Tnstruction Set Architecture
Case Study: MIPS-R3000

——

SSSSSSSSSSSSSSSS

https://students-hub.com

Outline

“*Instruction Set Architecture Design
*CISC ver. RISC
“*Overview of the MIPS Processor

“*MIPS Assembly Language Programming

SSSSSSSSSSSSSSSS

https://students-hub.com

Computing Element Choices

\/
0’0

o0

)

o0

)

L X 4

)

L 4

L 4

L)

STUDENTS-HUB.com

General Purpose Processors (GPPs): Intended for general purpose
computing (desktops, servers, clusters..)

Application-Specific Processors (ASPs): Processors with ISAs and
architectural features tailored towards specific application domains

<~ E.g Digital Signal Processors (DSPs), Network Processors (NPs), Media Processors,
Graphics Processing Units (GPUs), Vector Processors??? ...

Co-Processors: A hardware (hardwired) implementation of specific
algorithms with limited programming interface (augment GPPs or
ASPs)
Configurable Hardware:

< Field Programmable Gate Arrays (FPGAS)

<> Configurable array of simple processing elements

Application Specific Integrated Circuits (ASICs): A custom VLSI
hardware solution for a specific computational task

The choice of one or more depends on a number of factors including:

- Type and complexity of computational algorithm
(general purpose vs. Specialized)

- Desired level of flexibility/ - Performance requirements
programmability
- Development cost/time - System cost

- Power requirements - Real-time constrains

https://students-hub.com

Computing Element Choices

The main goal of this course is the study
of fundamental design techniques
for General Purpose Processors

General Purpose
Processors
(GPPs):

>

Processor : Programmable computing element that
runs programs written using a pre-defined set of

Application-Specific instructions

Processors (ASPs)

Configurable Hardware

Programmability / Flexibility

Selection Factors:

- Type and complexity of computational algorithms
(general purpose vs. Specialized)

Co-Processors
Application Specific
Integrated Circuits

- Desired level of flexibility - Performance
- Development cost - System cost (ASICs)
- Power requirements - Real-time constrains

>
Specialization , Development cost/time Perf
Performance/Chip Area/Watt > erformance
(Computational Efficiency)

STUDENTS-HUB.com

https://students-hub.com

The Processor Design Space

s Application specifi

architectures
for performance [114\ (Microprocessors
@ Real-time constraints Processors GPPs
c Specialized applications .
g Low power/cost constraints Performance iIs
S / everything
E & Software rules

The main goal of this course is the
study of fundamental design techniques
for General Purpose Processors

Cost Is everything

>

Chip Area, Power Processor Cost
complexity

Processor = Programmable computing element
that runs programs written using a pre-defined set of instructions

STUDENTS-HUB.com

https://students-hub.com

General Purpose Processor/Computer System Generations

Classified according to implementation technology:

* The First Generation, 1946-59: Vacuum Tubes, Relays, Mercury Delay
Lines:

< ENIAC (Electronic Numerical Integrator and Computer): First electronic computer,
18000 vacuum tubes, 1500 relays, 5000 additions/sec (1944).

< First stored program computer: EDSAC (Electronic Delay Storage Automatic
Calculator), 1949.

The Second Generation, 1959-64: Discrete Transistors.
< e.g. IBM Main frames

L)

*%

L)

*%

The Third Generation, 1964-75: Small and Medium-Scale Integrated
(MSI) Circuits.

< e.g Main frames (IBM 360) , mini computers (DEC PDP-8, PDP-11).
% The Fourth Generation, 1975-Present: The Microcomputer. VLSI-
based Microprocessors (single-chip processor)
< First microprocessor: Intel’s 4-bit 4004 (2300 transistors), 1970.
< Personal Computer (PCs), laptops, PDAs, servers, clusters ...
<> Reduced Instruction Set Computer (RISC) 1984

*%

Common factor among all generations:
All target the The Von Neumann Computer Model or paradigm

STUDENTS-HUB.com

https://students-hub.com

What Must be Specified?

STUDENTS-HUB.com

!

Instruction
Fetch

!

Instruction
Decode

'

Operand
Fetch

!

Execute

{

\

A

f

l

Result
Store

!

Next
Instruction

o5

* Instruction Format or Encoding

— how is it decoded?

° Location of operands and result

— how many explicit operands?

— how are memory operands located?
— which can or cannot be in memory?
— where other than memory?

* Data type and Size

* Operations

— what are supported

“ Successor instruction

— jumps, conditions, branches

fetch-decode-execute is implicit!

https://students-hub.com

A Simplified View of The
Software/Hardware Hierarchical Layers

Hardware

SSSSSSSSSSSSSSSS

https://students-hub.com

Hierarchy of Computer Architecture

High-Level Language Programs

Software

Machine Language
Program

Software/Hardware

Boundary

Hardware

Logic Diagrams

Circuit Diagrams

STUDENTS-HUB.com

A

»

A\

<

o~

Assembly Language
Programs

Application
Operating
System
Compiler| | Firmware

Lv BIOS (Basic Input/Output System)

Instruction Set

Instr. Set Proc.lI/O system

Architecture
(I1SA)

Datapath & Contr

The ISA forms an abstraction layer
that sets the requirements for both

Digital Design

,_Circuit Design
| aymn‘

VLSI placement & routing

complier and CPU designers

Microprogram

Register Transfer
Notation (RTN)

https://students-hub.com

How to Speak Computer

High Level Language temp = v[k];
Program v[K] = v[k+1];
v[k+1] = temp;
Compiler
lw $15, 0(%$2)
Assembly Language lw $16, 4(32)
Program sw$16, 0($2)
sw $15, 4(%$2)
Assembler
1000110001100010000000000000000
Machine Language 1000110011110010000000000000100
Program 1010110011110010000000000000000

| ' 1010110001100010000000000000100
Machine Interpretation

Control Signal Spec

ALUOP[0:3] <= InstReg[9:11] & MASK

Need translation from application to physics

STUDENTS-HUB.com

https://students-hub.com

What is Computer Architecture?

Computer Architecture = _ What the machine
Machine Organization + looks like
Instruction Set Architecture

S~

How you talk to the machine

SSSSSSSSSSSSSSSS

https://students-hub.com

Computer Organization

% Once you have decided on an ISA, you must decide how to
design the hardware to execute those programs written in the
ISA as fast as possible (or as cheaply as possible, or using as
little power as possible, ...).

¢ This must be done every time a new implementation of the
architecture is released, with typically very different
technological constraints

Computer

Control

Datapath

Memory

Input

Output

STUDENTS-HUB.com

https://students-hub.com

Instruction Set Architecture (ISA)

“» Complete set of instructions used by a machine

+» Abstract interface between the HW and lowest-level
SW.

% An ISA includes the following ...

< Instructions and Instruction Formats
= Data Types, Encodings, and Representations
= Programmable Storage: Registers and Memory
» Addressing Modes: to address Instructions and Data
= Handling Exceptional Conditions (like division by zero)

s Examples (Versions) First Introduced in
< Intel (8086, 80386, Pentium, ...) 1978
< MIPS (MIPS I, II, I, IV, V) 1986

< PowerPC (601, 604, ...) 1993

STUDENTS-HUB.com

https://students-hub.com

The Instruction Set Architecture

** ISA Is considered part of the SW
“+ Must be designed to survive changes in hardware
technology, software technology, and application

characteristic.
< Is the agreed-upon interface between all the software that runs
on the machine and the hardware that executes it.

* Advantages:

< Different implementations of the same architecture

< Easier to change than HW

< Standardizes instructions, machine language bit patterns, etc.
*+ Disadvantage:

<> Sometimes prevents using new innovations

STUDENTS-HUB.com

https://students-hub.com

Instruction Set Architecture: Critical
Interface

AN
software ~ -/

e \

instruction set

hardware

¢ Properties of a good abstraction
< Lasts through many generations (portability)
< Used in many different ways (generality)
< Provides convenient functionality to higher levels
< Permits an efficient implementation at lower levels

STUDENTS-HUB.com

https://students-hub.com

Basic ISA Classes

Accumulator:

1 address add A acc « acc + mem [A]

1+x address addx A acc « acc + mem [A + X]
Stack:

0 address add tos « tos + next

General Purpose Register:
2 address add AB EA(A) « EA(A) + EA(B)
3 address add ABC EA(A) « EA(B) + EA(C)
Load/Store: (a modified form of GPR design)
3 address load Ra Rb Ra «— mem [Rb]
addRaRbRc Ra<« Rb+Rc
store Ra Rb mem [Rb] <« Ra

How to compare?
Bytes per instruction? Number of Instructions? Cycles per instruction?

STUDENTS-HUB.com

https://students-hub.com

Comparing Number of Instructions

- Code sequence for C = A + B for four classes of instruction sets:

Stack Accumulator Register Register
(register-memory) (load-store)

Push A Load A Load R1,A Load R1,A

Push B Add B Add R1,B Load R2,B

Add Store C Store C,R1 Add R3,R1,R2

Pop C Store C,R3
Inst : 4 3 3 4

Stack machine: no general purpose registers - all operations are performed
using the stack

Load-store machine: only load and store instructions reference memory
All ALU operations are performed using registers only.

STUDENTS-HUB.com

https://students-hub.com

Comparing Number of Bytes

Assumptions: 1 byte OP code; 4 byte memory address; 1 byte Reg. No.

Stack Accumulator Register Register
(register-memory) (load-store)

PushA 5 |oad A 5 Load R1,A 6 Load R1,A
PushB 5 Add B 5 Add R1,B 6 Load R2,B
Add 1 Store C 5 Store CCR1 6 Add R3,R1,R2
Pop C 5 Store C,R3

Bytes: 16 15 18

STUDENTS-HUB.com

(o 2 B ~ S o > B @ 3

22

https://students-hub.com

Comparing Number of Memory Access

Assumptions: 1 memory access for OP code; 1 access per memory address

Stack Accumulator Register Register

(register-memory) (load-store)
Push A 2 Load A 2 Load R1,A 2 Load R1,A
PushB 2 Add B 2 Add R1,B 2 Load R2,B
Add T store ¢ 2 Store C,R1 2 Add R3,R1,R2
Pop C 2 Store C,R3
Total: 7 6 6

Now repeat the exercises (coding and comparisons) for a longer sequence:
A = (A + B*C)/(BZ + C?)

STUDENTS-HUB.com

~N N = NN

https://students-hub.com

General Purpose Registers Dominate

. Since 1975 all machines use general purpose registers

* Advantages of registers
* registers are faster than memory
* registers are easier for a compiler to use

e.d., (A*B) - (C*D) — (E*F) can do multiplies in any order
Stack is the most restrictive one

¥

registers can hold variables

- memory traffic is reduced, so program is sped up
(registers are also faster than memory)

- code density improves (since register named with fewer bits
than memory location)

» Stack machines: Burroughs B55/5700 mainframe, HP3000, Transputer,
HP pocket calculators. With new Java machines, stack machines may
make a comeback.

STUDENTS-HUB.com

https://students-hub.com

Addressing Modes: how data is accessed?

Addressing mode Example Meaning

Register Add R4,R3 R4 « R4+R3

Immediate Add R4,#3 R4 < R4+3

Register indirect Add R4,(R1) R4 « R4+Mem[R1]

Displacement Add R4,100(R1) R4 « R4+Mem [100+R1]

Indexed Add R3,(R1+R2) R3 « R3+Mem [R1+R2]

Direct or absolute Add R1,(100) R1 « R1+Mem [100]

Memory indirect Add R1,@(R3) R1 « R1+Mem [Mem[R3]]
Auto-increment Add R1,(R2)+ R1 « R1+Mem [R2]; R2 « R2+d
Auto-decrement Add R1,—-(R2) R2 « R2-d; R1«<R1+Mem [R2]

Scaled Add R1,d,100(R2)[R3] R1 «R1+Mem [100+R2+R3*d]

STUDENTS-HUB.com

https://students-hub.com

Typical Operations

Data Movement

Load (from memory) Store (to memory)
memory-to-memory move register-to-register move
input (from I/O device) output (to I/O device)

push, pop (to/from stack)

Arithmetic Data Types: (signed & unsigned) Integer (binary + decimal)
(signed & unsigned) Floating Point Numbers
Operations: Add, Subtract, Multiply, Divide
Logical Not, and, or, set, clear
Shift Arithmetic (& Logical) shift (left/right), rotate (left/right)

Control (Jump/Branch)

unconditional, conditional

Subroutine Linkage

call, return

Interrupt

trap, return

Synchronisation

test & set (atomic r-m-w)

String

search, compare, translate

STUDENTS-HUB.com

https://students-hub.com

Generic Examples of Instruction Formats

Variable:

Fixed:

Hybrid:

SSSSSSSSSSSSSSSS

https://students-hub.com

Key ISA decisions

“* operations
= how many?

. aestination operand operation
= which ones Y —

9:x+b

“ operands &

= how many?
" location (add r1, r2, 5)
" types
* how to specify?

“ Instruction format
" Size
* how many formats?

= how many registers?

source operands

SSSSSSSSSSSSSSSS

https://students-hub.com

Evolution of Instruction Set Architectures

Single Accumulator (EDSAC 1949)
I

Accumulator + Index Registers
(Manchester Mark I, IBM 700 series 1953)

Separation of Programming Model
from Implementation

/ \

High-level Language Based Concept of an ISA Family
(B5000 1963) / (1IBM 360 1964)

General Purpose Register (GPR) Machines
/ \
Complex Instruction Sets (CISC) Loaa/Store Architecture
(Vax, Motorola 68000, Intel x86 1977-80) (CDC 6600, Cray 1 1963-76)

|
Reduced Instruction Set Computer (RISC)

(MIPS, SPARC, HP-PA, PowerPC, . .. 1984..)

STUDENTS-HUB.com

https://students-hub.com

What is CISC?

% CISC is an acronym for Complex Instruction Set Computer and
are chips that are easy to program and which make efficient use
of memory.

< Since the earliest machines were programmed in assembly language and memory was slow
and expensive, the CISC philosophy made sense

¢ Most common microprocessor designs such as the Intel 80x86
and Motorola 68K series followed the CISC philosophy.

L)

4

L)

» CISC was developed to make compiler development simpler

» CISC Instructions sets some common attributes:

< A 2-operand format, where instructions have a source and a destination.
Register to register, register to memory, and memory to register
commands. Multiple addressing modes for memory, including specialized
modes for indexing through arrays

< Variable length instructions where the length often varies according to the
addressing mode

< Instructions which require multiple clock cycles to execute.

L)

4

L)

L)

STUDENTS-HUB.com

https://students-hub.com

CISC Characteristics

s+ Most CISC hardware architectures have several characteristics in
common:

STUDENTS-HUB.com

<>

<>

Complex instruction-decoding logic, driven by the need for a single
Instruction to support multiple addressing modes.

A small number of general purpose registers. This is the direct result of
ha_/lng instructions which can operate directly on memory and the
limited amount of chip space not dedicated t0 instruction decoding,
execution, and microcode storage.

Several special purpose registers. Many CTSC designs set aside
special registers for the stack pointer, interrupt handling, and so on.

his can simplify the hardware design somewhat, at the expense of
making the instruction set more complex.

Micro-programming is as easy as assembly language to implement,
and muchless expensive than hardwiring a control unit.

As each instruction became more capable, fewer instructions could be
used to implement a given task. This made more efficient use of the
relatively slow main memory.

Because micro-program instruction sets can be written to match the
constructs of high-level languages, the compiler does not have to be as
complicated.

https://students-hub.com

CISC Disadvantages

¢ Designers soon realized that the CISC philosophy had
Its own problems, including:

< Earlier generations of a processor family generally were
contained as a subset in every new version - so instruction
set & chip hardware become more complex with each
generation of computers.

<> So that as many instructions as possible could be stored in
memory with the least possible wasted space, individual
Instructions could be of almost any length - this means that
different instructions will take different amounts of clock time
to execute, slowing down the overall performance of the
machine.

< Many specialized instructions aren't used frequently enough
to justify their existence -approximately 20% of the available
Instructions are used in a typical program.

STUDENTS-HUB.com

https://students-hub.com

Example CISC ISAs Motorola 680X0

R/
0'0

X3

A

X3

%

X3

A

X3

%

X3

A

X3

%

X3

A

X3

%

X3

A

X3

%

X3

*

%

%

X3

*

%

%

K/
.0

D)

%

%

K/
0'0

18 addressing modes:
Data register direct.
Address register direct.
Immediate.
Absolute short.
Absolute long.
Address register indirect.
Address register indirect with postincrement.
Address register indirect with predecrement.
Address register indirect with displacement.
Address register indirect with index (8-bit).
Address register indirect with index (base).
Memory inderect postindexed.
Memory indirect preindexed.
Program counter indirect with index (8-bit).
Program counter indirect with index (base).
Program counter indirect with displacement.

Program counter memory indirect postindexed.

Program counter memory indirect preindexed.

STUDENTS-HUB.com

Operand size:
« Range from 1to 32 bits

Instruction Encoding:

* |nstructions are stored in 16-bit
words.

 the smallest instruction is 2- bytes
(one word).

« Thelongest instruction is 5 words

(10 bytes) in length.

https://students-hub.com

Example CISC ISA: Intel 80386

12 addressing modes:

% Register.

s Immediate.

s Direct.

* Base.

s Base + Displacement.

% Index + Displacement.

% Scaled Index + Displacement.
s Based Index.

% Based Scaled Index.

s Based Index + Displacement.
s Based Scaled Index + Displacement.

» Relative.

STUDENTS-HUB.com

Operand sizes:

Can be 8, 16, 32, 48, 64, or 80 bits long.
Also supports string operations.

Instruction Encoding:

The smallest instruction is one byte.
The longest instruction is 12 bytes
long.

The first bytes generally contain the
opcode, mode specifiers, and register
fields.

The remainder bytes are for address
displacement and immediate data.

https://students-hub.com

What is RISC?

s RISC?
RISC, or Reduced Instruction Set Computer. is a type of
microprocessor architecture that utilizes a small, highly-optimized
set of instructions, rather than a more specialized set of instructions
often found in other types of architectures.

% Certain design features have been characteristic of most RISC
pProcessors:

<> one cycle execution time: RISC processors have a CPI (clock
per instruction) of one cycle. This is due to the optimization of
each instruction on the CPU and a technigue called
PIPELINING

< pipelining: a techique that allows for simultaneous execution of
parts, or stages, of instructions to more efficiently process
Instructions;

< large number of registers: the RISC design philosophy generally
Incorporates a larger number of registers to prevent in large
amounts of interactions with memory

STUDENTS-HUB.com

https://students-hub.com

RISC Attributes

* The main characteristics of CISC microprocessors are:

IR IR

Extensive instructions.

Complex and efficient machine instructions.
Microencoding of the machine instructions.

Extensive addressing capabilities for memory operations.
Relatively few registers.

* In comparison, RISC processors are more or less the opposite of
the above:

STUDENTS-HUB.com

R

Reduced instruction set.
Less complex, simple instructions.
Hardwired control unit and machine instructions.

Few addressing schemes for memory operands with only two basic
instructions, LOAD and STORE

Many symmetric registers which are organised into a register file.

https://students-hub.com

RISC Disadvantages

¢ There is still considerable controversy among experts
about the ultimate value of RISC architectures. Its
proponents argue that RISC machines are both cheaper
and faster, and are therefore the machines of the future.

** However, by making the hardware simpler, RISC
architectures put a greater burden on the software. Is this
worth the trouble because conventional microprocessors
are becoming increasingly fast and cheap anyway?

https://students-hub.com

Example RISC ISA: PowerPC

8 addressing modes:

Register direct.
Immediate.
Register indirect.

Register indirect with immediate
index (loads and stores).

Register indirect with register
index (loads and stores).

Absolute (jumps).

Link register indirect (calls).

Count register indirect (branches).

STUDENTS-HUB.com

Operand sizes:

« Four operand sizes: 1,2,4o0r 8
bytes.

Instruction Encoding:

 Instruction set has 15 different
formats with many minor
variations.

« All are 32 bits in length.

https://students-hub.com

Example RISC ISA: SPARC

Operand sizes:

5 addressing modes:

* Register indirect with immediate
displacement.

*» Register inderect indexed by
another register.

“ Register direct.
% Immediate.

» PC relative.

STUDENTS-HUB.com

Four operand sizes: 1, 2, 4 or 8 bytes.

Instruction Encoding:

Instruction set has 3 basic instruction
formats with 3 minor variations.

All are 32 bits in length.

https://students-hub.com

CISC versus RISC Summary

CISC

Emphasis on hardware

Includes multi-clock
complex instructions

Memory-to-memory:
"LOAD" and "STORE"
incorporated in instructions

Small code sizes,
high cycles per second

Transistors used for storing
complex instructions

STUDENTS-HUB.com

RISC

Emphasis on software

Single-clock,
reduced instruction only

Register to register:
"LOAD" and "STORE"
are independent instructions

Low cycles per second,
large code sizes

Spends more transistors
on memory registers

https://students-hub.com

Summary of Design Principles

1.

STUDENTS-HUB.com

Simplicity favors regularity
< Simple instructions dominate the instruction frequency

= So design them to be simple and regular, and make them fast
= Use general-purpose registers uniformly across instructions

< Fix the size of instructions (simplifies fetching & decoding)

< Fix the number of operands per instruction
» Three operands is the natural number for a typical instruction

Smaller is faster

<> Limit the number of registers for faster access (typically 32)
Make the common case fast

< Include constants inside instructions (faster than loading them)
< Design most instructions to be register-to-register

Good design demands good compromises

< Having one-size formats is better than variable-size formats, even
though it limits the size of the immediate constants

https://students-hub.com

STUDENTS-HUB.com

https://students-hub.com

Logical View of the MIPS Processor

4 bytes per word Memory

Up to 232 bytes = 230 words

EIU s0 | Execution & FPU $FO Floating
32 General $1 | Integer Unit $F1 Point Unit
Purpose ------------ - $2 | (Main proc) $F2 | (Coproc1) | 32 Floating-Point
Registers li —l ﬁ N R ECLE e -- Regqisters
Arithmetic& | | ALU A$?fkln /Integer FP _j?’l
Logic Unit ' mul/div Arith ——-----____ : :
) S S Y) [e e S i Flpatmg.-Pom.t
, Arithmetic Unit
R Hi Lo
I TMU [Badvaddr| Trap &
/// Status | Memory Unit
’ Cause | (Coproc 0)
Integer EPC

Multiplier/Divider

STUDENTS-HUB.com

https://students-hub.com

Overview of the MIPS Registers

¢ 32 General Purpose Registers (GPRS)
GPR
< 32-bit registers are used in MIPS32 >
$0 — $31
< Register 0 is always zero
% Any value written to RO is discarded LO
HI
¢ Special-purpose registers LO and HI PC
< Hold results of integer multiply and divide or
S
*» Special-purpose program counter PC $FO — $F31

*» 32 Floating Point Registers (FPRS)
< Floating Point registers can be either 32-bit or 64-bit

< A pair of registers is used for double-precision floating-point

STUDENTS-HUB.com

https://students-hub.com

MIPS General-Purpose Registers

¢ 32 General Purpose Registers (GPRS)

< Assembler uses the dollar notation to name registers

= $0 is register 0, $1 is register 1, ..., and $31 is register 31

< All reqgisters are 32-bit wide in MIPS32
< Register $0 is always zero

= Any value written to $0 is discarded

¢+ Software conventions

< Software defines names to all registers

» To standardize their use in programs
<> $8 - $15 are called $t0 - $t7

» Used for temporary values
<> $16 - $23 are called $s0 - $s7

STUDENTS-HUB.com

$0 = $zero $16 = $s0
$1 = Sat $17 = $s1
$2 = $vO $18 = $s2
$3 = $vil $19 = $s3
$4 = $a0 $20 = $s4
$5 = $al $21 = $s5
$6 = $a2 $22 = $s6
$7 = $a3 $23 = $s7
$8 = $t0 $24 = $t8
$9 = $til $25 = $t9
$10 = $t2 $26 = $kO
$11 = $t3 $27 = $k1
$12 = $t4 $28 = $gp
$13 = $t5 $29 = $sp
$14 = $t6 $30 = $fp
$15 = $t7 $31 = S$ra

https://students-hub.com

MIPS Register Conventions

*» Assembler can refer to registers by name or by number
< It is easier for you to remember registers by name

<> Assembler converts register name to its corresponding number

Name Register Usage

$zero $0 Always 0 (forced by hardware)
$at $1 Reserved for assembler use

$v0 - Svl $2 - $3 Result values of a function

$a0 - $a3 $4 - $7 Arguments of a function

$t0 - $t7 $8 — $15 | Temporary Values

$s0 — $s7 $16 — $23 | Saved registers (preserved across call)
$t8 - $t9 $24 - $25 | More temporaries

$k0 - Skl $26 — $27 | Reserved for OS kernel

$gp $28 Global pointer (points to global data)
$sp $29 Stack pointer (points to top of stack)
Sfp $30 Frame pointer (points to stack frame)
$ra $31 Return address (used by jal for function call)

STUDENTS-HUB.com

https://students-hub.com

Instruction Formats

*» All instructions are 32-bit wide, Three instruction formats:
** Register (R-Type)
< Register-to-register instructions

<> Op: operation code specifies the format of the instruction

Op® Rs® Rt° Rd> sa° funct®

** Immediate (I-Type)

< 16-bit immediate constant is part in the instruction

Op® Rs® Rt° immediatel®

s Jump (J-Type)

< Used by jump instructions

Op® immediate?®

STUDENTS-HUB.com

https://students-hub.com

Register File

Control lines

IRl

Op

Control logic

Control lines

Write

R1

e

L
31

R2

k|

T Y 1

R3

~1Shmt

funct

STUDENTS-HUB.com

Register file

d
3 |

R #0

N

R #1

ALU

R #2

>

R #3

7

R #31

Result
data

’3} bus

https://students-hub.com

MIPS Five Addressing Modes

1 Reqister Addressing:

Where the operand is a register (R-Type)
2 Immediate Addressing:

Where the operand is a constant in the instruction (I-Type, ALU)

3 Base or Displacement Addressing:

Where the operand is at the memory location whose address is the
sum of a register and a constant in the instruction (I-Type, load/store)

4 PC-Relative Addressing:

Where the address is the sum of the PC and the 16-address field in
the instruction shifted left 2 bits. (I-Type, branches)

5 Pseudodirect Addressing:

Where the jump address is the 26-bit jump target from the instruction
shifted left 2 bits concatenated with the 4 upper bits of the PC (J-

Type)

STUDENTS-HUB.com

https://students-hub.com

MIPS Addressing Modes/Instruction Formats

* All Instructions 32 bits wide

1. Register addressing
op rs| rt | rd funct Register

word operand

2. Base addressing

op Is rt offset - Memory
| F 1- word or byte operand
base register -
3. Immediate addressing
op rs| rt operand
4. PC-relative addressing
op rs| rt offset | Memory

[
E } branch destination instruction
L-

Program Counter (PC)
5. Pseudo-direct addressing

op jump address Memory
]| 1 jump destination instruction

-
[il

Program Counter (PC)

STUDENTS-HUB.com

https://students-hub.com

MIPS R-Type (ALU) Instruction Fields

L0

L)

e

*

e

*

e

*

/
00

L)

e

*

STUDENTS-HUB.col

R-Type: All ALU instructions that use three registers
1st operand 2nd operand Destination
OP rs rt rd shamt funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
Rs, rt , rd

op: Opcode, basic operation of the instruction.
< ForR-Type op=0

are register specifier fields

rs: The first register source operand.
rt: The second register source operand.
rd: The register destination operand.

shamt: Shift amount used in constant shift operations.

funct: Function, selects the specific variant of ope

ration in the op

Operand register in rt

/

field. Operand register in rs
Destination register in rd
Examples: add $1,$2,$3 and $1,$2,$3
sub $1,$2,%3 or $1,$2,$3

R-Type = Register Type
Register Addressing used (Mode 1)

m

https://students-hub.com

MIPS ALU I-Type Instruction Fields

I-Type ALU instructions that use two registers and an immediate value
I-Type is also used for Loads/stores, conditional branches.

1st operand Destination 2nd operand
OP rs rt iImmediate
6 bits 5 bits 5 bits 16 bits

*

op: Opcode, operation of the instruction.

L)

*

rs: The register source operand.

L)

L)

*

rt: The result destination register.

L)

L)

%

Immediate: Constant second operand for ALU instruction.

Source operand register in rs
Result register in rt

\

. : L . Constant operand
Examples: add immediate: addi $1,$2,100— O immediate

and immediate andi $1,$2,10

I-Type = Immediate Type
Immediate Addressing used (Mode 2)

STUDENTS-HUB.com

https://students-hub.com

MIPS Load/Store I-Type Instruction

F | e I dS Base Src./Dest.
OP rs rt address .
6 bits 5 bits 5 bits 16 bits Signed address
% op: Opcode, operation of the instruction. offset in bytes

STUDEN

< For load op = 35, for store op =43.
2 Is: The register containing memory base address.

» rt: For loads, the destination register. For stores, the
source register of value to be stored.

¢ address: 16-bit memory address offset in bytes added to

register. ister |
base reg Ss:[c%rce register in rt \ Offset base register in rs
. /
Examples: Store word: sw $3, 500($4)
Load word: lw $1, 32($2)
o o / / \ base register in rs
Destination register in rt Offset

Base or Displacement Addressing used (Mode 3)

TS-HUB.com

https://students-hub.com

MIPS Branch I-Type Instruction Fields

OP rs rt address

6 bits 5 bits 5 bits 16 bits \
Signed address
offset in words

% op: Opcode, operation of the instruction.
* rs: The first register being compared
2 rt: The second register being compared.

¢ address: 16-bit memory address branch target offset in
words added to PC to form branch address.

o Registerinrt offset in bytes equal to
Registerin rs ‘ instruction address field x 4

\
Examples: Branch on equal beq $1,$2,100 — ﬁ)d;lédto form

Branch on not equal bne $1,$2,100 branch target

PC-Relative Addressing used (Mode 4)

STUDENTS-HUB.com

https://students-hub.com

MIPS J-Type Instruction Fields

J-Type: Include jump j, jump and link jal

OP jump target
6 bits 26 bits \J
_ _ _ ump target
“+ op: Opcode, operation of the instruction. in words

< Jumpj op=2
< Jump and link jal op =3

“* jump target: jJump memory address in words.

Jump memory address in bytes equal to
instruction field jump target x 4

Examples: jump j 10000 7
Jump and link jal 10000
Effective 32-bit jump address: PC(31-28),jump_target,00
PC(31-28)
E?ﬂ — jump target = 2500 0|0
4 bits 26 bits 2 bits

J-Type = Jump Type
Pseudodirect Addressing used (Mode 5)

https://students-hub.com

Instruction Categories

** Integer Arithmetic
< Arithmetic, logical, and shift instructions

s+ Data Transfer

<> Load and store instructions that access memory
<> Data movement and conversions

“+ Jump and Branch
< Flow-control instructions that alter the sequential sequence

*» Floating Point Arithmetic
< Instructions that operate on floating-point registers

+» Miscellaneous

<> Instructions that transfer control to/from exception handlers
< Memory management instructions

STUDENTS-HUB.com

https://students-hub.com

Next . ..

*» Instruction Set Architecture

¢ Overview of the MIPS Processor

** R-Type Arithmetic, Logical, and Shift Instructions
*» |-Type Format and Immediate Constants

* Jump and Branch Instructions

* Translating If Statements and Boolean Expressions
¢ Load and Store Instructions

¢ Translating Loops and Traversing Arrays

¢+ Alternative Architecture

SSSSSSSSSSSSSSSS

https://students-hub.com

R-Type Format

Op® Rs® Rt° Rd® sa® funct®

“ Op: operation code (opcode)
< Specifies the operation of the instruction
< Also specifies the format of the instruction

“ funct: function code — extends the opcode
< Up to 2° = 64 functions can be defined for the same opcode
< MIPS uses opcode 0 to define R-type instructions

¢ Three Register Operands (common to many instructions)
< Rs, Rt: first and second source operands
< Rd: destination operand
< sa: the shift amount used by shift instructions

STUDENTS-HUB.com

https://students-hub.com

Integer Add /Subtract Instructions

Instruction

add

Meaning
$s1 = $s2 + $s3

$s1, $s2, $s3

R-Type Format

rs = $s2

r=$s3

rd = $s1

sa=0

f = 0x20

addu $s1, $s2, $s3

$s1 = $s2 + $s3

rs = $s2

rt=$s3

rd = $s1

sa=0

f=0x21

sub

$s1, $s2, $s3| $s1 = $s2 — $s3

rs = $s2

rt=$s3

rd = $s1

sa=0

f = 0x22

subu $sl1, $s2, $s3

$s1 = $s2 — $s3

rs = $s2

rt= $s3

rd = $s1

sa=0

f=0x23

*» add & sub: overflow causes an arithmetic exception

< In case of overflow, result is not written to destination register

*» addu & subu: same operation as add & sub

<> However, no arithmetic exception can occur

< Overflow is ighored

* Many programming languages ignore overflow

STUDENTS-HUB.com

< The + operator is translated into addu

< The — operator is translated into subu

https://students-hub.com

Addition/Subtraction Example

< Consider the translation of: f = (g+h) — (i+j)

s Compiler allocates registers to variables
<- Assume that 7, g, A, /, and jare allocated registers $s0 thru $s4
<~ Called the saved registers: $s0 = $16, $s1 = $17, ..., $s7 = $23
¢ Translation of: f = (g+h) — (i+])

addu $t0, $sl, $s2 # $t0 =g + h
addu $tl, $s3, $s4 # Stl =i + 5
subu $s0, $t0, S$tl # £ = (g+h)-(i+j)

<> Temporary results are stored in $t0 = $8 and $t1 = $9
*» Translate: addu $t0,$sl, $s2 to binary code

op rs=%$sl rt=%$s2 rd=$t0 sa func
% Solution: 000000 | 10001 | 10010 | 01000 | OO000 | 100001

STUDENTS-HUB.com

https://students-hub.com

Logical Bitwise Operations

¢ Logical bitwise operations: and, or, xor, nor

x| y|xand y X|y| xory
0|0 0 0|0 0
0|1 0 01 1
110 0 110 1
1|1 1 11 1

x| y| xxory x| y|xnory
0(0 0 00 1
01 1 0|1 o)
1(0 1 110 0)
11 0 1(1 o)

«» AND Instruction is used to clear bits: xand 0 =0

+*» OR Instruction iIs used to set bits: xor1 =1

*» XOR instruction is used to toggle bits: xxor 1 = not x

«*» NOR Instruction can be used as a NOT, how?

STUDENTS-HUB.com

< nor $sl,$s2,$s2 isequivalentto not $sl,$s2

https://students-hub.com

Logical Bitwise Instructions

Instruction Meaning R-Type Format

and $s1, $s2, $s3 [$s1 = $s2 & $s3 |op =0 |rs = $s2|rt=$s3 |rd = $s1|sa = 0 |f = Ox24
or $sl1, $s2, $s3 [$s1 =$s2 | $s3 |op=0 |rs =$s2|rt=$s3 |rd = $s1|sa = 0 |f = Ox25
xor $s1, $s2, $s3 [$s1 =$s2"2$s3 |op=0 [rs=$s2|rt=$s3 |rd = $s1|sa=0|f = Ox26
nor $si, $s2, $s3 |$s1 = ~($s2|$s3) [op =0 |rs = $s2| rt=$s3 [rd = $s1 |sa = 0 |f = Ox27

“ Examples:

Assume $s1 = 0xabcdl234 and $s2 =0xf£f££0000

and $s0,S$sl,$s2 ¥ $Ss0 = O0xabcd0000
or $s0,$sl,$s2 # $Ss0 = Oxf£f££f1234
xor $s0,$sl,S$s2 # $Ss0 = 0x54321234
nor $s0,$sl,S$s2 # $s0 = 0x0000edcb

https://students-hub.com

Shift Operations

¢ Shifting is to move all the bits in a register left or right

¢ Shifts by a constant amount: s11, srl, sra
< sll/srl mean shift left/right logical by a constant amount

< The 5-bit shift amount field is used by these instructions
<> sra means shift right arithmetic by a constant amount

< The sign-bit (rather than 0) is shifted from the left

sll -« 32-bit register >
shift-out MSB <« «1— <1« «— e -+« <«1<+— shift-in 0
srl
shift-in 0 ——>—1>—1>-——>—1 v —> 1> —> —> 1 shift-out LSB
sra
shift-in sign-bit — ——1—>—1—>—1 — > 1> > 1 shift-out LSB

STUDENTS-HUB.com

https://students-hub.com

Shift Instructions

Instruction Meaning R-Type Format

sl $s1,$s2,10 [$s1=$s2<<10 [op=0|rs=0 |(rt=%s2|rd=%sl|sa=10| f=0
sl $s51,$s2,10 [$s1 =$s2>>>10 (op=0|rs=0 |rt=%s2|rd=%sl|sa=10| f=2
sra $s1,%$s2,10|$s1=$s2>>10 |op=0(rs=0 |rt=%s2|rd=%sl|sa=10| f=3
sllv $s1,$52,$s3 | $s1 = $s2 << $s3 | op =0 [rs = $s3|rt = $s2|rd = $sl|sa=0 | f=4
sriv. - $51,$52,$s3 | $s1 = $52>>>$s3 | op =0 [rs = $s3|rt = $s2|{rd = P$sl|sa=0 | f=6
srav $s1,$s2,$s3 | $s1 =$s2>>P$s3 | op =0 |rs = $s3|rt = $s2|rd = $sl|sa=0 | f=7

*» Shifts by a variable amount: sllv, srlv, srav

<> Same as sll, srl, sra, but a register is used for shift amount
% Examples: assume that $s2 = Oxabcd1234, $s3 = 16

sll $sl1,$s2,8 Ssl = $s2<<8 $sl = 0xcdl23400
sra Ssl,$s2,4 Ssl = $s2>>4 $sl = Oxfabcdl23
srlv $sl1,$s2,$s83 $sl1 = $s2>>>$s3 $sl1 = 0x0000abced
(i op=000000|rs=$s3=10011|rt=$s2=10010 [rd=$s1=10001|sa=00000|f=000110

STUDENTS-HUB.com

https://students-hub.com

Binary Multiplication

¢ Shift-left (s11) instruction can perform multiplication

< When the multiplier is a power of 2

“ You can factor any binary number into powers of 2
< Example: multiply $s1 by 36

= Factor 36 into (4 + 32) and use distributive property of multiplication

< $s2 = $s1*36 = $sl1*(4 + 32) = $sl*4 + $s1*32

sll $t0, $sl1l, 2 ; $t0 = $s1 * 4
sll $tl1, $sl, 5 ; Stl = $s1 * 32
addu $s2, $t0, $tl ; $s2 = $sl1 * 36

STUDENTS-HUB.com

https://students-hub.com

Your Turn. ..

Multiply $s1 by 26, using shift and add instructions
Hint: 26 =2+ 8 + 16

sll $t0, $s1, 1 ; St0 = $s1 * 2
sll $tl1, $sl1, 3 ; Stl = $s1 * 8
addu $s2, $t0, §$tl ; §s2 = $sl1 * 10
sll $t0, S$sl1, 4 ; St0 = $s1 * 16
addu $s2, $s2, $t0 ; §s2 = $sl1 * 26
Multiply $s1 by 31, Hint: 31 =32-1

sll S$s2, $sl, 5 ; $s2 = $sl1 * 32
subu $s2, $s2, S$sl ; $s2 = $sl1 * 31

SSSSSSSSSSSSSSSS

https://students-hub.com

Integer Multiplication & Division

«»» Consider axb and a/b where a and b are in $s1 and $s2

< Signed multiplication: mult $sl1,$s2

< Unsigned multiplication: multu $sl,$s2 5

<> Signed division: div $s1,$s2 51

<> Unsigned division: divu $sl1,$s2 :
$31

¢ For multiplication, result is 64 bits |
% LO = low-order 32-bit and HI = high-order 32-bit Multiply

¢ For division DN,Ide
< LO = 32-bit quotient and HI = 32-bit remainder o Yo

< If divisor is 0 then result is unpredictable

** Moving data
< mflo rd (move from LO to rd), mfhi rd (move from HI to rd)
< mtlo rs (moveto LO fromrs), mthi rs (move to HI from rs)

STUDENTS-HUB.com

https://students-hub.com

Integer Multiply/Divide Instructions

Instruction Meaning Format

mult rs, rt hi,lo=rsxrt {op®=0]| rs® | rt° 0 0 0x18
multu rs, rt hi,lo=rsxrt |op®=0]| rs® | rtd 0 0 0x19
div rs, 1t hi,lo=rs/rt |op®=0]| rs® | rt® 0 0 Oxla
divu rs, rt hi,lo=rs/rt |op®=0]| rs® | rt° 0 0 Ox1b
mfhi rd rd = hi op®=0| O 0 rd> | O 0x10
mflo rd rd = lo op®=0| O 0 rd> | O 0x12
mthi rs hi=rs op®=0] rsd 0 0 0 Ox11
mtlo rs lo=rs op®=0] rsd 0 0 0 0x13

*» Signed arithmetic: mult, div (rs and rt are signed)
< LO = 32-bit low-order and HI = 32-bit high-order of multiplication
< LO = 32-bit quotient and HI = 32-bit remainder of division

¢ Unsigned arithmetic: multu, divu (rs and rt are unsigned)

*» NO arithmetic exception can occur

STUDENTS-HUB.com

https://students-hub.com

Next . ..

*» Instruction Set Architecture

¢ Overview of the MIPS Processor

** R-Type Arithmetic, Logical, and Shift Instructions
* |-Type Format and Immediate Constants

* Jump and Branch Instructions

* Translating If Statements and Boolean Expressions
¢ Load and Store Instructions

¢ Translating Loops and Traversing Arrays

¢+ Alternative Architecture

SSSSSSSSSSSSSSSS

https://students-hub.com

I-Type Format

*» Constants are used quite frequently in programs
< The R-type shift instructions have a 5-bit shift amount constant
<> What about other instructions that need a constant?

“ |-Type: Instructions with Immediate Operands

Op® Rs® Rt° immediate!®

+» 16-bit iImmediate constant is stored inside the instruction
< Rs is the source register number

< Rt is now the destination register number (for R-type it was Rd)

“ Examples of I-Type ALU Instructions:
<- Add immediate: addi $s1, $s2, 5 # $s1 $s2 + 5
< OR immediate: ori $sl1, $s2, 5 # $s1 = $s2 | 5

STUDENTS-HUB.com

https://students-hub.com

I-Type ALU Instructions

Instruction Meaning |-Type Format

addi $s1, $s2,10 [$s1=%$s2+10 |op=0x8(rs=%$s2| rt=%sl imm6 =10
addiu $s1, $s2,10 | $s1=%$s2+10 |op=0x9 [rs=$s2| rt = Psl imm6 =10
andi $s1,$s2,10 | $s1=$s2 & 10 [(op=0xc |[rs=$s2| rt=$sl imm36 =10
ori $s1, $s2,10 [$s1=%$s2 |10 |op=0xd |rs=9%$s2| rt=3sl imm6 =10
xori $s1,$s2,10 | $s1=%$s2710 |op=0xe |rs=$s2| rt=3$sl imm6 =10
lui $s1, 10 $s1=10<<16 |op = Oxf 0 rt = $sl imm6 =10

*» addi: overflow causes an arithmetic exception

<> In case of overflow, result is not written to destination register
¢ addiu: same operation as addi but overflow is ignored

*» Immediate constant for addi and addiu Is signed

<> No need for subi or subiu instructions

*» Immediate constant for andi, ori, xori is unsigned

STUDENTS-HUB.com

https://students-hub.com

Examples: I-Type ALU Instructions

“ Examples: assume A, B, C are allocated $s0, $s1, $s2

A = B+5; translated as addiu $s0,$sl1,5
C = B-1; translated as addiu $s2,5$sl,-1

@ op=001001{rs=$s1=10001|rt=$s2=10010| imm =-1=1111111111111111

A = B&Oxf; translatedas andi $s0,$sl,0xf
C = B|0Oxf; translatedas ori $s2,5$sl1l,0xf
C=25; translated as ori $s2,$zero,5
A = B; translated as ori $s0,5$s1,0

** No need for subi, because addi has signed immediate

** Reqister 0 ($zero) has always the value 0

SSSSSSSSSSSSSSSS

https://students-hub.com

32-bit Constants

** |-Type instructions can have only 16-bit constants

Op® Rs®

Rt°

immediatel6

*» What if we want to load a 32-bit constant into a register?

s Can’t have a 32-bit constant in I-Type instructions ®

<> We have already fixed the sizes of all instructions to 32 bits

+» Solution: use two instructions instead of one ©
<> Suppose we want: $s1=0xAC5165D9 (32-bit constant)

< 1lui: load upper immediate

lui $sl1,0xAC51

ori $sl,$sl,0x65D9

STUDENTS-HUB.com

Ssl=$17

Ss1=$17

load upper

16 bits

clear lower
16 bits

OxACS51

0x0000

O0xACS51

0x65D9

https://students-hub.com

Next . ..

*» Instruction Set Architecture

¢ Overview of the MIPS Processor

** R-Type Arithmetic, Logical, and Shift Instructions
*» |-Type Format and Immediate Constants

* Jump and Branch Instructions

* Translating If Statements and Boolean Expressions
¢ Load and Store Instructions

¢ Translating Loops and Traversing Arrays

¢+ Alternative Architecture

SSSSSSSSSSSSSSSS

https://students-hub.com

J-Type Format

Op® immediate?®

*» J-type format is used for unconditional jump instruction:

. label # jump to label
label:
o 26-bit Immediate value is stored In the instruction

< Immediate constant specifies address of target instruction

*» Program Counter (PC) is modified as follows:

— . . least-significant
< Next PC = |pc*? immediate26 00| 2 bits are 00

< Upper 4 most significant bits of PC are unchanged

STUDENTS-HUB.com

https://students-hub.com

Conditional Branch Instructions

“* MIPS compare and branch instructions:

beq Rs,Rt,label
bne Rs,Rt,label

branch to 1label if (Rs
branch to 1label if (Rs

“* MIPS compare to zero & branch instructions

“* No need for beqgz and bnez instructions. Why?

SSSSSSSSSSSSSSSS

== Rt)
'= Rt)

Compare to zero is used frequently and implemented efficiently

bltz Rs,label
bgtz Rs,label
blez Rs,label
bgez Rs,label

branch to 1abel If (Rs
branch to 1abel If (Rs
branch to 1abel If (Rs
branch to 1abel if (Rs

< 0)
> 0)
<= 0)
>= 0)

https://students-hub.com

Set on Less Than Instructions

“* MIPS also provides set on less than instructions
slt «rd,rs,rt f(rs<m)rd=1elserd=0
sltu rd,rs,rt unsigned <
slti rt,rs,im'® if(rs<imi®)rt=1elsert=0

sltiu rt,rs,im'® unsigned <

“ Signed / Unsigned Comparisons

Can produce different results
Assume $s0 land $s1 = -1 = Oxffffffff

slt $t0,$s0,$s1 resultsin $St0 = 0
stlu $t0,$s0,$s1 resultsin St0 =1

SSSSSSSSSSSSSSSS

https://students-hub.com

More on Branch Instructions

** MIPS hardware does NOT provide instructions for ...

blt,
ble,
bgt,
bge,

bltu branchifless than
bleu branchifless or equal
bgtu branch if greater than
bgeu branch if greater or equal

(signed/unsigned)
(signed/unsigned)
(signed/unsigned)
(signed/unsigned)

Can be achieved with a sequence of 2 instructions

1)

o0

4

1)

)

L)

o0

4

L)

)

» How to implement: blt $s0,$sl,label

bne $at, $zero, label

» Solution: ({ slt $at,$s0,$sl

» How to implement: ble $s2,$s3,label
» Solution: ({ slt $at,$s3,$s2

beq $at,$zero,label

https://students-hub.com

Pseudo-Instructions

** Introduced by assembler as if they were real instructions

< To facilitate assembly language programming

Pseudo-Instructions

Conversion to Real Instructions

move S$sl, $s2 addu Ssl, $s2, $zero
not $sl, $s2 nor $sl, $s2, $s2
1i $sl, Oxabcd ori sl, Szero, Oxabcd
_ lui $sl, Oxabcd

1i $sl, Oxabcdl234 ori §s1, $sl, 0x1234
sgt $sl, $s2, $s3 slt $Ssl, $s3, $s2

slt Sat, $sl, $s2
blt 9sl, $s2, label bne Sat, S$zero, label

» Assembler reserves $at = $1 for its own use

< $at is called the assembler temporary register

STUDENTS-HUB.com

https://students-hub.com

Jump, Branch, and SLT Instructions

Instruction Meaning Format

| label jump to label op® =2 imm?26

beq rs,rt, label |branchif (rs==rt) [op®=4]| rs> | rtd imm?16

bne rs, rt, label |branchif (rs!=rt) |op®=5]| rs®> | rtd imm?16

blez rs, label branch if (rs<=0) |op®=6| rs® 0 imm?16

bgtz rs, label branchif rs>0) |op®=7| rs® 0 imm?16

bltz rs, label branchif rs<0) |op®=1] rs® 0 imm?16
bgez rs, label branch if (rs>=0) |op®=1] rs® 1 imm?16
Instruction Meaning

slt rd,rs,rt rd=(rs<rt?1:0) |op®=0]| rs®> | rt® | rd> | O | Ox2a
sltu rd, rs, rt rd=(rs<rt?1:0) |op®=0| rs® | rt®> | rd®> | O | Ox2b
slti rt, rs, imm%| rt=(rs<imm?1:0) Oxa rs® | rtd imm?16

sltiu rt, rs, imm16| rt=(rs<imm?1:0) Oxb rs® | rtd imm?16

STUDENTS-HUB.com

https://students-hub.com

Next . ..

¢ Instruction Set Architecture

¢ Overview of the MIPS Processor

** R-Type Arithmetic, Logical, and Shift Instructions
*» |-Type Format and Immediate Constants

* Jump and Branch Instructions

* Translating If Statements and Boolean Expressions
¢ Load and Store Instructions

¢ Translating Loops and Traversing Arrays

¢+ Alternative Architecture

SSSSSSSSSSSSSSSS

https://students-hub.com

Translating an IF Statement

*» Consider the following IF statement:
if (a == Db) c=d + e; else c =d - e;

Assume that a, b, ¢, d, e are in $s0, ..., $s4 respectively
“ How to translate the above IF statement?

bne $s0, S$sl, else
addu $s2, $s3, $s4
J exit

else: subu $s2, $s3, $s4

exit:

SSSSSSSSSSSSSSSS

https://students-hub.com

Compound Expression with AND

“ Programming languages use short-circuit evaluation

» If first expression is false, second expression is skipped

if (($s1 > 0) && ($s2 < 0)) {S$s3++;}

One Possible Implementation

bgtz $sl, L1 # first expression
j next # skip if false

L1: bltz $s2, L2 # second expression
j next # skip if false

L2: addiu $s3,$s3,1 # both are true

next:

STUDENTS-HUB.com

https://students-hub.com

Better Implementation for AND

if (($s1 > 0) && ($s2 < 0)) {$s3++;}

The following implementation uses less code
Reverse the relational operator

Allow the program to fall through to the second expression

Number of instructions iIs reduced from 5to 3

Better Implementation ...
blez $sl, next # skip if false
bgez $s2, next # skip if false

addiu $s3,$s3,1 # both are true
next:

https://students-hub.com

Compound Expression with OR

“* Short-circuit evaluation for logical OR

¢ If first expression is true, second expression is skipped

if (($s1 > $s2) || ($s2 > $s3)) {$s4 = 1;}

* Use fall-through to keep the code as short as possible

bgt $sl1, $s2, Ll # yes, execute if part
ble $s2, $s3, next # no: skip if part

Ll: 1i $s4, 1 # set $s4 to 1

next:

“* bgt, ble, and 1i are pseudo-instructions

< Translated by the assembler to real instructions

https://students-hub.com

Your Turn. ..

*» Translate the IF statement to assembly language

% $s1 and $s2 values are unsigned

if($sl <= $s2) {
$s3 = $s4

bgtu $sl, $s2, next
move $s3, $s4
next:

% $s3, $s4, and $s5 values are signed

SSSSSSSSSSSSSSSS

if (($s3 <= $s4) &&
(Ss4 > $s5)) {
$s3 = $s4 + $s5

bgt $s3, $s4, next

ble $s4, $s5, next

addu $s3, $s4, S$s5
next:

https://students-hub.com

Next . ..

*» Instruction Set Architecture

¢ Overview of the MIPS Processor

** R-Type Arithmetic, Logical, and Shift Instructions
*» |-Type Format and Immediate Constants

* Jump and Branch Instructions

* Translating If Statements and Boolean Expressions
¢ Load and Store Instructions

¢ Translating Loops and Traversing Arrays

¢+ Alternative Architecture

SSSSSSSSSSSSSSSS

https://students-hub.com

Load and Store Instructions
¢ Instructions that transfer data between memory & registers

¢ Programs include variables such as arrays and objects

¢ Such variables are stored in memory

“ Load Instruction: load
P
< Transfers data from memory to a register | Registers Memory
store
)

+» Store Instruction:

< Transfers data from a register to memory

“* Memory address must be specified by load and store

STUDENTS-HUB.com

https://students-hub.com

Load and Store Word

*» Load Word Instruction (Word = 4 bytes in MIPS)

lw Rt, imm!®(Rs)

s+ Store Word Instruction

sw Rt, imm!®(Rs)

Rt = MEMORY [Rs+imm?6]

MEMORY [Rs+imm!®] = Rt

*» Base or Displacement addressing is used

< Memory Address = Rs (base) + Immediatel® (displacement)

< Immediatel® is sign-extended to have a signed displacement

Base or Displacement Addressing

Op®

Rs®

Rt° immediatel®

A 4

Base address

Memory Word

G-

STUDENTS-HUB.com

https://students-hub.com

Example on Load & Store

** Translate A[1]=A[2] +5 (As an array of words)

<> Assume that address of array A is stored in register $s0

1w $Ssl, 8($s0) ¥ $s1 = A[2]
addiu $s2, $sl, 5 ¥ $s2 = A[2] + 5
sSw $s2, 4($s0) ¥ A[1l] = S$s2

“ Index of g2] and a[1] should be multiplied by 4. Why?

. Memor
Registers y
$s0 = $16 | address of A W A[3] A+12
$s1 =$17 | value of A[2] [« A[2] A+8
$s2 = $18 A[2] +5 > A[1] A+4
sw A[O] A

https://students-hub.com

Load and Store Byte and Halfword

*» The MIPS processor supports the following data formats:
<> Byte = 8 bits, Halfword = 16 bits, Word = 32 bits

*» Load & store instructions for bytes and halfwords
< Ib = load byte, Ibu = load byte unsigned, sb = store byte
< Ih =load half, lhu =load half unsigned, sh = store halfword

¢ Load expands a memory data to fit into a 32-bit register

* Store reduces a 32-bit register to fit in memory
32-bit Register

A

v

S sign — extend S|(s b
O zero - extend 0 bu
S sign — extend S|s h
0 zero- extend 0 hu

https://students-hub.com

Load and Store Instructions

Instruction Meaning I-Type Format

b rt, imm(rs) | rt = MEM[rs+imm16] | Ox20 | rs® rt° imm?16
lh rt, imm(rs) | rt = MEM[rs+imm] | Ox21 | rs® rtd imm?16
lw rt, imm(rs) | rt = MEM[rs+imm16] | Ox23 | rs® rt° imm?16
lbu rt, imm(rs) | rt = MEM[rs+imm?<®] | Ox24 | rs® rtd imm?16
lhu rt, imm(rs) | rt = MEM[rs+imm16] | Ox25 | rs® rt° imm?16
sb rt, immi%(rs) | MEM[rs+imm16] =rt | Ox28 | rs® rt> imm?16
sh rt, immt®(rs) | MEM[rs+imm1%] =rt | Ox29 | rs® o imm?16
sw rt, immis(rs) | MEM[rs+immi6] =rt | Ox2b | rs® rt° imm?16

“+ Base or Displacement Addressing is used

< Memory Address = Rs (base) + Immediatel® (displacement)

“ Two variations on base addressing
< IfRs=%zero =0then Address = Immediate'® (absolute)

< If Immediatel® = 0 then Address = Rs (register indirect)

STUDENTS-HUB.com

https://students-hub.com

Next . ..

¢ Instruction Set Architecture

* Overview of the MIPS Processor

** R-Type Arithmetic, Logical, and Shift Instructions
*» |-Type Format and Immediate Constants

* Jump and Branch Instructions

* Translating If Statements and Boolean Expressions
¢ Load and Store Instructions

*» Translating Loops and Traversing Arrays

¢+ Alternative Architecture

SSSSSSSSSSSSSSSS

https://students-hub.com

Translating a WHILE Loop

¢ Consider the following WHILE statement:
0; while (A[i]

Where A is an array of integers (4 bytes per element) AL

+» How to translate above WHILE statement?

STUDENTS-HUB.com

i =

Assume address A, |, kin $s0, $s1, $s2, respectively

loop:

exit:

Xor
move
lw
beq
addiu
sll
addu
J

$s1,
$t0,
$t1,
$t1,
$s1,
$to0,
$to0,
loop

$sl,
SsO

Memory

1= k) i = i+l; [

Ssl

0($t0)

$s2, exit

$sl1,

1

$Ssl, 2

$s0,

S$to

Al1]

AlO]

A+4xi

A+8
A+4

k)

#i=0

$t0 = address A

Stl = A[i]

¥ exit if (A[i]==

i=i+1

$t0 = 4*3i

$t0 = address A[i]

https://students-hub.com

Using Pointers to Traverse Arrays

¢ Consider the same WHILE loop:
i = 0; while (A[i] '= k) 1 = 1i+1;
Where address of A, |, k are in $s0, $s1, $s2, respectively

*» We can use a pointer to traverse array A

Pointer is incremented by 4 (faster than indexing)

move $t0, $sO # $t0 = $s0 = addr A

. cond # test condition
loop: addiu §$sl1, $s1, 1 # i =i+l

addiu $t0, $tO0, 4 # point to next
cond: 1lw $tl, 0(S$t0) # Stl = A[i]

bne Stl, $s2, loop # loop if A[i]!=k

* Only 4 instructions (rather than 6) in loop body

https://students-hub.com

Copying a String

The following code copies source string to target string

Address of source in $s0 and address of target in $s1

Strings are terminated with a null character (C strings)

i=20;

do {target[i]=source[i]; i++;} while (source[i]!=0);

move S$t0, $s0 #
move S$tl, $sl #
L1: 1b St2, 0($t0) #
sb St2, 0($tl) #
addiu $t0, $t0, 1 ¥
addiu $tl, $t1, 1 #
bne $t2, Szero, L1 #

$t0 = pointer to source
$tl = pointer to target
load byte into $t2
store byte into target
increment source pointer
increment target pointer
loop until NULL char

STUDENTS-HUB.com

https://students-hub.com

Summing an Integer Array

sum = 0;

for (i=0; i<n; i++) sum

sum + A[1i];

Assume $s0 = array address, $s1 = array length = n

move
XOor
XOor

Ll: 1w
addu
addiu
addiu
bne

$to,
$tl,
$s2,
$t2,
$s2,
$to,
$tl,
$tl,

$s0

$tl, Stl
$s2, $s2
0(St0)
$s2, S$t2
$to, 4
s$tl, 1
$sl, L1

H = H F H HF = HF

$t0 = address A[i]

Stl =1 =20
$s2 = sum = 0
St2 = A[i]

sum = sum + A[i]
point to next A[1i]
i++

loop if (i !'= n)

SSSSSSSSSSSSSSSS

https://students-hub.com

Addressing Modes

“* Where are the operands?

“ How memory addresses are computed?

Immediate Addressing

Op®

Rs®> | Rt® immediatel6

Register Addressing

Op®

Rs® | Rt® | Rd® | sa® | funct®

Operand is a constant

Operand is in a register

Register

\ 4

Base or Displacement Addressing

Op®

Rs® | Rt° immediatel6

A 4

Register = Base address

STUDENTS-HUB.com

Operand is in memory (load/store)

E—)—v BEe |Ha|fword Word

https://students-hub.com

Branch / Jump Addressing Modes

PC-Relative Addressing

Op®

Rs®

Rt®

immediatel6

PC30

g]

Target Instruction Address
PC = PC + 4 x (1 + immediate?®)

Pseudo-direct Addressing

Used for branching (beq, bne, ...)

%-» Word = Target Instruction

PC30 + immediatel® + 1 00

Used by jump instruction

Op® immediate2®
Word = Target Instruction
PC4 PC26 00
l
Target Instruction Address |PC# immediate26 00

STUDENTS-HUB.com

https://students-hub.com

Jump and Branch Limits

% Jump Address Boundary = 22° instructions = 256 MB
< Text segment cannot exceed 22° instructions or 256 MB

< Upper 4 bits of PC are unchanged

Target Instruction Address |PC# immediate26 00

¢ Branch Address Boundary

<> Branch instructions use I-Type format (16-bit immediate constant)

< PC-relative addressing: PC%0 + immediate’® + 1 00

= Target instruction address = PC + 4x(1 + immediate'®)
= Count number of instructions to branch from next instruction
= Positive constant => Forward Branch, Negative => Backward branch

= At most 215 instructions to branch (most branches are near)

STUDENTS-HUB.com

https://students-hub.com

Next . ..

*» Instruction Set Architecture

¢ Overview of the MIPS Processor

** R-Type Arithmetic, Logical, and Shift Instructions
*» |-Type Format and Immediate Constants

* Jump and Branch Instructions

* Translating If Statements and Boolean Expressions
¢ Load and Store Instructions

¢ Translating Loops and Traversing Arrays

¢+ Alternative Architecture

https://students-hub.com

MIPS Assembly Language
Programming

SSSSSSSSSSSSSSSS

https://students-hub.com

Assembly Language Statements

\/
0‘0

3.

STUDENTS-HUB.com

Three types of statements in assembly language
< Typically, one statement should appear on a line

Executable Instructions
<> Generate machine code for the processor to execute at runtime
<> Instructions tell the processor what to do

Pseudo-Instructions and Macros
< Translated by the assembler into real instructions
< Simplify the programmer task

Assembler Directives

< Provide information to the assembler while translating a program
< Used to define segments, allocate memory variables, etc.

< Non-executable: directives are not part of the instruction set

https://students-hub.com

Instructions

“ Assembly language instructions have the format:
[label:] mnemonic [operands] [##comment]
*» Label: (optional)
< Marks the address of a memory location, must have a colon
< Typically appear in data and text segments
“ Mnemonic
< Identifies the operation (e.g. add, sub, etc.)
* Operands
< Specify the data required by the operation

< Operands can be registers, memory variables, or constants
<> Most instructions have three operands

L1: addiu $t0, $t0, 1 #increment $tO

STUDENTS-HUB.com

https://students-hub.com

Comments

s Comments are very important!
< Explain the program's purpose
< When it was written, revised, and by whom
< Explain data used in the program, input, and output
< Explain instruction sequences and algorithms used

< Comments are also required at the beginning of every procedure
» |ndicate input parameters and results of a procedure

» Describe what the procedure does

* Single-line comment

< Begins with a hash symbol # and terminates at end of line

STUDENTS-HUB.com

https://students-hub.com

Next . ..

*» Assembly Language Statements

*» Assembly Language Program Template
¢ Defining Data

“* Memory Alignment and Byte Ordering
s System Calls

“ Procedures

*» Parameter Passing and the Runtime Stack

SSSSSSSSSSSSSSSS

https://students-hub.com

Program Template

Title: Filename:
Author: Date:

Description:

Input:

Output:

HuH###HHE##HA##H## Data segment #####HHFHHHFHBHFRFHAH
.data

HuH##HHERBHA##HA## Code segment ###H#H#HHF#HHF##HA##HAH
.text

.globl main
main: # main program entry
1i $v0, 10 # Exit program

syscall

https://students-hub.com

DATA, . TEXT, & .GLOBL Directives

» DATA directive

0

< Defines the data segment of a program containing data
< The program's variables should be defined under this directive

< Assembler will allocate and initialize the storage of variables
“ .TEXT directive

< Defines the code segment of a program containing instructions
< .GLOBL directive

< Declares a symbol as global

< Global symbols can be referenced from other files

< We use this directive to declare main procedure of a program

STUDENTS-HUB.com

https://students-hub.com

Layout of a Program in Memory

OX7FFFFFFF
N

Memory
Addresses
In Hex

0x10000000

0x04000000

SSSSSSSSSSSSSSSS

Stack Segment

v

N\

Dynamic Area

Static Area

Stack Grows
Downwards

- Data Segment

Text Segment

Reserved

https://students-hub.com

Next . ..

*» Assembly Language Statements

*» Assembly Language Program Template
¢ Defining Data

“* Memory Alignment and Byte Ordering
s System Calls

“ Procedures

*» Parameter Passing and the Runtime Stack

SSSSSSSSSSSSSSSS

https://students-hub.com

Data Definition Statement

¢ Sets aside storage in memory for a variable

* May optionally assign a name (label) to the data

 Syntax:

[name.] directive initializer |, initializen] . . .

4 8 8

varl: .WORD 10

» All initializers become binary data in memory

SSSSSSSSSSSSSSSS

https://students-hub.com

Data Directives

<+ BYTE Directive

<> Stores the list of values as 8-bit bytes

«» HALF Directive

< Stores the list as 16-bit values aligned on half-word boundary

» WORD Directive

< Stores the list as 32-bit values aligned on a word boundary

» FLOAT Directive

< Stores the listed values as single-precision floating point

» .DOUBLE Directive

< Stores the listed values as double-precision floating point

STUDENTS-HUB.com

https://students-hub.com

String Directives

«» .ASCII Directive

<> Allocates a sequence of bytes for an ASCII string

“» .ASCIIZ Directive
< Same as .ASCII directive, but adds a NULL char at end of string

< Strings are null-terminated, as in the C programming language

s+ SPACE Directive

<> Allocates space of nuninitialized bytes in the data segment

STUDENTS-HUB.com

https://students-hub.com

Examples of Data Definitions

.DATA
varl:
var2:
var3:
varé:
var5:
strl:
str2:

array:

.BYTE
.HALF
.WORD
. FLOAT
.DOUBLE
.ASCII
.ASCIIZ
. SPACE

'A', 'E', 127, -1, '\n'
-10, Oxffff

0x12345678.1002/AmayoKmOWOMS
12'31 -0.1
1.5e-10

"A String\n"

"NULL Terminated String"

100 < 100 bytes (not initialized)

https://students-hub.com

MARS Assembler and Simulator Tool

C:\Documents and Settings\Muhamed Mudawar\My Documents\COE 308\Tools\MARS\Data.asm - MARS 3.4.1 : E|E|
File Edit Bun Settings Tools Help

BRI BAT A Tk JEE [IRE S 2)

- 1 -
Edit rExecute | F;l/RllaglstErs rCupruc1 rCuprucI] |
1 .data | MName Number Yalue
: varl: .byte 3, -4, ‘4 “|$zero 0 Ox00000000| -
A verZioohalbo . dne, AT | $at 1 0x00000000
= Celim s TR =|| :|5v0 z 0x00000000
6 strl: .asciiz "COE 3087 [3 000000000
7 str2: .asciiz "Section 17 | R 4 Dx00000000
& HEEY g 0x00000000
9 .alim 2 “|3az i 0x00000000
10 £ibs: .zpace 400 #zpace Lor 100 integers %a3 T noooooon|=
ﬁ S|/$to 8 0x 00000000
SEEXE |t g 0x00000000
13 .globl main 3
lamain: |52 10 0x00000000
15 1i $al, 50 o|I5t3 11 0x00000000
16 la $t0, fihs o4 12 0x00000000
17 1i stl, 1 1l :fist5 13 0x00000000)—
15 1i stz2, 1 > | 5t6 14 0x00000000
4 [st 15 0x00000000
Line: 6 Column: 24 [v] Show Line Numbers gg F=0 16 Qx00000000
e | $s1 17 0x00000000
Mars Messages | Run 110 g KEE! 18 Ox 00000000
%53 19 0x00000000
Clear |3s4 20 0x00000000 |
|$s5 21 0x00000000 |~

STUDENTS-HUB.com

https://students-hub.com

Next . ..

*» Assembly Language Statements

*» Assembly Language Program Template
¢ Defining Data

“* Memory Alignment and Byte Ordering
*» System Calls

“ Procedures

*» Parameter Passing and the Runtime Stack

SSSSSSSSSSSSSSSS

https://students-hub.com

Memory Alignment

* Memory is viewed as an array of bytes with addresses

< Byte Addressing: address points to a byte in memory

*» Words occupy 4 consecutive bytes in memory

Memory

< MIPS instructions and integers occupy 4 bytes

address

“ Alignment: address is a multiple of size

aligned word

[EEN
N

not aligned

<> Word address should be a multiple of 4

(o]

-
= | east significant 2 bits of address should be 00 4 B

<> Halfword address should be a multiple of 2 oo

s+ .ALIGN n directive

< Aligns the next data definition on a 2” byte boundary

STUDENTS-HUB.com

https://students-hub.com

Symbol Table

*» Assembler builds a symbol table for labels (variables)

< Assembler computes the address of each label in data segment

*» Example

.DATA
varl:
strl:
var2:

.ALIGN

var3:

3

Symbol Table
Label | Address
.BYTE 1, 2,'Z'
ASCIIZ "My String\n" varl | 0x10010000
. Y TG strl 0x10010003
.WORD 0x12345678
var?2 0x10010010
var3 0x10010018
.HALF 1000
strl
var1—¢ .
0x10010000 | 1|2 ['Z’|'M|'y'|' '['S'['t|'"|"'"['"n'|'g'|\n'| O | O | O | unused

0x10010010 |0x12345678| 0| 0|0 |0

1000

var2 (aligned)) Unused

STUDENTS-HUB.com

L var3 (address is multiple of 8)

https://students-hub.com

Byte Ordering and Endianness

¢ Processors can order bytes within a word in two ways

¢ Little Endian Byte Ordering
< Memory address = Address of least significant byte
< Example: Intel 1A-32, Alpha

MSB LSB address a a+1 a+2 a+3
Byte 3 | Byte 2 | Byte 1 | Byte O <:> ... | ByteO | Bytel |Byte2 [Byte 3| - - -
32-bit Register Memory

“+ Big Endian Byte Ordering
<> Memory address = Address of most significant byte
< Example: SPARC, PA-RISC

MSB LSB address a a+l at+2 a+3
Byte3[Byte2[Byte 1 [Byte0| <> ... [Byte3[Byte2]Byte1[Byte0]. .
32-bit Register Memory

“* MIPS can operate with both byte orderings

STUDENTS-HUB.com

https://students-hub.com

Next . ..

*» Assembly Language Statements

*» Assembly Language Program Template
¢ Defining Data

“* Memory Alignment and Byte Ordering
s System Calls

“ Procedures

*» Parameter Passing and the Runtime Stack

SSSSSSSSSSSSSSSS

https://students-hub.com

System Calls

“* Programs do input/output through system calls

“* MIPS provides a special syscall instruction

< To obtain services from the operating system

< Many services are provided in the SPIM and MARS simulators
% Using the syscall system services

<> Load the service number in register $v0
< Load argument values, if any, in registers $a0, $al, etc.

<> Issue the syscall instruction

< Retrieve return values, if any, from result registers

STUDENTS-HUB.com

https://students-hub.com

Syscall Services

Service $vO | Arguments / Result

Print Integer 1 |%$a0 = integer value to print

Print Float 2 | $f12 = float value to print

Print Double 3 | $f12 = double value to print

Print String 4 | $a0 = address of null-terminated string
Read Integer 5 |$v0 = integer read

Read Float 6 | $f0 = float read

Read Double 7 | $f0 = double read

Read String 8 |$a0 = address of input buffer

$al = maximum number of characters to read

Exit Program | 10

Print Char 11 | $a0 = character to print

Supported by MARS

Read Char 12 | $a0 = character read

STUDENTS-HUB.com

https://students-hub.com

Reading and Printing an Integer

. text
.globl main
main:
1li $Sv0, 5
syscall

move $al0, $vO
1i Svo, 1
syscall

1i $v0, 10
syscall

+H=

BHHHHHBRB BB R #E Code segment ###H##H####HHAHHRFHAHHH

main program entry
Read integer

Sv0 = value read

$a0 = value to print
Print integer

Exit program

https://students-hub.com

Reading and Printing a String

BHHHHHHA BB H#RH#E Data segment ###H##HHFHERHERFERHHH

.data
str: .space 10 # array of 10 bytes
#H#H#HAHAHAHRH##E Code segment #####HHHHHHHHHHAHAHAH
. text
.globl main
main: # main program entry
la $a0, str # $Sa0 = address of str
1i Sal, 10 # $al = max string length
1i Sv0o, 8 # read string
syscall
1i Svo, 4 # Print string str
syscall
1i $v0, 10 # Exit program

syscall

https://students-hub.com

Program 1: Sum of Three Integers

Sum of three integers

#
Objective: Computes the sum of three integers.
Input: Requests three numbers.
Output: Outputs the sum.
FHHAHH SRS ER GRS ###H Data segment H##H#H##H#FHESHESHES
.data
prompt: .asciiz "Please enter three numbers: \n"
sum msg: .asciiz "The sum is: "
FHHARHHRHE SRS ###H Code segment H#####H#H##HHHHSH#S
. text
.globl main
main:
la $al0,prompt # display prompt string
1i S$vo0,4
syscall
1i $v0,5 # read 1lst integer into $tO
syscall

move $t0,S$vO0

STUDENTS-HUB.com

https://students-hub.com

Sum of Three Integers - Slide 2 of 2

1i $v0,5 # read 2nd integer into $tl
syscall

move Stl,SvO0

1i $v0,5 # read 3rd integer into $t2
syscall

move $t2,S$v0

addu $t0,S$t0,$tl # accumulate the sum

addu $t0,$t0,$t2

la $a0,sum msg # write sum message

1li $vo,4

syscall

move $al,$t0 # output sum

1i $v0,1

syscall

1li $v0,10 # exit

syscall

STUDENTS-HUB.com

https://students-hub.com

Program 2: Case Conversion

Objective: Convert lowercase letters to uppercase
Input: Requests a character string from the user.
Output: Prints the input string in uppercase.
#RHARHHRH AR S HRH###EH# Data segment ###H#HR#HAFHAFHSHRSHH
.data
name prompt: .asciiz "Please type your name: "
out msg: .asciiz "Your name in capitals is: "
in name: .space 31 # space for input string
#HHARHHRHHRFHR###EH Code segment ######H#HA#HAFHHFHASHH
. text
.globl main
main:
la $a0,name prompt # print prompt string
1i S$vo0,4
syscall
la $a0,in name # read the input string
1i $al, 31 # at most 30 chars + 1 null char
1li $vo0,8
syscall

STUDENTS-HUB.com

https://students-hub.com

Case Conversion - Slide 2 of 2

la $a0,out msg # write output message
1i $v0,4

syscall

la $t0,in name

loop:
1b $tl, (St0)

beqz $tl,exit loop # if NULL, we are done
blt $tl,'a',no_change
bgt $tl,'z',no_change
addiu $t1,$tl1,-32 # convert to uppercase: 'A'-'a'=-32
sb Stl, ($t0)
no_change:

addiu $t0,$t0,1 # increment pointer
Jj loop
exit loop:
la $a0,in name # output converted string
1i $vo0,4
syscall
1li $v0,10 # exit

syscall

STUDENTS-HUB.com

https://students-hub.com

Next . ..

*» Assembly Language Statements

*» Assembly Language Program Template
¢ Defining Data

“* Memory Alignment and Byte Ordering
s System Calls

** Procedures

*» Parameter Passing and the Runtime Stack

SSSSSSSSSSSSSSSS

https://students-hub.com

Procedures

¢ Consider the following swap procedure (written in C)

¢ Translate this procedure to MIPS assembly language

void swap (int v[], int k)
{ 1int temp;

temp = v[k] swap:

v[k] = v[k+1]; <1l

v[k+l] = temp;
}

lw

Parameters: lw
$a0 = Address of v[] SW
$al =k, and SW
Return address is in $ra jr

$t0,$al,2

add $t0,S$t0,$a0

$tl,0($t0)
$t2,4($t0)
$t2,0($t0)
$tl,4($t0)
Sra

H H H H F I I

$t0=k*4
$t0=v+k*4
Stl=v[k]
$t2=v[k+1]
v[k]=6t2
v[k+1l]=$tl

return

SSSSSSSSSSSSSSSS

https://students-hub.com

Call / Return Sequence

¢ Suppose we call procedure swap as: swap (a, 10)
< Pass address of array a and 10 as arguments
< Call the procedure swap saving return address in $31 = $ra
<> Execute procedure swap

< Return control to the point of origin (return address)

_ iswap:
Registers s1l $t0,$al,2
____________ Caller /add $t0,$t0,$a0
$a0=$4| addr a | 1la $a0, a 1w $t1,0(S$t0)
$al=$5| 10 || 1i $al, 1w $t2,4($t0)

. Jal swap 1 sw $t2,0($t0)
' # return here ii sw $tl1,4($t0)
Sra=$31 |ret addr i e - . < i _Jjr Sra

= = - - - - - - - - - - - - -

STUDENTS-HUB.com

https://students-hub.com

Details of JAL and JR

Address Instructions Assembly Language

Pseudo-Direct

00400020 1lui $1, 0x1001 la $a0, a Addressing

00400024 ori $4, $1, O

00400028 ori $5, $0, 10 ori $al,$0,10 PC = imm26<<2
0040002C jal 0x10000f _jal swap 0x10000f << 2
(00400030~ - _. . _--"" # return here = 0x0040003C
TTTTw T ~

e swap: 7" $31| 0x00400030
<0040003C~ s11°68, $5, 2 sll $t0,$al,2
00400040 add $85. 8, $4 add $t0,$t0,$a0 Register $31
00400044 1w $9, 0(58) 1w $t1,0($t0) < the return
00400048 1w $10,4($8) lw $t2,4(St0) address register

0040004C sw $10,0($8)\. sw $t2,0($t0)

00400050 sw $9, 4($8) ~ sw $tl1,4(S$t0)

N\
N\

00400054 jr $31 jr Sra

STUDENTS-HUB.com

https://students-hub.com

Instructions for Procedures

*» JAL (Jump-and-Link) used as the call instruction
< Save return address in $ra = PC+4 and jump to procedure
< Register $ra = $31 is used by JAL as the return address

** JR (Jump Register) used to return from a procedure

< Jump to instruction whose address is in register Rs (PC = Rs)
*» JALR (Jump-and-Link Register)

<> Save return address in Rd = PC+4, and

< Jump to procedure whose address is in register Rs (PC = Rs)
< Can be used to call methods (addresses known only at runtime)

Instruction Meaning Format

jal label $31=PC+4, jump | op®=3 imm?2

jr Rs PC =Rs op®=0| rsd 0 0 0 8
jar Rd, Rs | Rd=PC+4, PC=Rs | op®=0 | rs® 0 rd> | O 9

STUDENTS-HUB.com

https://students-hub.com

Next . ..

*» Assembly Language Statements

*» Assembly Language Program Template
¢ Defining Data

“* Memory Alignment and Byte Ordering
s System Calls

“ Procedures

*» Parameter Passing and the Runtime Stack

SSSSSSSSSSSSSSSS

https://students-hub.com

Parameter Passing

*» Parameter passing in assembly language is different

<> More complicated than that used in a high-level language

** In assembly language
< Place all required parameters in an accessible storage area
<> Then call the procedure

“* Two types of storage areas used
< Registers: general-purpose registers are used (register method)
< Memory: stack is used (stack method)

¢ Two common mechanisms of parameter passing
< Pass-by-value: parameter value is passed

< Pass-by-reference: address of parameter is passed

STUDENTS-HUB.com

https://students-hub.com

Parameter Passing - cont'd

* By convention, register are used for parameter passing
< $a0 = $4 .. $a3 = $7 are used for passing arguments

<> 8v0 = $§2 .. S$vi $3 are used for result values

“ Additional arguments/results can be placed on the stack

*+ Runtime stack is also needed to ...
< Store variables / data structures when they cannot fit in registers
<> Save and restore registers across procedure calls

< Implement recursion

“* Runtime stack is implemented via software convention
< The stack pointer $sp = $29 (points to top of stack)
< The frame pointer $£p = $30 (points to a procedure frame)

STUDENTS-HUB.com

https://students-hub.com

Stack Frame

% Stack frame is the segment of the stack containing ...

< Saved arguments, registers, and local data structures (if any)

+» Called also the activation frame or activation record

*» Frames are pushed and popped by adjusting ...

Stack
$fp —»
Frame f()
$sp >
|

stack grows
downwards

STUDENTS-HUB.com

fcalls g

Stack

Frame f()

$fp »

$sp —»

Frame g()

allocate
stack frame

greturns

< Stack pointer $sp = $29 and Frame pointer $£fp

Stack

$fp —»

Frame f()

$sp—>

!

free stack
frame

R30

< Decrement $sp to allocate stack frame, and increment to free

/,$fp->

arguments

saved $ra

saved
registers

local data
structures
or variables

https://students-hub.com

Preserving Registers

*» Need to preserve registers across a procedure call

< Stack can be used to preserve register values

** Which registers should be saved?
< Registers modified by the called procedure, and

< Still used by the calling procedure

** Who should preserve the registers?

<> Called Procedure: preferred method for modular code

» Register preservation is done inside the called procedure
< By convention, registers $s0, $s1, ..., $s7 should be preserved

< Also, registers $sp, $fp, and $ra should also be preserved

STUDENTS-HUB.com

https://students-hub.com

Selection Sort

Array Array Array Array
first — first — first — first —
max = max value max —* last value
last
last = last =+ last value last = max value max value
Unsorted Locate Swap Max Decrement
R Max with Last Last
“» Example
first > 3 3 | first—=> 3 3 |rfisst—> 3 2 |rfisst—> 2 >< 1
1 1 1 1 1 >< 1 | last—~ 1 2
max—* 5 4 |max—> 4 >< 2 | last—=> 2 3 3 3
2 >< 2 | last— 2 4 4 4 4 4
last > 4 5 5 5 5 5 5 5

STUDENTS-HUB.com

https://students-hub.com

Selection Sort Procedure

#
#

Output:

top:

Objective: Sort array using selection sort algorithm

Input: $a0 = pointer to first, $al = pointer to last

sw Sra,
jal max
lw $t0,
sSwW $t0,
sSw Svl,
addiu $al,
bne $a0,
lw Sra,
addiu $sp,

jr Sra

sort: addiu $sp, $sp, -4

0 (Ssp)

0($al)

0 ($vO0)
0($al)
Sal, -4
S$al, top
0 (Ssp)
Ssp, 4

#

#
#
#
#

+H=

array is sorted in place

BHHHARHH RS SRS GRS GRS R S ARS AR R AR S AR S R R AR

allocate one word on stack
save return address on stack
call max procedure

$t0 =
swap last and max values

last wvalue

decrement pointer to last
more elements to sort

pop return address

return to caller

STUDENTS-HUB.com

https://students-hub.com

Max Procedure

Objective: Find the address and value of maximum element

Input: $a0 = pointer to first, $al = pointer to last
Output: $v0 = pointer to max, Svl = value of max
EE LIS SIS LA S ELEE LA SIS S EELEEEEEELEELEEELEE L ELEE L
max: move §$v0, $a0l # max pointer = first pointer

lw Svl, 0($vO0)
beq $a0, $al, ret
move $t0, $a0l

loop: addi $t0, $tO, 4
1w $tl, 0($t0)
ble $tl, $vl1l, skip
move $vO0, $tO
move S$vl1, S$tl

skip: bne $t0, Sal, loop # loop back if more elements

Svl = first wvalue

if (first == last) return
$t0 = array pointer

point to next array element
$tl = value of A[i]

if (A[i] <= max) then skip

found new maximum

H H H H H H F

ret: IJr Sra

STUDENTS-HUB.com

https://students-hub.com

Example of a Recursive Procedure

int fact(int n) { if (n<2) return 1; else return (n*fact(n-1)); }

fact:

else:

STUDENTS-HUB.com

slti
beq
1i

jr
addiu
SW

SW
addiu
jal
1w

1w
mul
addi
jr

$t0,$a0,2
$t0,$0,else
$v0,1

Sra

Ssp, $sp, -8
$a0,4 ($sp)
Sra,0($Ssp)
$a0,$a0,-1
fact

$a0,4 (Ssp)
Sra,0($sp)
$v0,$a0,s$v0
Ssp, $sp, 8
Sra

H H H H H HH HE HHFE H I H FE

(n<2)?

if false branch to else
Svo = 1

return to caller

allocate 2 words on stack
save argument n

save return address
argument = n-1

call fact(n-1)

restore argument

restore return address
$v0 = n*fact(n-1)

free stack frame

return to caller

https://students-hub.com

You are going to enhance a machine and there are two
types of possible improvements: either (i) make multiply
Instructions run 4 times faster, or (i) make memory access
Instructions run two times faster than before. You repeatedly
run a program that takes 100 seconds to execute (on the
original machine) and find that of this time 25% is used for
multiplication, 50% for memory access instructions, and
25% for other tasks.

1. What will the speedup be if you improve both multiplication and
memory access?

2. Assume the program you run has 10 billions instructions and runs on
the machine that has a clock rate of 1GHz. Calculate the CPI for this
machine. Assume further that the CPI for multiplication instructions is
20 cycles and the CPI for memory access instructions is 6 cycles.
Compute the CPI for all other instructions.

3. What is the CPI for the improved machine when improvements on both
multiplication and memory access instructions are made?

STUDENTS-HUB.com

https://students-hub.com

