
Instruction Set Architecture

 Case Study: MIPS-R3000

Chapter 2 (3ed or 4th Edition)

STUDENTS-HUB.com

https://students-hub.com

Outline

Instruction Set Architecture Design

CISC ver. RISC

Overview of the MIPS Processor

MIPS Assembly Language Programming

STUDENTS-HUB.com

https://students-hub.com

Computing Element Choices
 General Purpose Processors (GPPs): Intended for general purpose

computing (desktops, servers, clusters..)

 Application-Specific Processors (ASPs): Processors with ISAs and
architectural features tailored towards specific application domains

 E.g Digital Signal Processors (DSPs), Network Processors (NPs), Media Processors,
Graphics Processing Units (GPUs), Vector Processors??? ...

 Co-Processors: A hardware (hardwired) implementation of specific
algorithms with limited programming interface (augment GPPs or
ASPs)

 Configurable Hardware:

 Field Programmable Gate Arrays (FPGAs)

 Configurable array of simple processing elements

 Application Specific Integrated Circuits (ASICs): A custom VLSI
hardware solution for a specific computational task

 The choice of one or more depends on a number of factors including:
 - Type and complexity of computational algorithm

(general purpose vs. Specialized)

 - Desired level of flexibility/ - Performance requirements

 programmability

 - Development cost/time - System cost

 - Power requirements - Real-time constrains STUDENTS-HUB.com

https://students-hub.com

Computing Element Choices

Performance

F
le

x
ib

il
it

y

General Purpose

 Processors

(GPPs):

Application-Specific

 Processors (ASPs)

Co-Processors

Application Specific

Integrated Circuits

 (ASICs)

Configurable Hardware

- Type and complexity of computational algorithms

 (general purpose vs. Specialized)

- Desired level of flexibility - Performance

 - Development cost - System cost

 - Power requirements - Real-time constrains

Selection Factors:

Specialization , Development cost/time

Performance/Chip Area/Watt

(Computational Efficiency)

P
ro

g
ra

m
m

ab
il

it
y
 /

The main goal of this course is the study

of fundamental design techniques

for General Purpose Processors

Processor : Programmable computing element that
runs programs written using a pre-defined set of

instructions

STUDENTS-HUB.com

https://students-hub.com

Processor Cost

P
er

fo
rm

an
ce

Microprocessors

Performance is

everything

& Software rules

Embedded

processors

Microcontrollers

Cost is everything

Application specific

architectures

for performance

GPPs Real-time constraints

Specialized applications

Low power/cost constraints

Chip Area, Power

complexity

The Processor Design Space

Processor = Programmable computing element

that runs programs written using a pre-defined set of instructions

The main goal of this course is the

 study of fundamental design techniques

for General Purpose Processors

STUDENTS-HUB.com

https://students-hub.com

General Purpose Processor/Computer System Generations

Classified according to implementation technology:

 The First Generation, 1946-59: Vacuum Tubes, Relays, Mercury Delay
Lines:
 ENIAC (Electronic Numerical Integrator and Computer): First electronic computer,

18000 vacuum tubes, 1500 relays, 5000 additions/sec (1944).

 First stored program computer: EDSAC (Electronic Delay Storage Automatic
Calculator), 1949.

 The Second Generation, 1959-64: Discrete Transistors.

 e.g. IBM Main frames

 The Third Generation, 1964-75: Small and Medium-Scale Integrated
(MSI) Circuits.

 e.g Main frames (IBM 360) , mini computers (DEC PDP-8, PDP-11).

 The Fourth Generation, 1975-Present: The Microcomputer. VLSI-
based Microprocessors (single-chip processor)

 First microprocessor: Intel’s 4-bit 4004 (2300 transistors), 1970.

 Personal Computer (PCs), laptops, PDAs, servers, clusters …

 Reduced Instruction Set Computer (RISC) 1984

Common factor among all generations:

All target the The Von Neumann Computer Model or paradigm
STUDENTS-HUB.com

https://students-hub.com

7

What Must be Specified?

STUDENTS-HUB.com

https://students-hub.com

A Simplified View of The
Software/Hardware Hierarchical Layers

STUDENTS-HUB.com

https://students-hub.com

Hierarchy of Computer Architecture

I/O system Instr. Set Proc.

Compiler

Operating
System

Application

Digital Design

Circuit Design

Instruction Set
 Architecture

Firmware

Datapath & Control

Layout

Software

Hardware

Software/Hardware

 Boundary

High-Level Language Programs

Assembly Language

Programs

Microprogram

Register Transfer

Notation (RTN)
Logic Diagrams

Circuit Diagrams

Machine Language

Program e.g.

BIOS (Basic Input/Output System)

e.g.

BIOS (Basic Input/Output System)

VLSI placement & routing

(ISA)
The ISA forms an abstraction layer

 that sets the requirements for both

complier and CPU designers

STUDENTS-HUB.com

https://students-hub.com

How to Speak Computer

High Level Language
Program

Assembly Language
Program

Compiler
lw $15, 0($2)

lw $16, 4($2)

sw $16, 0($2)

sw $15, 4($2)

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

Control Signal Spec

Machine Interpretation

ALUOP[0:3] <= InstReg[9:11] & MASK

Machine Language
Program

Assembler

1000110001100010000000000000000

1000110011110010000000000000100

1010110011110010000000000000000

1010110001100010000000000000100

Need translation from application to physics
STUDENTS-HUB.com

https://students-hub.com

What is Computer Architecture?

Computer Architecture =

 Machine Organization +

 Instruction Set Architecture

What the machine

looks like

How you talk to the machine

STUDENTS-HUB.com

https://students-hub.com

Computer Organization

 Once you have decided on an ISA, you must decide how to

design the hardware to execute those programs written in the

ISA as fast as possible (or as cheaply as possible, or using as

little power as possible, …).

 This must be done every time a new implementation of the

architecture is released, with typically very different

technological constraints

Computer

Memory

Datapath

Control

Output

Input

STUDENTS-HUB.com

https://students-hub.com

Complete set of instructions used by a machine

Abstract interface between the HW and lowest-level
SW.

 An ISA includes the following …

 Instructions and Instruction Formats

 Data Types, Encodings, and Representations

 Programmable Storage: Registers and Memory

 Addressing Modes: to address Instructions and Data

 Handling Exceptional Conditions (like division by zero)

 Examples (Versions) First Introduced in

 Intel (8086, 80386, Pentium, ...) 1978

 MIPS (MIPS I, II, III, IV, V) 1986

 PowerPC (601, 604, …) 1993

Instruction Set Architecture (ISA)

STUDENTS-HUB.com

https://students-hub.com

The Instruction Set Architecture

 ISA is considered part of the SW

 Must be designed to survive changes in hardware

technology, software technology, and application

characteristic.
 Is the agreed-upon interface between all the software that runs

on the machine and the hardware that executes it.

 Advantages:

 Different implementations of the same architecture

 Easier to change than HW

 Standardizes instructions, machine language bit patterns, etc.

 Disadvantage:

 Sometimes prevents using new innovations

STUDENTS-HUB.com

https://students-hub.com

Instruction Set Architecture: Critical
Interface

 Properties of a good abstraction

 Lasts through many generations (portability)

 Used in many different ways (generality)

 Provides convenient functionality to higher levels

 Permits an efficient implementation at lower levels

instruction set

software

hardware

STUDENTS-HUB.com

https://students-hub.com

Basic ISA Classes

STUDENTS-HUB.com

https://students-hub.com

Comparing Number of Instructions

STUDENTS-HUB.com

https://students-hub.com

Comparing Number of Bytes

STUDENTS-HUB.com

https://students-hub.com

Comparing Number of Memory Access

STUDENTS-HUB.com

https://students-hub.com

General Purpose Registers Dominate

STUDENTS-HUB.com

https://students-hub.com

Addressing Modes: how data is accessed?

STUDENTS-HUB.com

https://students-hub.com

Typical Operations

STUDENTS-HUB.com

https://students-hub.com

Generic Examples of Instruction Formats

STUDENTS-HUB.com

https://students-hub.com

Key ISA decisions

 operations

 how many?

 which ones

 operands

 how many?

 location

 types

 how to specify?

 instruction format

 size

 how many formats?

 how many registers?

y = x + b

operation

source operands

destination operand

(add r1, r2, r5)

STUDENTS-HUB.com

https://students-hub.com

Evolution of Instruction Set Architectures
Single Accumulator (EDSAC 1949)

Accumulator + Index Registers

(Manchester Mark I, IBM 700 series 1953)

Separation of Programming Model
 from Implementation

High-level Language Based Concept of an ISA Family

(B5000 1963) (IBM 360 1964)

General Purpose Register (GPR) Machines

Complex Instruction Sets (CISC)
Load/Store Architecture

 Reduced Instruction Set Computer (RISC)

(Vax, Motorola 68000, Intel x86 1977-80) (CDC 6600, Cray 1 1963-76)

(MIPS, SPARC, HP-PA, PowerPC, . . . 1984..)

STUDENTS-HUB.com

https://students-hub.com

What is CISC?
 CISC is an acronym for Complex Instruction Set Computer and

are chips that are easy to program and which make efficient use
of memory.
 Since the earliest machines were programmed in assembly language and memory was slow

and expensive, the CISC philosophy made sense

 Most common microprocessor designs such as the Intel 80x86
and Motorola 68K series followed the CISC philosophy.

 CISC was developed to make compiler development simpler

 CISC instructions sets some common attributes:

 A 2-operand format, where instructions have a source and a destination.
Register to register, register to memory, and memory to register
commands. Multiple addressing modes for memory, including specialized
modes for indexing through arrays

 Variable length instructions where the length often varies according to the
addressing mode

 Instructions which require multiple clock cycles to execute.

STUDENTS-HUB.com

https://students-hub.com

 Most CISC hardware architectures have several characteristics in
common:

 Complex instruction-decoding logic, driven by the need for a single
instruction to support multiple addressing modes.

 A small number of general purpose registers. This is the direct result of
having instructions which can operate directly on memory and the
limited amount of chip space not dedicated to instruction decoding,
execution, and microcode storage.

 Several special purpose registers. Many CTSC designs set aside
special registers for the stack pointer, interrupt handling, and so on.
This can simplify the hardware design somewhat, at the expense of
making the instruction set more complex.

 Micro-programming is as easy as assembly language to implement,
and much less expensive than hardwiring a control unit.

 As each instruction became more capable, fewer instructions could be
used to implement a given task. This made more efficient use of the
relatively slow main memory.

 Because micro-program instruction sets can be written to match the
constructs of high-level languages, the compiler does not have to be as
complicated.

CISC Characteristics

STUDENTS-HUB.com

https://students-hub.com

CISC Disadvantages
Designers soon realized that the CISC philosophy had

its own problems, including:

 Earlier generations of a processor family generally were
contained as a subset in every new version - so instruction
set & chip hardware become more complex with each
generation of computers.

 So that as many instructions as possible could be stored in
memory with the least possible wasted space, individual
instructions could be of almost any length - this means that
different instructions will take different amounts of clock time
to execute, slowing down the overall performance of the
machine.

 Many specialized instructions aren't used frequently enough
to justify their existence -approximately 20% of the available
instructions are used in a typical program.

STUDENTS-HUB.com

https://students-hub.com

Example CISC ISAs Motorola 680X0

18 addressing modes:
 Data register direct.

 Address register direct.

 Immediate.

 Absolute short.

 Absolute long.

 Address register indirect.

 Address register indirect with postincrement.

 Address register indirect with predecrement.

 Address register indirect with displacement.

 Address register indirect with index (8-bit).

 Address register indirect with index (base).

 Memory inderect postindexed.

 Memory indirect preindexed.

 Program counter indirect with index (8-bit).

 Program counter indirect with index (base).

 Program counter indirect with displacement.

 Program counter memory indirect postindexed.

 Program counter memory indirect preindexed.

Operand size:
• Range from 1 to 32 bits

 Instruction Encoding:

• Instructions are stored in 16-bit

words.

• the smallest instruction is 2- bytes

(one word).

• The longest instruction is 5 words

(10 bytes) in length.

STUDENTS-HUB.com

https://students-hub.com

Example CISC ISA: Intel 80386

12 addressing modes:

 Register.

 Immediate.

 Direct.

 Base.

 Base + Displacement.

 Index + Displacement.

 Scaled Index + Displacement.

 Based Index.

 Based Scaled Index.

 Based Index + Displacement.

 Based Scaled Index + Displacement.

 Relative.

Operand sizes:

• Can be 8, 16, 32, 48, 64, or 80 bits long.

• Also supports string operations.

 Instruction Encoding:

• The smallest instruction is one byte.

• The longest instruction is 12 bytes

long.

• The first bytes generally contain the

opcode, mode specifiers, and register

fields.

• The remainder bytes are for address

displacement and immediate data.

STUDENTS-HUB.com

https://students-hub.com

What is RISC?

 RISC?
RISC, or Reduced Instruction Set Computer. is a type of
microprocessor architecture that utilizes a small, highly-optimized
set of instructions, rather than a more specialized set of instructions
often found in other types of architectures.

 Certain design features have been characteristic of most RISC
processors:

 one cycle execution time: RISC processors have a CPI (clock
per instruction) of one cycle. This is due to the optimization of
each instruction on the CPU and a technique called
PIPELINING

 pipelining: a techique that allows for simultaneous execution of
parts, or stages, of instructions to more efficiently process
instructions;

 large number of registers: the RISC design philosophy generally
incorporates a larger number of registers to prevent in large
amounts of interactions with memory

STUDENTS-HUB.com

https://students-hub.com

RISC Attributes
 The main characteristics of CISC microprocessors are:

 Extensive instructions.

 Complex and efficient machine instructions.

 Microencoding of the machine instructions.

 Extensive addressing capabilities for memory operations.

 Relatively few registers.

 In comparison, RISC processors are more or less the opposite of
the above:

 Reduced instruction set.

 Less complex, simple instructions.

 Hardwired control unit and machine instructions.

 Few addressing schemes for memory operands with only two basic
instructions, LOAD and STORE

 Many symmetric registers which are organised into a register file.

STUDENTS-HUB.com

https://students-hub.com

RISC Disadvantages
 There is still considerable controversy among experts

about the ultimate value of RISC architectures. Its
proponents argue that RISC machines are both cheaper
and faster, and are therefore the machines of the future.

 However, by making the hardware simpler, RISC
architectures put a greater burden on the software. Is this
worth the trouble because conventional microprocessors
are becoming increasingly fast and cheap anyway?

STUDENTS-HUB.com

https://students-hub.com

Example RISC ISA: PowerPC

8 addressing modes:

 Register direct.

 Immediate.

 Register indirect.

 Register indirect with immediate

index (loads and stores).

 Register indirect with register

index (loads and stores).

 Absolute (jumps).

 Link register indirect (calls).

 Count register indirect (branches).

Operand sizes:

• Four operand sizes: 1, 2, 4 or 8

bytes.

 Instruction Encoding:

• Instruction set has 15 different

formats with many minor

variations.

• All are 32 bits in length.

STUDENTS-HUB.com

https://students-hub.com

Example RISC ISA: SPARC

5 addressing modes:

 Register indirect with immediate

displacement.

 Register inderect indexed by

another register.

 Register direct.

 Immediate.

 PC relative.

Operand sizes:

• Four operand sizes: 1, 2, 4 or 8 bytes.

 Instruction Encoding:

• Instruction set has 3 basic instruction

formats with 3 minor variations.

• All are 32 bits in length.

STUDENTS-HUB.com

https://students-hub.com

CISC versus RISC Summary

CISC RISC

Emphasis on hardware Emphasis on software

Includes multi-clock
complex instructions

Single-clock,
reduced instruction only

Memory-to-memory:
"LOAD" and "STORE"
incorporated in instructions

Register to register:
"LOAD" and "STORE"
are independent instructions

Small code sizes,
high cycles per second

Low cycles per second,
large code sizes

Transistors used for storing
complex instructions

Spends more transistors
on memory registers

STUDENTS-HUB.com

https://students-hub.com

Summary of Design Principles
1. Simplicity favors regularity

 Simple instructions dominate the instruction frequency

 So design them to be simple and regular, and make them fast

 Use general-purpose registers uniformly across instructions

 Fix the size of instructions (simplifies fetching & decoding)

 Fix the number of operands per instruction

 Three operands is the natural number for a typical instruction

2. Smaller is faster

 Limit the number of registers for faster access (typically 32)

3. Make the common case fast

 Include constants inside instructions (faster than loading them)

 Design most instructions to be register-to-register

4. Good design demands good compromises

 Having one-size formats is better than variable-size formats, even
though it limits the size of the immediate constants

STUDENTS-HUB.com

https://students-hub.com

Overview of the MIPS Processor

STUDENTS-HUB.com

https://students-hub.com

Logical View of the MIPS Processor

Memory

Up to 232 bytes = 230 words

 4 bytes per word

$0

$1

$2

$31

Hi Lo

ALU

$F0

$F1

$F2

$F31
FP

Arith

EPC

Cause

BadVaddr

Status

EIU FPU

TMU

Execution &

Integer Unit

(Main proc)

 Floating

Point Unit

(Coproc 1)

Trap &

Memory Unit

(Coproc 0)

. . .

. . .

Integer
mul/div

Arithmetic &

Logic Unit

32 General

Purpose

Registers

Integer

Multiplier/Divider

32 Floating-Point

Registers

Floating-Point

Arithmetic Unit

STUDENTS-HUB.com

https://students-hub.com

 32 General Purpose Registers (GPRs)

 32-bit registers are used in MIPS32

 Register 0 is always zero

 Any value written to R0 is discarded

 Special-purpose registers LO and HI

 Hold results of integer multiply and divide

 Special-purpose program counter PC

 32 Floating Point Registers (FPRs)

 Floating Point registers can be either 32-bit or 64-bit

 A pair of registers is used for double-precision floating-point

Overview of the MIPS Registers

GPRs

$0 – $31

LO

HI

PC

FPRs

$F0 – $F31

STUDENTS-HUB.com

https://students-hub.com

MIPS General-Purpose Registers

 32 General Purpose Registers (GPRs)

 Assembler uses the dollar notation to name registers

 $0 is register 0, $1 is register 1, …, and $31 is register 31

 All registers are 32-bit wide in MIPS32

 Register $0 is always zero

 Any value written to $0 is discarded

 Software conventions

 Software defines names to all registers

 To standardize their use in programs

 $8 - $15 are called $t0 - $t7

 Used for temporary values

 $16 - $23 are called $s0 - $s7

$0 = $zero

$1 = $at

$2 = $v0

$3 = $v1

$4 = $a0

$5 = $a1

$6 = $a2

$7 = $a3

$8 = $t0

$9 = $t1

$10 = $t2

$11 = $t3

$12 = $t4

$13 = $t5

$14 = $t6

$15 = $t7

$16 = $s0

$17 = $s1

$18 = $s2

$19 = $s3

$20 = $s4

$21 = $s5

$22 = $s6

$23 = $s7

$24 = $t8

$25 = $t9

$26 = $k0

$27 = $k1

$28 = $gp

$29 = $sp

$30 = $fp

$31 = $ra

STUDENTS-HUB.com

https://students-hub.com

MIPS Register Conventions

Name Register Usage

$zero $0 Always 0 (forced by hardware)

$at $1 Reserved for assembler use

$v0 – $v1 $2 – $3 Result values of a function

$a0 – $a3 $4 – $7 Arguments of a function

$t0 – $t7 $8 – $15 Temporary Values

$s0 – $s7 $16 – $23 Saved registers (preserved across call)

$t8 – $t9 $24 – $25 More temporaries

$k0 – $k1 $26 – $27 Reserved for OS kernel

$gp $28 Global pointer (points to global data)

$sp $29 Stack pointer (points to top of stack)

$fp $30 Frame pointer (points to stack frame)

$ra $31 Return address (used by jal for function call)

 Assembler can refer to registers by name or by number

 It is easier for you to remember registers by name

 Assembler converts register name to its corresponding number

STUDENTS-HUB.com

https://students-hub.com

Instruction Formats

 All instructions are 32-bit wide, Three instruction formats:

 Register (R-Type)

 Register-to-register instructions

 Op: operation code specifies the format of the instruction

 Immediate (I-Type)

 16-bit immediate constant is part in the instruction

 Jump (J-Type)

 Used by jump instructions

Op6 Rs5 Rt5 Rd5 funct6 sa5

Op6 Rs5 Rt5 immediate16

Op6 immediate26

STUDENTS-HUB.com

https://students-hub.com

Register File

STUDENTS-HUB.com

https://students-hub.com

MIPS Five Addressing Modes

1 Register Addressing:

 Where the operand is a register (R-Type)

2 Immediate Addressing:

 Where the operand is a constant in the instruction (I-Type, ALU)

3 Base or Displacement Addressing:

 Where the operand is at the memory location whose address is the
sum of a register and a constant in the instruction (I-Type, load/store)

4 PC-Relative Addressing:

 Where the address is the sum of the PC and the 16-address field in
the instruction shifted left 2 bits. (I-Type, branches)

5 Pseudodirect Addressing:

 Where the jump address is the 26-bit jump target from the instruction
shifted left 2 bits concatenated with the 4 upper bits of the PC (J-
Type)

STUDENTS-HUB.com

https://students-hub.com

46

MIPS Addressing Modes/Instruction Formats
• All instructions 32 bits wide

STUDENTS-HUB.com

https://students-hub.com

MIPS R-Type (ALU) Instruction Fields

 op: Opcode, basic operation of the instruction.

 For R-Type op = 0

 rs: The first register source operand.

 rt: The second register source operand.

 rd: The register destination operand.

 shamt: Shift amount used in constant shift operations.

 funct: Function, selects the specific variant of operation in the op

field.

OP rs rt rd shamt funct

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

R-Type: All ALU instructions that use three registers

add $1,$2,$3

sub $1,$2,$3

and $1,$2,$3

or $1,$2,$3
Examples:

Destination register in rd
Operand register in rt

Operand register in rs

R-Type = Register Type

Register Addressing used (Mode 1)

1st operand 2nd operand Destination

Rs, rt , rd

are register specifier fields

STUDENTS-HUB.com

https://students-hub.com

MIPS ALU I-Type Instruction Fields

I-Type ALU instructions that use two registers and an immediate value

 I-Type is also used for Loads/stores, conditional branches.

 op: Opcode, operation of the instruction.

 rs: The register source operand.

 rt: The result destination register.

 immediate: Constant second operand for ALU instruction.

OP rs rt immediate

6 bits 5 bits 5 bits 16 bits

add immediate: addi $1,$2,100

and immediate andi $1,$2,10

Examples:

Result register in rt
Source operand register in rs

Constant operand

 in immediate

I-Type = Immediate Type

Immediate Addressing used (Mode 2)

1st operand 2nd operand Destination

STUDENTS-HUB.com

https://students-hub.com

MIPS Load/Store I-Type Instruction
Fields

 op: Opcode, operation of the instruction.

 For load op = 35, for store op = 43.

 rs: The register containing memory base address.

 rt: For loads, the destination register. For stores, the

source register of value to be stored.

 address: 16-bit memory address offset in bytes added to

base register.

OP rs rt address

6 bits 5 bits 5 bits 16 bits

Store word: sw $3, 500($4)

Load word: lw $1, 32($2)

Examples:

Offset base register in rs source register in rt

Destination register in rt Offset
base register in rs

Signed address

offset in bytes

Base or Displacement Addressing used (Mode 3)

Base Src./Dest.

STUDENTS-HUB.com

https://students-hub.com

MIPS Branch I-Type Instruction Fields

 op: Opcode, operation of the instruction.

 rs: The first register being compared

 rt: The second register being compared.

 address: 16-bit memory address branch target offset in

words added to PC to form branch address.

OP rs rt address

6 bits 5 bits 5 bits 16 bits

Branch on equal beq $1,$2,100

Branch on not equal bne $1,$2,100

Examples:

Register in rs

Register in rt offset in bytes equal to

instruction address field x 4

Signed address

offset in words

PC-Relative Addressing used (Mode 4)

Added

to PC to form

branch target

STUDENTS-HUB.com

https://students-hub.com

J-Type = Jump Type

Pseudodirect Addressing used (Mode 5)

MIPS J-Type Instruction Fields

 op: Opcode, operation of the instruction.

 Jump j op = 2

 Jump and link jal op = 3

 jump target: jump memory address in words.

J-Type: Include jump j, jump and link jal

OP jump target

6 bits 26 bits

jump target = 2500

4 bits 26 bits 2 bits

0 0

PC(31-28)

Effective 32-bit jump address: PC(31-28),jump_target,00

From

PC+4

Jump j 10000

Jump and link jal 10000

Examples:

Jump memory address in bytes equal to

instruction field jump target x 4

Jump target

in words

STUDENTS-HUB.com

https://students-hub.com

Instruction Categories

 Integer Arithmetic

 Arithmetic, logical, and shift instructions

 Data Transfer

 Load and store instructions that access memory

 Data movement and conversions

 Jump and Branch

 Flow-control instructions that alter the sequential sequence

 Floating Point Arithmetic

 Instructions that operate on floating-point registers

 Miscellaneous

 Instructions that transfer control to/from exception handlers

 Memory management instructions

STUDENTS-HUB.com

https://students-hub.com

Next . . .

 Instruction Set Architecture

 Overview of the MIPS Processor

 R-Type Arithmetic, Logical, and Shift Instructions

 I-Type Format and Immediate Constants

 Jump and Branch Instructions

 Translating If Statements and Boolean Expressions

 Load and Store Instructions

 Translating Loops and Traversing Arrays

 Alternative Architecture

STUDENTS-HUB.com

https://students-hub.com

R-Type Format

 Op: operation code (opcode)

 Specifies the operation of the instruction

 Also specifies the format of the instruction

 funct: function code – extends the opcode

 Up to 26 = 64 functions can be defined for the same opcode

 MIPS uses opcode 0 to define R-type instructions

 Three Register Operands (common to many instructions)

 Rs, Rt: first and second source operands

 Rd: destination operand

 sa: the shift amount used by shift instructions

Op6 Rs5 Rt5 Rd5 funct6 sa5

STUDENTS-HUB.com

https://students-hub.com

Integer Add /Subtract Instructions
Instruction Meaning R-Type Format
add $s1, $s2, $s3 $s1 = $s2 + $s3 op = 0 rs = $s2 rt = $s3 rd = $s1 sa = 0 f = 0x20

addu $s1, $s2, $s3 $s1 = $s2 + $s3 op = 0 rs = $s2 rt = $s3 rd = $s1 sa = 0 f = 0x21

sub $s1, $s2, $s3 $s1 = $s2 – $s3 op = 0 rs = $s2 rt = $s3 rd = $s1 sa = 0 f = 0x22

subu $s1, $s2, $s3 $s1 = $s2 – $s3 op = 0 rs = $s2 rt = $s3 rd = $s1 sa = 0 f = 0x23

 add & sub: overflow causes an arithmetic exception

 In case of overflow, result is not written to destination register

 addu & subu: same operation as add & sub

 However, no arithmetic exception can occur

 Overflow is ignored

Many programming languages ignore overflow

 The + operator is translated into addu

 The – operator is translated into subu

STUDENTS-HUB.com

https://students-hub.com

Addition/Subtraction Example

 Consider the translation of: f = (g+h) – (i+j)

 Compiler allocates registers to variables

Assume that f, g, h, i, and j are allocated registers $s0 thru $s4

Called the saved registers: $s0 = $16, $s1 = $17, …, $s7 = $23

 Translation of: f = (g+h) – (i+j)

 addu $t0, $s1, $s2 # $t0 = g + h

 addu $t1, $s3, $s4 # $t1 = i + j

 subu $s0, $t0, $t1 # f = (g+h)–(i+j)

 Temporary results are stored in $t0 = $8 and $t1 = $9

 Translate: addu $t0,$s1,$s2 to binary code

 Solution: 000000

op

10001

rs = $s1

10010

rt = $s2

01000

rd = $t0

00000

sa

100001

func

STUDENTS-HUB.com

https://students-hub.com

Logical Bitwise Operations

 Logical bitwise operations: and, or, xor, nor

 AND instruction is used to clear bits: x and 0 = 0

 OR instruction is used to set bits: x or 1 = 1

 XOR instruction is used to toggle bits: x xor 1 = not x

 NOR instruction can be used as a NOT, how?

 nor $s1,$s2,$s2 is equivalent to not $s1,$s2

x

0

0

1

1

y

0

1

0

1

x and y

0

0

0

1

x

0

0

1

1

y

0

1

0

1

x or y

0

1

1

1

x

0

0

1

1

y

0

1

0

1

x xor y

0

1

1

0

x

0

0

1

1

y

0

1

0

1

x nor y

1

0

0

0

STUDENTS-HUB.com

https://students-hub.com

Logical Bitwise Instructions
Instruction Meaning R-Type Format
and $s1, $s2, $s3 $s1 = $s2 & $s3 op = 0 rs = $s2 rt = $s3 rd = $s1 sa = 0 f = 0x24

or $s1, $s2, $s3 $s1 = $s2 | $s3 op = 0 rs = $s2 rt = $s3 rd = $s1 sa = 0 f = 0x25

xor $s1, $s2, $s3 $s1 = $s2 ^ $s3 op = 0 rs = $s2 rt = $s3 rd = $s1 sa = 0 f = 0x26

nor $s1, $s2, $s3 $s1 = ~($s2|$s3) op = 0 rs = $s2 rt = $s3 rd = $s1 sa = 0 f = 0x27

 Examples:

 Assume $s1 = 0xabcd1234 and $s2 = 0xffff0000

and $s0,$s1,$s2 # $s0 = 0xabcd0000

or $s0,$s1,$s2 # $s0 = 0xffff1234

xor $s0,$s1,$s2 # $s0 = 0x54321234

nor $s0,$s1,$s2 # $s0 = 0x0000edcb

STUDENTS-HUB.com

https://students-hub.com

Shift Operations

 Shifting is to move all the bits in a register left or right

 Shifts by a constant amount: sll, srl, sra

 sll/srl mean shift left/right logical by a constant amount

 The 5-bit shift amount field is used by these instructions

 sra means shift right arithmetic by a constant amount

 The sign-bit (rather than 0) is shifted from the left

shift-in 0 . . . shift-out MSB

sll 32-bit register

. . . shift-in 0 shift-out LSB

srl

. . . shift-in sign-bit shift-out LSB

sra

STUDENTS-HUB.com

https://students-hub.com

$s1 = 0x0000abcd

$s1 = 0xcd123400

Shift Instructions
Instruction Meaning R-Type Format
sll $s1,$s2,10 $s1 = $s2 << 10 op = 0 rs = 0 rt = $s2 rd = $s1 sa = 10 f = 0

srl $s1,$s2,10 $s1 = $s2>>>10 op = 0 rs = 0 rt = $s2 rd = $s1 sa = 10 f = 2

sra $s1, $s2, 10 $s1 = $s2 >> 10 op = 0 rs = 0 rt = $s2 rd = $s1 sa = 10 f = 3

sllv $s1,$s2,$s3 $s1 = $s2 << $s3 op = 0 rs = $s3 rt = $s2 rd = $s1 sa = 0 f = 4

srlv $s1,$s2,$s3 $s1 = $s2>>>$s3 op = 0 rs = $s3 rt = $s2 rd = $s1 sa = 0 f = 6

srav $s1,$s2,$s3 $s1 = $s2 >> $s3 op = 0 rs = $s3 rt = $s2 rd = $s1 sa = 0 f = 7

 Shifts by a variable amount: sllv, srlv, srav

 Same as sll, srl, sra, but a register is used for shift amount

 Examples: assume that $s2 = 0xabcd1234, $s3 = 16

sll $s1,$s2,8

sra $s1,$s2,4 $s1 = 0xfabcd123

srlv $s1,$s2,$s3

rt=$s2=10010 op=000000 rs=$s3=10011 rd=$s1=10001 sa=00000 f=000110

$s1 = $s2<<8

$s1 = $s2>>4

$s1 = $s2>>>$s3

STUDENTS-HUB.com

https://students-hub.com

Binary Multiplication

 Shift-left (sll) instruction can perform multiplication

 When the multiplier is a power of 2

 You can factor any binary number into powers of 2

 Example: multiply $s1 by 36

 Factor 36 into (4 + 32) and use distributive property of multiplication

 $s2 = $s1*36 = $s1*(4 + 32) = $s1*4 + $s1*32

sll $t0, $s1, 2 ; $t0 = $s1 * 4

sll $t1, $s1, 5 ; $t1 = $s1 * 32

addu $s2, $t0, $t1 ; $s2 = $s1 * 36

STUDENTS-HUB.com

https://students-hub.com

Your Turn . . .

sll $t0, $s1, 1 ; $t0 = $s1 * 2

sll $t1, $s1, 3 ; $t1 = $s1 * 8

addu $s2, $t0, $t1 ; $s2 = $s1 * 10

sll $t0, $s1, 4 ; $t0 = $s1 * 16

addu $s2, $s2, $t0 ; $s2 = $s1 * 26

Multiply $s1 by 26, using shift and add instructions

Hint: 26 = 2 + 8 + 16

Multiply $s1 by 31, Hint: 31 = 32 – 1

sll $s2, $s1, 5 ; $s2 = $s1 * 32

subu $s2, $s2, $s1 ; $s2 = $s1 * 31

STUDENTS-HUB.com

https://students-hub.com

Integer Multiplication & Division

 Consider a×b and a/b where a and b are in $s1 and $s2

Signed multiplication: mult $s1,$s2

Unsigned multiplication: multu $s1,$s2

Signed division: div $s1,$s2

Unsigned division: divu $s1,$s2

 For multiplication, result is 64 bits

 LO = low-order 32-bit and HI = high-order 32-bit

 For division

 LO = 32-bit quotient and HI = 32-bit remainder

 If divisor is 0 then result is unpredictable

 Moving data

 mflo rd (move from LO to rd), mfhi rd (move from HI to rd)

 mtlo rs (move to LO from rs), mthi rs (move to HI from rs)

Multiply

Divide

$0

HI LO

$1

.

.

$31

STUDENTS-HUB.com

https://students-hub.com

Integer Multiply/Divide Instructions
Instruction Meaning Format

mult rs, rt hi, lo = rs × rt op6 = 0 rs5 rt5 0 0 0x18

multu rs, rt hi, lo = rs × rt op6 = 0 rs5 rt5 0 0 0x19

div rs, rt hi, lo = rs / rt op6 = 0 rs5 rt5 0 0 0x1a

divu rs, rt hi, lo = rs / rt op6 = 0 rs5 rt5 0 0 0x1b

mfhi rd rd = hi op6 = 0 0 0 rd5 0 0x10

mflo rd rd = lo op6 = 0 0 0 rd5 0 0x12

mthi rs hi = rs op6 = 0 rs5 0 0 0 0x11

mtlo rs lo = rs op6 = 0 rs5 0 0 0 0x13

 Signed arithmetic: mult, div (rs and rt are signed)

 LO = 32-bit low-order and HI = 32-bit high-order of multiplication

 LO = 32-bit quotient and HI = 32-bit remainder of division

 Unsigned arithmetic: multu, divu (rs and rt are unsigned)

 NO arithmetic exception can occur

STUDENTS-HUB.com

https://students-hub.com

Next . . .

 Instruction Set Architecture

 Overview of the MIPS Processor

 R-Type Arithmetic, Logical, and Shift Instructions

 I-Type Format and Immediate Constants

 Jump and Branch Instructions

 Translating If Statements and Boolean Expressions

 Load and Store Instructions

 Translating Loops and Traversing Arrays

 Alternative Architecture

STUDENTS-HUB.com

https://students-hub.com

I-Type Format
 Constants are used quite frequently in programs

 The R-type shift instructions have a 5-bit shift amount constant

What about other instructions that need a constant?

 I-Type: Instructions with Immediate Operands

 16-bit immediate constant is stored inside the instruction

Rs is the source register number

Rt is now the destination register number (for R-type it was Rd)

 Examples of I-Type ALU Instructions:

Add immediate: addi $s1, $s2, 5 # $s1 = $s2 + 5

OR immediate: ori $s1, $s2, 5 # $s1 = $s2 | 5

Op6 Rs5 Rt5 immediate16

STUDENTS-HUB.com

https://students-hub.com

I-Type ALU Instructions
Instruction Meaning I-Type Format
addi $s1, $s2, 10 $s1 = $s2 + 10 op = 0x8 rs = $s2 rt = $s1 imm16 = 10

addiu $s1, $s2, 10 $s1 = $s2 + 10 op = 0x9 rs = $s2 rt = $s1 imm16 = 10

andi $s1, $s2, 10 $s1 = $s2 & 10 op = 0xc rs = $s2 rt = $s1 imm16 = 10

ori $s1, $s2, 10 $s1 = $s2 | 10 op = 0xd rs = $s2 rt = $s1 imm16 = 10

xori $s1, $s2, 10 $s1 = $s2 ^ 10 op = 0xe rs = $s2 rt = $s1 imm16 = 10

lui $s1, 10 $s1 = 10 << 16 op = 0xf 0 rt = $s1 imm16 = 10

 addi: overflow causes an arithmetic exception

 In case of overflow, result is not written to destination register

 addiu: same operation as addi but overflow is ignored

 Immediate constant for addi and addiu is signed

 No need for subi or subiu instructions

 Immediate constant for andi, ori, xori is unsigned

STUDENTS-HUB.com

https://students-hub.com

 Examples: assume A, B, C are allocated $s0, $s1, $s2

 No need for subi, because addi has signed immediate

 Register 0 ($zero) has always the value 0

Examples: I-Type ALU Instructions

A = B+5; translated as

C = B–1; translated as

addiu $s0,$s1,5

addiu $s2,$s1,-1

A = B&0xf; translated as

C = B|0xf; translated as

andi $s0,$s1,0xf

ori $s2,$s1,0xf

C = 5; translated as

A = B; translated as

ori $s2,$zero,5

ori $s0,$s1,0

rt=$s2=10010 op=001001 rs=$s1=10001 imm = -1 = 1111111111111111

STUDENTS-HUB.com

https://students-hub.com

 I-Type instructions can have only 16-bit constants

What if we want to load a 32-bit constant into a register?

 Can’t have a 32-bit constant in I-Type instructions 

We have already fixed the sizes of all instructions to 32 bits

 Solution: use two instructions instead of one 

Suppose we want: $s1=0xAC5165D9 (32-bit constant)

 lui: load upper immediate

32-bit Constants

Op6 Rs5 Rt5 immediate16

lui $s1,0xAC51

ori $s1,$s1,0x65D9 0xAC51 0x65D9 $s1=$17

0xAC51 0x0000 $s1=$17

clear lower

16 bits

load upper

16 bits

STUDENTS-HUB.com

https://students-hub.com

Next . . .

 Instruction Set Architecture

 Overview of the MIPS Processor

 R-Type Arithmetic, Logical, and Shift Instructions

 I-Type Format and Immediate Constants

 Jump and Branch Instructions

 Translating If Statements and Boolean Expressions

 Load and Store Instructions

 Translating Loops and Traversing Arrays

 Alternative Architecture

STUDENTS-HUB.com

https://students-hub.com

J-Type Format

 J-type format is used for unconditional jump instruction:

 j label # jump to label

 . . .

 label:

 26-bit immediate value is stored in the instruction

 Immediate constant specifies address of target instruction

 Program Counter (PC) is modified as follows:

Next PC =

Upper 4 most significant bits of PC are unchanged

Op6 immediate26

immediate26 PC4 00
least-significant

2 bits are 00

STUDENTS-HUB.com

https://students-hub.com

 MIPS compare and branch instructions:

 beq Rs,Rt,label branch to label if (Rs == Rt)

 bne Rs,Rt,label branch to label if (Rs != Rt)

 MIPS compare to zero & branch instructions

 Compare to zero is used frequently and implemented efficiently

 bltz Rs,label branch to label if (Rs < 0)

 bgtz Rs,label branch to label if (Rs > 0)

 blez Rs,label branch to label if (Rs <= 0)

 bgez Rs,label branch to label if (Rs >= 0)

 No need for beqz and bnez instructions. Why?

Conditional Branch Instructions

STUDENTS-HUB.com

https://students-hub.com

Set on Less Than Instructions

 MIPS also provides set on less than instructions

 slt rd,rs,rt if (rs < rt) rd = 1 else rd = 0

 sltu rd,rs,rt unsigned <

 slti rt,rs,im16 if (rs < im16) rt = 1 else rt = 0

 sltiu rt,rs,im16 unsigned <

 Signed / Unsigned Comparisons

 Can produce different results

 Assume $s0 = 1 and $s1 = -1 = 0xffffffff

 slt $t0,$s0,$s1 results in $t0 = 0

 stlu $t0,$s0,$s1 results in $t0 = 1

STUDENTS-HUB.com

https://students-hub.com

More on Branch Instructions

 MIPS hardware does NOT provide instructions for …

 blt, bltu branch if less than (signed/unsigned)

 ble, bleu branch if less or equal (signed/unsigned)

 bgt, bgtu branch if greater than (signed/unsigned)

 bge, bgeu branch if greater or equal (signed/unsigned)

 Can be achieved with a sequence of 2 instructions

 How to implement: blt $s0,$s1,label

 Solution: slt $at,$s0,$s1

 bne $at,$zero,label

 How to implement: ble $s2,$s3,label

 Solution: slt $at,$s3,$s2

 beq $at,$zero,label

STUDENTS-HUB.com

https://students-hub.com

Pseudo-Instructions

 Introduced by assembler as if they were real instructions

 To facilitate assembly language programming

 Assembler reserves $at = $1 for its own use

 $at is called the assembler temporary register

ori $s1, $zero, 0xabcd li $s1, 0xabcd

slt $s1, $s3, $s2 sgt $s1, $s2, $s3

nor $s1, $s2, $s2 not $s1, $s2

slt $at, $s1, $s2

bne $at, $zero, label
blt $s1, $s2, label

lui $s1, 0xabcd

ori $s1, $s1, 0x1234
li $s1, 0xabcd1234

addu Ss1, $s2, $zero move $s1, $s2

Conversion to Real Instructions Pseudo-Instructions

STUDENTS-HUB.com

https://students-hub.com

Jump, Branch, and SLT Instructions
Instruction Meaning Format

j label jump to label op6 = 2 imm26

beq rs, rt, label branch if (rs == rt) op6 = 4 rs5 rt5 imm16

bne rs, rt, label branch if (rs != rt) op6 = 5 rs5 rt5 imm16

blez rs, label branch if (rs<=0) op6 = 6 rs5 0 imm16

bgtz rs, label branch if (rs > 0) op6 = 7 rs5 0 imm16

bltz rs, label branch if (rs < 0) op6 = 1 rs5 0 imm16

bgez rs, label branch if (rs>=0) op6 = 1 rs5 1 imm16

Instruction Meaning Format

slt rd, rs, rt rd=(rs<rt?1:0) op6 = 0 rs5 rt5 rd5 0 0x2a

sltu rd, rs, rt rd=(rs<rt?1:0) op6 = 0 rs5 rt5 rd5 0 0x2b

slti rt, rs, imm16 rt=(rs<imm?1:0) 0xa rs5 rt5 imm16

sltiu rt, rs, imm16 rt=(rs<imm?1:0) 0xb rs5 rt5 imm16

STUDENTS-HUB.com

https://students-hub.com

Next . . .

 Instruction Set Architecture

 Overview of the MIPS Processor

 R-Type Arithmetic, Logical, and Shift Instructions

 I-Type Format and Immediate Constants

 Jump and Branch Instructions

 Translating If Statements and Boolean Expressions

 Load and Store Instructions

 Translating Loops and Traversing Arrays

 Alternative Architecture

STUDENTS-HUB.com

https://students-hub.com

Translating an IF Statement

 Consider the following IF statement:

 if (a == b) c = d + e; else c = d – e;

 Assume that a, b, c, d, e are in $s0, …, $s4 respectively

 How to translate the above IF statement?

 bne $s0, $s1, else

 addu $s2, $s3, $s4

 j exit

 else: subu $s2, $s3, $s4

 exit: . . .

STUDENTS-HUB.com

https://students-hub.com

Compound Expression with AND

 Programming languages use short-circuit evaluation

 If first expression is false, second expression is skipped

if (($s1 > 0) && ($s2 < 0)) {$s3++;}

One Possible Implementation ...

 bgtz $s1, L1 # first expression

 j next # skip if false

L1: bltz $s2, L2 # second expression

 j next # skip if false

L2: addiu $s3,$s3,1 # both are true

next:

STUDENTS-HUB.com

https://students-hub.com

Better Implementation for AND

The following implementation uses less code

Reverse the relational operator

Allow the program to fall through to the second expression

Number of instructions is reduced from 5 to 3

if (($s1 > 0) && ($s2 < 0)) {$s3++;}

Better Implementation ...

 blez $s1, next # skip if false

 bgez $s2, next # skip if false

 addiu $s3,$s3,1 # both are true

next:

STUDENTS-HUB.com

https://students-hub.com

Compound Expression with OR

 Short-circuit evaluation for logical OR

 If first expression is true, second expression is skipped

 Use fall-through to keep the code as short as possible

 bgt, ble, and li are pseudo-instructions

 Translated by the assembler to real instructions

if (($sl > $s2) || ($s2 > $s3)) {$s4 = 1;}

 bgt $s1, $s2, L1 # yes, execute if part

 ble $s2, $s3, next # no: skip if part

L1: li $s4, 1 # set $s4 to 1

next:

STUDENTS-HUB.com

https://students-hub.com

Your Turn . . .

 Translate the IF statement to assembly language

 $s1 and $s2 values are unsigned

 $s3, $s4, and $s5 values are signed

bgtu $s1, $s2, next

move $s3, $s4

next:

if($s1 <= $s2) {

 $s3 = $s4

}

if (($s3 <= $s4) &&

 ($s4 > $s5)) {

 $s3 = $s4 + $s5

}

bgt $s3, $s4, next

ble $s4, $s5, next

addu $s3, $s4, $s5

next:

STUDENTS-HUB.com

https://students-hub.com

Next . . .

 Instruction Set Architecture

 Overview of the MIPS Processor

 R-Type Arithmetic, Logical, and Shift Instructions

 I-Type Format and Immediate Constants

 Jump and Branch Instructions

 Translating If Statements and Boolean Expressions

 Load and Store Instructions

 Translating Loops and Traversing Arrays

 Alternative Architecture

STUDENTS-HUB.com

https://students-hub.com

Load and Store Instructions

 Instructions that transfer data between memory & registers

 Programs include variables such as arrays and objects

 Such variables are stored in memory

 Load Instruction:

 Transfers data from memory to a register

 Store Instruction:

 Transfers data from a register to memory

Memory address must be specified by load and store

Memory Registers

load

store

STUDENTS-HUB.com

https://students-hub.com

 Load Word Instruction (Word = 4 bytes in MIPS)

 lw Rt, imm16(Rs) # Rt = MEMORY[Rs+imm16]

 Store Word Instruction

 sw Rt, imm16(Rs) # MEMORY[Rs+imm16] = Rt

 Base or Displacement addressing is used

Memory Address = Rs (base) + Immediate16 (displacement)

 Immediate16 is sign-extended to have a signed displacement

Load and Store Word

Op6 Rs5 Rt5 immediate16

Base or Displacement Addressing

Memory Word

Base address

+

STUDENTS-HUB.com

https://students-hub.com

Example on Load & Store

 Translate A[1] = A[2] + 5 (A is an array of words)

 Assume that address of array A is stored in register $s0

 lw $s1, 8($s0) # $s1 = A[2]

 addiu $s2, $s1, 5 # $s2 = A[2] + 5

 sw $s2, 4($s0) # A[1] = $s2

 Index of a[2] and a[1] should be multiplied by 4. Why?

sw

Memory

A[1]

A[0]

A[2]

A[3]

. . .

. . .

A+12

A+8

A+4

A

Registers

address of A $s0 = $16

value of A[2] $s1 = $17

A[2] + 5 $s2 = $18

. . .

. . .

lw

STUDENTS-HUB.com

https://students-hub.com

0 0

s s s

s s

0 0

s

bu

b

h

hu

sign – extend

zero – extend

sign – extend

zero – extend

32-bit Register

 The MIPS processor supports the following data formats:

Byte = 8 bits, Halfword = 16 bits, Word = 32 bits

 Load & store instructions for bytes and halfwords

 lb = load byte, lbu = load byte unsigned, sb = store byte

 lh = load half, lhu = load half unsigned, sh = store halfword

 Load expands a memory data to fit into a 32-bit register

 Store reduces a 32-bit register to fit in memory

Load and Store Byte and Halfword

STUDENTS-HUB.com

https://students-hub.com

Load and Store Instructions
Instruction Meaning I-Type Format

lb rt, imm16(rs) rt = MEM[rs+imm16] 0x20 rs5 rt5 imm16

lh rt, imm16(rs) rt = MEM[rs+imm16] 0x21 rs5 rt5 imm16

lw rt, imm16(rs) rt = MEM[rs+imm16] 0x23 rs5 rt5 imm16

lbu rt, imm16(rs) rt = MEM[rs+imm16] 0x24 rs5 rt5 imm16

lhu rt, imm16(rs) rt = MEM[rs+imm16] 0x25 rs5 rt5 imm16

sb rt, imm16(rs) MEM[rs+imm16] = rt 0x28 rs5 rt5 imm16

sh rt, imm16(rs) MEM[rs+imm16] = rt 0x29 rs5 rt5 imm16

sw rt, imm16(rs) MEM[rs+imm16] = rt 0x2b rs5 rt5 imm16

 Base or Displacement Addressing is used

 Memory Address = Rs (base) + Immediate16 (displacement)

 Two variations on base addressing

 If Rs = $zero = 0 then Address = Immediate16 (absolute)

 If Immediate16 = 0 then Address = Rs (register indirect)

STUDENTS-HUB.com

https://students-hub.com

Next . . .

 Instruction Set Architecture

 Overview of the MIPS Processor

 R-Type Arithmetic, Logical, and Shift Instructions

 I-Type Format and Immediate Constants

 Jump and Branch Instructions

 Translating If Statements and Boolean Expressions

 Load and Store Instructions

 Translating Loops and Traversing Arrays

 Alternative Architecture

STUDENTS-HUB.com

https://students-hub.com

Translating a WHILE Loop

 Consider the following WHILE statement:

 i = 0; while (A[i] != k) i = i+1;

 Where A is an array of integers (4 bytes per element)

 Assume address A, i, k in $s0, $s1, $s2, respectively

 How to translate above WHILE statement?

 xor $s1, $s1, $s1 # i = 0

 move $t0, $s0 # $t0 = address A

 loop: lw $t1, 0($t0) # $t1 = A[i]

 beq $t1, $s2, exit # exit if (A[i]== k)

 addiu $s1, $s1, 1 # i = i+1

 sll $t0, $s1, 2 # $t0 = 4*i

 addu $t0, $s0, $t0 # $t0 = address A[i]

 j loop

 exit: . . .

Memory

A[2]

A[i]

A[1]

A[0]

. . .

. . .

A

A+4

A+8

A+4×i

. . .

STUDENTS-HUB.com

https://students-hub.com

Using Pointers to Traverse Arrays

 Consider the same WHILE loop:

 i = 0; while (A[i] != k) i = i+1;

 Where address of A, i, k are in $s0, $s1, $s2, respectively

We can use a pointer to traverse array A

 Pointer is incremented by 4 (faster than indexing)

 move $t0, $s0 # $t0 = $s0 = addr A

 j cond # test condition

 loop: addiu $s1, $s1, 1 # i = i+1

 addiu $t0, $t0, 4 # point to next

 cond: lw $t1, 0($t0) # $t1 = A[i]

 bne $t1, $s2, loop # loop if A[i]!= k

 Only 4 instructions (rather than 6) in loop body

STUDENTS-HUB.com

https://students-hub.com

Copying a String

 move $t0, $s0 # $t0 = pointer to source

 move $t1, $s1 # $t1 = pointer to target

L1: lb $t2, 0($t0) # load byte into $t2

 sb $t2, 0($t1) # store byte into target

 addiu $t0, $t0, 1 # increment source pointer

 addiu $t1, $t1, 1 # increment target pointer

 bne $t2, $zero, L1 # loop until NULL char

The following code copies source string to target string

Address of source in $s0 and address of target in $s1

Strings are terminated with a null character (C strings)

i = 0;

do {target[i]=source[i]; i++;} while (source[i]!=0);

STUDENTS-HUB.com

https://students-hub.com

Summing an Integer Array

move $t0, $s0 # $t0 = address A[i]

xor $t1, $t1, $t1 # $t1 = i = 0

xor $s2, $s2, $s2 # $s2 = sum = 0

L1: lw $t2, 0($t0) # $t2 = A[i]

addu $s2, $s2, $t2 # sum = sum + A[i]

addiu $t0, $t0, 4 # point to next A[i]

addiu $t1, $t1, 1 # i++

 bne $t1, $s1, L1 # loop if (i != n)

Assume $s0 = array address, $s1 = array length = n

sum = 0;

for (i=0; i<n; i++) sum = sum + A[i];

STUDENTS-HUB.com

https://students-hub.com

Addressing Modes

Op6 Rs5 Rt5 immediate16

Base or Displacement Addressing

Word

Operand is in memory (load/store)

Register = Base address

+ Halfword Byte

Op6 Rs5 Rt5 immediate16

Immediate Addressing

Operand is a constant

Op6 Rs5 Rt5 Rd5 funct6 sa5

Register Addressing

Register

Operand is in a register

Where are the operands?

 How memory addresses are computed?

STUDENTS-HUB.com

https://students-hub.com

Branch / Jump Addressing Modes

Used for branching (beq, bne, …)

Word = Target Instruction

Op6 Rs5 Rt5 immediate16

PC-Relative Addressing

PC30 00

+1

Target Instruction Address

PC = PC + 4 × (1 + immediate16) PC30 + immediate16 + 1 00

immediate26 PC4 00 Target Instruction Address

Word = Target Instruction

immediate26 Op6

Pseudo-direct Addressing

PC26

:

00

Used by jump instruction

PC4

STUDENTS-HUB.com

https://students-hub.com

Jump and Branch Limits

 Jump Address Boundary = 226 instructions = 256 MB

 Text segment cannot exceed 226 instructions or 256 MB

 Upper 4 bits of PC are unchanged

 Branch Address Boundary

 Branch instructions use I-Type format (16-bit immediate constant)

 PC-relative addressing:

 Target instruction address = PC + 4×(1 + immediate16)

 Count number of instructions to branch from next instruction

 Positive constant => Forward Branch, Negative => Backward branch

 At most ±215 instructions to branch (most branches are near)

immediate26 PC4 00 Target Instruction Address

PC30 + immediate16 + 1 00

STUDENTS-HUB.com

https://students-hub.com

Next . . .

 Instruction Set Architecture

 Overview of the MIPS Processor

 R-Type Arithmetic, Logical, and Shift Instructions

 I-Type Format and Immediate Constants

 Jump and Branch Instructions

 Translating If Statements and Boolean Expressions

 Load and Store Instructions

 Translating Loops and Traversing Arrays

 Alternative Architecture

STUDENTS-HUB.com

https://students-hub.com

MIPS Assembly Language
Programming

STUDENTS-HUB.com

https://students-hub.com

Assembly Language Statements

 Three types of statements in assembly language

 Typically, one statement should appear on a line

1. Executable Instructions

 Generate machine code for the processor to execute at runtime

 Instructions tell the processor what to do

2. Pseudo-Instructions and Macros

 Translated by the assembler into real instructions

 Simplify the programmer task

3. Assembler Directives

 Provide information to the assembler while translating a program

 Used to define segments, allocate memory variables, etc.

 Non-executable: directives are not part of the instruction set

STUDENTS-HUB.com

https://students-hub.com

Instructions

 Assembly language instructions have the format:

 [label:] mnemonic [operands] [#comment]

 Label: (optional)

 Marks the address of a memory location, must have a colon

 Typically appear in data and text segments

 Mnemonic

 Identifies the operation (e.g. add, sub, etc.)

 Operands

 Specify the data required by the operation

 Operands can be registers, memory variables, or constants

 Most instructions have three operands

 L1: addiu $t0, $t0, 1 #increment $t0

STUDENTS-HUB.com

https://students-hub.com

Comments

 Comments are very important!

 Explain the program's purpose

 When it was written, revised, and by whom

 Explain data used in the program, input, and output

 Explain instruction sequences and algorithms used

 Comments are also required at the beginning of every procedure

 Indicate input parameters and results of a procedure

 Describe what the procedure does

 Single-line comment

 Begins with a hash symbol # and terminates at end of line

STUDENTS-HUB.com

https://students-hub.com

Next . . .

 Assembly Language Statements

 Assembly Language Program Template

 Defining Data

Memory Alignment and Byte Ordering

 System Calls

 Procedures

 Parameter Passing and the Runtime Stack

STUDENTS-HUB.com

https://students-hub.com

Program Template
Title: Filename:

Author: Date:

Description:

Input:

Output:

################# Data segment #####################

.data

 . . .

################# Code segment #####################

.text

.globl main

main: # main program entry

 . . .

li $v0, 10 # Exit program

syscall

STUDENTS-HUB.com

https://students-hub.com

.DATA, .TEXT, & .GLOBL Directives

 .DATA directive

 Defines the data segment of a program containing data

 The program's variables should be defined under this directive

 Assembler will allocate and initialize the storage of variables

 .TEXT directive

 Defines the code segment of a program containing instructions

 .GLOBL directive

 Declares a symbol as global

 Global symbols can be referenced from other files

 We use this directive to declare main procedure of a program

STUDENTS-HUB.com

https://students-hub.com

Layout of a Program in Memory

Stack Segment
0x7FFFFFFF

Dynamic Area

Static Area

Text Segment

Reserved

0x04000000

0x10000000

0

Data Segment

Memory

Addresses

in Hex

Stack Grows

Downwards

STUDENTS-HUB.com

https://students-hub.com

Next . . .

 Assembly Language Statements

 Assembly Language Program Template

 Defining Data

Memory Alignment and Byte Ordering

 System Calls

 Procedures

 Parameter Passing and the Runtime Stack

STUDENTS-HUB.com

https://students-hub.com

Data Definition Statement

 Sets aside storage in memory for a variable

May optionally assign a name (label) to the data

 Syntax:

 [name:] directive initializer [, initializer] . . .

var1: .WORD 10

 All initializers become binary data in memory

STUDENTS-HUB.com

https://students-hub.com

Data Directives

 .BYTE Directive

 Stores the list of values as 8-bit bytes

 .HALF Directive

 Stores the list as 16-bit values aligned on half-word boundary

 .WORD Directive

 Stores the list as 32-bit values aligned on a word boundary

 .FLOAT Directive

 Stores the listed values as single-precision floating point

 .DOUBLE Directive

 Stores the listed values as double-precision floating point

STUDENTS-HUB.com

https://students-hub.com

String Directives

 .ASCII Directive

 Allocates a sequence of bytes for an ASCII string

 .ASCIIZ Directive

 Same as .ASCII directive, but adds a NULL char at end of string

 Strings are null-terminated, as in the C programming language

 .SPACE Directive

 Allocates space of n uninitialized bytes in the data segment

STUDENTS-HUB.com

https://students-hub.com

Examples of Data Definitions

.DATA

var1: .BYTE 'A', 'E', 127, -1, '\n'

var2: .HALF -10, 0xffff

var3: .WORD 0x12345678:100

var4: .FLOAT 12.3, -0.1

var5: .DOUBLE 1.5e-10

str1: .ASCII "A String\n"

str2: .ASCIIZ "NULL Terminated String"

array: .SPACE 100

Array of 100 words

100 bytes (not initialized)

STUDENTS-HUB.com

https://students-hub.com

MARS Assembler and Simulator Tool

STUDENTS-HUB.com

https://students-hub.com

Next . . .

 Assembly Language Statements

 Assembly Language Program Template

 Defining Data

Memory Alignment and Byte Ordering

 System Calls

 Procedures

 Parameter Passing and the Runtime Stack

STUDENTS-HUB.com

https://students-hub.com

Memory is viewed as an array of bytes with addresses

 Byte Addressing: address points to a byte in memory

Words occupy 4 consecutive bytes in memory

 MIPS instructions and integers occupy 4 bytes

 Alignment: address is a multiple of size

 Word address should be a multiple of 4

 Least significant 2 bits of address should be 00

 Halfword address should be a multiple of 2

 .ALIGN n directive

 Aligns the next data definition on a 2n byte boundary

Memory Alignment

0

4

8

12

a
d

d
re

s
s

not aligned

. . .

aligned word

not aligned

Memory

STUDENTS-HUB.com

https://students-hub.com

 Assembler builds a symbol table for labels (variables)

 Assembler computes the address of each label in data segment

 Example Symbol Table

 .DATA

 var1: .BYTE 1, 2,'Z'

 str1: .ASCIIZ "My String\n"

 var2: .WORD 0x12345678

 .ALIGN 3

 var3: .HALF 1000

Symbol Table

Label

var1

str1

var2

var3

Address

0x10010000

0x10010003

0x10010010

0x10010018

var1

1 2 'Z' 0x10010000

str1

'M' 'y' ' ' 'S' 't' 'r' 'i' 'n' 'g' '\n' 0

0x12345678 0x10010010

var2 (aligned)

1000

var3 (address is multiple of 8)

0 0 Unused

0 0 0 0

Unused

STUDENTS-HUB.com

https://students-hub.com

 Processors can order bytes within a word in two ways

 Little Endian Byte Ordering

 Memory address = Address of least significant byte

 Example: Intel IA-32, Alpha

 Big Endian Byte Ordering

 Memory address = Address of most significant byte

 Example: SPARC, PA-RISC

 MIPS can operate with both byte orderings

Byte Ordering and Endianness

Byte 0 Byte 1 Byte 2 Byte 3

32-bit Register

MSB LSB

. Byte 0 Byte 1 Byte 2 Byte 3

a a+3 a+2 a+1

Memory

address

Byte 3 Byte 0 Byte 1 Byte 2 Byte 3

32-bit Register

MSB LSB

. Byte 0 Byte 1 Byte 2

a a+3 a+2 a+1

Memory

address

STUDENTS-HUB.com

https://students-hub.com

Next . . .

 Assembly Language Statements

 Assembly Language Program Template

 Defining Data

Memory Alignment and Byte Ordering

 System Calls

 Procedures

 Parameter Passing and the Runtime Stack

STUDENTS-HUB.com

https://students-hub.com

System Calls

 Programs do input/output through system calls

 MIPS provides a special syscall instruction

 To obtain services from the operating system

 Many services are provided in the SPIM and MARS simulators

 Using the syscall system services

 Load the service number in register $v0

 Load argument values, if any, in registers $a0, $a1, etc.

 Issue the syscall instruction

 Retrieve return values, if any, from result registers

STUDENTS-HUB.com

https://students-hub.com

Syscall Services

Service $v0 Arguments / Result

Print Integer 1 $a0 = integer value to print

Print Float 2 $f12 = float value to print

Print Double 3 $f12 = double value to print

Print String 4 $a0 = address of null-terminated string

Read Integer 5 $v0 = integer read

Read Float 6 $f0 = float read

Read Double 7 $f0 = double read

Read String 8 $a0 = address of input buffer

$a1 = maximum number of characters to read

Exit Program 10

Print Char 11 $a0 = character to print

Read Char 12 $a0 = character read
Supported by MARS

STUDENTS-HUB.com

https://students-hub.com

Reading and Printing an Integer

################# Code segment #####################

.text

.globl main

main: # main program entry

 li $v0, 5 # Read integer

 syscall # $v0 = value read

 move $a0, $v0 # $a0 = value to print

 li $v0, 1 # Print integer

 syscall

 li $v0, 10 # Exit program

 syscall

STUDENTS-HUB.com

https://students-hub.com

Reading and Printing a String
################# Data segment #####################

.data

 str: .space 10 # array of 10 bytes

################# Code segment #####################

.text

.globl main

main: # main program entry

 la $a0, str # $a0 = address of str

 li $a1, 10 # $a1 = max string length

 li $v0, 8 # read string

 syscall

 li $v0, 4 # Print string str

 syscall

 li $v0, 10 # Exit program

 syscall

STUDENTS-HUB.com

https://students-hub.com

Program 1: Sum of Three Integers
Sum of three integers

Objective: Computes the sum of three integers.

Input: Requests three numbers.

Output: Outputs the sum.

################### Data segment ###################

.data

prompt: .asciiz "Please enter three numbers: \n"

sum_msg: .asciiz "The sum is: "

################### Code segment ###################

.text

.globl main

main:

 la $a0,prompt # display prompt string

 li $v0,4

 syscall

 li $v0,5 # read 1st integer into $t0

 syscall

 move $t0,$v0

STUDENTS-HUB.com

https://students-hub.com

Sum of Three Integers – Slide 2 of 2
 li $v0,5 # read 2nd integer into $t1

 syscall

 move $t1,$v0

 li $v0,5 # read 3rd integer into $t2

 syscall

 move $t2,$v0

 addu $t0,$t0,$t1 # accumulate the sum

 addu $t0,$t0,$t2

 la $a0,sum_msg # write sum message

 li $v0,4

 syscall

 move $a0,$t0 # output sum

 li $v0,1

 syscall

 li $v0,10 # exit

 syscall

STUDENTS-HUB.com

https://students-hub.com

Program 2: Case Conversion
Objective: Convert lowercase letters to uppercase

Input: Requests a character string from the user.

Output: Prints the input string in uppercase.

################### Data segment #####################

.data

name_prompt: .asciiz "Please type your name: "

out_msg: .asciiz "Your name in capitals is: "

in_name: .space 31 # space for input string

################### Code segment #####################

.text

.globl main

main:

 la $a0,name_prompt # print prompt string

 li $v0,4

 syscall

 la $a0,in_name # read the input string

 li $a1,31 # at most 30 chars + 1 null char

 li $v0,8

 syscall

STUDENTS-HUB.com

https://students-hub.com

Case Conversion – Slide 2 of 2
 la $a0,out_msg # write output message

 li $v0,4

 syscall

 la $t0,in_name

loop:
 lb $t1,($t0)

 beqz $t1,exit_loop # if NULL, we are done

 blt $t1,'a',no_change

 bgt $t1,'z',no_change

 addiu $t1,$t1,-32 # convert to uppercase: 'A'-'a'=-32

 sb $t1,($t0)

no_change:

 addiu $t0,$t0,1 # increment pointer

 j loop

exit_loop:

 la $a0,in_name # output converted string

 li $v0,4

 syscall

 li $v0,10 # exit

 syscall

STUDENTS-HUB.com

https://students-hub.com

Next . . .

 Assembly Language Statements

 Assembly Language Program Template

 Defining Data

Memory Alignment and Byte Ordering

 System Calls

 Procedures

 Parameter Passing and the Runtime Stack

STUDENTS-HUB.com

https://students-hub.com

Parameters:

$a0 = Address of v[]

$a1 = k, and

Return address is in $ra

 Consider the following swap procedure (written in C)

 Translate this procedure to MIPS assembly language

void swap(int v[], int k)

{ int temp;

 temp = v[k]

 v[k] = v[k+1];

 v[k+1] = temp;
}

swap:

 sll $t0,$a1,2 # $t0=k*4

 add $t0,$t0,$a0 # $t0=v+k*4

 lw $t1,0($t0) # $t1=v[k]

 lw $t2,4($t0) # $t2=v[k+1]

 sw $t2,0($t0) # v[k]=$t2

 sw $t1,4($t0) # v[k+1]=$t1

 jr $ra # return

Procedures

STUDENTS-HUB.com

https://students-hub.com

Call / Return Sequence

 Suppose we call procedure swap as: swap(a,10)

 Pass address of array a and 10 as arguments

 Call the procedure swap saving return address in $31 = $ra

 Execute procedure swap

 Return control to the point of origin (return address)

swap:

 sll $t0,$a1,2

 add $t0,$t0,$a0

 lw $t1,0($t0)

 lw $t2,4($t0)

 sw $t2,0($t0)

 sw $t1,4($t0)

 jr $ra

 la $a0, a

 li $a1, 10

 jal swap

return here

 . . .

Caller

addr a $a0=$4

10 $a1=$5

ret addr $ra=$31

. . .

. . .

Registers

STUDENTS-HUB.com

https://students-hub.com

Register $31

is the return

address register

Details of JAL and JR
Address Instructions Assembly Language

00400020 lui $1, 0x1001 la $a0, a

00400024 ori $4, $1, 0

00400028 ori $5, $0, 10 ori $a1,$0,10

0040002C jal 0x10000f jal swap

00400030 . . . # return here

 swap:

0040003C sll $8, $5, 2 sll $t0,$a1,2

00400040 add $8, $8, $4 add $t0,$t0,$a0

00400044 lw $9, 0($8) lw $t1,0($t0)

00400048 lw $10,4($8) lw $t2,4($t0)

0040004C sw $10,0($8) sw $t2,0($t0)

00400050 sw $9, 4($8) sw $t1,4($t0)

00400054 jr $31 jr $ra

Pseudo-Direct

Addressing

PC = imm26<<2

0x10000f << 2

= 0x0040003C

0x00400030 $31

STUDENTS-HUB.com

https://students-hub.com

Instructions for Procedures

Instruction Meaning Format

jal label $31=PC+4, jump op6 = 3 imm26

jr Rs PC = Rs op6 = 0 rs5 0 0 0 8

jalr Rd, Rs Rd=PC+4, PC=Rs op6 = 0 rs5 0 rd5 0 9

 JAL (Jump-and-Link) used as the call instruction

 Save return address in $ra = PC+4 and jump to procedure

 Register $ra = $31 is used by JAL as the return address

 JR (Jump Register) used to return from a procedure

 Jump to instruction whose address is in register Rs (PC = Rs)

 JALR (Jump-and-Link Register)

 Save return address in Rd = PC+4, and

 Jump to procedure whose address is in register Rs (PC = Rs)

 Can be used to call methods (addresses known only at runtime)

STUDENTS-HUB.com

https://students-hub.com

Next . . .

 Assembly Language Statements

 Assembly Language Program Template

 Defining Data

Memory Alignment and Byte Ordering

 System Calls

 Procedures

 Parameter Passing and the Runtime Stack

STUDENTS-HUB.com

https://students-hub.com

Parameter Passing

 Parameter passing in assembly language is different

 More complicated than that used in a high-level language

 In assembly language

 Place all required parameters in an accessible storage area

 Then call the procedure

 Two types of storage areas used

 Registers: general-purpose registers are used (register method)

 Memory: stack is used (stack method)

 Two common mechanisms of parameter passing

 Pass-by-value: parameter value is passed

 Pass-by-reference: address of parameter is passed

STUDENTS-HUB.com

https://students-hub.com

Parameter Passing – cont'd

 By convention, register are used for parameter passing

 $a0 = $4 .. $a3 = $7 are used for passing arguments

 $v0 = $2 .. $v1 = $3 are used for result values

 Additional arguments/results can be placed on the stack

 Runtime stack is also needed to …

 Store variables / data structures when they cannot fit in registers

 Save and restore registers across procedure calls

 Implement recursion

 Runtime stack is implemented via software convention

 The stack pointer $sp = $29 (points to top of stack)

 The frame pointer $fp = $30 (points to a procedure frame)

STUDENTS-HUB.com

https://students-hub.com

Stack Frame

 Stack frame is the segment of the stack containing …

 Saved arguments, registers, and local data structures (if any)

 Called also the activation frame or activation record

 Frames are pushed and popped by adjusting …

 Stack pointer $sp = $29 and Frame pointer $fp = R30

 Decrement $sp to allocate stack frame, and increment to free

Frame f()

Stack

↓

stack grows

downwards

$fp

$sp

Frame f()

Stack

allocate

stack frame

Frame g()
$fp

$sp

f
c

a
ll

s
 g

g
 r

e
tu

rn
s
 Frame f()

Stack

↑

free stack

frame

$fp

$sp

$fp

arguments

saved $ra

saved

registers

local data

structures

or variables
$sp

STUDENTS-HUB.com

https://students-hub.com

Preserving Registers

 Need to preserve registers across a procedure call

 Stack can be used to preserve register values

Which registers should be saved?

 Registers modified by the called procedure, and

 Still used by the calling procedure

Who should preserve the registers?

 Called Procedure: preferred method for modular code

 Register preservation is done inside the called procedure

 By convention, registers $s0, $s1, …, $s7 should be preserved

 Also, registers $sp, $fp, and $ra should also be preserved

STUDENTS-HUB.com

https://students-hub.com

Selection Sort

 Example

first

last

Array

Unsorted

first

last

Array

max value

last value

max

Locate

Max

first

last

Array

max value

last value max

Swap Max

with Last

first

last

Array

max value

Decrement

Last

3

1

5

2

4 last

max

first 3

1

4

2

5

last

max

first 3

1

4

2

5

3

1

2

4

5

3

1

2

4

5

last

first max 2

1

3

4

5

2

1

3

4

5

last

first max 1

2

3

4

5

STUDENTS-HUB.com

https://students-hub.com

Selection Sort Procedure
Objective: Sort array using selection sort algorithm

Input: $a0 = pointer to first, $a1 = pointer to last

Output: array is sorted in place

sort: addiu $sp, $sp, -4 # allocate one word on stack

 sw $ra, 0($sp) # save return address on stack

top: jal max # call max procedure

 lw $t0, 0($a1) # $t0 = last value

 sw $t0, 0($v0) # swap last and max values

 sw $v1, 0($a1)

 addiu $a1, $a1, -4 # decrement pointer to last

 bne $a0, $a1, top # more elements to sort

 lw $ra, 0($sp) # pop return address

 addiu $sp, $sp, 4

 jr $ra # return to caller

STUDENTS-HUB.com

https://students-hub.com

Max Procedure
Objective: Find the address and value of maximum element

Input: $a0 = pointer to first, $a1 = pointer to last

Output: $v0 = pointer to max, $v1 = value of max

max: move $v0, $a0 # max pointer = first pointer

 lw $v1, 0($v0) # $v1 = first value

 beq $a0, $a1, ret # if (first == last) return

 move $t0, $a0 # $t0 = array pointer

loop: addi $t0, $t0, 4 # point to next array element

 lw $t1, 0($t0) # $t1 = value of A[i]

 ble $t1, $v1, skip # if (A[i] <= max) then skip

 move $v0, $t0 # found new maximum

 move $v1, $t1

skip: bne $t0, $a1, loop # loop back if more elements

ret: jr $ra

STUDENTS-HUB.com

https://students-hub.com

Example of a Recursive Procedure
int fact(int n) { if (n<2) return 1; else return (n*fact(n-1)); }

fact: slti $t0,$a0,2 # (n<2)?

 beq $t0,$0,else # if false branch to else

 li $v0,1 # $v0 = 1

 jr $ra # return to caller

else: addiu $sp,$sp,-8 # allocate 2 words on stack

 sw $a0,4($sp) # save argument n

 sw $ra,0($sp) # save return address

 addiu $a0,$a0,-1 # argument = n-1

 jal fact # call fact(n-1)

 lw $a0,4($sp) # restore argument

 lw $ra,0($sp) # restore return address

 mul $v0,$a0,$v0 # $v0 = n*fact(n-1)

 addi $sp,$sp,8 # free stack frame

 jr $ra # return to caller

STUDENTS-HUB.com

https://students-hub.com

You are going to enhance a machine and there are two

types of possible improvements: either (i) make multiply

instructions run 4 times faster, or (ii) make memory access

instructions run two times faster than before. You repeatedly

run a program that takes 100 seconds to execute (on the

original machine) and find that of this time 25% is used for

multiplication, 50% for memory access instructions, and

25% for other tasks.

1. What will the speedup be if you improve both multiplication and

memory access?

2. Assume the program you run has 10 billions instructions and runs on

the machine that has a clock rate of 1GHz. Calculate the CPI for this

machine. Assume further that the CPI for multiplication instructions is

20 cycles and the CPI for memory access instructions is 6 cycles.

Compute the CPI for all other instructions.

3. What is the CPI for the improved machine when improvements on both

multiplication and memory access instructions are made?

STUDENTS-HUB.com

https://students-hub.com

