss, H = Hit, S = StallH S

Miss Penalty

Miss Penalty

Execution TimeExecution Time

Hit Under 2 Misses M M H S

Miss Penalty

M = Cache Miss, H = Hit, S = Stall

Miss Penalty
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Effectiveness of Non-Blocking Cache

Copyright, Elsevier Inc. All rights reserved.

Hit-under-1-miss reduces the miss penalty by 9% (SPECINT) and 12.5% (SPECFP)

Hit-under-2-misses reduces the miss penalty by 10% (SPECINT) and 16% (SPECFP)
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Miss Status Holding Register (MSHR)

❖ Contains the block address of the pending miss

 Same block can have multiple outstanding load/store misses

 Can also have multiple outstanding block addresses

❖Misses can be classified into:

 Primary: first miss to a cache block that initiates a fetch request

 Secondary: subsequent miss to a cache block in transition

 Structural Stall miss: the MSHR hardware resource is fully utilized

V Block address

=New miss address

match

V Type Offset Destination or Data

V Type Offset Destination or Data

. . .

Type: LD, SD, LW, SW, etc. Offset: block offset

Destination register for load or Data for store
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Non-Blocking Cache Operation

❖ On Cache Miss, check MSHR for matched block address

 If found: allocate new load/store entry for matched block

 If not found: allocate new MSHR and load/store entry

 If all MSHR resources are allocated then Stall (Structural)

❖When cache block is transferred from lower-level memory

 Process the load and store instructions that missed in the block

 Load data from the specified block offset into destination register

 Store data in the data cache at the specified block offset

 De-allocate MSHR entry after completing all missed loads/stores
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Multi-Banked Cache

❖ Banks were originally used in main memory and DRAM chips

❖ They are now commonly used in cache memory (L1, L2, and L3)

❖ The cache is divided into multiple banks

❖Multiple banks can be accessed independently and in parallel

❖ Intel core i7 has 4 banks in L1 and 8 banks in L2

 L1 cache banks can support 2 memory accesses per cycle

▪ To support high instruction execution rate in superscalar processors

 L2 cache banks can handle multiple outstanding L1 cache misses

▪ To support non-blocking caches

 L2 and L3 cache banks also reduce energy per access ➔ smaller arrays
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Multi-Banked Cache (cont'd)

❖ Partition address space into multiple banks

 Block-interleaved cache banks

 Bank Address (BA) = Block Address mod N banks

 When two requests map to same cache bank ➔ Bank Conflict

 One request is allowed to proceed, while second request waits

❖ Example: Sequential interleaving of blocks across 4 cache banks

 Each cache bank is implemented using a tag array and a data array

0
1
2
3

Bank 0

Block 0, 16, … 
Block 4, 20, …
Block 8, 24, …

Block 12, 28, …

In
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ex
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1
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3

Bank 1

Block 1, 17, … 
Block 5, 21, …
Block 9, 25, …

Block 13, 29, …

0
1
2
3

Bank 2

Block 2, 18, … 
Block 6, 22, …

Block 10, 26, …
Block 14, 30, …

0
1
2
3

Bank 3

Block 3, 19, … 
Block 7, 23, …

Block 11, 27, …
Block 15, 31, …

OffsetBAIndexTag

Block Address

Address
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Multi-Ported, Multi-Banked Cache

❖ Example: Dual-Ported Data Cache with four cache banks

 Two address ports ➔ Two load / store instructions per cycle

 Four cache banks to reduce bank conflict

 Crossbar switches map addresses to cache banks and back to the ports
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Port1: Data_out, Rd
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❖ Send virtual address to cache? Called Virtually Addressed Cache or just 

Virtual Cache vs.  Physical Cache

 Every time process is switched logically must flush the cache; otherwise get 

false hits

▪ Cost is time to flush + “compulsory” misses from empty cache

 Dealing with aliases (sometimes called synonyms); 

Two different virtual addresses map  to same physical address

 I/O must interact with cache, so need virtual address

❖ Solution to aliases

 HW guaranteess covers index field & direct mapped, they must be unique;

called page coloring

❖ Solution to cache flush

 Add process identifier tag that identifies process as well as address within 

process: can’t get a hit if wrong process

Fast hits by Avoiding Address Translation
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Next . . .

❖ Improving Cache Performance

❖ Hardware Cache Optimizations

❖ Software Optimizations to reduce Miss Rate
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Software Optimizations

❖ Can be done by the programmer or optimizing compiler

❖ Restructuring code affects data access

 Improves spatial locality

 Improves temporal locality

❖ Three optimizations

1. Loop Interchange

2. Loop Fusion

3. Blocking (also called Tiling)

❖ In addition, software prefetching helps streaming data

 Prefetch array data in advance to eliminate cache misses
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Loop Interchange

Modern compilers optimize loops to reduce cache misses

// Original Code

for (j = 0; j < N; j++)

for (i = 0; i < N; i++)

x[i][j] = 2 * y[i][j]; // stride = N

Original code traverses matrix by column

// After Loop Interchange

for (i = 0; i < N; i++)

for (j = 0; j < N; j++)

x[i][j] = 2 * y[i][j]; // stride = 1

Revised version takes advantage of spatial locality
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Loop Fusion

// Original Code

for (i = 0; i < N; i++)

a[i] = b[i] + c[i];

for (i = 0; i < N; i++)

d[i] = a[i] + b[i] * c[i];

Blocks are replaced in first loop then accessed in second

// After Loop Fusion

for (i = 0; i < N; i++) {

a[i] = b[i] + c[i];

d[i] = a[i] + b[i] * c[i];

}

Revised version takes advantage of temporal locality
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Blocking (or Tiling)

Original code deals with multiple matrices

Matrix Y is accessed by row, while Z is accessed by column

Loop interchange does not help

// Original Code for Matrix Multiplication

for (i = 0; i < N; i++)

for (j = 0; j < N; j++) {

sum = 0;

for (k = 0; k < N; k++) {

sum = sum + y[i][k] * z[k][j];

}

x[i][j] = sum;

}

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Access Pattern for Matrix Multiply

×=

x[i][j] y[i][k] z[k][j]

Matrix X is accessed 

by row.

Exploits

Spatial locality.

Matrix Y is accessed 

by row.

Rows are reused.

If large N then row 

blocks are replaced

➔ cache misses.

Matrix Z accessed by 

column.

No spatial locality.

Matrix Z is reused.

However, blocks are 

replaced ➔ misses.
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Restructuring Code with Blocking

// Blocking or Tiling (B = Block Size)
for (jj = 0; jj < N; jj = jj + B) {
for (kk = 0; kk < N; kk = kk + B) {
for (i = 0; i < N; i++)

for (j = jj; j < min(jj+B,N); j++) {
sum = 0;
for (k = kk; k < min(kk+B,N); k++) {

sum = sum + y[i][k] * z[k][j];
}
x[i][j] = x[i][j] + sum;

} } }

Matrix X should be initialized to zero

Block size is chosen such that blocks can fit in D-Cache
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Access Pattern with Blocking

×=

x[i][j] y[i][k] z[k][j]

Sub-row of Matrix Y (consisting of B elements) is multiplied by a 

sub-block of Matrix Z (consisting of B×B elements) to compute 

(partially) a sub-row of Matrix X.

Exploits spatial and temporal localities in X, Y, and Z.
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Compiler-Controlled Prefetching

❖ Cache prefetch: load data into the cache only

❖ Processor offers non-faulting cache prefetch instruction

❖ Overlap execution with the prefetching of data

❖ Goal is to hide the miss penalty & reduce cache misses

❖ Example:

for (i=0; i<N; i++) {

prefetch(&a[i+P]);

prefetch(&b[i+P]);

sum = sum + a[i] * b[i];

}

❖ Can prefetching be done by hardware transparently?

How to estimate P?

Cost of Prefetch

Instructions?
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In Summary

❖ Reducing Hit Time and Energy

 Smaller and simpler L1 caches, Avoiding Address Translation

❖ Reducing Miss Rate

 Larger block size, larger capacity, and higher associativity

 Software (and compiler) optimizations

 Software and Hardware prefetching of instructions and data 

❖ Reducing Miss Penalty

 Multi-level caches

 Priority to read misses over writes, non-blocking cache

❖ Increasing Cache Bandwidth

 Pipelined, non-blocking, multi-ported, and multi-banked cache
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