
Chapter 11 Inheritance

Creating classes from other classes!

Inheritance cont.

• Subclasses: a subclass may inherit the structure and behaviour of it's superclass.

Inheritance

- You use a class to model objects of the same type.
- Different classes may have some common properties and behaviors, which can be generalized in a class that can be shared by other classes.
- You can define a specialized class that extends the generalized class.
- The specialized classes inherit the properties and methods from the general class.

Superclasses and Subclasses

	GeometricObject	
ľ	-color: String	The color of the object (default: white).
	-filled: boolean	Indicates whether the object is filled with a color (default: false)
	-dateCreated: java.util.Date	The date when the object was created.
ľ	+GeometricObject()	Creates a GeometricObject.
	+GeometricObject(color: String, filled: boolean)	Creates a GeometricObject with the specified color and filled values.
ı	+getColor(): String	Returns the color.
	+setColor(color: String): void	Sets a new color.
	+isFilled(): boolean	Returns the filled property.
	+setFilled(filled: boolean): void	Sets a new filled property.
	+getDateCreated(): java.util.Date	Returns the dateCreated.
	+toString(): String	Returns a string representation of this object.

Circle

-radius: double

+Circle()

+Circle(radius: double)

+Circle(radius: double, color: String, filled: boolean)

+getRadius(): double

+setRadius(radius: double): void

+getArea(): double

+getPerimeter(): double

+getDiameter(): double

+printCircle(): void

Rectangle

-width: double -height: double

+Rectangle()

+Rectangle(width: double, height: double)

+Rectangle(width: double, height: double color: String, filled: boolean)

+getWidth(): double

+setWidth(width: double): void

+getHeight(): double

+setHeight(height: double): void

+getArea(): double

+getPerimeter(): double

GeometricObject

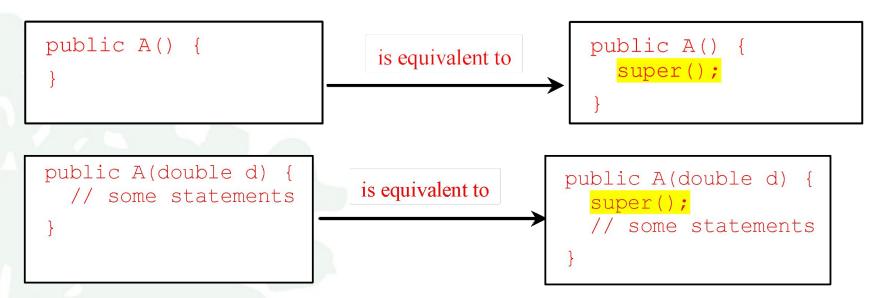
Circle

Rectangle

TestCircleRectangle

Run

A subclass inherits accessible data fields and methods from its superclass


Does it inherit class constructors?!!

A constructor is used to construct an instance of a class. Unlike properties and methods, a superclass's constructors are not inherited in the subclass. They can only be invoked from the subclasses' constructors, using the keyword <u>super</u>. If the keyword <u>super</u> is not explicitly used, the superclass's no-arg constructor is automatically invoked.

What if there is no-arg constructor defined in the super class?!!!

Superclass's Constructor Is Always Invoked

A constructor may invoke an overloaded constructor or its superclass's constructor. If none of them is invoked explicitly, the compiler puts super() as the first statement in the constructor. For example,

Caution

You must use the keyword **super** to call the superclass constructor, and the call must be the first statement in the constructor. Invoking a superclass constructor's name in a subclass causes a syntax error.

Using the Keyword super

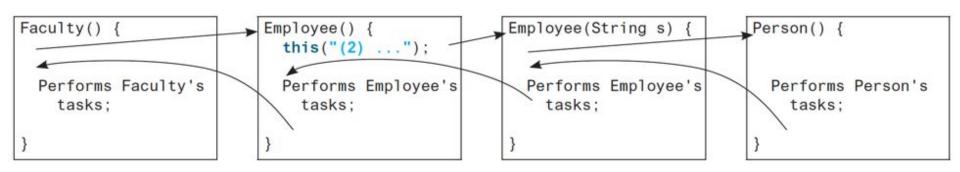
The keyword super refers to the superclass of the class in which super appears. This keyword can be used in two ways:

- ☐ To call a superclass constructor
- ☐ To call a superclass method

CAUTION

You must use the keyword <u>super</u> to call the superclass constructor. Invoking a superclass constructor's name in a subclass causes a syntax error. Java requires that the statement that uses the keyword <u>super</u> appear first in the constructor.

Constructor Chaining



Constructing an instance of a class invokes all the superclasses' constructors along the inheritance chain. This is known as *constructor chaining*.

```
public class Faculty extends Employee {
  public static void main(String[] args) {
    new Faculty();
  public Faculty() {
    System.out.println("(4) Faculty's no-arg constructor is invoked");
class Employee extends Person {
  public Employee() {
    this("(2) Invoke Employee's overloaded constructor");
    System.out.println("(3) Employee's no-arg constructor is invoked");
  public Employee(String s) {
    System.out.println(s);
class Person {
  public Person() {
    System.out.println("(1) Person's no-arg constructor is invoked");
```


Output

- (1) Performs Person's tasks
- (2) Invoke Employee's overloaded constructor
- (3) Performs Employee's tasks
- (4) Performs Faculty's tasks

What is the output?

```
class A {
  public A() {
    System.out.println(
      "A's no-arg constructor is invoked");
class B extends A {
public class C {
  public static void main(String[] args) {
    B b = new B();
```


What is the Output?

```
class A {
  public A(int x) {
class B extends A {
  public B() {
public class C {
  public static void main(String[] args) {
    B b = new B();
```

Example on the Impact of a Superclassitudiversity without no-arg Constructor

Find out the errors in the program:

```
public class Apple extends Fruit {
}
class Fruit {
  public Fruit(String name) {
    System.out.println("Fruit's constructor is invoked");
  }
}
```

Design Guide

If possible, you should provide a no-arg constructor for every class to make the class easy to extend and to avoid errors.

Defining a Subclass

A subclass inherits from a superclass. You can also:

- Add new properties
- □ Add new methods
- Override the methods of the superclass

Calling Superclass Methods

You could rewrite the <u>printCircle()</u> method in the <u>Circle</u> class as follows:

```
public void printCircle() {
   System.out.println("The circle is created " +
    super.getDateCreated() + " and the radius is " + radius);
}
```

Overriding Methods in the Superclass

A subclass inherits methods from a superclass. Sometimes it is necessary for the subclass to modify the implementation of a method defined in the superclass. This is referred to as *method overriding*.

```
public class Circle extends GeometricObject {
    // Other methods are omitted

    /** Override the toString method defined in GeometricObject */
    public String toString() {
       return super.toString() + "\nradius is " + radius;
    }
}
```

To override a method, the method must be defined in the subclass using the same signature as in its superclass.

NOTE

An instance method can be overridden only if it is accessible. Thus a private method cannot be overridden, because it is not accessible outside its own class. If a method defined in a subclass is private in its superclass, the two methods are completely unrelated.

NOTE

Like an instance method, a static method can be inherited. However, a static method cannot be overridden. If a static method defined in the superclass is redefined in a subclass, the method defined in the superclass is hidden.

The hidden static methods can be invoked using the syntax SuperClassName.staticMethodName.

Overriding vs. Overloading

```
public class Test {
  public static void main(String[] args) {
    A = new A();
    a.p(10);
    a.p(10.0);
class B {
 public void p(double i) {
    System.out.println(i * 2);
class A extends B
  // This method overrides the method in B
 public void p(double i) {
    System.out.println(i);
```

```
public class Test {
  public static void main(String[] args) {
    A = new A();
    a.p(10);
    a.p(10.0);
class B {
  public void p(double i) {
    System.out.println(i * 2);
class A extends B
  // This method overloads the method in B
  public void p(int i) {
    System.out.println(i);
```

- Overridden methods are in different classes related by inheritance; overloaded methods can be either in the same class, or in different classes related by inheritance.
- Overridden methods have the same signature; overloaded methods have the same name but different parameter lists.

```
public class Circle {
  private double radius;
  public Circle(double radius) {
    radius = radius:
  public double getRadius() {
    return radius:
  public double getArea() {
    return radius * radius * Math.PI;
class B extends Circle {
  private double length;
  B(double radius, double length)
    Circle(radius);
    length = length;
  @Override
  public double getArea() {
    return getArea() * length;
 UDENTS-HUB.com
```


Problems?!

This annotation denotes that the annotated method is required to override a method in its superclass. If a method with this annotation does not override its superclass's method, the compiler will report an error

venth Edition, (c) 2017 Pearson Education, Inc. All reserved. Uploaded By: Jibre Bornat

The Object Class and Its Methods

Every class in Java is descended from the java.lang. Object class. If no inheritance is specified when a class is defined, the superclass of the class is Object.

```
public class Circle {
    ...
}
Equivalent
}
public class Circle extends Object {
    ...
}
```

The toString() method in Object UNIVERSITY

The toString() method returns a string representation of the object. The default implementation returns a string consisting of a class name of which the object is an instance, the at sign (@), and a number representing this object (memory add.).

Loan loan = new Loan();

System.out.println(loan.toString());

The code displays something like Loan@15037e5. This message is not very helpful or informative. Usually you should override the toString method so that it returns a digestible string representation of the object.

The final Modifier

☐ The final class cannot be extended:

```
final class Math {
    ...
}
```

□ The final variable is a constant:

```
final static double PI = 3.14159;
```

☐ The final method cannot be overridden by its subclasses.